VAR - DSFM Modeling for Implied Volatility String Dynamics

Ralf Brüggemann Wolfgang Härdle Julius Mungo Carsten Trenkler

CASE-Center for Applied Statistics and Economics Institut für Statistik and Ökonometrie Humboldt-Universität zu Berlin

Motivation — 1-1

Aims

Dynamic Semiparametric Factor Models (DSFM) yield time dependent factor loadings

In the context of Implied Volatility (IV) Dynamics, risk factors

- explaining the nature of volatility risk
- allowing to hedge positions of 'volatility derivatives'
- characterizing and quantifying risk in relation to economic indicators e.g. interest rates, oil prices etc.

Modeling the dynamics of these factors is important for accurate assessment of market risk.

Motivation — 1-2

Challenges

- □ Large number of observations (> 6 million contracts, > 5 000 observations per day).
- Data appear in 'strings'.
- Strings are not locally fixed, but 'move' through the observation space (expiry effect).
- In the moneyness dimension observations may be missing in certain sub-regions for some dates
- Standard smoothing techniques are necessarily biased.

Motivation — 1-3

Challenges

- Volatility characteristics, a strong day to day variation and a number of volatility clusters
- \odot Structural breaks in series with sudden downward movements e.g. for z_{t1} in September 2001
- □ Influence of possible outliers e.g. for z_{t2} in November 2001

Overview — 2-1

Overview

- Motivation √
- 2. Literature review on factor times series modeling
- 3. Factor loadings series from DSFM
- 4. Integration analysis and unit root tests
- 5. VAR modeling and dynamic interaction between factors
- 6. Results
- 7. Outlook

Literature review

Recent research towards analyzing the behavior of the IVS:

- [Skiadopoulos et al. (1999)] analyzed the IVS of S&P 500 and reported that at least two and at most six factors are necessary to capture the dynamics
- [Cont and Fonseca (2002)], on dynamics of the S&P 500 implied volatility reported that the first three principal components account for 95% of the daily variance.

Literature review cont.

- ☐ [Fengler et al. (2003)] indicated three factors are sufficient to capture 95% variation in DAX implied volatilities.
- ⊡ [Borak, Härdle and Fengler (2005)] identified three loading series $z_t = (z_{t1}, z_{t2}, z_{t3})^{\top}$, after fitting a DSFM.

An Implied Volatility Surface

Figure 1: Implied volatility surface from DSFM fit for the DAX-Option on 20000502 (2 May 2000)

The semiparametric factor model

$$Y_{t,j} = \sum_{k=0}^{K} z_{tk} m_k(X_{t,j}) + \varepsilon_{t,j}$$
 (1)

where $z_{t0}=1, \quad j=1,\ldots,J_t \ (t=1,\ldots,T)$ represents the number of IV observations on day t and K is the number of basis functions.

 $X_{t,j}$ are the exogenous variables like strike and maturity. z_{tk} are time dependent factors or weights of the smooth basis function m_k , for (k = 0, ..., K).

[Borak, Härdle and Fengler (2005)]

Figure 2: Upper panel: Time series of the Underlying DAX. Lower panel: Time series of first factor, Z_{t1} from 04.01.1999 - 31.07.2001

Figure 3: Upper panel: Time series of second factor, z_{t2} . Lower panel: Time series of third factor, z_{t3} from 04.01.1999 - 31.07.2001

VAR - DSFM Modeling

Factor Loadings series

Factor loadings determine the movements of the Implied Volatility Surface (IVS)

- o z_{t1} may be interpreted as representing the overall shift (up and down movement factor) of the IVS.
- o z_{t3} represent changes in curvature (or convexity) of the IVS.

Figure 4: Effect of z_{t1} on IVS

Figure 5: Effect of z_{t2} on IVS

Figure 6: Effect of z_{t3} on IVS

The Data and Unit Root Tests

- T=1052 observations on z_t from January 4, 1999 to February 25, 2003, excluding days with no option trades
- o z_t is investigated for unit root. For stationarity (I(0)), a VAR model for levels is analyzed. For integration I(1), a VAR in first differences is appropriate

Unit Root Test Statistics

Series	ADF – AIC	lag order	ADF - HQ	lag order	KPSS	b
z_{t1}	-1.982 [0.295]	6	-2.241 [0.192]	2	1.402***	21
Δz_{t1}	-15.199*** [0.000]	5	-23.582*** [0.000]	1	0.117	21
z _{t2}	-3.361** [0.013]	8	-4.219*** [0.001]	4	2.232***	24
Δz_{t2}	-12.599*** [0.000]	12	-15.646*** [0.000]	7	0.050	92
z _{t3}	-2.874** [0.049]	7	-2.874** [0.049]	7	0.855***	25
Δz_{t3}	-13.855*** [0.000]	6	-13.855*** [0.000]	6	0.050	56

Table 1: Unitroot tests

Critical values for ADF test are -2.57 (10%), -2.86 (5%) and -3.44 (1%) [Mackinnon, (1991)]. Critical values for KPSS test are 0.347 (10%), 0.463 (5%) and 0.739 (1%) [Kwiatkowski (1992)]. *** and ** denote significance at 1% and 5% level respectively. p-values for ADF tests are in brackets. b is bandwidth for KPSS test determined from procedure of [Whitney Newey and Kenneth West(1994)].

