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Terms

m Interactive & Dynamic Statistical Graphics (DSG)
m Exploratory Data Analysis (EDA)

m Exploratory Spatial Data Analysis (ESDA)

m Visual Data Mining (VDM)

m Visual Analysis/Visual Analytics (VA)

m Data Mining (DM)



Citations

m John W. Tukey (1977):

EDA “is @
counting ¢

m Edward J

etective work - numerical detective work - or
etective work - or graphical detective work.”

. Wegman (2000):

“Data Mining Is exploratory data analysis with little or

no human

Interaction using computationally feasible

techniques, I.e., the attempt to find interesting structure
unknown a priori.”



Interview with Andreas Buja*

m “ ... when | think back about what really may
have had the most impact in what | did in the
various labs that | worked, It’s graphics! You
know whenever | made a striking picture, people
actually went “aahh,” “wow,” “that’s great!”,
“Why don’t we do more of this?”” Pictures really,
really speak. ...”

- *Computational Statistics (2008) 23:177-184



Visual Data Mining (1)

m \Working Definition for VDM:

— Find structure (cluster, unusual observations) In
large and not necessarily homogeneous

data sets based on human perception using
graphical methods and user interaction

— Goal or expected outcome of exploration
usually unknown in advance



Visual Data Mining (2)

m First uses of the term VDM:

— Cox, Eick, Wills, Brachman (1997): Visual
Data Mining: Recognizing Telephone Calling
Fraud, Data Mining and Knowledge Discovery,
1:225-231.

— Inselberg (1998): Visual Data Mining with
Parallel Coordinates, Computational Statistics,
13(1):47-63.



Visual Data Mining Concepts

m Use existing visualization technigues, such as

— Scatterplots and Scatterplot Matrices

— Parallel Coordinate Plots

— Heatmaps

— Mosaic Plots

— Brushing and Linked Brushing/Linked Views
— Rotations and Projections

— Grand Tour

— “Small Multiples”, ...

m Develop customized visualization technigues
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Case Study 1: An 1Pad Study in Education

Published as:

Moyer-Packenham, P. S., Shumway, J. F., Bullock, E., Tucker, S. I,
Anderson-Pence, K. L., Westenskow, A., Boyer-Thurgood, J., Maahs-Fladung,
C., Symanzik, J., Mahamane, S., MacDonald, B., Jordan, K. (2015): Young
Children's Learning Performance and Efficiency when Using Virtual
Manipulative Mathematics 1Pad Apps, Journal of Computers in Mathematics
and Science Teaching, 34 (1): 41-69.

Moyer-Packenham, P. S., Tucker, S. I., Westenskow, A., Symanzik, J. (2015):
Examining Patterns in Second Graders' Use of Virtual Manipulative
Mathematics Apps through Heatmap Analysis, International Journal of
Educational Studies in Mathematics, 2 (2): 1-16 .



Purpose of the Study

m The purpose of the project was to build theory and
knowledge about the nature of young children’s ways of
thinking and interacting with virtual manipulative
mathematics apps on the iPad.
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Research Questions

Learning Performance and Efficiency:

= What are the immediate effects in learning
performance and efficiency (pre vs. post) for
children using virtual manipulatives for the iPad?

Learning Strategies:

m How do children interact with the virtual
manipulatives on the iPad using the touch-screen
capabilities?




Participants

m 100 children ages 3 to 8
m 35 preschool, ages 3-4
m 33 Kindergarten, ages 5-6
m 32 Grade 2, ages 1-8

= Demographic information
were collected on age, gender,
race, prior iPad use, etc.




Procedures: Clinical Interviews

Sequence of the Interviews

T o

App #1 (pre) Pink Tower: free 10-Frame 100s Chart

moving

App #2 Pink Tower: tapping Hungry Guppy Frog Number Line
learning

App #3 Red Rods Fingu Counting Beads
learning

App #1 (post) Pink Tower: free 10-Frame 100s Chart

moving

App #4 (pre) Base-10 Blocks Base-10 Blocks Base-10 Blocks

App #5 Base-10 Blocks: 1-5 Base-10 Blocks: 11-20 Zoom Number Line
learning
App #6 Base-10 Blocks: Base-10 Blocks: Place Value Cards

learning numerals numerals
App #4 (post) Base-10 Blocks Base-10 Blocks Base-10 Blocks



Grade 2 Interview Apps

Quantities Skip Counting
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Data
Collection

Video Cameras:

Wall-mounted
Go-Pro




Data Analysis

m Base-10 Blocks: 6 performance variables (1:
Model a number between 12 and 30; 2: Model
a number between 54 and 62; 3: Model 181; 4:
Model a number between 181 and 200; 5:
Model 267; & 6: Model a number 20 less than
267)

m 100s Chart: 3 performance variables (skip
counting by 4,6 & 9)

m Performance data were scaled from O (very
poor) to 1 (excellent)

m Analyzing learning performance from Pre- and
Post-assessments



Grade 2: Base-10 Blocks




Base-10 Blocks (1)
m 17 of the 27 children had
totally identical outcomes.

