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A function, f(:) is homogeneous of degree q«, if

fAzy, .., Axg) = A f(x1, .., 2q).




/VVhy IS the concept of homogeneity important\
?

e Characterization of production functions

a <1 decreasing
a=1 <= constant returns to scale

a>1 iIncreasing

e In the theory of producers,
cost-minimizing(profit-maximizing)
behavior of competitive firms implies their
cost(profit) functions are linearly
homogeneous in input (and output) prices.

C =c(y,pr) s.t. c(y, \pr,) = Ae(y,pr)

m = (pr,po) s:t. m(Apr, Apo) = A (pr, po)

N /




ﬁ\lonparametric Models with Homogeneous
Restriction

e [ he estimation has been carried out only
in parametric forms. Christensen and
Greene (1976) analyzed the cost function
of electricity generation in the US with
inputs of capital, labor, and fuel.

e Partial Linear Model. Tripathi (2000)
‘efficiency bound for @' with homogeneous

10K
Y, = ZFB+ [ (Xi) + &,

e Nonparametric Model. Tripathi and Kim
(1999) with homogeneous f () :

Yi = f(Xi) + &
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Objective

Analyze nonparametric additive models where
at least one component is restricted to be
homogeneous.

i = f(X)+ fa(Zi) 4, (&:10.d),

where f1(-) is homogeneous.




/ Extension

an option pricing model

Ht — fl (St7K7T_t7Xt)7

II;, = option price
S; = price of underlying asset
K = exercise price
T'—t = time to expiration
X; = other var. (S;_1 or volatility).

Garcia and Renault (1996) showed f; (+) is
homogeneous of degree one in (S;, K).

Under multiplicative assumption, the pricing
model is

Ht — fl(St7K>f2 (T_taXt)a

\vvhere f1(+) is linearly homogeneous.

~

Consider a nonparametric option pricing model,
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Imposing Homogeneity

Numeraire Approach
From the homogeneity,

fr (Xui, o Xai) = Xc(;ilfl (Xl’i/Xdi? "7X(d—1)i/Xdi> 1) '

By defining

61 (Uz) — fl (Xli/Xdz', "7X(d—1)i/Xdi7 1) with
U= (X1i/Xa, - X(a—1)i/Xai, 1) , reparametrize
into

Y, = X751 (Us) + f2 (Z;) + & (1)

Since « is known, we only estimate (; (-) and
construct fi (z) = x5 B1 (u).

N /




/General Model \

Assume f, (+) is also homogeneous, then,
Yy = X3 61 (Us) + 25382 (Vi) + &5 (2)

With Z,; =1 and V; = Z;, (2) includes (1) as a
special case.

Additional Contribution: We extend the theory
for Varying-Coefficients Models by Hastie and
Tibshirani (1997) or Functional Coefficients
AR models by Tsay (1993).

Y, = Zszﬂk (X(a+1)i) + &,
k=1
d
Y, = Z Yi—xBx (Yiear) + €
k=1
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Two-Step Estimation Procedure

Yi=X3'01(Us) + Z,2 B2 (Vi) + ¢

Local Linear Fit :First Step

After locally approximating (; (-) and 3 (-) by
linear equations,

min ZKh x [ yi — {b1ot+

blk S, b2k SN

Z blk )}X — {b20 + Z b2l<: )}Z

1 2

where w = (u,v) and W,; = (U;, V;).

’]
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e Note that byg, the estimate of 5 (u), also
depends on the value of v. Thus, we
d_enote the_ Ieve[ estir_nates by

Bl (U, ’U)
B (u,v)

b1o

b2

e [ hese estimates are consistent, but their
2
convergence rates (n4t@+s=2)) are not

optimal, slower than n%or nﬁ.
This is a natural result due to the use of
the kernel weights, Ky, (W; —w), of
dimension, (d 4+ s — 2) in our smoothing
method.
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Marginal Integration: Second Step

e For the optimal convergence rate,
marginally integrate the pilot estimates of
Blo(u,V,;) over V; i=1,.,n, i.e.,

610 Zﬁlo u, V

similarly,

620 Zﬁzo Uzav
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Marginal Integration

Newey (1994), Tjgstheim and Auestadt
(1994), and Linton and Nielsen (1995)

e Advantage: theoretical tractability in
deriving asymptotic properties, in contrast
to backfitting

e \Weakness: high costs of computations

e alternative: Instrumental VVariable approach
by Kim (1998)

Flnally, for the regression surface, we use

f (z, Z>—$d151( )"‘Z(mﬂz( )

N /
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Al.