Robustness check

To account for possible structural breaks, two subsamples 04.01.1999-31.07.2001 (655 obs.) and 01.08.2001-24.02.2003 (397obs.) are investigated.

- Unit root tests: ADF and KPSS propose a stationary z_{t2} and a nonstationary z_{t3} for first sample
- □ ADF test suggests stationarity for both series, while the KPSS test does reject the null of stationarity at the 5% level for second sample

Models for Loadings Dynamics

The dynamics underlying z_t is modelled by a VAR(p) process

- in first difference $\Delta z_t = z_t z_{t-1}$, $\Delta z_t = \nu + A_1 \Delta z_{t-1} + \cdots + \Delta A_p z_{t-p} + u_t$

u is a $K \times 1$ vector of intercept parameters, A_i , $i=1,\ldots,p$ are $K \times K$ parameter matrices, unobservable error term $u_t = (u_{t1},\ldots,u_{tK})^{\top}$ with mean zero, time-invariant and non-singular covariance matrix $\Sigma_u = E[u_t u_t^{\top}]$

VAR Models diagnostics

Full sample (04.01.1999 - 25.02.2003)

- \boxdot p=7 for z_t and p=6 for Δz_t reveal no autocorrelation Sub-sample (04.01.1999 31.07.2001)
 - \Box lag length p=3 reveals residuals with autocorrelation.
- \odot lag length p=8 reveals residuals free of autocorrelation Evidence for non-normality and ARCH in the residuals is observed but left for further analysis

Impulse Response

Analysis of the inter-relation of model variables

- impulse response functions traces the effect of a shock to one endogenous variable on the other variables in the VAR system
- estimated residual correlation matrix with contemporaneous correlation

$$\widehat{P}_{u} = \begin{pmatrix} 1 & -0.49 & -0.23 \\ -0.49 & 1 & -0.10 \\ -0.23 & -0.10 & 1 \end{pmatrix}$$
 (2)

 orthogonalization by Cholesky decomposition to single out individual shock effect

Impulse Response

Starting by a fairly general model with p=7 lags. Analysis depend on ordering of variables in the system

- \boxdot innovation in z_{t1} has permanent negative effect on z_{t2} and a small positive effect on z_{t3} , which becomes insignificant after about 6 periods, Figure 8
- innovation in z_{t2} has permanent positive effect on itself but no significant effect with other variables.
 - Similar result is obtained for a shock in z_{t3}

Figure 8: Impulse-Responses: VAR(7) for $z_t = (z_{t1}, z_{t2}, z_{t3})^{\top}$ Sample period: 04.01.1999 – 25.02.2003

VAR - DSFM Modeling

Generalized Impulse Response

- \Box the difference of conditional expectation given a one time shock occurs in series z_t
- oxdot coincide with the orthogonalized impulse responses if the residual covariance matrix Σ_u , is diagonal

Overall results from full sample and sub-sample are similar

[Pesaran, M.H. & Shin, Y. (1998)]

Figure 9: Generalized Impulse-Responses: VAR(7) for $z_t = (z_{t1}, z_{t2}, z_{t3})^{\top}$. Period: 04.01.1999 – 25.02.2003

Figure 10: Generalized Impulse-Responses: VAR(8) for $z_t = (z_{t1}, z_{t2}, z_{t3})^{\top}$. Period: 04.01.1999 – 31.07.2001

2 4 6 8 10 12 14 16 18 20 22 24

Figure 11: Generalized Impulse-Responses: VAR(6) for $\Delta z_t = (\Delta z_{t1}, \Delta z_{t2}, \Delta z_{t3})^{\top}$, from 04.01.1999 – 25.02.2003

Granger causality

Addressing the usefulness of each factor in forecasting the others. Application of the Granger causality test

- testing zero restrictions of some VAR coefficients, which may have a non-standard asymptotic distribution when I(1) variables are in the system.
- overfitting the VAR model by one lag to remove the singularity of the coefficient covariance matrix

[Granger (1969)]

<i>H</i> ₀	Test result
$Z_{t1} \nrightarrow Z_{t2}, Z_{t3}$	F(14,3072) = 4.53 (0.00)
$z_{t2} \nrightarrow z_{t1}, z_{t3}$	F(14,3072) = 1.66 (0.06)
$z_{t3} \nrightarrow z_{t1}, z_{t2}$	F(14,3072) = 0.86 (0.60)
$z_{t3} \nrightarrow z_{t1}$	$\chi^2(7) = 5.04 (0.65)$
$z_{t3} \nrightarrow z_{t2}$	$\chi^2(7) = 6.84 \ (0.45)$
$z_{t1} \nrightarrow z_{t3}$	$\chi^2(7) = 8.02 (0.33)$
$z_{t2} \nrightarrow z_{t3}$	$\chi^2(7) = 6.44 \ (0.49)$
$z_{t1}, z_{t2} \nrightarrow z_{t3}$	$\chi^2(14) = 12.41 \ (0.57)$

 \rightarrow denotes 'does not Granger cause'. Results are based on model for z_t using p=7 and full sample period 04.01.1999 - 25.02.2003. p-values in square brackets.

