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Nonparametric Variable Selection and Its Application to

Additive Models

ZHENG-HUI FENG, LU LIN, RUO-QING ZHU and LI-XING ZHU

Abstract

For multivariate nonparametric regression models, existing variable selection

methods with penalization require high-dimensional nonparametric approximations

in objective functions. When the dimension is high, none of methods with penaliza-

tion in the literature are readily available. Also, ranking and screening approaches

cannot have selection consistency when iterative algorithms cannot be used due to

inefficient nonparametric approximation. In this paper, a novel and easily imple-

mented approach is proposed to make existing methods feasible for selection with

no need of nonparametric approximation. Selection consistency can be achieved.

As an application to additive regression models, we then suggest a two-stage pro-

cedure that separates selection and estimation steps. An adaptive estimation to

the smoothness of underlying components can be constructed such that the consis-

tency can be even at parametric rate if the underlying model is really parametric.

Simulations are carried out to examine the performance of our method, and a real

data example is analyzed for illustration.
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was supported by a grant from the Research Grants Council of Hong Kong and a Faculty Research
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1 INTRODUCTION

It is well known that for multivariate nonparametric regression models with many pre-

dictors, even with moderate number of predictors, estimation could be very inefficient,

see Härdle (1990). Therefore, when the model is sparse, it is necessary to select active

predictors into and rule out inactive ones from a parsimonious working model such that

further statistical analysis can be performed efficiently. For parametric models, the most

promising methodology in the literature is with use of various penalized objective func-

tions for simultaneous selection and estimation. Among them, the LASSO (Tibshirani

1996), the SCAD (Fan and Li 2001), and the Dantzig selector (Candés and Tao 2007)

are the proven powerful methods. Several efforts have been devoted to apply or extend

these methods to handle multivariate nonparametric models. However, when the num-

ber of predictors is large, usually these methods may not work efficiently because of an

important feature of these methods, that is, these methods work on variable selection

and estimation simultaneously. Therefore, using these methods, “residuals” in objective

functions have to involve approximations to underlying nonparametric regression func-

tions. As is known, any approximation is a parametrization for nonparametric function

and thus its approximation accuracy merely depends on the extent of data denseness

in the space and the smoothness of regression functions. For instance, Lin and Zhang

(2006) investigated variable selection for nonparametric regression, Storlie et al.(2011)
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refined the algorithm proposed in Lin and Zhang (2006), and used smoothing splines

to approximate nonparametric regression function. However, in high-dimensional space

with a sample of moderate size, meaningful nonparametric approximation is often not

possible. This means that inaccurate fitting to the true nonparametric regression func-

tion would seriously affect the accuracy of further variable selection and estimation.

Thus, both Lin and Zhang (2006) and Storlie et al.(2011) in effect mainly focused on

the additive model and the two-way interaction model, rather than purely multivariate

nonparametric regression models. Another strategy is to use ranking and screening to

reduce high-dimensionality to a relative low-dimensionality. There are several nonpara-

metric sure screening approaches available in the literature, which are based on different

correlations between response and every predictor, see Zhu et al.(2011), Li, Zhong and

Zhu (2012), and Lin et al. (2013). Nevertheless, sure screening cannot ensure selection

consistency, and selected models would still contain many inactive predictors. So iterative

algorithms are often necessary via combining existing penalty-based selection methods.

However, for purely multivariate nonparametric models, iterative algorithms cannot be

efficiently implemented because of the same nonparametric approximation difficulty as

discussed above even when screening can reduce the number of predictors down to a

number much less than the sample size. Although the robust rank correlation screening

approach developed by Li et al. (2012) can implement iteration to select predictors, it

is still a question for it to apply to purely multivariate nonparametric models. The mo-

tivation of this paper is to propose an efficient variable selection and estimation for the

purely multivariate nonparametric model, and apply it to the additive model.

