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Agenda

e Regulators’ Traffic Light Approach (TLA)

e Backtesting the whole forecast distribution

e Backtesting the Tail VaR (expected shortfall)
e Real Life Examples

e Conclusions & Outlook
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Framework

We generally adopt the JPM RiskMetriks delta-normal approach,i.e.
e all instruments are linear or assumed to be linearized

e the common distribution of risk factors Y € IR? is a

multivariate normal distribution

e the log price changes

Y;H—l = lnXt+1 — Z’I’LXt ~ Nd(O, Et);

Backtesting beyond VaR

o /

1-3




o

Estimates for >;: RMA and

RMA : Rectangular Moving Average

xponential Moving Average

o (n x d) data matrix &y = {y; }i=t—n+1,...., RMA defined by

. 1
>, = —XT A,
n
e (n x d) data matrix
‘)Et =1 diag()\d, )\d_la cy A, 1)1/2yi}i:t—n—|—1,---,t : defined

by
it — (1 - )\).)EtT.)Et
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Approximation refers to

~

VaR for a instrument

e ;.1 rvof (P&L) at time t + 1 , conditional forecast distribution
P, 1; Fi+1 the associated ccdf

e for a single asset with market value x; and exposure w, = \; ¢,

Py = L(Lig1 | He) = LO( X1 — @) | Hy)

ﬁ(wt Xi41 — Ty | Ht)%

Lt
L(wiYes1 | He) = N(0,wi o)

Xt—|—1 — Tt

lnXt+1 — lTLZEt = + O(Xt_|_1 — ZEt)

Lt
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VaR for a of instruments
e generalization to linear portfolios is straightforward
o w; = (MNazi, -, Mx?) denotes a d—dimensional exposure vector

o wlY;i1 € Pry1 = {N(0,0%): 0% €[0,00)}, where 02 = w/! Z;w;.
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Mathematical target of VaR models:
Pt — E(Lt_|_1 ‘ Ht)

e cood Backtesting strategies should stress two different issues of

{ Pt
1. Calibration: measures the quality of substantial components

of the VaR model, e.g., adequate choice of risk factors

2. Resolution: measures the statistical quality of the VaR

model, e.g., adequate dynamics and probability models
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For an adequate VaR model the realizations

Fy(L;) should be iid U[0, 1]

1. identically distributed U0, 1] stands for a good calibration

2. independence stands for a good resolution
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Shortcomings related to the A

binomial or sign statistic is related to a very specific forecast

task - limited calibration skills

resolution properties ignored - no account for clusters of VaR

exceedances

no good support by graphical means at hand - timeplot

insufficient

the involved regulatory penalty function no strict proper scoring

rule - even very conservative models are not penalized

weak substantial interpretation for risk managers
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Time plot of VaRs and P& L

DM*E5

-10

The dots show the observed change of the portfolio values, [;. The

dashed lines show the predicted VaRs based on RMA (99% and
1%).The solid lines show the same for EMA.
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Lessons from the practice of Backtesting

e exploratory means are often sufficient tools for analyzing

backtesting data
e clean backtesting is indispensable
e Backtesting on sub portfolio level is essential

e analyze your position A\; over time
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Refinement 1 for the TLA:

Empirical Calibration Curve

e within JP Morgan’s Delta Normal Framework realisations
l;+1/VaR; should behave as itd N(0,2.3371)

e (Q-Q-plot good exploratory tool to analyze calibration.

o /

Backtesting beyond VaR 1-12




N

Reliability plot for RMA

Q-Q plOt of lt+1/‘7a,7%t for RMA in 94.
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Reliability plot for EMA

Q-Q plOt of lt+1/‘7a72t for EMA in 94.
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Refinement 2 for the TLA:

Timeplot of Exceedances

o (t,1(liy1 > VaR,)2%0

Time plot for exceedances for RMA Time plot for exceedances for EMA

Timeplots of the exceedances over VaR of 80% level for RMA (left)
and EMA. The better resolution of EMA is evident.
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Refinement 3 for the TLA:

Backtesting standardized Tail-VAR

e Tail-VaR approx. for coherent risk measure

e substantial interpretation as self-insurance, risk neutral pricing

for a reinsurance contract

e cxceedance’s height is incorporated
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Delta normal World of JPM:

forecast distribution

L(Lyy1 | He) = N(0,67)
. stand. Tail-VaR

E(Liy1 | L1 > VaRy) =

O¢ E<Lt+1/0-t ‘ Lt—l—l/at > Za)

p(u)
1 — ®(u)
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Estimator for

Mean

5 — Do 241 L(zep1 > u)
> o I(zt41 > u)

STD

G =Var(Zip1 | Zigr > u) =1 +u-09 —9?

Test statistic
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Method Y =1.4 s = 0.46 T sign. nobs
EMA 9 =1.72 & =1.01 2.44 0.75% 61
RMA 9 = 1.94 & =1.3 3.42 0.03% 68

(<)
Table 1. Hy : 9 = 14

Method 9 = 1.47 ¢ = 0.546 T sign. nobs
EMA 9 = 1.72 & =1.01 2.01 2.3% 61
RMA Y = 1.94 $=1.3 3.04  0.14% 68

N

Table 2. Hy : 9 = 1.47
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Method v =1.4 ¢ = 0.46 T sign. nobs
EMA 9 = 1.645 ¢ = 0.82 2.31 1% 60
RMA 9 = 1.83 & =0.93 3.78 0.00% 67

Table 3. Hy : 9 =) 1.4 - largest outlier excluded

Method 9 = 1.47 ¢ = 0.546 T sign. nobs
EMA 9 = 1.645 & = 0.82 1.65 5% 60
RMA 9 = 1.83 ¢ =0.93 3.1 0.15% 67

Table 4. Hy : v =) 1.47 - largest outlier excluded
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Outlook

exploit the Panel structure of VaR models

backtesting based on fixed events with varying probabilities in

stead of fixed probabilities and varying intervals
apply an economic motivated loss function

analyze the (bivariate) structure of forecast-realization pairs

(ft,fEt)
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