Covariate-assisted Spectral Clustering in Dynamic Networks: An Application to Cryptocurrencies Market

Li Guo¹ Yubo Tao¹ Wolfgang Härdle^{1,2,3}

¹Singapore Management University ²Humboldt-Universität zu Berlin ³Xiamen University

2018 China Meeting of the Econometric Society

June, 2018

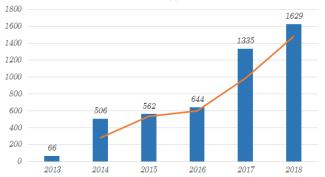
Motivation	Model	Algorithm	Uniform Consistency	Simulation	Empirical Result	Conclusions
			Outline			
Moti	vation					
Mod	وا					
in ou						
Algo	rithm					
Unife	orm Consis	tency				
0 mil		licency				
Simu	lation					
Emp	irical Resu	lt				
p						
Conc	lusions					
				< □ >		目 うくぐ

Conclusion

Emerging of Cryptocurrencies

As of June 15, 2018, by CoinMarketCap.com

- Actively Trading: 997 Coins
- Total Market Cap: \$284,515,878,686



Number of Crypto Coins

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Motivation	Model	Algorithm	Uniform Consistency	Simulation	Empirical Result	Conclusions	
W/by Countor Notwork?							
Why Cryptos Network?							

• Peer Effect

- Open Source of Blockchain Clonecoins
- Lack of Fundamental Valuation

• Value of Technology

- Cryptography determines the security of the coin transactions;
- Proof Types determines the mining activity of the coin developers.
- Comovement or not?
- RQ: How fundamental information and return structure jointly determine a market segmentation?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Projection of Similarity

- SIC system (Fama and French (1997), Clarke (1989)).
- GICS system: firm's operational characteristics + investors' perceptions (Bhojraj et al. (2003)).
- Investment Style: Farrell (1974), Elton and Gruber (1970) and Brown and Goetzmann (1998).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Return Comovement: King (1966), Lessard (1974), Grinold, Rudd and Stefek (1989), Roll (1992)), Connor (1997).
- Product Similarity: Hoberg and Phillips (2016)

- **Modelling**: Stochastic Blockmodel (Undirected), Stochastic Co-blockmodel (Directed).
- Existing Methods: Spectral Clustering, Maximum Likelihood, Bayesian, Modularity Maximization, etc.
- Difficulties:
 - Dynamic Structure: Bhattacharyya&Chatterjee (2017), Matias&Miele (JRSSB, 2017), Pensky&Zhang (2017), Wilson et al. (2016), etc.
 - Node features: Binkiewicz et al. (Biometrika, 2017), Weng&Feng (2017), Yan&Sarkar (2016), Zhang et al. (2017), etc.
 - Sparsity: Amini et al. (AoS, 2013), Qin&Rohe (2013), etc.
 - Degree heterogeneity: Zhao et al. (AoS, 2012), Qin&Rohe (2013), etc.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Directionality: Rohe&Yu (2012), Rohe et al. (PNAS, 2016), etc.

Motivation	Model	Algorithm	Uniform Consistency	Simulation	Empirical Result	Conclusions	
Dynamic Stochastic Blockmodel							

• Dynamic Stochastic Blockmodel:

$$A_t(i,j) = \begin{cases} \text{Bernoulli}(P_t(i,j)), & \text{if } i < j \\ 0, & \text{if } i = j \\ A_t(j,i), & \text{if } i > j \end{cases}$$
(1)

$$\mathcal{A}_t := \mathbb{E}(A_t | Z_t) = Z_t B_t Z_t^{\top}, \qquad (2)$$

- Probability of a Connection between i and j: $P_t(i,j)$.
- Clustering Matrix: $Z_t \in \{0, 1\}^{N \times K}$.
- Block Probability Matrix: $B_t \in \mathcal{M}^{K \times K}$ and $P_t(i,j) = B_t(k,k')$...