As an application, we will consider the nonparametric additive model (Hastie and

Tibshirani 1986). In the literature, all available methods have a common feature: us-

ing a nonparametric smoothing approach to locally linearize the components to define
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their estimates and then using an objective function with penalty, such as the group

LASSO, to select groups of variables as the corresponding estimates of selected compo-

nents. The examples of references include the following. Lin and Zhang (2006) proposed

the component selection and smoothing operator(COSSO) method when p is fixed. p is

the dimension of predictor X = (X1, · · · , Xp)
T . It is an extension of the group LASSO

(see Yuan and Lin 2006) and is applicable for the cases where p is smaller than n (n

is the sample size). Meier et al. (2009) investigated variable selection in the additive

model with p ≫ n with a “sparsity-smoothness penalty”, then again it is a group LASSO

after parametrization. Huang et al. (2010) and Peng et al. (2013) similarly used the

above idea of nonparametric approximation and group variable selection. That is, in

the above methods, the components are approximated by groups of variables, and are se-

lected through an all-in-all-out fashion, the original p-dimensional space is enlarged to be

p̃ :=
∑p

j=1 kj-dimensional space when the corresponding approximation of each function

has kj unknown parameters. To guarantee the consistency of estimates, kj are necessary

to go to infinity as the sample size n goes to infinity. This is a must in nonparametric

estimation, see Härdle (1990). In other words, it increases the difficulty to handle the

large p scenarios. Ravikumar et al. (2009) proposed the sparse additive models(SpAM)

using the same penalty as the COSSO. Their backfitting algorithm for the SpAM allows

use of arbitrary nonparametric smoothing techniques, but does not give the convergence

rate of the nonparametric estimates. Applying the method we propose in this paper to

the additive model, the algorithm without any nonparametric approximation is thus very

different from all the above. After components are selected, an adaptive estimation proce-

dure is recommended. When the underlying model is really parametric, the convergence

rate of the estimate can achieve parametric rate. The details are in Section 3.

On the other hand, this very simple approach reasonably has its limitations. The
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main cost is at fairly strong conditions on the distribution of the predictors and the

shape of the regression function. These can be seen in Theorem 1 in Section 2. In the

simulations, we can see that the method has difficulty to select the active predictors who

are in symmetric component functions. Therefore, an ad-hoc approach is suggested to

deal with this issue when the designed conditions are violated. Theoretically, how to

weaken those conditions while to maintain the implementation simplicity and selection

efficiency of the method is an interesting but challenging topic, deserving a further study.

The paper is organized as follows. The selection procedure is described in Section 2.

The application to additive models is described in Section 3. Simulations are carried out

in Section 4. A real data analysis is presented in Section 5. A brief proof of Theorem 1

is postponed in the Appendix.

2 SELECTION PROCEDURE

For the response Y and the column predictor vector X = (X1, · · · , Xp)
T , assume that

Y⊥⊥XAc |XA, (2.1)

where XA = {Xi : i ∈ A} is the set of the relevant Xi’s such that A is the index set. XAc

is the compliment of XA in X. Let d = |A| be the cardinality of A. When d is relatively

small, and XA can be identified, we can then efficiently estimate regression function,

say, G(X) = E(Y |X). This model is very general, including Y = G(X) + G1(X)ε and

Y = G(X, ε) as special cases, where ε is independent of X. Throughout this paper, we

assume without loss of generality that A = {1, · · · , d} and XA = {X1, · · · , Xd}. From

the above description, the strategy that performs simultaneous selection and estimation

is not a necessary way. To make selection without any nonparametric approximation
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realistic, we describe the following linear least squares sparse solution.

2.1 Linear Least Squares Sparse Solution

Let Ii be the p-dimensional column vector whose ith element is 1 and all others are zero.

For any index li ∈ A, we have a vector Ili to indicate it. Denote a p × d matrix by

Ad = (Il1 , · · · , Ili , · · · , Ild). Then the conditional independence in (2.1) can be rewritten

as Y ⊥⊥ x|AT
d x. Note that Ad is not unique because for any d × d orthogonal matrix

C, AdC can also make the conditional independence hold. For this general estimation

problem, sufficient dimension reduction (Li 1991, Cook 1998) is often employed to deal

with. What sufficient dimension reduction approaches can estimate is the column sub-

space of Ad with minimum dimension, which is denoted by SY|x. The space SY|X is

called the central subspace (CS, Cook 1998). The dimension d of SY|X is called the struc-

tural dimension. There are a number of methods available in the literature to identify

and estimate the central subspace SY|X . For instance, sliced inverse regression (SIR, Li

1991), sliced average variance estimation (SAVE, Cook and Weisberg 1991), directional

regression (DR, Li and Wang 2007) and discretization-expectation estimation (DEE, Zhu

et al. 2010).

On the other hand, the problem under study is more specific. We are not interested in

the central subspace SY|X , while the indices Ili themselves. Any aforementioned sufficient

dimension reduction technique cannot do this directly. Therefore, we cannot use the

column vectors in the central subspace SY|x to identify ITli x = xli . To attack this difficulty,

we suggest the following method.

