Backtesting Beyond VaR

W. Härdle

G. Stahl

February 21, 2000

Institut für Statistik und Ökonometrie Wirtschaftswissenschaftliche Fakultät Humboldt-Universität zu Berlin, Germany

http://ise.wiwi.hu-berlin.de

Agenda

- Regulators' Traffic Light Approach (TLA)
- Backtesting the whole forecast distribution
- Backtesting the Tail VaR (expected shortfall)
- Real Life Examples
- Conclusions & Outlook

Framework

We generally adopt the JPM RiskMetriks delta-normal approach, i.e.

- all instruments are linear or assumed to be linearized
- the common distribution of risk factors $Y \in IR^d$ is a multivariate normal distribution
- the log price changes

$$Y_{t+1} = lnX_{t+1} - lnX_t \sim N_d(0, \Sigma_t),$$

Estimates for Σ_t : RMA and EMA

RMA: Rectangular Moving Average

EMA: Exponential Moving Average

• $(n \times d)$ data matrix $\mathcal{X}_t = \{y_i\}_{i=t-n+1,\dots,t}$, RMA defined by

$$\hat{\Sigma}_t = \frac{1}{n} \mathcal{X}_t^T \mathcal{X}_t$$

• $(n \times d)$ data matrix $\tilde{\mathcal{X}}_t = \{ diag(\lambda^d, \lambda^{d-1}, \dots, \lambda, 1)^{1/2} y_i \}_{i=t-n+1,\dots,t} : EMA \text{ defined by}$

$$\hat{\Sigma}_t = (1 - \lambda) \tilde{\mathcal{X}}_t^T \tilde{\mathcal{X}}_t$$

VaR for a single instrument

- L_{t+1} rv of (P&L) at time t+1, conditional forecast distribution $P_{t+1}; F_{t+1}$ the associated ccdf
- for a single asset with market value x_t and exposure $w_t = \lambda_t x_t$, $P_t = \mathcal{L}(L_{t+1} \mid \mathcal{H}_t) = \mathcal{L}(\lambda_t(X_{t+1} x_t) \mid \mathcal{H}_t)$

$$\mathcal{L}\left(w_t \frac{X_{t+1} - x_t}{x_t} \mid \mathcal{H}_t\right) \approx$$

$$\mathcal{L}(w_t Y_{t+1} \mid \mathcal{H}_t) = N(0, w_t^2 \sigma_t^2)$$

Approximation refers to

$$lnX_{t+1} - lnx_t = \frac{X_{t+1} - x_t}{x_t} + o(X_{t+1} - x_t)$$

VaR for a portfolio of instruments

- generalization to linear portfolios is straightforward
- $w_t = (\lambda_t^1 x_t^1, \dots, \lambda_t^d x_t^d)$ denotes a d-dimensional exposure vector
- $w_t^T Y_{t+1} \in \mathcal{P}_{t+1} = \{ N(0, \sigma_t^2) : \sigma_t^2 \in [0, \infty) \}, \text{ where } \sigma_t^2 = w_t^T \Sigma_t w_t.$

Mathematical target of VaR models:

$$P_t = \mathcal{L}(L_{t+1} \mid \mathcal{H}_t)$$

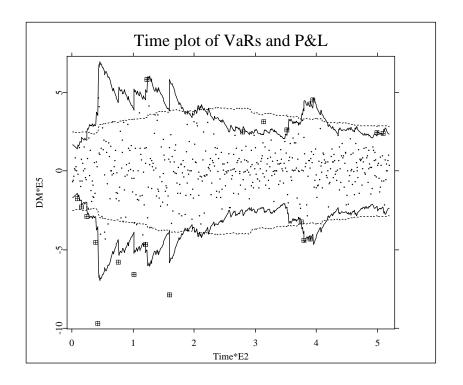
- good Backtesting strategies should stress **two** different issues of $\{P_t\}_{t=1}^{\tau}$
 - 1. Calibration: measures the quality of substantial components of the VaR model, e.g., adequate choice of risk factors
 - 2. Resolution: measures the statistical quality of the VaR model, e.g., adequate dynamics and probability models

For an adequate VaR model the realizations $F_t(L_t)$ should be iid U[0,1]

- 1. identically distributed U[0,1] stands for a good calibration
- 2. independence stands for a good resolution

Shortcomings related to the TLA

- binomial or sign statistic is related to a very specific forecast task limited calibration skills
- resolution properties ignored no account for clusters of VaR exceedances
- no good support by graphical means at hand timeplot insufficient
- the involved regulatory penalty function no strict proper scoring rule even very conservative models are not penalized
- weak substantial interpretation for risk managers



The dots show the observed change of the portfolio values, l_t . The dashed lines show the predicted VaRs based on RMA (99% and 1%). The solid lines show the same for EMA.

