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Emerging of Cryptocurrencies

As of June 15, 2018, by CoinMarketCap.com

• Actively Trading: 997 Coins

• Total Market Cap: $284,515,878,686
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Why Cryptos Network?

• Peer Effect
• Open Source of Blockchain — Clonecoins
• Lack of Fundamental Valuation

• Value of Technology
• Cryptography determines the security of the coin transactions;
• Proof Types determines the mining activity of the coin developers.
• Comovement or not?

• RQ: How fundamental information and return structure jointly
determine a market segmentation?
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Methods in Equity Market

Projection of Similarity

• SIC system (Fama and French (1997), Clarke (1989)).

• GICS system: firm’s operational characteristics + investors’ perceptions
(Bhojraj et al. (2003)).

• Investment Style: Farrell (1974), Elton and Gruber (1970) and Brown and
Goetzmann (1998).

• Return Comovement: King (1966), Lessard (1974), Grinold, Rudd and
Stefek (1989), Roll (1992)), Connor (1997).

• Product Similarity: Hoberg and Phillips (2016)
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Community Detection

• Modelling: Stochastic Blockmodel (Undirected), Stochastic
Co-blockmodel (Directed).

• Existing Methods: Spectral Clustering, Maximum Likelihood, Bayesian,
Modularity Maximization, etc.

• Difficulties:
• Dynamic Structure: Bhattacharyya&Chatterjee (2017), Matias&Miele

(JRSSB, 2017), Pensky&Zhang (2017), Wilson et al. (2016), etc.

• Node features: Binkiewicz et al. (Biometrika, 2017), Weng&Feng (2017),
Yan&Sarkar (2016), Zhang et al. (2017), etc.

• Sparsity: Amini et al. (AoS, 2013), Qin&Rohe (2013), etc.

• Degree heterogeneity: Zhao et al. (AoS, 2012), Qin&Rohe (2013), etc.

• Directionality: Rohe&Yu (2012), Rohe et al. (PNAS, 2016), etc.
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Dynamic Stochastic Blockmodel

• Dynamic Stochastic Blockmodel:

At(i , j) =


Bernoulli(Pt(i , j)), if i < j

0, if i = j

At(j , i), if i > j

(1)

At := E(At |Zt) = ZtBtZ
>
t , (2)

• Probability of a Connection between i and j : Pt(i , j).

• Clustering Matrix: Zt ∈ {0, 1}N×K .

• Block Probability Matrix: Bt ∈MK×K and Pt(i , j) = Bt(k, k ′)..
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Dealing with Degree Heterogeneity

• Dynamic Degree Corrected Stochastic Blockmodel:

At(i , j) =


Bernoulli(Pt(i , j)), if i < j

0, if i = j

At(j , i), if i > j

(3)

At := E(At |Zt) = ΨZtBtZ
>
t Ψ, (4)

• Degree Parameter: ψ = (ψ1, · · · , ψN).

Pt(i , j) = ψiψjBt(k, k
′).

• Identifiability Restriction:∑
i∈Gk

ψi = 1, ∀k ∈ {1, 2, · · · ,K}. (5)
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Dealing with Sparcity

• Regularized Graph Laplacian:

Lτ,t = D
−1/2
τ,t AtD

−1/2
τ,t , (6)

where Dτ,t = Dt + τt I and D is a diagonal matrix with
Dt(i , i) =

∑N
j=1 At(i , j), and τt = N−1∑N

i=1 Dt(i , i).

• Intuition of Regularization:
• Adds a weak edge on every pair of nodes with edge weight τt/N.

• Spectral Clustering: Sparse and stochastic graphs create a lot of small trees
that are connected to the core of the graph by only one edge.

• Regularized Spectral Clustering: leads to a “deeper cut” into the core of the
graph thanks to these weak edges.
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Incorporating Covariates

• Similarity Matrices (Covariate-assisted Graph Laplacian):

St = Lτ,t + αtC
w
t . (7)

where Cw
t = XWtX

> and αt ∈ [0,∞) is a tuning parameter

• Example:

X =

1 0
0 1
1 0

 −→ XX> =

1 0 1
0 1 0
1 0 1

 .
• Interpretation of Wt

• Introduce time-varying interaction between different covariates.
• Select covariates by setting certain elements of Wt to zero.
• Relax assumption that similarity in covariates leads to high probability of

node connection.

