Sparse Change-point model

Arnaud Dufays (Centre de Recherche en Economie et Statistique)

May 19° 2014

Centre de Recherche en Économie et Statistique

Motivation

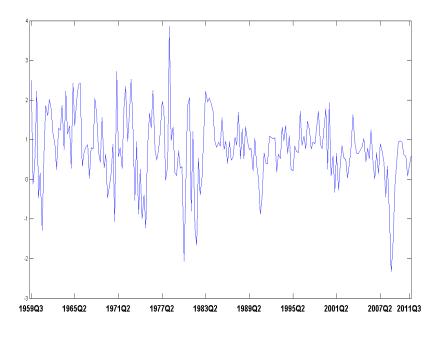
Limitations of standard CP models :

- Classical inferences available for AR and ARCH models
 → Difficult to estimate path dependence models
 (CP-ARMA,CP-GARCH).
- 2. Optimal number of regimes computed by Marginal likelihood \rightarrow Many useless estimations and uncontrolled penalty.
- 3. Each new regime increases the number of model parameters \rightarrow Over-parametrization.
- 4. Forecasts based on the last regime
 - \rightarrow Uncertainties on parameters and inaccurate predictions.

Example

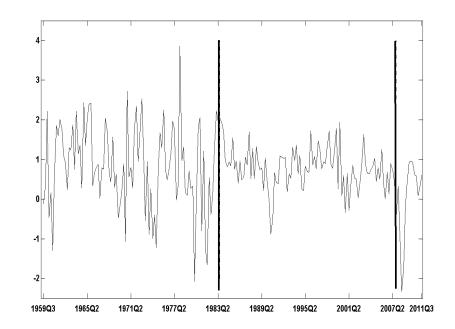
ARMA model

Standard



 $y_{t} = c + \beta y_{t-1} + \phi \epsilon_{t-1} + \epsilon_{t}$ No dynamic for c, β, ϕ

Change-Point



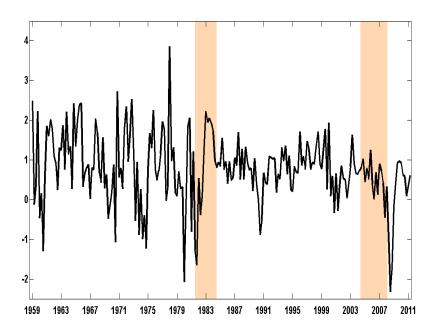
 $y_t = c_i + \beta_i y_{t-1} + \phi_i \epsilon_{t-1} + \epsilon_t$ A latent variable governs the dynamic of breaks

Contribution

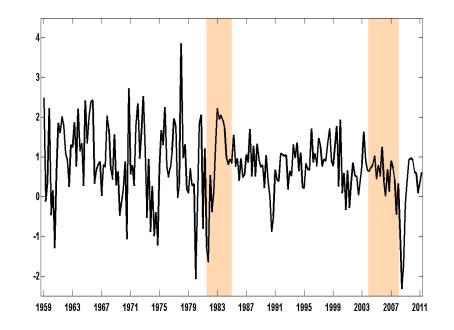
CP models using shrinkage priors :

- 1. Adapted to estimate path dependence models (CP-ARMA,CP-GARCH).
- 2. Optimal number of regimes obtained in one estimation with user-specified penalty.
- 3. Controls the over-parametrization. \rightarrow Only a few parameter evolves from one regime to another.
- 4. Very good forecast performances.

CP-ARMA



CP-ARMA with Shrinkage priors



The CP-Model and its estimation

Shrinkage methods

Empirical applications

The CP-ARMA model

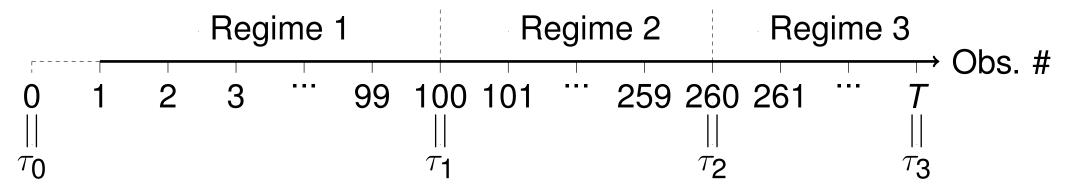
Let $Y_T = \{y_1, ..., y_T\}$ be a time series of *T* observations. The CP-ARMA model defined by :

$$y_t = c_{K+1} + \beta_{K+1} y_{t-1} + \phi_{K+1} \epsilon_{t-1} + \epsilon_t \text{ for } \gamma_K < t \le T$$
(1)

0

Focus on the break dates $\Gamma = (\tau_1, ..., \tau_K)'$ instead of a state vector $S_T = \{s_1, ..., s_T\}$

Let
$$\Theta = (c_1, \beta_1, \phi_1, \sigma_1^2, ..., c_{K+1}, \beta_{K+1}, \phi_{K+1}, \sigma_{K+1}^2)'$$
.



D-DREAM algorithm : specification

The MCMC scheme is

1. π(Θ|Γ, Y_T)
 2. π(Γ|Θ, Y_T)

We use a Metropolis algorithm :

DiffeRential Adaptative Evolution Metropolis (Vrugt et al. (2009))

- DREAM automatically determines the **size** of the jump.
- DREAM automatically determines the direction of the jump.
- DREAM is well suited for multi-modal posterior distributions and for high dimensional parameters.
- DREAM proposal is symmetric.

However only suited for continuous parameters. D-DREAM for Discrete parameters (Bauwens et al. (2011))

The CP-Model and its estimation

Shrinkage methods

Empirical applications

Shrinkage priors

How to determine which model parameter(s) evolves from one regime to another ?

