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Outline of the talk

1. introduction X

2. Value-at-Risk

3. define some simple models based on dimension reduction

4. DAX example

5. exceedances and quality of VaR forecasts

6. methods for comparing probability forecasts

7. conclusion: which method is the best one?
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Notation

Λt ∈ Rp nominal volumes at time t

Ps the price vector

Πt is the portfolio

The market value of Πt at time s is given by

νs(Πt) = Λ>t Ps.
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We are interested in modelling the risk of price changes at time t given

Pt = pt:

νt+h(Λt)− νt(Λt) = Λ>t (Pt+h − pt)

= (Λtpt)>
(Pt+h − pt)

pt

= w>t Rt+h,

where wt is the exposure and Rt+h are the returns.
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The conditional distribution

L(Lt+h|Ht)

of possible losses Lt+h = −w>t Rt+h is the object of interest.

Ht, the information available at time t consists in the simplest case of

moving window of past returns of the assets.

Value-at-Risk (VaR) is just the α quantile of L(Lt+h|Ht).

Let VaRi(α, t) denote the Value-at-Risk of i-th asset and

VaR = (VaR1, . . . ,VaRp)>. Then the Value-at-Risk of the portfolio Πt

is:

VaR(Πt) = uα

√
w>t Σtwt =

√
VaR> Ct VaR.
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Dimension Reduction—Mapping

Using a model based on the equality

VaR(Πt) =
√

VaR> Ct VaR

would require the estimation of all the p(p+ 1)/2 parameters. This

becomes unfeasible for large number of large portfolios.

There is a need for procedures which would reduce the computation cost

of such operations.
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We search for a small vector of risk factors

R̃ = (R̃1, . . . , R̃d)

such that

VaR(Πt) ≈ VaR(Π̃t).

This can be formally described as a mapping of the original risk factors

onto a lower dimensional space:

M : R −→M(R) = R̃.
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We consider the following simple models:

1. full model with all p(p+ 1)/2 parameters,

2. beta factor model,

3. mapping on principal components,

4. random effects model.

The main focus of the paper is to develop and present methods for

comparing these simple methods.
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Beta Factor Model

Rit is the returns i-th asset.

Rmt is the return of an index (e.g. DAX).

The dimension reduction is based on the regression of Rit’s on Rmt:

Rit = βiRmt + εit.

It follows that

Var(Rit) = σ2
it = β2

i σ
2
mt + σ2

ε,it,

Cov(Rit, Rjt) = σ2
ijt = βiβjσ

2
mt

which implies that

w>t Σtwt = σ2
mtw

>
t ββ

>wt + w>t Dεtwt.
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w>t Σtwt = σ2
mtw

>
t ββ

>wt + w>t Dεtwt.

This motivates the following two approximations of Σ:

Beta Factor Model I

Σβ,1 = σ2
mββ

>.

Beta Factor Model II

Σβ,2 = σ2
mββ

> +Dε.

Plugging Σβ,1 and Σβ,2 into the formula for Var(M(Π)) leads to:

VaRβ,1(M(Π)) =
√

VaR>M(1) VaRM,

VaRβ,2(M(Π)) =
√

VaR>M(1 +B−1DεB−1) VaRM.
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Principal Components

This method is based on the orthogonalization of the variance matrix:

Σ = QDQ>.

The Principal Components transformation Y = Q>R satisfies the

following property:

Σ = VarR = VarQY = Q(VarY )Q> = QDQ>.

Keeping only small number k of principal components allows good

approximation of Σ and of the Value-at-Risk:

VaR = Φ−1(α)
√
w>t QkDQ

>
k wt.

Calculating the PC’s from Var(wtRt) leads to different result (and

possibly better approximation of VaR(Πt)).
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Random Effects

Assume that the following model holds:

Rit/σi = αt + εit.

It follows that

Cov(Rit, Rjt) = σiσjσ
2
α

which is equivalent to the assumption of constant correlation between all

returns in the portfolio.

The dimension of the problem is reduced by imposing constraint of

constant correlation on Σ.
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Simple Example
Time series of 18 German stocks + DAX from 1.1.1997–18.6.1999. For

each day in 1998 and 1999, we calculated Value-at-Risk using history of

249 observations.

The computational scheme included random changes of the weighting

scheme wt over time.

The following methods were used:

1. saturated model using the covariance matrix of all returns,

2. classical beta-factor model,

3. improved beta-factor model,

4. principal components,

5. weighted principal components (wtRt),

6. all off-diagonal elements of the correlation matrix are identical.

