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Motivation 1-1

Barrier options

Knock-out options are financial options that become worthless as
soon as the underlying reaches a prespecified barrier.

asset price
100

Figure 1: Example of two possible paths of asset’s price. When the
price hits the barrier (red) the option is no longer valid regardless
further evolution of the price.
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Motivation 1-2

Barrier options

(1 In BS world prices of barrier options are given analytically, all
greeks can be calculated directly.

(] The price doesn't need to be a increasing function of the
volatility parameter o.

(1 Marking to BS model is precluded due to the ¢ choice

(1 BS is not a good choice for handling barrier options!!!

Skew Hedging g



down-and-out up-and-out

10.1 102
4

10

price
price

98

97
10

Figure 2: Price of the call knock-out barrier options as a function of
BS-0. Asset value Sg = 90, strike price K = 80 time to maturity
7 = 0.1 interest rate r = 0.03. Left panel: barrier B = 80. Right
panel: barrier B = 120.



Motivation 1-4

Pricing Barrier Options

For pricing barrier options a local volatility (LV) model is
employed. The asset price dynamics are governed by the stochastic
differential equation:

dS

?t = pdt + o(Sy, t)dW; (1)

t

where W, is a Brownian motion, y the drift and o(S¢, t) the local
volatility function which depends on the asset price and time only.
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Motivation 1-5

Pricing Barrier Options

Price depends on the entire implied volatility surface (IVS). From
the IVS one can calculate G¢(K, T).
Dupire formula:

BCt(K T)+ KBCt( T)

(K, t) =

STCHT)
K oK?

gives the LV surface o(S¢, t). For practical implementation see
Andersen and Brotherthon-Ratcliffe (1997).
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Motivation 1-6

Dynamics of the IVS

The IVS reveals highly dynamic behavior, which influences the
prices of the barrier options.

Example

Consider two one year knock-out put options with strike 110 and
barrier 80, when the current spot level is 100. Take the IVS from
20000103 and 20010102. The prices of these options are
respectively 1.91 and 2.37. This is a 25% difference.
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Motivation 1-7
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Figure 3: Observed smile on 20000103 and 20010102 for the maturity
0.25.
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Motivation 1-8

Vega Hedging

(] In LV model the usual vega cannot be used because the whole
IVS is an input

(] The standard approach is to build vega hedging on the
sensitivity of the "up-and-down" shifts.

(] The skew changes, which may cause significant pricing
differences, become unhedged.
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Motivation 1-9

DSFM

A complex dynamics of the IVS is explained in terms of a dynamic
semiparametric factor model (DSFM) for the (log)-1VS
Yij (i =day,j = intraday):

L
Yij = mo(Xij) + Zﬁi,/m/(XIJ) +Eiy- (@)
I=1

Here m;(X; ) are smooth factor functions and [3; is a multivariate
(loading) time-series.
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Motivation 1-10

Aims

(] to apply DSFM for identification of key factors of the IVS
dynamics

(] to improve the vega hedge by hedging against most common
changes of the IVS
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DSFM

2-1
DSFM
Consider DSFM for the log-IVS:
L
Yij = mo(Xij)+ Z Biaimi(Xi j) + €i (3)
I=1
Y;j is log IV,i denotes the trading day (i =1,...,/),
j=1,...,J;is an index of the traded options on day i.
my(-) for I =0,..., L are basis functions in covariables X ;

(moneyness, time to maturity),
and (3; are time dependent factors.
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DSFM 2-2

DSFM estimation

. . ~ - . = def e
Define estimates of m; and 3;; with 3,9 = 1, as minimizers of:

I Lo 2
ZZ/{Y/J-Z,@;JFFI/(U)} Kh(u—X;J) du, (4)
1=0

i=1 j=1
where K}, denotes a two dimensional product kernel,
Kn(u) = kn,(u1) x kn,(u2), h = (h1, h2) with a one-dimensional
kernel kn(v) = h=1k(h=1v).
See Fengler et al. (2005), Fengler (2005).
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3-1

results

Model parameters

We fit our model:
[l L = 3 dynamic basis functions
[J grid covering moneyness € [0.6,1.3] and time to maturity
€ [0.05,1]
(] fix bandwidths in moneyness direction and increasing
bandwidths in maturity direction

[ on the daily IVS data from 20000103 till 20011220
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Figure 4: Invariant basis function mg and dynamic basis function my
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Figure 5: Dynamic basis functions my (skew) and ms3 (term struc-
ture)
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Figure 6: time series of weights Bl and ATM VS for the fixed ma-
turity 0.25.
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Figure 7: Time series of weights 32 and 33



B, infuence on the IVS
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Figure 8: Typical shape of the smile for different levels of Bl-
Changes of the (31 influence mainly the surface’s level.