Moreover, the outcomes for

the two children # 75 and 87 coler KoY

were totally identical. Only L. ]
eight children were more

different. Child # 70 was most " Value e

unusual with only a single
score higher than 0.5.
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Base-10 Blocks (2)

m Variables Pre5 and Post5 had
totally identical outcomes with a

score of 0.5 for all children. Color Key

m Variables Pre3 and Post3 matched L.

them for all but two children. s 06

m Variables Pre6 and Post6 had
almost identical outcomes with a
score of 0.75 for most children.
Only three children's outcomes
were different in their pre/post
tests.

m Variables Pre4 and Post4 had
almost identical outcomes with a

1

score of 1.0 for most children.
Only five children's outcomes T

were different in their pre/post
tests.
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Ghild 71
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Ghild 76
Ghild 78
Ghild 79
Ghild 80
GChild 81
Ghild 82
Ghild 84
Ghild 85
Ghild 89
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Grade 2: Skip Counting

100s Chart




100s Chart

m In the dendrogram, there are three
pairs of two variables: Pre.Skip.by.4
and Post.Skip.by.4, Pre.Skip.by.6
and Pre.Skip.by.9, and Color Key
Post.Skip.by.6 and Post.Skip.by.9.

-

m There are no children who had °2 vane
exactly the same outcomes.

Ghild 69
Ghild 92
Ghild 81
Ghild 80
Ghild 76
Ghild 71
Ghild 81
Ghild 82

m There are two main clusters: In
cluster 1 (13 children: # 69 to # 84
on the right), children had medium
to high scores for most of the
variables. In cluster 2 (13 children:
# 99 to # 70 on the right), children
had low to medium scores for most
of the variables.
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GChild 93
Ghild 95
Ghild 84
Ghild 99
Ghild 96
Ghild &7
GChild 75
Ghild 98
Ghild 89
Ghild 86
GChild 77
Ghild 88
GChild 78
Ghild 90
Ghild 94
Ghild 70

m Child # 71 is the only child with a
perfect 1.0 for all six variables.
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Summary (1) |I
m In the dendrogram, there

Color Key

are two main groups of

variables: Pre/Post 1, 2, 4, L.

and 6 (group 1) and s o

Pre/Post 3 and 5, and Value ™ ‘

Ghild 85
Ghild 93
Ghild 91
Ghild 69
Ghild 80
GChild 76
GChild 84
Ghild 71
Ghild 81
Ghild 82
Ghild 79
Ghild 98
Ghild 89
Ghild 86
Ghild 99
Ghild 96
Ghild 90
Ghild 94
Ghild 78
Ghild 77
Ghild 88
Ghild 87
Ghild 75
Ghild 92
Ghild 70

somewhat closer to the
variables from 100 Chart
than to the eight other
variables from Base 10.

m There are no children who
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Summary (2)

m There are two main clusters:
In cluster 1 (11 children: # 85
to # 79 on the right), children
had medium to high scores
for most of the variables. In
cluster 2 (13 children: # 98 to
# 92 on the right), children
had low to medium scores for
most of the variables.

m Child # 70 is the most
unusual child that differs
considerably from both main
clusters of children.

m Second-grade children
increased their performance
on the skip counting app, but
not on the base 10 app.
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Case Study 2: The “Soul of the
Community’ Social Sciences Project

Published as:

Quach, A., Symanzik, J., Forsgren, N. (2016): Soul of the Community: An
Attempt to Assess Attachment to a Community, Computational Statistics,
Accepted.



Background (1)

m Soul of the Community Survey (SOTC) Project:
— Conducted by the Knight Foundation
— Time period: 2008 to 2010
— 26 communities across the United States
— More than 47,800 participants
— Around 200 different guestions each year

m Key variable: Attachment to one's community
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on a Google map.




Questions

m \Which factors foster attachment to one's
community?

— Which factors impact attachment to particular
communities?

— Which factors impact attachment to communities
as a whole?

m Are there differences In attachment between
communities as well as demographics?