Motivation	Model	Algorithm	Uniform Consistency	Simulation	Empirical Result	Conclusions
		Dealing	; with Degree H	leterogenei	ty	

• Dynamic Degree Corrected Stochastic Blockmodel:

$$A_{t}(i,j) = \begin{cases} \text{Bernoulli}(P_{t}(i,j)), & \text{if } i < j \\ 0, & \text{if } i = j \\ A_{t}(j,i), & \text{if } i > j \end{cases}$$
(3)

$$\mathcal{A}_t := \mathbb{E}(\mathcal{A}_t | Z_t) = \Psi Z_t \mathcal{B}_t Z_t^\top \Psi, \tag{4}$$

- Degree Parameter: $\psi = (\psi_1, \cdots, \psi_N)$. $P_t(i, j) = \psi_i \psi_j B_t(k, k')$.
- Identifiability Restriction:

$$\sum_{i\in\mathcal{G}_k}\psi_i=1,\quad\forall k\in\{1,2,\cdots,K\}.$$
(5)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Regularized Graph Laplacian:

$$L_{\tau,t} = D_{\tau,t}^{-1/2} A_t D_{\tau,t}^{-1/2}, \tag{6}$$

where $D_{\tau,t} = D_t + \tau_t I$ and D is a diagonal matrix with $D_t(i,i) = \sum_{j=1}^N A_t(i,j)$, and $\tau_t = N^{-1} \sum_{i=1}^N D_t(i,i)$.

- Intuition of Regularization:
 - Adds a weak edge on every pair of nodes with edge weight τ_t/N .
 - Spectral Clustering: Sparse and stochastic graphs create a lot of small trees that are connected to the core of the graph by only one edge.
 - Regularized Spectral Clustering: leads to a "deeper cut" into the core of the graph thanks to these weak edges.

Algorith

Uniform Consisten

Simu

lation

irical Result

Conclusions

Incorporating Covariates

• Similarity Matrices (Covariate-assisted Graph Laplacian):

$$S_t = L_{\tau,t} + \alpha_t C_t^{\mathsf{w}}.\tag{7}$$

where $C_t^w = X W_t X^\top$ and $\alpha_t \in [0,\infty)$ is a tuning parameter

• Example:

Model

$$X = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \longrightarrow XX^{\top} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}.$$

- Interpretation of W_t
 - Introduce time-varying interaction between different covariates.
 - Select covariates by setting certain elements of W_t to zero.
 - Relax assumption that similarity in covariates leads to high probability of node connection.
- Choice of W_t : $W_t = X^{\top} L_{\tau,t} X$.
 - No linkage between *i* and *j*: $\mathbb{E}(x^{\top}L_{\tau,t}x) = 0$;
 - Linkage between *i* and *j*: $\mathbb{E}(x^{\top}L_{\tau,t}x) = \sum_{i,j:A_t(i,j)=1} \frac{x_i x_j}{\sqrt{D_{\tau,t}(i,i)D_{\tau,t}(j,j)}}$.

Motivation	Model	Algorithm	Uniform Consistency	Simulation	Empirical Result	Conclusions	
		Dealing with Dynamics					

• Discrete Kernel Function

$$\begin{aligned}
\mathcal{F}_{r,1} &= \{0, \cdots, r\}, & \mathcal{D}_{r,1} = \{1, \cdots, r\}; \\
\mathcal{F}_{r,2} &= \{-r, \cdots, r\}, & \mathcal{D}_{r,2} = \{r+1, \cdots, T-r\}; \\
\mathcal{F}_{r,3} &= \{-r, \cdots, 0\}, & \mathcal{D}_{r,3} = \{T-r+1, \cdots, T\}. \\
&\frac{1}{|\mathcal{F}_{r,j}|} \sum_{i \in \mathcal{F}_{r,j}} i^k W_{r,l}^j(i) = \begin{cases} 1, & \text{if } k = 0, \\ 0, & \text{if } k = 1, 2, \cdots, l. \end{cases}
\end{aligned}$$
(8)

• Discrete Kernel Estimator

$$\widehat{\mathcal{S}}_{t,r} = \sum_{j=1}^{3} \mathbb{1}_{\{t \in \mathcal{D}_{r,j}\}} \left\{ \frac{1}{|\mathcal{F}_{r,j}|} \sum_{i \in \mathcal{F}_{r,j}} W_{r,l}^{j}(i) S_{t+i} \right\}.$$
(9)

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Algorithm

Uniform Consisten

Simula

ation

irical Result

Conclusions

Shape of Kernel Function

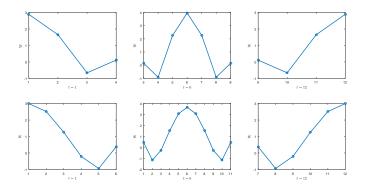


Figure: Discrete kernel functions under bandwidth r = 3 and r = 5. The horizon is T = 12, and the smoothing parameter is L = 4.