Without loss of generality, assume µ = 0. The predictor vector x = (x1, ..., xp)
T is

centered, X = (x1, · · · ,xn)
T is the n× p design matrix. Σ is the covariance matrix of X.
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Write X(1) and X(2) as the first d and last p− d columns of X respectively, and then we

can express the sample covariance matrix C = 1
n
XTX in a block-wise form

C =







C11 C12

C21 C22






,

where Cij = 1
n
XT

(i)X(j), i, j = 1, 2. Denote x = (x(1),x(2))
T , where x(1) = (x1, · · · , xd)

T

and x(2) = (x(d+1),··· ,x(p)
)T . Then X(1) = (x(1)1, · · · ,x(1)n)

T , X(2) = (x(2)1, · · · ,x(2)n)
T .

From the above description about sufficient dimension reduction, x(1) = (x1, · · · , xd)
T

are relevant to Y . We now work on identifying x(1).

By the above notations, A1 =
∑d

i=1 Ii is a p × 1 vector whose first d components

are 1, otherwise 0. This is a very useful index for us to identify the active predictors

and then the corresponding components. In other words, to select the active predictors,

it is enough for us to identify the vector A1. To this end, we let Z = Σ−1/2X, and

η = Σ1/2Ad. It is easy to see that η consists of the columns of Σ1/2 corresponding to Ad

and AT
dX = ηTZ. Further, define η1 = Σ1/2A1, B1 as a p × (p − 1) matrix orthogonal

to η1/‖η1‖ and B = (B1, η1/‖η1‖) an orthogonal matrix, where ‖η1‖ is AT
1ΣA1. The

following theorem provides a sparse solution of x in the least squares formulation.

Theorem 1 (Sparse Solution) Assume that Σx is positive definite. Then, almost

surely

E(BT
1Z|Y ) = 0 (2.2)

is necessary and sufficient for any function h(·) on the response Y , there exists some

constant ch such that

Σ−1
x Cov

(

X, h(Y )
)

= chA1 =: γh (2.3)
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provided that it is finite where ch depends on h and ch = AT
1E

(

Xh(Y )
)

/‖η1‖2 =

E(
∑d

i=1 xih(Y ))/‖η1‖2. A sufficient condition for the above linear least squares formula-

tion to hold is that the distribution of X is elliptically symmetric.

Note that γh is proportional to A1 which takes value 1 in the locations of xi’s. As such,

this result provides us a very simple, but efficient way to identify the active predictors

xi through those nonzero elements of γh. This is a sparse least squares solution. From

the sufficient condition (2.3) in Theorem 1, when ch 6= 0, we can simply use the identity

function as h to establish the following model:

Y = c+ γTx+ e, (2.4)

where E(ex) = 0. Therefore, we transfer variable selection of the nonparametric re-

gression model (2.1) to variable selection of the linear model (2.4). By selecting the

“active elements” of γ, we can identify the corresponding active predictors xi’s. Thus,

our method is rather simple and efficient, but very different from all existing methods

which usually select active predictors and estimate the corresponding regression function

simultaneously. It is obvious that this sparse solution of γ in model (2.4) makes any suc-

cessful variable selection approach for linear models feasible, for example, the classical

LASSO.

For given data points {xi, yi}ni=1, the LASSO estimate is defined as

γ̂(λ) = argmin
γ

{
n

∑

i=1

(yi − γTxi)
2 + λ

p
∑

j=1

|γj|}, (2.5)

where λ ≥ 0 controls the amount of regularization applied to the estimate. λ = 0 changes

the LASSO to the ordinary least squares. Because the selection is exactly the same as

that for linear models, the selection consistency can hold. Therefore, we will not give the

proof of the following theorem.
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Theorem 2 (Selection consistency) In addition to the condition in Theorem 1, as-

sume ch 6= 0 and the conditions designed in Zhao and Yu (2006) hold. Then we have

lim
n→∞

P (sgn(γ̂) = sgn(γ)) = 1, (2.6)

where sgn(A) is the sign function componentwise. Let d̂ = #{k : γ̂k 6= 0}, d is the true

number of nonzero components in model (3.1). Then

lim
n→∞

P (d̂ = d) = 1. (2.7)

Remark 1 These two theorems provide that, the LASSO can select the true indices

{Il1 , · · · , Ild} of the active predictors XA in model (2.1) with a probability approaching 1.