Results — 7-1

Results

- \odot Granger non-causality of z_{t1} for z_{t2} and z_{t3} and non-causality of z_{t2} for z_{t1} and z_{t3} is rejected at the 10% significance level
- o z_{t3} is neither Granger-caused by z_{t1} nor z_{t2} and Granger non-causality from z_{t1} to z_{t3} and from z_{t2} to z_{t3} cannot be rejected

 z_{t3} does not influence the dynamics of z_{t1} and z_{t2} in terms of the VAR model

Results — 7-2

Vega-hedging of z_{t1} and z_{t2}

In DSFM the IV decomposition is given by:

$$\widehat{\sigma}_t = exp(\sum_{k=0}^K \widehat{z}_{t,k} \widehat{m}_k).$$

The sensitivities can be computed w.r.t. the factor loadings z_t ! An understanding of the sensitivities is derived from the interpretations that z_{t1} and z_{t2} capture the systematic risk faced by an option investor

- \boxdot $\frac{\partial}{\partial \widehat{z}_{t1}}$ is an **up-and-down shift vega** of the IVS
- $\ \ \ \ \ \frac{\partial}{\partial \widehat{z}_{r_2}}$ is a **slope shift vega** of the IVS

Conclusion — 8-1

Conclusion

- factor loadings describe the movements of IVS over time
- a VAR model for levels reveal significant interaction between first and second factor
- a positive shock in first factor has a negative permanent impact on the second and vice versa
- models in first differences and models for subsamples provide similar results for all model specifications

Outlook — 9-1

Outlook

check co-movements of factor loadings as volatility risk indicators in association with movements in macroeconomic conditions like interest rates, exchange rates, oil prices etc.

- hedging of derivative positions and risk management of 'volatility derivatives' such as options on an implied volatility index
- extend modeling of factor loadings with consideration for ARCH effects

References 10-1

Alexander, C.
Principles of the Skew
RISK, 2001, 14(1):S29–S32.

Black, F. and M. Scholes
The pricing of options and corporate liabilities

Journal of Political Economy, 81:637–654, 1973.

Borak, S and Härdle, W & and Fengler, M
DSFM fitting of Implied Volatility Surfaces
SFB Discussion paper, Humboldt-Universität zu Berlin, 2005

Cont, R. and J. da Fonseca
The Dynamics of Implied Volatility Surfaces
Quantitative Finance, 2(1):45–602, 2002.

References — 10-2

Doornik, J. A. and Hansen, H.
A practical test of multivariate normality
unpublished paper, Nuffield College, 1994

Fengler, M., Härdle, W. and Mammen, E.
Semiparametric State Space Factor Models
CASE Discusion Paper, Humboldt-Universität zu Berlin, 2003.

Fengler, M.R., W. Härdle, and C. Villa
The dynamics of implied volatilities: A common principle components approach
Review of Derivatives Research . **6**:179–202. 2003.

References - 10-3

Granger, C.W.J

Investigating causal relations by econometric models and cross-spectral methods

Econometrica, 37:424-438, 1969.

Hafner R., and M. Wallmeier
The Dynamics of DAX Implied Volatilities
International Quarterly Journal of Finance, 1(1):1–27, 2001.

References 10-4

Kwiatkowski, D., Peter C. B. Phillips, Peter Schmidt and Yongcheol Shin
Testing the Null Hypothesis of Stationarity Against the Alternative of a Unit Root

Journal of Econometrics, 54:159–178, 1992.

Lütkepohl, H.
Introduction to Multiple Time series Analysis
Berlin: Springer-Verlag, 1991

References - 10-5

MacKinnon, J.G

Critical Values for Cointegration Tests in C. W. J. Granger & R. F. Engle (eds)

Long-Run Economic Relationships, Oxford University Press, Oxford.

Newey W. & West K.

Automatic Lag Selection in Covariance Matrix Estimation *Review of Economic Studies*, **61**:631–653, 1994.

Pesaran, M.H. & Shin, Y.

Generalized impulse response analysis in linear multivariate models,

Economic Letters, 58:17-29, 1994.

References — 10-6

Skiadopoulos, G., S. Hodges, and L. Clewlow The Dynamics of S&P 500 Implied Volatility Surface Review of Derivatives Research, 3:263–282, 1999.

Toda, H.Y. & Yamamoto, T
Statistical Inference in Vector Autoregressions with possibly integrated processes

Journal of Econometrics, 66:225–250, 1995.