Algorithm

Uniform Consisten

Simula

lation

pirical Result

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Conclusions

Choice of Tuning Parameters

Choice of α_t:

$$\alpha_{\min} = \frac{\lambda_{\mathcal{K}}(\mathcal{L}_{\tau,t}) - \lambda_{\mathcal{K}+1}(\mathcal{L}_{\tau,t})}{\lambda_1(\mathcal{C}_t^w)}.$$
$$\alpha_{\max} = \frac{\lambda_1(\mathcal{L}_{\tau,t})}{\lambda_{\mathcal{K}}(\mathcal{C}_t^w) - \lambda_{\mathcal{K}+1}(\mathcal{C}_t^w)}.$$
$$\alpha_t = (\alpha_{\min} + \alpha_{\max})/2.$$

• Choice of r:

$$r^* = \operatorname{argmin}_{0 \le r \le T/2} \left(\|\widehat{\mathcal{S}}_{t,r} - \mathcal{S}_{t,r}\| + \|\mathcal{S}_{t,r} - \mathcal{S}_{t}\| \right).$$
$$\widehat{r} = \max\left\{ 0 \le r \le T/2 : \left\|\widehat{\mathcal{S}}_{t,r} - \widehat{\mathcal{S}}_{t,\rho}\right\| \le 4W_{\max}\sqrt{\frac{N\|\mathcal{S}_{t}\|_{\infty}}{\rho \lor 1}}, \text{ for any } \rho < r \right\}.$$

• Determination of K.

Conclusions

Algorithm for Undirected Graphs

Algorithm 1: Covariate-Assisted Spectral Clustering in the Dynamic DCBM

- **Input** : Adjacency matrices A_t for $t = 1, \dots, T$; Covariates matrix X; Number of communities K; Approximation parameter ε . **Output:** Membership matrices Z_t for any $t = 1, \dots, T$.
- 1 Calculate regularized graph Laplacian $L_{\tau,t}$ and estimate S_t by $\widehat{S}_{t,r}$ defined in (9).
- 2 Let $\widehat{U}_t \in \mathbb{R}^{N imes K}$ be a matrix representing the first K eigenvectors of $\widehat{\mathcal{S}}_{t,r}$.
- 3 Let N_+ be the number of nonzero rows of \widehat{U}_t , then obtain $\widehat{U}^+ \in \mathbb{R}^{N_+ \times K}$ consisting of normalized nonzero rows of \widehat{U}_t , i.e. $\widehat{U}_t^+(i,*) = \widehat{U}_t(i,*) / \| \widehat{U}_t(i,*) \|$ for i such that $\| \widehat{U}_t(i,*) \| > 0$.
- 4 Apply the $(1 + \varepsilon)$ -approximate k-medians algorithm to the row vectors of \widehat{U}_t^+ to obtain $\widehat{Z}_t^+ \in \mathcal{M}_{N_+,K}$.
- 5 Extend \widehat{Z}_t^+ to obtain \widehat{Z}_t by arbitrarily adding $N N_+$ many canonical unit row vectors at the end, such as, $\widehat{Z}_t(i) = (1, 0, \dots, 0)$ for i such that $\|\widehat{U}_t(i, *)\| = 0.$
- 6 Output \widehat{Z}_t .

Motivation	Model	Algorithm	Uniform Consistency	Simulation	Empirical Result	Conclusions
			Assumption	IS		

Assumption (1)

The dynamic network is composed of a series of assortative graphs that are generated under the stochastic block model with covariates whose block probability matrix B_t is positive definite for all $t = 1, \dots, T$.

Assumption (2)

There are at most $s < \infty$ number of nodes can switch their memberships between any consecutive time instances.