B, infuence on the IVS
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Figure 9: Typical shape of the smile for different levels of Bg.
Changes of the (3, influence the smile’s skew.



hedging 4-1

Greeks

[J In order to implement (-hedging one has to calculate
(B-greeks.

[J They are obtained by shifting the IVS in the m direction.

doption Option(/VSeAB’A") — Option(IVSe_AB’A")

a5 N )
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Figure 10: vega ‘greek” for down-and-out put option with barrier
5400 and strike 7425 as a function of spot
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Figure 11: Bl “greek” for down-and-out put option with barrier 5400
and strike 7425 as a function of spot
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Figure 12: 52 “greek” for down-and-out put option with barrier 5400
and strike 7425 as a function of spot



hedging 4-5

Example
In the BS model the hedge portfolio (HP) for hedging plain vanilla
options consists of a stocks - HP = aS. The hedge ratio a (delta)
is obtained from:

dHP _ Ooption

s 77 o5

The hedge is financed by buying/selling bonds.
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hedging 4-6

How to compute the hedge ratios

Take two hedge portfolios HP; and HP;.
Compute the sensitivities of the hedge portfolios and the
up-and-out call option (CX©) with respect to 1 and /3.

Solve
OHP,  OHP oCro
o op < a ) | o vega
OHP,  OHP, = | seko
on dhr a ) skew
B2 0B 2 EYeR

for the hedge ratios a1, ap. For the down-and-out put option
(PKO) the procedure is analogous.
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hedging

Choice of the hedge portfolio

Idea:
choose HP; and HP, with maximum exposure to (31 and (3o,
respectively:

HP; should be most sensitive to up-and-down shifts:
use a portfolio of at-the-money plain vanilla options;

HP, should be most sensitive to slope changes:
use a portfolio of vega-neutral risk reversals.

% ~ 8H'D2 ~
Then 852 ~ 0 and 831 ~ 0

Skew Hedging
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hedging 4-8

Risk reversal payoff
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Figure 13: The payoff of the risk reversal. It is composed from a
long call with strike Ky = 120 and a short put with strike K, = 80.
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hedging 4-9

As in standard vega hedging we apply final delta hedge. In our
case we apply delta hedge to CKO + a; HPy 4 ayHP; by calculating
the number of underlying as:

6(CKO + a1 HP; + 32HP2)
0S
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down-and-out put, long risk reversals, long ATM call
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down-and-out put, long risk reversals, long ATM call, short spot
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results 5-1
Empirical Study

For each of 885 days (20000103-20030707) we start one long
position in one year CX9 and PKO.

Option | barrier  strike maturity knock-outs in-the-money
cKo 140 % 80 % 1 year 10 % 39 %
pKo 80 % 110 % 1 year 81 % 5%

Table 1: barrier and strike are given as a percentage of the spot at
the starting day

We keep the position until maturity or knock-out.
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results 5-2

Empirical Study

We compare the 3152 (skew) hedging approach with:

[ B hedging - no risk reversal (a, = 0) and a; = LEKO/‘?H—A'D1
B 0B
[ vega hedging - no risk reversal (a; = 0) and a; = _acKO/ale
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results 5-3

Aims of Hedging

(] We define the profit and loss of the strategy at the maturity
as a portfolio’s value divided by notional at the starting day.

C?O + HPT + moneyTt
So

(] The aim of the hedging is possibly large reduction of the
profit and loss variation around zero.
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results

5-4

Results

Profit and loss of the strategy at the maturity.

CcKko ‘ min max mean  median std med. abs.

vega | -0.1038 0.5813 -0.0165 -0.0175 0.0209  0.0413
B | -0.0752 0.5768 -0.0118 -0.0136 0.0183  0.0387
B162 | -0.0830 0.5684 -0.0066 -0.0119 0.0137  0.0345

Table 2: all values as percentage of the underlying
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cro ‘ days ‘ min max mean median std med. abs.

vega 0 -0.1038 0.5813 -0.0165 -0.0175 0.0209 0.0413
1 -0.1038 0.1710 -0.0186 -0.0171 0.0183 0.0276
10 | -0.0833 0.0710 -0.0184 -0.0164 0.0172 0.0241
25 | -0.0797 0.0590 -0.0191 -0.0151 0.0150 0.0207