• Choice of Wt : Wt = X>Lτ,tX .

• No linkage between i and j : E(x>Lτ,tx) = 0;

• Linkage between i and j : E(x>Lτ,tx) =
∑

i,j :At (i,j)=1

xixj√
Dτ,t(i , i)Dτ,t(j , j)

.
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Dealing with Dynamics

• Discrete Kernel Function

Fr,1 = {0, · · · , r}, Dr,1 = {1, · · · , r};
Fr,2 = {−r , · · · , r}, Dr,2 = {r + 1, · · · ,T − r};
Fr,3 = {−r , · · · , 0}, Dr,3 = {T − r + 1, · · · ,T}.

1

|Fr,j |
∑

i∈Fr,j

ikW j
r,l(i) =

{
1, if k = 0,

0, if k = 1, 2, · · · , l .
(8)

• Discrete Kernel Estimator

Ŝt,r =
3∑

j=1

1{t∈Dr,j}

 1

|Fr,j |
∑

i∈Fr,j

W j
r,l(i)St+i

 . (9)
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Shape of Kernel Function
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Figure: Discrete kernel functions under bandwidth r = 3 and r = 5. The horizon is
T = 12, and the smoothing parameter is L = 4.
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Choice of Tuning Parameters

• Choice of αt :

αmin =
λK (Lτ,t)− λK+1(Lτ,t)

λ1(Cw
t )

.

αmax =
λ1(Lτ,t)

λK (Cw
t )− λK+1(Cw

t )
.

αt = (αmin + αmax)/2.

• Choice of r :

r∗ = argmin0≤r≤T/2

(
‖Ŝt,r − St,r‖+ ‖St,r − St‖

)
.

r̂ = max

{
0 ≤ r ≤ T/2 :

∥∥∥Ŝt,r − Ŝt,ρ∥∥∥ ≤ 4Wmax

√
N‖St‖∞
ρ ∨ 1

, for any ρ < r

}
.

• Determination of K .
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Algorithm for Undirected Graphs

Algorithm 1: Covariate-Assisted Spectral Clustering in the Dynamic DCBM

Input : Adjacency matrices At for t = 1, · · · ,T ; Covariates matrix X ;
Number of communities K ; Approximation parameter ε.

Output: Membership matrices Zt for any t = 1, · · · ,T .

1 Calculate regularized graph Laplacian Lτ,t and estimate St by Ŝt,r defined
in (9).

2 Let Ût ∈ RN×K be a matrix representing the first K eigenvectors of Ŝt,r .
3 Let N+ be the number of nonzero rows of Ût , then obtain Û+ ∈ RN+×K

consisting of normalized nonzero rows of Ût , i.e.

Û+
t (i , ∗) = Ût(i , ∗)/

∥∥∥Ût(i , ∗)
∥∥∥ for i such that

∥∥∥Ût(i , ∗)
∥∥∥ > 0.

4 Apply the (1 + ε)-approximate k-medians algorithm to the row vectors of

Û+
t to obtain Ẑ+

t ∈MN+,K .

5 Extend Ẑ+
t to obtain Ẑt by arbitrarily adding N − N+ many canonical unit

row vectors at the end, such as, Ẑt(i) = (1, 0, · · · , 0) for i such that∥∥∥Ût(i , ∗)
∥∥∥ = 0.

6 Output Ẑt .
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Assumptions

Assumption (1)

The dynamic network is composed of a series of assortative graphs that are
generated under the stochastic block model with covariates whose block
probability matrix Bt is positive definite for all t = 1, · · · ,T.

Assumption (2)

There are at most s <∞ number of nodes can switch their memberships
between any consecutive time instances.