Computational Finance, Berlin 2002



Quality of Value-at-Risk Forecasts 14
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Checking the Quality of the Model
Under the assumptions of normality, the variable

Lt/VaRt−1

should have approximately Normal distribution N(0, 2.33−2). The

assumption of normality and of the variance can be verified using

histograms and quantile-quantile plots:
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Exceedances of 80% Value-at-Risk
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Relative frequencies of exceedances of VaR at level α = 0.8:

M1 M2 M3 M4 M5 M6

1.1998 0.14 0.22 0.14 0.14 0.14 0.14

2.1998 0.17 0.37 0.17 0.17 0.17 0.17

3.1998 0.26 0.52 0.26 0.24 0.26 0.26

4.1998 0.14 0.44 0.14 0.14 0.14 0.14

1.1999 0.38 0.70 0.38 0.38 0.38 0.38

2.1999 0.17 0.63 0.17 0.17 0.17 0.17
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Probabilistic Nature of VaR Forecasts

Above presented methods concentrate mainly on the probability of

exceedances of the predicted Value-at-Risk.

The VaR estimation is more complex and there is need for other

methods of evaluating the quality of the forecasts. VaR model allows to

estimate the probability that the loss of portfolio will fall into certain

“regions of interest”.

In each step, we calculate the probability that the loss will fall into the

specified region.

After running the simulations, we investigate the observed joint

distribution of the forecasts and the true results of the experiment.

Computational Finance, Berlin 2002
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Let us consider, e.g., the interval I = (50.000, 100.000)

Pt estimate of the probability that your loss next day will fall in I

Et = I(the loss falls into the interval I)

Brier score

BS =
1
N

N∑
i=1

(Pt − Et)

measures the accuracy of the 6 methods:

M1 M2 M3 M4 M5 M6

BS 0.1541 0.2060 0.1542 0.1552 0.1541 0.1558

Computational Finance, Berlin 2002
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The joint probability function of P and E can be decomposed in the

following two ways:

h(p, e) = h(e|p)h(p)

= h(p|e)h(e)

h(e|p) is the distribution of the events (probability of falling into I)

conditioned on the value of the probability forecast.

For reasonable VaR forecasts, the relative frequencies of

{Lt ∈ I|Pt = p} should lie close to p for each p.

Forecasts with this property are calibrated.

Computational Finance, Berlin 2002
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Calibration
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Calibration

The following table shows:

1. measure of miscalibration,

2. regression based measure of miscalibration.

M1 M2 M3 M4 M5 M6

Ep(µe|p − p)2 0.00127 0.03718 0.00124 0.00146 0.00124 0.00124

[ρpe − (σp/σe)]
2 0.00004 0.01119 0.00005 0.00047 0.00007 0.00005

The information can be displayed also on the attributes diagram.
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h(p|e) is the distribution of the forecasts conditioned on the loss falling

into interval I.

For good probability forecasts, there should be a large difference between

the conditional distributions

h(p|e = 0) and h(p|e = 1).

The 6 methods can now be compared, e.g., using difference in the

conditional means or difference in conditional variances:

M1 M2 M3 M4 M5 M6

µp|e=1 − µp|e=0 0.3532 0.3332 0.3536 0.3549 0.3529 0.3516

σ2
p|e=1 0.0716 0.0577 0.0718 0.0719 0.0719 0.0716

σ2
p|e=0 0.0459 0.0808 0.0459 0.0499 0.0461 0.0458

More informative than the difference in mean or variance is the graphical

representation of the two conditional distributions.
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Discrimination
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There are other useful measures of

refinement degree to which probabilities are close to 0 or 1: σ2
p

M1 M2 M3 M4 M5 M6

0.0875 0.0981 0.0877 0.0902 0.0877 0.0872

resolution difference between the conditional distributions

Ep(µe|p − µe)2

M1 M2 M3 M4 M5 M6

0.0867 0.0722 0.0868 0.0851 0.0864 0.0862

Computational Finance, Berlin 2002
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bias ME = µe − µp, regression based [(µe − µp)/σe]2

M1 M2 M3 M4 M5 M6

−0.0102 0.1657 −0.0097 0.0033 −0.0083 −0.0122

0.0004 0.1120 0.0004 0.0001 0.0003 0.0006

skill relative accuracy, Skill Score (SS), measure of potential skill of

perfectly calibrated forecasts ρ2
fx

M1 M2 M3 M4 M5 M6

0.3488 0.1543 0.3490 0.3417 0.3477 0.3467

0.3493 0.2775 0.3495 0.3423 0.3480 0.3474
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