Risk Patterns and Correlated Brain Activities

Alena Myšičková Peter N. C. Mohr Song Song Wolfgang K. Härdle Hauke R. Heekeren

C.A.S.E. Centre for Applied Statistics and Economics Humboldt-Universität zu Berlin Freie Universität Berlin Max Planck Institute for Molecular Genetics http://lvb.wiwi.hu-berlin.de http://www.languages-of-emotion.de http://www.molgen.mpg.de

Motivation

- □ Which part of our brain is activated during *risky decisions* ?
- □ Can statistical analysis help to detect this area?
- □ Can we provide an *integrated* analysis of the brain?

Experiment participants

- ⊡ 22 volunteers (age 18-35 years), 11 females, 11 males
- no history of neurological or psychiatric diseases
- flat payment (10 EUR) \pm outcome resulting from the participant's decision and modeling problems)

Risk Perception and Investment Decision

1-4

fMRI

functional Magnetic Resonance Imaging

measures the oxygen level in the blood every 2-3 sec

Risk Patterns and Correlated Brain Activities

Data Set

Series of 3-dim images

 \boxdot each scan transformed on the resolution $2\times 2\times 2mm^3$

- 91 slices
- ⊡ observed every 2.5 seconds

 \boxdot data set: series of $\mathcal{T}=1360$ images with $91\times109\times91$ voxels

High-dimensional, high frequency & large data set.

1 - 8

fMRI methods

⊡ existing methods to analyze these data: voxel-wise GLM

- strong a priori hypothesis necessary
- new statistical method: DSFM
 - dimension reduction keeping the data structure
 - exploratory analysis

- \boxdot Which part of our brain is activated during risky decisions ?
- □ Can statistical analysis help to detect this area?
- □ Is there a significant reaction to specific stimuli in the hemodynamic response?
- □ Can we classify the risk attitudes of probands *without* using probands' answers?

Outline

- 1. Motivation \checkmark
- 2. Statistical Model
- 3. Results vs. Proband's Behaviour
- 4. Conclusion
- 5. Future Perspectives

Panel Dynamic Semiparametric Factor Model (Panel DSFM)

$$X_{t,j} = (X_{t,1}, \dots, X_{t,J})^\top$$
$$Y_{t,j} = (Y_{t,1}, \dots, Y_{t,J})^\top$$
$$Z_{t,j} = (Z_{t,1}, \dots, Z_{t,L})^\top$$
$$(\overline{m}_0, \dots, \overline{m}_L)$$

 $\varepsilon_{t,j} \sim (0, \sigma_{t,j}^2)$

observable covariates defined on \mathbb{R}^d observable random vector on \mathbb{R}^d unobservable *L*-dimensional process unknown real-valued functions defined on a subset of \mathbb{R}^d errors with $\sigma_{t,j}^2 < \infty$

Panel DSFM

⊡ the "average brain":

$$\overline{Y}_{t,j} = \overline{m}_0(X_{t,j}) + \sum_{l=1}^{L} \overline{Z}_{t,l} \overline{m}_l(X_{t,j}) + \varepsilon_{t,j} , \quad 1 \le j \le J \quad (\mathsf{DSFM})$$

 \odot individual *i*:

$$Y_{t,j}^{i} = \overline{m}_{0}(X_{t,j}) + \sum_{l=1}^{L} Z_{t,l}^{i} \overline{m}_{l}(X_{t,j}) + \varepsilon_{t,j}^{i} \qquad (LS)$$

with the general basis functions \overline{m}_l

Risk Patterns and Correlated Brain Activities

2-2

Theorem Under regularity assumptions, for $h \ge 0$

$$\frac{1}{T} \sum_{t=max[1,-h+1]}^{min[T,T-h]} \widetilde{Z}_{c,t}^{i} \left(\widetilde{Z}_{c,t+h}^{i} - \widetilde{Z}_{c,t}^{i} \right)^{\top} - \frac{1}{T} \sum_{t=max[1,-h+1]}^{min[T,T-h]} Z_{c,t}^{i} \left(Z_{c,t+h}^{i} - Z_{c,t}^{i} \right)^{\top} = \mathcal{O}_{P}(T^{-1/2})$$

with $Z_{c,t}^i \& \widetilde{Z}_{c,t}^i$ being the (rescaled) real low-dimensional time series and their estimates respectively for individual *i*.