Assumption (3)

For 1 ≤ k ≤ k ′ ≤ K, there exists a function f (·; k, k ′) such that
Bt(k, k

′) = f (ςt ; k, k
′) and f (·; k, k ′) ∈ Σ(β, L), where Σ(β, L) is a Hölder class

of functions f (·) on [0, 1] such that f (·) are ` times differentiable and

|f (`)(x)− f (`)(x ′)| ≤ L|x − x ′|β−`, for any x , x ′ ∈ [0, 1], (10)

with ` being the largest integer smaller than β.
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Assumptions

Assumption (4)

Let λ1,t ≥ λ2,t ≥ · · · ≥ λK ,t > 0 be the K largest eigenvalues of St for each
t = 1, · · · ,T. In addition, assume that

δ = inf
t
{min

i
Dτ,t(i , i)} > 3 log(8NT/ε) and αmax = sup

t
αt ≤

a

NRJ2ξ
,

with

a =
3 log(8NT/ε)

δ
and ξ = max(σ2‖Lτ‖F

√
log(TR), σ2‖Lτ‖ log(TR),NRJ2/δ),

where σ = maxi,j ‖Xij −Xij‖φ2 , Lτ = supt Lτ,t .
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Consistency for CASC in Dynamic SC-DCBM

Definition of Misclustering:

Mt =
{
i :
∥∥∥Ci,tO>t − Ci,t

∥∥∥ > ∥∥∥Ci,tO>t − Cj,t
∥∥∥, for any j 6= i

}
,

Theorem
Let clustering be carried out according to Algorithm 1 on the basis of an
estimator Ŝt,r of St . Let Zt ∈MN,K and Pmax = maxi,t(Z

>
t Zt)ii denote the

size of the largest block over the horizons. Then, under Assumption 1-4, as
N,T ,R →∞ with R = O(N), the misclustering rate satisfies

sup
t

|Mt |
N
≤ c(ε)KW 2

max

m2
zNλ2

K ,max

{
(4 + 2cw )

b

δ1/2
+

2K

b
(
√

2Pmaxrs + 2Pmax) +
NL

b2 · l!

( r

T

)β}2

.

with probability at least 1− ε, where λK ,max = maxt{λK ,t} with λK ,t being the
Kth largest absolute eigenvalue of St , where b =

√
3 log(8NT/ε),

λK ,max = maxt{λK ,t} and c(ε) = 29(2 + ε)2.
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Simulation Settings

• Misclustering Rate with Number of Nodes:

• Block Probability: Bt =
t

T

0.9 0.6 0.3
0.6 0.3 0.4
0.3 0.4 0.8

;

• R = blog(N)c, X (i , j)
i.i.d∼ U(0,10);

• N = {10, 15, · · · , 100};
• T = 10, s = N1/2, # of Replication: 100;

• Misclustering Rate with Number of Membership Changes:

• Block Probability: Bt =
t

T

0.9 0.6 0.3
0.6 0.3 0.4
0.3 0.4 0.8

;

• Maximum number of membership changes: s = [0, 2, 4, 5, 10, 20, 25, 50, 100]

• R = blog(N)c, X (i , j)
i.i.d∼ U(0,10);

• N = 100, T = 10, # of Replication: 100;
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Performance with Growing Number of Vertices
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Performance with Growing Number of Membership Changes
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Data

• Data Source: Cryptocompare

• Sample Period:
• In-sample Estimation: from 2015-08-31 to 2017-12-31.

• Out-of-Sample Tests: from 2018-01-01 to 2018-03-30.

• Cryptocurrency Daily Return:
• Top 200 Cryptos Sorted on Market Cap, Age, Maximum Price and Dollar

Volume;

• Contract Information:
• Algorithm

• Proof Types

https://www.cryptocompare.com/api
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Return Network Structure from Adaptive LASSO
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Visualization: Node Features (Attribution Network Structure)
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Visualization: Combined Network Structure
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Grouping Results

Table: Top 5 Group Member

Cryptocurrency
Group 1 Novacoin, Pinkcoin, Reddcoin, Stratis, Bitcoinplus
Group 2 Litecoin, Dogecoin, Bitshares, Burstcoin, Digibyte
Group 3 Ripple, Ardor, Golem Network Token, Lisk, Pascal Coin
Group 4 Bitcoin, Ethereum, Ethereum Classic, Omni, Siacoin
Group 5 Digital Cash, Decred, Factoids, Gnosis, Numerai



Motivation Model Algorithm Uniform Consistency Simulation Empirical Result Conclusions