Assumption (3)

For $1 \le k \le k' \le K$, there exists a function $f(\cdot; k, k')$ such that $B_t(k, k') = f(\varsigma_t; k, k')$ and $f(\cdot; k, k') \in \Sigma(\beta, L)$, where $\Sigma(\beta, L)$ is a Hölder class of functions $f(\cdot)$ on [0, 1] such that $f(\cdot)$ are ℓ times differentiable and

$$|f^{(\ell)}(x) - f^{(\ell)}(x')| \le L|x - x'|^{\beta - \ell}, \text{ for any } x, x' \in [0, 1], \tag{10}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

with ℓ being the largest integer smaller than β .

Assumption (4) Let $\lambda_{1,t} \geq \lambda_{2,t} \geq \cdots \geq \lambda_{K,t} > 0$ be the K largest eigenvalues of S_t for each $t = 1, \cdots, T$. In addition, assume that

$$\underline{\delta} = \inf_t \{\min_i \mathcal{D}_{\tau,t}(i,i)\} > 3\log(8NT/\epsilon) \quad and \quad \alpha_{\max} = \sup_t \alpha_t \le \frac{a}{NRJ^2\xi},$$

with

$$a = \frac{3\log(8NT/\epsilon)}{\underline{\delta}} \quad and \quad \xi = \max(\sigma^2 \|L_{\tau}\|_F \sqrt{\log(TR)}, \sigma^2 \|L_{\tau}\|\log(TR), NRJ^2/\underline{\delta}),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

where $\sigma = \max_{i,j} \|X_{ij} - \mathcal{X}_{ij}\|_{\phi_2}$, $L_{\tau} = \sup_t L_{\tau,t}$.

Consistency for CASC in Dynamic SC-DCBM

Definition of Misclustering:

$$\mathbb{M}_{t} = \left\{ i: \ \left\| \mathcal{C}_{i,t} \mathcal{O}_{t}^{\top} - \mathcal{C}_{i,t} \right\| > \left\| \mathcal{C}_{i,t} \mathcal{O}_{t}^{\top} - \mathcal{C}_{j,t} \right\|, \text{ for any } j \neq i \right\},\$$

Theorem

Let clustering be carried out according to Algorithm 1 on the basis of an estimator $\widehat{S}_{t,r}$ of S_t . Let $Z_t \in \mathcal{M}_{N,K}$ and $P_{\max} = \max_{i,t} (Z_t^\top Z_t)_{ii}$ denote the size of the largest block over the horizons. Then, under Assumption 1-4, as $N, T, R \to \infty$ with R = o(N), the misclustering rate satisfies

$$\sup_{t} \frac{|\mathbb{M}_{t}|}{N} \leq \frac{c(\varepsilon) K W_{\max}^{2}}{m_{z}^{2} N \lambda_{K,\max}^{2}} \left\{ (4+2c_{w}) \frac{b}{\underline{\delta}^{1/2}} + \frac{2K}{b} (\sqrt{2P_{\max} rs} + 2P_{\max}) + \frac{NL}{b^{2} \cdot l!} \left(\frac{r}{T}\right)^{\beta} \right\}^{2}$$

with probability at least $1 - \epsilon$, where $\lambda_{K,\max} = \max_t \{ \lambda_{K,t} \}$ with $\lambda_{K,t}$ being the Kth largest absolute eigenvalue of S_t , where $b = \sqrt{3 \log(8NT/\epsilon)}$, $\lambda_{K,\max} = \max_t \{ \lambda_{K,t} \}$ and $c(\varepsilon) = 2^9(2 + \varepsilon)^2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Motivation	Model	Algorithm	Uniform Consistency	Simulation	Empirical Result	Conclusions
			Simulation Set	tings		

• Misclustering Rate with Number of Nodes:

• Block Probability:
$$B_t = \frac{t}{T} \begin{bmatrix} 0.9 & 0.6 & 0.3 \\ 0.6 & 0.3 & 0.4 \\ 0.3 & 0.4 & 0.8 \end{bmatrix}$$
;

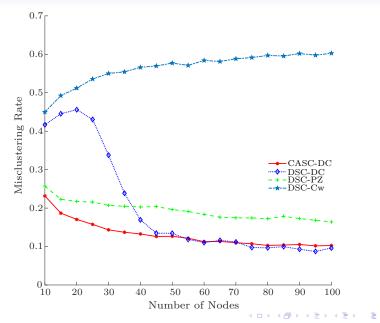
•
$$R = \lfloor \log(N) \rfloor, X(i,j) \sim U(0,10);$$

