Statistics II: Exercise Session 7

1 Regression analysis

1.1 General regression model

 $Y_i = f(x_{1i}, x_{2i}, \dots, x_{mi}) + U_i = E[Y_i] + U_i$ with $E[U_i] = 0$

1.2 Simple linear regression function

True regression line	$\mathbf{E}[Y_i] = \beta_0 + \beta_1 \cdot x_i$
Regression model	$Y_i = \mathbf{E}[Y_i] + U_i = \beta_0 + \beta_1 \cdot x_i + U_i$
Error term	$U_i = Y_i - \mathbb{E}[Y_i]$
	with $E[U_i] = 0$, $Var(U_i) = \sigma_u^2$, $Cov(U_iU_j) = 0$ for $i \neq j$
	and $U_i \sim N(0; \sigma_u)$
Fitted regression line	$\widehat{y_i} = b_0 + b_1 \cdot x_i$
Sample regression line	$y_i = \widehat{y}_i + \widehat{u}_i = b_0 + b_1 \cdot x_i + \widehat{u}_i$
Residuals	$\widehat{u}_i = y_i - \widehat{y}_i$

Least squares estimator for $\beta_0, \ \beta_1, \ \sigma_u^2$

$$b_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x}) \cdot (y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} = \frac{n \cdot \sum_{i=1}^{n} x_{i} \cdot y_{i} - \left(\sum_{i=1}^{n} x_{i}\right) \cdot \left(\sum_{i=1}^{n} y_{i}\right)}{n \cdot \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} = \frac{s_{xy}}{s_{x}^{2}} = r_{xy} \cdot \frac{s_{y}}{s_{x}}$$

$$b_{0} = \frac{\sum_{i=1}^{n} y_{i} \cdot \sum_{i=1}^{n} x_{i}^{2} - \sum_{i=1}^{n} x_{i} \cdot \sum_{i=1}^{n} x_{i} \cdot y_{i}}{n \cdot \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} = \overline{y} - b_{1} \cdot \overline{x}$$

$$s_{\widehat{u}}^{2} = \frac{\sum_{i=1}^{n} \widehat{u}_{i}^{2}}{n - 2}$$

Coefficient of determination

$$R_{yx}^2 = R_{xy}^2 = \frac{s_{yx}^2}{s_y^2 \cdot s_x^2} = r_{yx}^2 = \frac{\sum_{i=1}^n (\hat{y}_i - \overline{y})^2}{\sum_{i=1}^n (y_i - \overline{y})^2} = 1 - \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - \overline{y})^2}$$

Exercises

9-3: Cross-sectional analysis of 11 companies

In a cross-sectional analysis of 11 companies in each sector we examine the dependence of sales Y (in mil. EUR) on investments X_1 (in 1 000 EUR), expenses for research and development X_2 (in 1 000 EUR) and expenses for advertisement X_3 (in 1 000 EUR) for a given period of time. Values of the explanatory variables X_1 , X_2 and X_3 and the dependent variable Y are stated in the following table:

i	y_i	x_{i1}	x_{i2}	x_{i3}
1	12.6	117.0	84.5	3.1
2	13.1	126.3	89.7	3.6
3	15.1	134.4	96.2	2.3
4	15.1	137.5	99.1	2.3
5	14.9	141.7	103.2	0.9
6	16.1	149.4	107.5	2.1
7	17.9	158.4	114.1	1.5
8	21.0	166.5	120.4	3.8
9	22.3	177.1	126.8	3.6
10	21.9	179.8	127.2	4.1
11	21.0	183.8	128.7	1.9

- a) Determine the simple linear regression functions of sales with respect to investments, expenditures for research and development and advertising expenses respectively, as well as the associated coefficient of determination.
- b) Calculate all simple linear correlation coefficients between the given characteristics.

9-5: Consumption expenditure

In March 1992 the total available income of 8 households was 30 880 EUR. In the same month the 8 households generated total consumption expenditure amounting to 26 800 EUR. Per EUR of additional income of these households 0.813 EUR on average was spent on consumption.

- a) State the (economically meaningful) linear regression function.
- b) What consumer spending can be expected on average for a level of disposable income in amount of 2 800 EUR?

9-7: Additional statistical unit

Random variables X and Y were observed in 9 statistical units. However, instead of the individual pairs of values (x_i, y_i) , observations are the sums

$$\sum_{i=1}^{9} x_i = 34, \quad \sum_{i=1}^{9} y_i = 60, \quad \sum_{i=1}^{9} x_i^2 = 144, \quad \sum_{i=1}^{9} y_i^2 = 422, \quad \sum_{i=1}^{9} x_i y_i = 244$$

Subsequently it turns out that the pair of values $(x_{10}, y_{10}) = (6, 10)$ needs to be taken into account, too. Which of the following regression lines $y = b_0 + b_1 x$ is correct by the method of least squares for the 10 pairs of values?

a)
$$y = 0.2 + 1.7x$$
 b) $y = 0.6 + 1.6x$ c) $y = 1.2 + 1.5x$ d) $y = 1.4 + 1.4x$
e) $y = 1.8 + 1.3x$ f) $y = 2.0 + 1.8x$ g) $y = 2.2 + 1.2x$ h) $y = 2.8 + 1.0x$