Statistics II: Exercise Session 7

1 Regression analysis

1.1 General regression model

$$
Y_{i}=f\left(x_{1 i}, x_{2 i}, \ldots, x_{m i}\right)+U_{i}=\mathrm{E}\left[Y_{i}\right]+U_{i} \quad \text { with } \mathrm{E}\left[U_{i}\right]=0
$$

1.2 Simple linear regression function

True regression line $\quad \mathrm{E}\left[Y_{i}\right]=\beta_{0}+\beta_{1} \cdot x_{i}$
Regression model $\quad Y_{i}=\mathrm{E}\left[Y_{i}\right]+U_{i}=\beta_{0}+\beta_{1} \cdot x_{i}+U_{i}$
Error term

$$
\text { with } \mathrm{E}\left[U_{i}\right]=0, \operatorname{Var}\left(U_{i}\right)=\sigma_{u}^{2}, \operatorname{Cov}\left(U_{i} U_{j}\right)=0 \text { for } i \neq j
$$

Fitted regression line

$$
U_{i}=Y_{i}-\mathrm{E}\left[Y_{i}\right]
$$

and $U_{i} \sim N\left(0 ; \sigma_{u}\right)$
$\widehat{y}_{i}=b_{0}+b_{1} \cdot x_{i}$
Sample regression line
$y_{i}=\widehat{y}_{i}+\widehat{u}_{i}=b_{0}+b_{1} \cdot x_{i}+\widehat{u}_{i}$
Residuals
$\widehat{u}_{i}=y_{i}-\widehat{y}_{i}$
Least squares estimator for $\beta_{0}, \beta_{1}, \sigma_{u}^{2}$
$b_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) \cdot\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{n \cdot \sum_{i=1}^{n} x_{i} \cdot y_{i}-\left(\sum_{i=1}^{n} x_{i}\right) \cdot\left(\sum_{i=1}^{n} y_{i}\right)}{n \cdot \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}}=\frac{s_{x y}}{s_{x}^{2}}=r_{x y} \cdot \frac{s_{y}}{s_{x}}$
$b_{0}=\frac{\sum_{i=1}^{n} y_{i} \cdot \sum_{i=1}^{n} x_{i}^{2}-\sum_{i=1}^{n} x_{i} \cdot \sum_{i=1}^{n} x_{i} \cdot y_{i}}{n \cdot \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}}=\bar{y}-b_{1} \cdot \bar{x}$
$s_{\widehat{u}}^{2}=\frac{\sum_{i=1}^{n} \widehat{u}_{i}^{2}}{n-2}$

Coefficient of determination

$$
R_{y x}^{2}=R_{x y}^{2}=\frac{s_{y x}^{2}}{s_{y}^{2} \cdot s_{x}^{2}}=r_{y x}^{2}=\frac{\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}=1-\frac{\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}
$$

Exercises

9-3: Cross-sectional analysis of 11 companies

In a cross-sectional analysis of 11 companies in each sector we examine the dependence of sales Y (in mil. EUR) on investments X_{1} (in 1000 EUR), expenses for research and development X_{2} (in 1000 EUR) and expenses for advertisement X_{3} (in 1000 EUR) for a given period of time. Values of the explanatory variables X_{1}, X_{2} and X_{3} and the dependent variable Y are stated in the following table:

i	y_{i}	$x_{i 1}$	$x_{i 2}$	$x_{i 3}$
1	12.6	117.0	84.5	3.1
2	13.1	126.3	89.7	3.6
3	15.1	134.4	96.2	2.3
4	15.1	137.5	99.1	2.3
5	14.9	141.7	103.2	0.9
6	16.1	149.4	107.5	2.1
7	17.9	158.4	114.1	1.5
8	21.0	166.5	120.4	3.8
9	22.3	177.1	126.8	3.6
10	21.9	179.8	127.2	4.1
11	21.0	183.8	128.7	1.9

a) Determine the simple linear regression functions of sales with respect to investments, expenditures for research and development and advertising expenses respectively, as well as the associated coefficient of determination.
b) Calculate all simple linear correlation coefficients between the given characteristics.

9-5: Consumption expenditure

In March 1992 the total available income of 8 households was 30880 EUR. In the same month the 8 households generated total consumption expenditure amounting to 26800 EUR. Per EUR of additional income of these households 0.813 EUR on average was spent on consumption.
a) State the (economically meaningful) linear regression function.
b) What consumer spending can be expected on average for a level of disposable income in amount of 2800 EUR?

9-7: Additional statistical unit

Random variables X and Y were observed in 9 statistical units. However, instead of the individual pairs of values $\left(x_{i}, y_{i}\right)$, observations are the sums

$$
\sum_{i=1}^{9} x_{i}=34, \quad \sum_{i=1}^{9} y_{i}=60, \quad \sum_{i=1}^{9} x_{i}^{2}=144, \quad \sum_{i=1}^{9} y_{i}^{2}=422, \quad \sum_{i=1}^{9} x_{i} y_{i}=244
$$

Subsequently it turns out that the pair of values $\left(x_{10}, y_{10}\right)=(6,10)$ needs to be taken into account, too. Which of the following regression lines $y=b_{0}+b_{1} x$ is correct by the method of least squares for the 10 pairs of values?
a) $y=0.2+1.7 x$
b) $y=0.6+1.6 x$
c) $y=1.2+1.5 x$
d) $y=1.4+1.4 x$
e) $y=1.8+1.3 x$
f) $y=2.0+1.8 x$
g) $y=2.2+1.2 x$
h) $y=2.8+1.0 x$