B 0 -0.0752 0.5768 -0.0118 -0.0136 0.0183 0.0387
1 -0.0751 0.1459 -0.0139 -0.0130 0.0157 0.0240
10 | -0.0766 0.0702 -0.0143 -0.0130 0.0154 0.0210
25 | -0.0731 0.0508 -0.0150 -0.0116 0.0130 0.0175

B12 0 -0.0830 0.5684 -0.0066 -0.0119 0.0137 0.0345
1 -0.0829 0.1220 -0.0088 -0.0120 0.0112 0.0184
10 | -0.0375 0.0831 -0.0095 -0.0119 0.0106 0.0149
25 | -0.0360 0.0499 -0.0104 -0.0123 0.0082 0.0114

Table 3: Descriptive statistics for the hedging strategies 0, 1, 10 and
25 days before the knock-out or expiration - delta hedging effect

(gap risk).



results

5-6

Results

Profit and loss of the strategy at the maturity.

PKO‘ min max mean  median std med. abs.
vega | -0.0264 0.2799 0.0058 -0.0004 0.0105 0.0213

G | -0.0210 0.2808 0.0080 0.0016 0.0107  0.0214
G162 | -0.0332 0.2676 0.0065 0.0008 0.0092  0.0196

Table 4: Descriptive statistics for the hedging strategies of the down-
and-out put
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pro ‘ days ‘ min max mean median std med. abs.

vega 0 -0.0264 0.2799 0.0058 -0.0004 0.0105 0.0213
1 -0.0209 0.0344 -0.0040 -0.0048 0.0042 0.0064
10 | -0.0161 0.0231 -0.0024 -0.0027 0.0037 0.0056
25 | -0.0142 0.0189 -0.0018 -0.0014 0.0033 0.0046

B 0 -0.0210 0.2808  0.0080 0.0016  0.0107 0.0214
1 -0.0157 0.0350 -0.0017 -0.0030 0.0038 0.0060
10 | -0.0106 0.0276 -0.0002 -0.0009 0.0031 0.0053
25 | -0.0109 0.0202 -0.0001 -0.0002 0.0027 0.0041

B1B2 0 -0.0332 0.2676  0.0065 0.0008 0.0092 0.0196
1 -0.0249 0.0270 -0.0032 -0.0032 0.0030 0.0044
10 | -0.0110 0.0200 -0.0017 -0.0016 0.0027 0.0038
25 | -0.0092 0.0200 -0.0011 -0.0007 0.0023 0.0034

Table 5: Descriptive statistics for the hedging strategies 0, 1, 10 and
25 days before the knock-out or expiration - delta hedging effect

(gap risk).



results 5-8

std. of the hedge portfolios in time (up and out call)
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Figure 14: The standard deviation of the portfolios as a function of

the days left to the maturity (call).
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results 5-9

std. of the hedge portfolios in time (down and out put)
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Figure 15: The standard deviation of the portfolios as a function of

the days left to the maturity (put).
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conclusion 6-1

Conclusion

» the 5 hedge improves the hedging
» gap risk is still unhedged.

» better strategy might be to mix static and dynamic hedges
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Figure 16: Profit-and-loss contribution of the delta for down-and-out
put option with barrier 5400 and strike 7425. The mean value of
absolute underlying changes |dS| = 66.01.
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Figure 17: Profit-and-loss contribution of the theta for down-and-out
put option with barrier 5400 and strike 7425.



vega*mean(|do])

PL contribution

12000

04 8000

maturity 0 2000 spot

Figure 18: Profit-and-loss contribution of the vega for down-and-out
put option with barrier 5400 and strike 7425. o is taken as at-the-
money IV for maturity 0.25. The mean value of absolute changes
|do| = 0.67 in vol. points.
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Figure 19: Profit-and-loss contribution of the 3; for down-and-out
put option with barrier 5400 and strike 7425.
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Figure 20: Profit-and-loss contribution of the B> for down-and-out
put option with barrier 5400 and strike 7425.



Appendix 8-6
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Figure 21: Profit-and-loss contribution divided by down-and-out put
price for ITM option.
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Appendix

PL contribution / price of the option

at the money
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Figure 22: Profit-and-loss contribution divided by down-and-out put

price for ATM option.
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Appendix

PL contribution / price of the option

out of the money
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Figure 23: Profit-and-loss contribution divided by down-and-out put
price for OTM option.
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Appendix 8-9
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Figure 24: Delta as a function of the spot for the half year down-
gpedv;%etdg% option with strike price 7425 and barrier 5400 %
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