A2.

A3.

Conditions

{Y:, X;,Z;},_, is a random sample, and ¢; is
i.i.d. with E(e|X,Z) =0 and
E(3|1X,Z) =02 (X,Z) < .

(Continuity and Differentiability) The
functions of the components,
varying-coefficients, and conditional
variance, together with the
densities(marginal or joint)-f1(-), f2(-),
B1(-), B2() (), px (), pz(-) and px z(-) are
continuous (and hence bounded on the
compact support) and twice differentiable
with bounded partial derivatives.

(Density Functions) px(-), pz(-) and
px z(-) are bounded away from zero on the
compact supports. Also, conditional
density exists and is bounded.

~

/
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Ab.
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The matrix E(WTW|Xq = z4,Zs = 25) is of
full rank, and E (WTW|Xy = x4, Zs = 25)
Is bounded element-wise in a
neighborhood of (xg4,zs).

(Kernel Functions) The kernel function
K is positive, compactly supported
bounded function, with [ K (u)du =1 and
[uK (u)du=0. |K (x1) — K (z2) | < c|z1 — x2]
for all x1 and x4 in its support.

(Bandwidth Condition 1) h; =
hy =h — 0 and nh?t572 — oo.

(Bandwidth Condition 2)
nhgd_l)hg(s_l)/ In® n — oo,

hgs_l)/h% — 00, hy — 0, and nh; — oc.

/
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/ Main Results 1

Notation:

w = (wy,wz) = (u,0), Fo(w) = (Bro(w), Bao(w))

Theorem 1. Assume that the conditions of
A.1 through A.6 hold. Then,

Vnhd+s—2 [Bo(w) — Bo(w) — BIAS

K 2
AN(O, 1K1 25)

pw (w)

where

Wi = [ K (u)uldu, and ||K| = [ K?(r)dr.

N

~
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BIAS = 'y
tr (D?B1(w1)) +

E(X{1Z22|W=w)
E(X;" [W=w)
E(X{1Z22|W=w)

tr (D262 (wg))

_ tr (Dzﬁz(wg)) + E(Z§“2|W:w) tr (D251(w1)) _
Yig (W) =
Ew (X2 02(W,X4,Zs)) Ew(X31Z28202(W,X4,Z5))
B2, (X, Ejw (X, Ejw (2572)
Blw (X351 Z3202(W,Xa,Z.)) Elw (Z;*202(W,X4,Z5))
Bw (X" V) Ew (Z:7?) B2, (2.°2)




Remark 2

e the convergence rate,vnhd+s—2 from using
the kernel function which is defined on
Rd_l % Rs—l_

e the bias of Blo(u,v) is similar to the local
linear fit in Fan (1992), a function of
'second derivatives only”, except that it
depends on D?f,(v), which is a natural
extension of Tripathi and Kim (1999)
dealing with Y; = X' 61 (U;) + ¢;.

e For homoscedastic errors, the variance is
|K||502 /pw (w), the standard result.

4 N
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From f(z,2) = 25 B (u) + 2222 (v)

Corollary 3. Under the same conditions of
Theorem 1,

Vnhdts=2 {f(az, z) — f(z,z) — BIASf]
£ (o, Ll s ),

pw (w)

2

BIAS; = (29, 222]" BIAS,

vV E(X " 02 (W, Xa,Zs) |[W=w)
E2( 2041|VV w)

zy 202 B(X 1 28202 (W, Xa,Z5) | W=w)
B(X;" |[W=w)E(Z;"?|W=w)

222 E(Z227202(W,Xa,Z5) | W=w)

E2(Z;%2|W=w)

2=

_I_

N




-~

Main Results II
Notation: fj(u) =+ 3", Bio(u, V;)

Theorem 4 Under the conditions of A.1
through A.5 and A.7,

i) nh‘li_l [B\i"(u) — fB1(u) — BIAS* (u)}
=5 N (0,|1K|325,) .