Testing all the possibilities and computing the Marginal likelihood

1. Too many posterior distributions to be estimated.

- \rightarrow For 4 regimes and 4 parameters by regime : 256 models.
- \rightarrow In the empirical example : 8 regimes (4096 models).
- 2. No proof that the Marginal likelihood will choose the right spec.
- 3. Break date parameters for each parameters : Over-parametrization.

Shrinkage priors

How to determine which model parameter(s) evolves from one regime to another ?

Keep the specification of a standard CP-ARMA but shrink the irrelevant parameters and break dates toward zero.

- 1. Only one estimation is required.
- 2. Break is identified only if it improves the likelihood.
- 3. Long regimes : estimators tend to their distribution without shrinkage.

Transformation of the model

For applying a shrinkage prior, the CP-ARMA model becomes :

$$y_{t} = (c_{1} + \sum_{i=2}^{k} \Delta c_{i}) + (\beta_{1} + \sum_{i=2}^{k} \Delta \beta_{i})y_{t-1} + (\phi_{1} + \sum_{i=2}^{k} \Delta \phi_{i})\epsilon_{t-1}$$
$$+\epsilon_{t} \text{ with } \epsilon_{t} \sim N(0, \sigma_{1}^{2} + \sum_{i=2}^{k} \Delta \sigma_{i}^{2}) \text{ for } t \in]\gamma_{k-1}, \gamma_{k}]$$

with $\Delta c_i = c_i - c_{i-1}$.

The first regime : $\{c_1, \beta_1, \phi_1\} \sim N(0, 10I_3)$ and $\sigma_1^2 \sim U[0, 30]$.

Shrinkage on the other parameters :

For Example : $\Delta c_i | \tau \sim N(0, \tau)$ and $\tau \sim Q$.

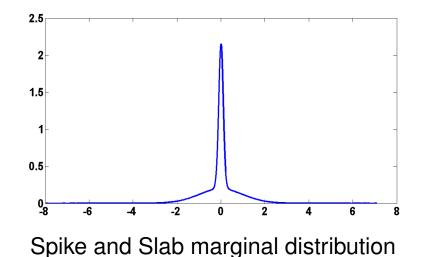
Shrinkage priors

Shrinkage is about the distribution Q : $\Delta c_i | \tau \sim N(0, \tau)$ and $\tau \sim Q$.

The absolutely continuous spike-and-slab prior (Ishwaran and Rao (2000)) :

$$\tau = \sigma^2 \kappa \text{ with } \sigma^{-2} \sim G(\frac{v}{2}, \frac{v}{2}) \text{ and } \kappa | \omega = \omega \delta_{\kappa=0.00001} + (1 - \omega) \delta_{\kappa=1}.$$

The marginal distribution of $\Delta c_i | \omega$ is a mixture of two student distributions :

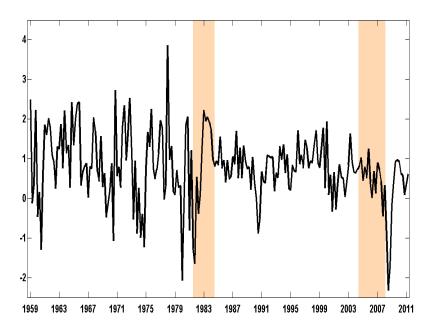


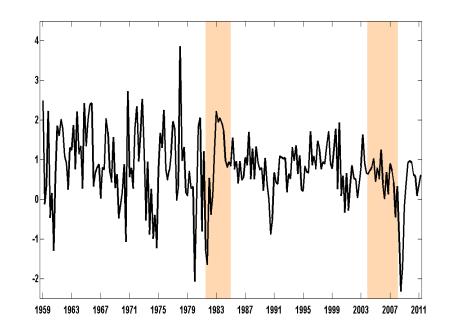
The CP-Model and its estimation

Shrinkage methods

Empirical applications

US GDP growth rate 1959-2011 CP-ARMA CP-ARMA with Shrinkage priors





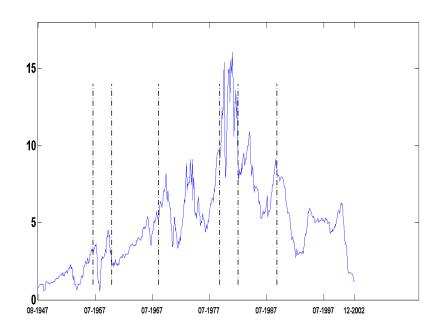
CP-ARMA with Spike and Slab

Regime	2	3
С	0.03	0.04
eta	0.03	0.03
ϕ	0.03	1.00
σ^{2}	1.00	0.06

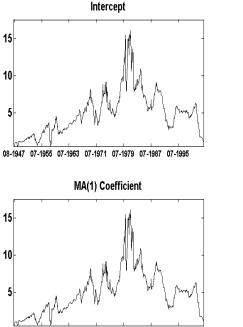
Only the variance and the MA parameter change over time

Monthly 3-Month US T-bill rate 1947-2002

Pesaran et al.



CP-ARMA with Shrinkage priors



08-1947 07-1955 07-1963 07-1971 07-1979 07-1987 07-1995



08-1947 07-1955 07-1963 07-1971 07-1979 07-1987 07-1995

The CP-Model and its estimation

Shrinkage methods

Empirical applications

- \rightarrow Algorithm : Inference for ARMA models with structural breaks.
- Detects the parameters that change from one regime to another.
- Shrinks all the irrelevant parameters toward zero.
- Shrinks all the irrelevant regime.
 - \rightarrow No need of the marginal likelihood.
- \rightarrow Empirical enhancements :
- Could improve the interpretation of the presence of structural breaks.
 Very good prediction performances.