•
$$N = \{10, 15, \cdots, 100\};$$

- Misclustering Rate with Number of Membership Changes:
 - Block Probability: $B_t = \frac{t}{T} \begin{bmatrix} 0.9 & 0.6 & 0.3\\ 0.6 & 0.3 & 0.4\\ 0.3 & 0.4 & 0.8 \end{bmatrix}$;
 - Maximum number of membership changes: $\bar{s} = [0, 2, 4, 5, 10, 20, 25, 50, 100]$

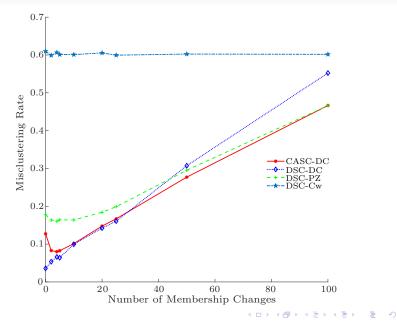
- $R = \lfloor \log(N) \rfloor$, $X(i,j) \stackrel{i.i.d}{\sim} U(0,10);$
- N = 100, T = 10, # of Replication: 100;

Performance with Growing Number of Vertices



Sac

Performance with Growing Number of Membership Changes



- Data Source: Cryptocompare
- Sample Period:
 - In-sample Estimation: from 2015-08-31 to 2017-12-31.
 - Out-of-Sample Tests: from 2018-01-01 to 2018-03-30.
- Cryptocurrency Daily Return:
 - Top 200 Cryptos Sorted on Market Cap, Age, Maximum Price and Dollar Volume;

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Contract Information:
 - Algorithm
 - Proof Types

Empirical Result

Return Network Structure from Adaptive LASSO

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Simulation

Empirical Result

Conclusions

Visualization: Node Features (Attribution Network Structure)

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Algori

Uniform Consistence

Simulation

Empirical Result

Conclusion

Visualization: Combined Network Structure

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Table: Top 5 Group Member

Cryptocurrency

Group 1	Novacoin, Pinkcoin, Reddcoin, Stratis, Bitcoinplus
Group 2	Litecoin, Dogecoin, Bitshares, Burstcoin, Digibyte
Group 3	Ripple, Ardor, Golem Network Token, Lisk, Pascal Coin
Group 4	Bitcoin, Ethereum, Ethereum Classic, Omni, Siacoin
Group 5	Digital Cash, Decred, Factoids, Gnosis, Numerai

ヘロト ヘヨト ヘヨト ヘヨト

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

DSBM (Bhattacharyya&Chatterjee, 2017) Evaluation I

• Within-Group_g =
$$\frac{\# \text{ of Degrees within Group } g}{N_g}$$

• Cross-Group_g =
$$\frac{\# \text{ of Degrees between Group g and other Groups}}{N_g}$$

Table: Evaluation Criteria: Return Inferred Adjacency Matrix

Group ID	Within-Group	Cross-Group	Diff (W - C)
G1	0.073	0.066	0.007***
G2	0.234	0.125	0.111***
G3	0.041	0.064	-0.02***
G4	0.149	0.097	0.052***
G5	0.015	0.015	0.000
All	0.103	0.073	0.030***

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

DSBM (Bhattacharyya&Chatterjee, 2017) Evaluation II

• Within-Group_g =
$$\frac{\# \text{ of Degrees within Group } g}{N_g}$$

• Cross-Group_g = $\frac{\# \text{ of Degrees between Group } g \text{ and other Groups}}{\bar{N}_g}$

Table: Evaluation Criteria: Algorithm

Group ID	Within-Group	Cross-Group	Diff (W - C)
G1	0.131	0.155	-0.024
G2	0.163	0.170	-0.006
G3	0.179	0.175	0.004
G4	0.161	0.170	-0.009
G5	0.142	0.153	-0.011
All	0.155	0.165	-0.009