_ [ P B(X, o 22<de>|w (u,s2))
pw (u,s2) E2( O41|VV (u, 32)>

d82,

BIAS* (u) = p2 [%tr (D?By(u)) +

5 e ) S (D) o)

N
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i)y /nhd? [fl () — f1(x) — BIAS% (x)
=5 N (0, [|K|BZ,)

BIAS} (z) = 25 BIAS* (u)

1

o xd pW(U 82)

20 p? (s2) E(X; 1 02(W,Xq)|W=(u,s2))

B2( X" |W=(u,s2))

d82.

20
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Remark 5

e Undersmoothing in a nuisance direction,
h5/h? — 0, BIAS* (u) = %,u%{tr (D?B1(u)) .

e For homoscedastic errors, the variance is
2 2 Dy S
|K|Bo? | oty dss.

(u S2)

e the same results from usual marginal
integration in additive models with LLF as
pilot estimate.

21
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Application: livestock production function
iIn Wisconsin

Data Set: Farm Credit Service of Saint Paul,
Minnesota (1987)

the number of observations, N = 250

y. livestock
r: family labor

z1. miscellaneous inputs (repairs, rent, supplies,
gas, oil utilities)

zo. intermediate assets
z3. hired labor

z4:animal inputs (purchased feed, breeding,
veterinary services)

N /
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ﬁ)LS based on Cobb-Douglas \

5

f)=c][1

1=1
logy = 1.886 + 0.063 logx + 0.289 log 2
(0.289)  (0.020) (0.025)
+0.305 log zo + 0.031 log z3 + 0.277 log 24,
(0.034) (0.007) (0.023)
R* = 0.900
5 AN
> B = 0.965.
1=1

At 1% level, we cannot reject the hypothesis
that 37 , B =1, that is, cannot reject the
hypothesis of CRS under a Cobb-Douglas
specification.

Problems: the functional misspecification,

homogeneity only on ‘variable input’, not on
‘fixed input’

. /
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e Nonparametric Modeling Assumption:

fixed variable: family labor(x)

variable input: other inputs(zq,.., 2z4)

y = file)+fa(z)+e : additivity
f1(z) + zafo (21/24, 22/ 24, 23/ 24,1) + €
linear homogenity

* Severance-Lossin and Sperich (1997):
componentwise additivity

no interaction between bariable inputs

= N1 (-’13) + 2492 (w17w2,w3) +E, W; = 27;/24.

~
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/o Results : elasticity of scale measures thh

percent increase in output due to one
percent increase in all inputs.

1. Unrestricted Model
'V, (x,2)+ 2'Vf, (x,2)
f(z,2)

e(x,z)=

of degree r
o'V, (x,z) +1'fa(2)
f(z,2) ’

e(x,z) =

by Euler’'s theorem

3. Parametric Cobb-Douglas

5
e(2,2) =3 B
=1

N

2. Restricted Model: with f;(z) homogeneous

25



(Full
Mean
RM 1.067
UM 0.994
CD 0.965

restriction

\C

Sample)
Med.
1.018
1.011
(fixed)

(Excl.

Mean
1.060
1.011

1. e(x;,z;) fluctuates around 1

/. Scale Elasticities for Livestock Production\
in Wisconsin Farms

Outliers)
Med
1.016
1.012

2. closeness of average or median scale
elasticity between two models

—indirect evidence for the validity of

3. e(x;,2)'s from the restricted model are
more centered around 1 than those from the
unrestricted, while they are fixed as
° . B; = 0.965 under Cobb-Douglas.

/
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Conclusion \

e Nonparametric Estimation of Additive
Models with Homogeneous Components

nonparametric :  flexibilty
additivity : reduction in Dimension
homogeneity : economic restriction

e Asymptotic Theory of Two-Step
Estimators:

local linear fit : 1st step

marginal integration : 2nd step

properties :asymptotic normality,
optimal convergence rate

27
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