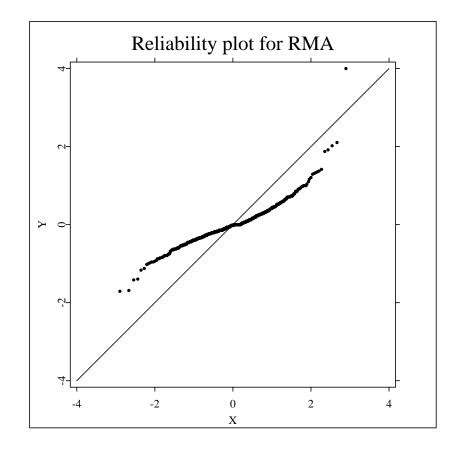
Lessons from the practice of Backtesting

- exploratory means are often sufficient tools for analyzing backtesting data
- clean backtesting is indispensable
- Backtesting on sub portfolio level is essential
- analyze your position λ_t over time

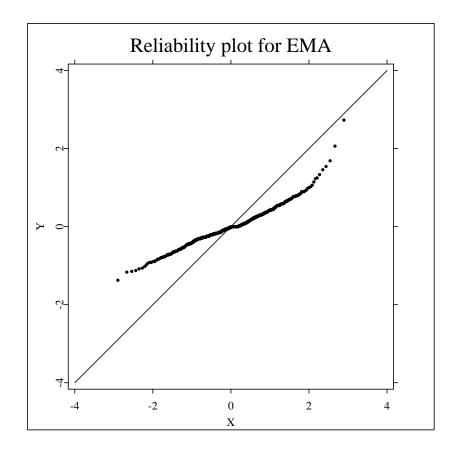
Refinement 1 for the TLA:

Empirical Calibration Curve

- within JP Morgan's Delta Normal Framework realisations l_{t+1}/\widehat{VaR}_t should behave as $iid\ N(0,2.33^{-1})$
- Q-Q-plot good exploratory tool to analyze calibration.



Q-Q plot of l_{t+1}/\widehat{VaR}_t for RMA in 94.

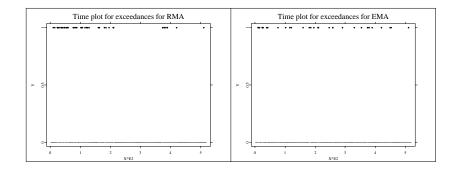


Q-Q plot of l_{t+1}/\widehat{VaR}_t for EMA in 94.

Refinement 2 for the TLA:

Timeplot of Exceedances

• $(t, I(l_{t+1} > \widehat{VaR}_t)_{t=1}^{260})$



Timeplots of the exceedances over VaR of 80% level for RMA (left) and EMA. The better resolution of EMA is evident.

Refinement 3 for the TLA:

Backtesting standardized Tail-VAR

- Tail-VaR approx. for coherent risk measure
- substantial interpretation as self-insurance, risk neutral pricing for a reinsurance contract
- exceedance's height is incorporated

Delta normal World of JPM:

forecast distribution

$$\mathcal{L}(L_{t+1} \mid \mathcal{H}_t) = N(0, \hat{\sigma}_t^2)$$

parameter of interest: stand. Tail-VaR

$$E(L_{t+1} \mid L_{t+1} > VaR_t) =$$

$$\sigma_t E(L_{t+1}/\sigma_t \mid L_{t+1}/\sigma_t > z_{\alpha})$$

$$\vartheta = E(Z_{t+1} \mid Z_{t+1} > u) = \frac{\varphi(u)}{1 - \Phi(u)}$$

Estimator for ϑ

Mean

$$\hat{\vartheta} = \frac{\sum_{t=0}^{n} z_{t+1} \ I(z_{t+1} > u)}{\sum_{t=0}^{n} I(z_{t+1} > u)}$$

STD

$$\varsigma^2 = Var(Z_{t+1} \mid Z_{t+1} > u) = 1 + u \cdot \vartheta - \vartheta^2$$

Test statistic

$$T = \sqrt{N(u)} \left(\frac{\hat{\vartheta} - \vartheta}{\hat{\varsigma}}\right) \approx N(0, 1)$$

Method	$\vartheta = 1.4$	$\varsigma = 0.46$	T	sign.	nobs
EMA	$\hat{\vartheta} = 1.72$	$\hat{\varsigma} = 1.01$	2.44	0.75%	61
RMA	$\hat{\vartheta} = 1.94$	$\hat{\varsigma} = 1.3$	3.42	0.03%	68

Table 1.
$$H_0: \vartheta \stackrel{(\leq)}{=} 1.4$$

Method	$\vartheta = 1.47$	$\varsigma = 0.546$	T	sign.	nobs
EMA	$\hat{\vartheta} = 1.72$	$\hat{\varsigma} = 1.01$	2.01	2.3%	61
RMA	$\hat{\vartheta} = 1.94$	$\hat{\varsigma} = 1.3$	3.04	0.14%	68

Table 2.
$$H_0: \vartheta \stackrel{(\leq)}{=} 1.47$$

Method	$\vartheta = 1.4$	$\varsigma = 0.46$	T	sign.	nobs
EMA	$\hat{\vartheta} = 1.645$	$\hat{\varsigma} = 0.82$	2.31	1%	60
RMA	$\hat{\vartheta} = 1.83$	$\hat{\varsigma} = 0.93$	3.78	0.00%	67

Table 3. $H_0: \vartheta \stackrel{(\leq)}{=} 1.4$ - largest outlier excluded

Method	$\vartheta = 1.47$	$\varsigma = 0.546$	T	sign.	nobs
EMA	$\hat{\vartheta} = 1.645$	$\hat{\varsigma} = 0.82$	1.65	5%	60
RMA	$\hat{\vartheta} = 1.83$	$\hat{\varsigma} = 0.93$	3.1	0.15%	67

Table 4. $H_0: \vartheta \stackrel{(\leq)}{=} 1.47$ - largest outlier excluded

Outlook

- exploit the Panel structure of VaR models
- backtesting based on fixed events with varying probabilities in stead of fixed probabilities and varying intervals
- apply an economic motivated loss function
- analyze the (bivariate) structure of forecast-realization pairs (f_t, x_t)