Methods

m Random Forests (RF)
m Support Vector Machines (SVIM)
m Multiple Linear Discriminant Analysis (LDA)

m Recursive Partitioning And Regression Trees
(RZANRED

m Archetypal Analysis



Predicting Attachment in the Year of 2008
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Gary, Indiana, in 2008
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Results: Archetypal Analysis

* Not Attached
Neutral

+ Attached

Bradenton, FL
1'3 EI':KJ, MS

I
Myrtle Beach, SC
Fig. 7: Graphical representation of the three archetype solution for the year 2008.

The three points labeled 1, 2, and 3 are the archetypes. Communities are colored
by the dominating group according to the three attachment status levels.




g3c - Does your community have a good reputation
to outsiders who do not live here?
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g3 - If you had the choice of where to
live would you rather ...
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Fig. 10: Dot chart of the second most important predictor variable (g5). Points
represent the percentage of people who responded in the community in that year.




g6 - How would you compare how the community is as a
place to live today compared to five years ago

Results: L
Breakdown of e
\Variable g6 e

in Each Community

Fig. 11: Dot chart of the third most important predictor variable (g6). Points
represent the percentage of people who responded in the community in that year.




Conclusion (1)

m Mainly three variables are important in
determining attachment status:

— (3¢ (the community has a good reputation to
outsiders or visitors who do not live here)

— g5 (if you had the choice of where to live would
you rather ...)

— 6 (how would you compare how the community
IS as a place to live today compared to 5 years
ago?)



Conclusion (2)

m SoOme communities are rather unusual (when
compared to the other communities) with
respect to some of the predictor variables

m Overall, people who have positive things to
say about their community were also attached
to their community and wanted to stay within
their neighborhood



Case Study 3: Forecasting of “Snow \\Water
Equivalent™ Measurements

Published as:

Odel, J. B., Symanzik, J., Hooten, M. B. (2014): A Bayesian
Hierarchical Model For Forecasting Intermountain Snow Dynamics,
Environmetrics, 25(5): 324-340.



Background (1)

The Intermountain region of the \Western United States
comprises of a variety of ecological and economic systems

Snowpack — accounts for 50 to 70% of the annual
precipitation in the Intermountain regions (Serreze et al.,
1999)

Over 75% of its water resources results from snowmelt water

Multi-year droughts In the Southwest have severely affected
supplies according to a report from the National Climatic Data
Center

These droughts are among major natural risks this region’s
residents and ecosystems are facing



Backqground (2)

Difficulties associated with accurately determining the time of
maximum accumulation present a problem for snowmelt runoff
forecasters

Various approaches to estimating snow pack characteristics
differ in spatial scale, reliability, and accuracy

The U.S. Department of Agriculture (USDA) operates the Snow
Telemetry (SNOTEL) system, which Is a network of remote,
automatic, monitoring stations that yield online daily
measurements of SWE, precipitation, temperature and, more
recently, snow depth

To forecast water resources, the National Weather Service
(NWS) maintains a set of conceptual, continuous, hydrologic
simulation models used to generate extended streamflow
outlooks, and flood forecasts




Problems Associated with Current
Snow Models

m [he empirical statistical models developed, lack
some of the characteristics required for evaluating
large mammal dynamics, such as:

— (1.) scaling up to large study areas

— (2.) incorporating temporal dynamics, deterministic
results, or an objective, validated basis

m General Circulation Models (GCMs) — Unable to
adequately capture snow-related atmospheric
processes In mountainous areas



A Bayesian Hierarchical Model (1)

m Addressing issues of modeling SWE — utilization of
statistically based snow models that rely heavily on
observational data

m A general spatio-temporal statistical model was
Introduced in Odel et al., (2009)

— A simplified version initially treats the SNOTEL sites
Independently

— Development of a hierarchical statistical model for SWE
data using a Bayesian approach



A Bayesian Hierarchical Model (2)

m For site s, predict SWE for all days > t of the water-
year

m Data used:;

— Averages of SWE measured for each day In the water-year
at site s for the past T water-years

— Temporal (daily) SWE correlation
— SWE at site s up to day t-1 in current water-year
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Result: Tony Grove SNOTEIL Site,

Utah — 2008 \Water-Year
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Result: Horse Ridge SNOTEL Site,

Utah — 2009 Water-Year
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Result: Little Bear SNOTEL Site,

Utah — 2010 Water-Year
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Upper Sheep
Creek

\Watershed
Data, Ildaho (1)
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Upper Sheep Creek Watershed Data,
ldaho (2)
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Upper Sheep Creek Watershed Data,
ldaho (3)
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as Figure 2 in Luce and Tarboton (2004))
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Upper Sheep Creek — Temporal

Comparative Micromaps
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Conclusions

m Visual approach helps to effectively display the
SWE forecasts from a complex statistical model

m Visual approach helps to effectively assess
changes in temporal SWE data



Further Reading

Flerchinger, G. N., Cooley, K. R. (2000). A Ten-Year Water Balance of a
Mountainous Semi-Arid Watershed. Journal of Hydrology, 237, 86—99.