DSBM (Bhattacharyya&Chatterjee, 2017) Evaluation I

• Within-Groupg = # of Degrees within Group g
Ng

• Cross-Groupg = # of Degrees between Group g and other Groups
N̄g

Table: Evaluation Criteria: Return Inferred Adjacency Matrix

Group ID Within-Group Cross-Group Diff (W - C)
G1 0.073 0.066 0.007***
G2 0.234 0.125 0.111***
G3 0.041 0.064 -0.02***
G4 0.149 0.097 0.052***
G5 0.015 0.015 0.000
All 0.103 0.073 0.030***
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DSBM (Bhattacharyya&Chatterjee, 2017) Evaluation II

• Within-Groupg =
# of Degrees within Group g

Ng

• Cross-Groupg =
# of Degrees between Group g and other Groups

N̄g

Table: Evaluation Criteria: Algorithm

Group ID Within-Group Cross-Group Diff (W - C)
G1 0.131 0.155 -0.024
G2 0.163 0.170 -0.006
G3 0.179 0.175 0.004
G4 0.161 0.170 -0.009
G5 0.142 0.153 -0.011
All 0.155 0.165 -0.009
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DSBM (Bhattacharyya&Chatterjee, 2017) Evaluation III

• Within-Groupg =
# of Degrees within Group g

Ng

• Cross-Groupg =
# of Degrees between Group g and other Groups

N̄g

Table: Evaluation Criteria: Proof Types

Group ID Within-Group Cross-Group Diff (W - C)
G1 0.273 0.300 -0.027
G2 0.314 0.322 -0.008
G3 0.303 0.310 -0.007
G4 0.311 0.310 0.001
G5 0.222 0.273 -0.050
All 0.284 0.303 -0.018
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Covariate-assisted Spectral Clustering Evaluation I

• Within-Groupg =
# of Degrees within Group g

Ng

• Cross-Groupg =
# of Degrees between Group g and other Groups

N̄g

Table: Evaluation Criteria: Return Inferred Adjacency Matrix

Group ID Within-Group Cross-Group Diff (W - C)
G1 0.064 0.074 -0.010***
G2 0.078 0.078 0.001
G3 0.066 0.076 -0.010***
G4 0.111 0.091 0.020***
G5 0.098 0.087 0.012***
All 0.083 0.081 0.002***
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Covariate-assisted Spectral Clustering Evaluation II

• Within-Groupg =
# of Degrees within Group g

Ng

• Cross-Groupg =
# of Degrees between Group g and other Groups

N̄g

Table: Evaluation Criteria: Algorithm

Group ID Within-Group Cross-Group Diff (W - C)
G1 0.227 0.164 0.062
G2 0.622 0.039 0.583
G3 0.162 0.122 0.040
G4 0.522 0.176 0.347
G5 0.183 0.140 0.043
All 0.343 0.128 0.215
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Covariate-assisted Spectral Clustering Evaluation III

• Within-Groupg =
# of Degrees within Group g

Ng

• Cross-Groupg =
# of Degrees between Group g and other Groups

N̄g

Table: Evaluation Criteria: Proof Types

Group ID Within-Group Cross-Group Diff (W - C)
G1 0.514 0.312 0.202
G2 0.302 0.116 0.186
G3 0.579 0.213 0.366
G4 0.810 0.242 0.568
G5 0.514 0.323 0.191
All 0.544 0.241 0.302
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Asset Pricing Inference: Group Centrality
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Algorithms Evolution Over Time
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Fundamental Comparison under Different Centrality Score: Algorithm
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Proof Types Evolution Over Time
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Fundamental Comparison under Different Centrality Score: Proof Types
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Cross Sectional Return predictability Comparison
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Conclusions

What we do:

• Extends regularized spectral clustering methods to analysing dynamic
networks (both directed and undirected), especially when there are
membership changes.

• Incorporate node covariates into the network to assist community
detection in dynamic networks.

Takeaways:

1. Attribution Matrix provides valuable information to connect within group
members.

2. Return-based Adjacency Matrix reveal connections across different groups.

3. Behavioral bias is stronger for those groups with low fundamental
centrality.
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