Statistics I: Exercise Session 6

15.7.2015, 14-16, SPA1 21b

1 Univariate Statistics

1.1 Distribution of discrete random variables

Probability mass function of a discrete r. v.

$$f(x_i) = P(X = x_i), \quad i = 1, 2, \dots$$

Cumulative distribution function of a discrete r. v.

$$F(x) = \sum_{x_i \le x} f(x_i) = P(X \le x), \quad i = 1, 2, \dots$$

1.2 Distribution of continuous random variables

Probability mass function of a continuous r. v.

$$\int_{a}^{b} f(x_i)dx = P(a \le X \le b), \quad \forall a, b, \text{ such that } a \le b$$

Cumulative distribution function of a continuous r. v.

$$F(x) = \int_{-\infty}^{x} f(t)dt = P(-\infty < X \le x)$$

1.3 Parameters of random variables

Expected value

Discrete r. v.
$$E[X] = \mu_X = \sum_{i=1}^k x_i \cdot f(x_i)$$

Continuous r. v.
$$E[X] = \mu_X = \int_{-\infty}^{+\infty} x \cdot f(x) dx$$

Properties of expected value

$$E[a + b \cdot X] = a + b \cdot E(X) \ (a, b \text{ constant})$$

 $E[X \pm Y] = E[X] \pm E[Y]$

Variance

Discrete r. v.
$$Var(X) = \sigma_X^2 = \sum_{i=1}^k (x_i - \mu_X)^2 \cdot f(x_i) = \sum_{i=1}^k x_i^2 \cdot f(x_i) - \mu_X^2$$

Continuous r. v. $Var(X) = \sigma_X^2 = \int_{-\infty}^{+\infty} (x - \mu_X)^2 f(x) dx = \int_{-\infty}^{+\infty} x^2 f(x) dx - \mu_X^2$
Generally $Var(X) = \sigma_X^2 = E[(X - E[X])^2] = E[X^2] - (E[X])^2$

Properties of variance

$$\operatorname{Var}[a+b\cdot X] = b^2 \cdot \operatorname{Var}(X) \ (a, \ b \ \operatorname{constant})$$

$$\operatorname{Var}[X\pm Y] = \operatorname{Var}(X) + \operatorname{Var}(Y) \pm 2 \cdot \operatorname{Cov}(X,Y)$$

1 Bivariate Statistics

1.1 Two discrete random variables

Joint distribution

Probability mass function
$$P(X = x_i, Y = y_j) = f(x_i, y_j), \quad i = 1, ..., m, j = 1, ..., r$$

Cumulative distr. function $F(x, y) = P(X \le x, Y \le y) = \sum_{x_i \le x} \sum_{y_j \le y} f(x_i, y_j)$

Marginal distribution

Pmf of
$$X$$
 $f(x_i) = P(X = x_i) = \sum_{j=1}^r f(x_i, y_j)$
Pmf of Y $f(y_j) = P(Y = y_j) = \sum_{i=1}^m f(x_i, y_j)$
Cdf of X $P(X \le x) = F(x) = \sum_{j=1}^r \sum_{x_i \le x} f(x_i, y_j)$
Cdf of Y $P(Y \le y) = F(y) = \sum_{i=1}^m \sum_{y_i \le y} f(x_i, y_j)$

Exercises

4-1: *Children*

The following table shows the number of children of six people:

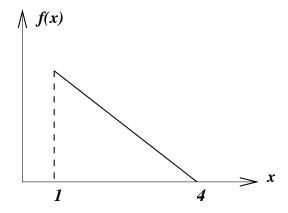
Person	P_1	P_2	P_3	P_4	P_5	P_6
Number of children	6	2	0	1	2	1

Assume that three of these people were selected. Let X be a total number of children of the selected individuals.

- a) Specify a table of probability mass function of X.
- b) Specify a cumulative distribution function of X.
- c) Plot the functions from a) and b).
- d) What is the probability that the total number of children of three randomly selected people is
 - less than or equal to 4?
 - greater than 8?
 - greater than 3 and less than 9?

4-7: *Literature*

Annual expenditure of a student on literature (X) is approximately triangular distributed (see figure below).



- a) Calculate the pdf f(x) and the cdf F(x) of the expenditure.
- b) Determine E(X) and Var(X).
- c) Calculate the following probabilities: $P(X \le 2)$, $P(2 \le X \le 3)$, $P(X \ge 3)$.

4-29: Two-dimensional random variable

The two-dimensional random variable (X_1,X_2) has the following probability mass function:

	X_2	1	2	3
X_1				
1		0.1	0.3	0.2
2		0.1	0.1	0.2

Determine the expected value of $X_3 = X_1 + X_2$.