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Conclusions

DSBM (Bhattacharyya&Chatterjee, 2017) Evaluation III

Table: Evaluation Criteria: Proof Types

Group ID	Within-Group	Cross-Group	Diff (W - C)
G1	0.273	0.300	-0.027
G2	0.314	0.322	-0.008
G3	0.303	0.310	-0.007
G4	0.311	0.310	0.001
G5	0.222	0.273	-0.050
All	0.284	0.303	-0.018

Covariate-assisted Spectral Clustering Evaluation I

Table: Evaluation Criteria: Return Inferred Adjacency Matrix

Group ID	Within-Group	Cross-Group	Diff (W - C)
G1	0.064	0.074	-0.010***
G2	0.078	0.078	0.001
G3	0.066	0.076	-0.010***
G4	0.111	0.091	0.020***
G5	0.098	0.087	0.012***
All	0.083	0.081	0.002***

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Covariate-assisted Spectral Clustering Evaluation II

• Within-Group_g =
$$\frac{\# \text{ of Degrees within Group } g}{N_g}$$

• Cross-Group_g = $\frac{\# \text{ of Degrees between Group } g \text{ and other Groups}}{\bar{N}_g}$

Table: Evaluation Criteria: Algorithm

Group ID	Within-Group	Cross-Group	Diff (W - C)
G1	0.227	0.164	0.062
G2	0.622	0.039	0.583
G3	0.162	0.122	0.040
G4	0.522	0.176	0.347
G5	0.183	0.140	0.043
All	0.343	0.128	0.215

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Conclusions

Covariate-assisted Spectral Clustering Evaluation III

• Within-Group_g =
$$\frac{\# \text{ of Degrees within Group } g}{N_g}$$

• Cross-Group_g = $\frac{\# \text{ of Degrees between Group } g \text{ and other Groups}}{\bar{N}_g}$

Table: Evaluation Criteria: Proof Types

Group ID	Within-Group	Cross-Group	Diff (W - C)
G1	0.514	0.312	0.202
G2	0.302	0.116	0.186
G3	0.579	0.213	0.366
G4	0.810	0.242	0.568
G5	0.514	0.323	0.191
All	0.544	0.241	0.302

	tion	iva	lot	Μ
--	------	-----	-----	---

Algori

Uniform Consistend

Sim

tion

Empirical Result

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Conclusions

Asset Pricing Inference: Group Centrality

Algori

Uniform Consistency

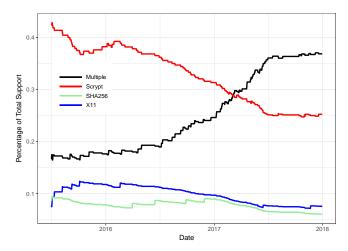
Simulatio

n E

Empirical Result

Conclusions

Algorithms Evolution Over Time



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Simulation

Empirical Result

Conclusion

Fundamental Comparison under Different Centrality Score: Algorithm

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ●

Algorit

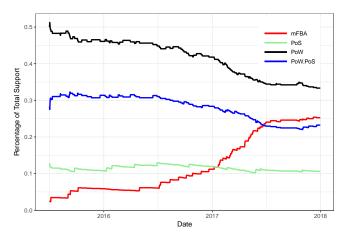
Uniform Consistent

Simulat

Empirical Result

Conclusio

Proof Types Evolution Over Time



▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Uniform Consistency

Simulation

Empirical Result

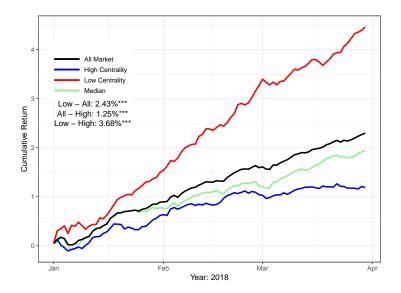
Conclusion

Fundamental Comparison under Different Centrality Score: Proof Types

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Conclusion

Cross Sectional Return predictability Comparison



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

What we do:

- Extends regularized spectral clustering methods to analysing dynamic networks (both directed and undirected), especially when there are membership changes.
- Incorporate node covariates into the network to assist community detection in dynamic networks.

Takeaways:

- 1. Attribution Matrix provides valuable information to connect within group members.
- 2. Return-based Adjacency Matrix reveal connections across different groups.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

3. Behavioral bias is stronger for those groups with low fundamental centrality.