Risk Patterns and Correlated Brain Activities -

Fitting fMRI Data

- concentrate on parts with brain scan
- reduction of the original data by taking every second slice in each direction and the first part of experiment only
- \odot voxel's index (i_1, i_2, i_3) as covariate X_j
- \odot BOLD signal as $Y_{t,j}$
- \boxdot summary: $J=36\times46\times46$ and T=722

2-4

Estimation of DSFM

: choose $K = 7 \times 8 \times 8 = 448$ parabolic tensor B-splines to estimate \hat{m}

$$1 - RV(L) = \frac{\sum_{t}^{T} \sum_{j}^{J} \{Y_{t,j} - \hat{m}_{0}(X_{t,j}) - \sum_{l}^{L} \widehat{Z}_{t,l} \hat{m}_{l}(X_{t,j})\}^{2}}{\sum_{t}^{T} \sum_{j}^{J} (Y_{t,j} - \overline{Y})^{2}}$$

No. of factors				
$1-\overline{RV}(L)$ in %	88.85	88.88	88.91	88.94

Estimated factor loading \hat{m}_0 with L = 4.

Estimated factor loading \hat{m}_1 with L = 4.

Estimated factor loading \hat{m}_2 with L = 4. (VMPFC = Ventromedial prefrontal cortex)

Estimated factor loading \hat{m}_3 with L = 4.

Estimated factor loading \hat{m}_4 with L = 4.

Factor \hat{Z}_2

Reaction to stimuli

Risk attitude

- modeled by the softmax function from individuals' decisions
- ⊡ estimated by the Maximum Likelihood Method
- details in: Mohr, Biele, Krugel, Li & Heekeren, Neuroimage.(2010)

Reaction to stimuli in factor \hat{Z}_2

SVM Classification Analysis

- observation: weakly (strongly) risk-averse individuals have smaller (larger) volatilities of Zⁱ_t inside each trial
- SVM based on:

 X_1 : mean (median/upper quartile) of the 15 volatilities (of Z_t^i in each separated trial w.r.t. question type 1)

 X_2 : ... w.r.t. question type 2

 X_3 : ... w.r.t. question type 3

SVM Classification (mean of volatilities)

Classification Rates

	rate	r	С
mean	0.7500	0.250 - 0.350	20 - 90
median	0.6875	0.355 - 0.455	10 - 90
upper quartile	0.6875	0.400 - 0.550	20 - 90

The rates hold over a wide range of parameters!

Classification Rates

Mean		Estimated	
		Strongly	Weakly
Data	Strongly	0.85	0.15
	Weakly	0.42	0.58

Median		Estimated	
		Strongly	Weakly
Data	Strongly	0.90	0.11
	Weakly	0.67	0.33

Conclusion

- basis functions identify activated areas, neurological reasonable
- volatility of estimated factors show differences for individuals with different risk attitudes (2 vs. 19)
- estimated factors show similarities for probands with close risk attitudes (2 and 9)
- SVM classification analysis of measurements in Z₂ after stimulus can distinguish weakly and strongly risk-averse individuals

 4_{-1}

Future Perspectives

- ⊡ Comparison with the PCA/ICA (PARAFAC) approach
- Analysis of the second part of the experiment (under assumption of independency) to "generate" larger number of subjects
- ⊡ Improvement of the classification criterion
- ☑ Penalized DSFM with seasonal effects

Risk Patterns and Correlated Brain Activities

Alena Myšičková Peter N. C. Mohr Song Song Wolfgang K. Härdle Hauke R. Heekeren

C.A.S.E. Centre for Applied Statistics and Economics Humboldt-Universität zu Berlin Freie Universität Berlin Max Planck Institute for Molecular Genetics http://lvb.wiwi.hu-berlin.de http://www.languages-of-emotion.de http://www.molgen.mpg.de