Luce, C. H., Tarboton, D. G. (2004). The Application of Depletion Curves
for Parameterization of Subgrid VVariability of Snow. Hydrological
Processes, 18, 1409-1422.

Odel, J. B. (2014). Statistical Modeling, Exploration, and Visualization of
Snow Water Equivalent Data, Dissertation.
http://digitalcommons.usu.edu/etd/3871

Odel, J. B., Hooten, M. B., Jin, J. (2009). Inter-Annual Modeling and
Seasonal Forecasting of Intermountain Snowpack Dynamics, in: 2009 JSM
Proceedings, American Statistical Association, Alexandria, Virginia, pp.
870-878. (CD).

Serreze, C. M., Clark, P., Amstrong, R. L., McGinnis, D. A., Pulwarty, R.
S. (1999). Characteristics of Western U.S. Snowpack from Snotel Data,
Water Resources Research, 35, 2145-2160.



Case Study 4: Exploratory Graphics for
Functional Actigraphy Data in Sleep

Medicine

Published as:

Symanzik, J., Shannon, W. (2008): Exploratory Graphics for Functional Actigraphy
Data, JSM Proceedings, American Statistical Association, CD.

Ding, J., Symanzik, J., Sharif, A., Wang, J., Duntley, S., Shannon, W. D. (2011):
Powerful Actigraphy Data Through Functional Representation, Chance, 24(3): 30-36.

Sharif, A., Symanzik, J. (2012): Graphical Representation of Clustered Functional
Actigraphy Data, 2012 JSM Proceedings, American Statistical Association,
Alexandria, Virginia, CD.

Sharif, A., Symanzik, J. (2013): ActiVis, an R Package for the Visualization of
Functional Actigraphy Data (and Beyond), In: Cho, S.-H. (Ed.), Proceedings of Joint
Meeting of the IASC Satellite Conference and the 8th Conference of the Asian Regional
Section of the IASC, Asian Regional Section of the IASC, 145-150.



Background (1)

m . emerging technology for
measuring a patient’s activity level
continuously over time

m . watch-like device (attached to the
wrist or a leg) that uses an accelerometer to
measures (human) movements (every minute
or more often)






Backqground (2)

Useful for detecting sleep, for assessing
Insomnia and restless leg syndrome, for
tracking recovery after heart attacks, and as
an assessment tool for overall status of HIV

patients

m Actigraphy Data can be best described as
functional data



\/isualization of: Functional Data

m Very limited ! A rare example Is:

Jank, W., Shmueli, G., Plaisant, C., Shneiderman, B.
(2008): Visualizing Functional Data with an Application to
eBay’s Online Auctions, In: Chen, C., Hardle, W., Unwin,
A. (Eds.), Handbook of Data Visualization, Springer,
Berlin/Heidelberg, 873-898.

m Figure from

http://www.smith.umd.edu/faculty/
wjank/DIV-Berlin2006.pdf

(page 30).
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Suggested Future Visualization of
Actigraphy Data (1)

m Displays for
— Raw data
— Smoothed data
— Awverages etc.
— Velocity (First Derivative)
— Acceleration (Second Derivative)
— Brushing & Linking
— Cumulative Sums
m Example: 1 Subject
— Orange: 5 Days at Baseline
— Purple: 5 Days after 6 Months
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Actigraphy

Welocity of Actigraphy

Raw Data (Base Day 3 Brushed)
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Smoothed Daily Data (Base Day 2 Brushed)
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Conclusions

Visualization of Actigraphy Data provides

m Potential for application in various medical fields
m Additional nsights into actigraphy data

m Ease to compare baseline and past-treatment data
» of a single patient
» of multiple patients
» to Identify outliers
» {0 compare averages



m Visual approach effective to see unexpected structure
In data

m Combination of different technigues most effective

m Can be used for almost all types of data:
— Educational Data
— Soclal Sciences Data
— Environmental Data
— Medical Data
— Economic Data (not shown here)
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