When the conditions in Zhao and Yu (2006) are not satisfied, the adaptive LASSO can

be applied, see Zou (2006). The details are skipped here.

3 Application to the additive model (3.1)

3.1 Estimation

Suppose that a sample {(y1,x1), · · · , (yn,xn)} is available. The model takes the form as

yi = µ+

p
∑

j=1

fj(xij) + εi, i = 1, ..., n, (3.1)

where µ is an intercept term, xij is the j-th component of xi, fj(x·j) is the additive

nonparametric component on [0, 1]. The error terms, ε1, . . . , εn are independent and

identically distributed with mean 0 and variance σ2. Furthermore, the function fj(x·j) is

normalized so that
∫ 1

0
fj(u)du = 0 to make model identification possible. Assume there

are d nonzero components in model (3.1) with d ≪ p.
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The result that d̂ is consistent to d with a probability going to 1 is applicable to model

(3.1) as well. To efficiently estimate the d̂ nonzero components selected, we suggest

the following adaptive method. The estimation could be adaptive to the smoothness

of underlying function such that the convergence rate could be faster than the usual

optimal nonparametric rate when the function is smooth enough. The basic idea is to

adjust initial estimates to adapt the smoothness. The resulting estimates are of optimal

non-parametric rate generally, and when the model is actually parametric, it can achieve

the parametric convergence rate O(n−1) in mean squared error (MSE). In the following,

we describe it briefly by assuming the true nonzero number d is given.

Define an initial estimate first. Consider the orthogonal decomposition of a reproduc-

ing kernel Hilbert space (RHKS) F as in Lin and Zhang (2006). Let Hj be a function

space of functions of xj over [0, 1] such that Hj = {1}⊕ H̄j. For additive models, the re-

sponses lie in the direct sum of d orthogonal subspaces Hj’s. More about the RKHS and

their reproducing kernels are given in Wahba(1990). The second order Sobolev Hilbert

space S2 is the most commonly used in practice. Following Lin and Zhang (2006), we

use this in our implementation. A special case with the second order Sobolev space of

periodic functions can be written as t = {1} ⊕ T̄ , where

T̄ = {f : f(t) =

∞
∑

ν=1

aν
√
2 cos 2πνt +

∞
∑

ν=1

bν
√
2 ∼ 2πνt, with

∞
∑

ν=1

(a2ν + b2ν)(2πν)
4 < ∞}.

When M is large, a good approximate subspace of T is TM = {1} ⊕ T̄M with

T̄M = {f : f(t) =

M/2−1
∑

ν=1

aν
√
2 cos 2πνt +

M/2−1
∑

ν=1

bν
√
2 sin 2πνt + aM/2 cos πMt}.

According to the above approximation, denote {ql(t)} as the group of the {sin, cos} or-

thogonal basis {
√
2 cos 2πt,

√
2 sin 2πt, ...,

√
2 cosπMt} with coefficients aν , bν being de-

noted as β. Using this orthogonal decomposition, the initial estimates for µ and fj(xj),

denoted respectively, by µ̃ an f̃j(xj) =
∑M

l=1 β̃jlql(xj), can be obtained by minimizing,
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over µ, βjl and {xj1, · · · , xj
d̂
}:

1

n

n
∑

i=1

{

Yi −
(

µ+

d
∑

m=1

M
∑

l=1

βjlql(xijm)
)}2

.

Here ql(u) are the basis functions taken as stated above and also satisfying

∫ 1

0

ql(u)du = 0,

∫ 1

0

ql(u)qs(u)du =















1, for l = s

0, otherwise,

and M depends on n and tends to infinity as n tends to infinity. The initial estimation

used as plug-in in the following step is obtained by the least squares. Especially, the

estimation can be solved by (5) in Lin and Zhang (2006) with λ = 0.

Now we are in the position to adjust each initial component estimate, say f̃1(x1), by a

semiparametric form f̃1(x1)ξ(x1) or f̃1(x1)+ζ(x1), where ξ(x1) and ζ(x1) are respectively

adjustment factor and adjustment shift which will be specified later. To determine ξ(x1)

and ζ(x1), we use the following steps. Motivated by Lin et al. (2009), in this paper a

local L2-fitting criterion is defined as

r1(t1, ξ) =
1

h
E

(

K

(

x1 − t1
h

)

[

f1(x1)− f̃1(x1)ξ
]2
)

, (3.2)

where K(·) is a kernel function satisfying some regularity conditions and h is a bandwidth

depending on n. The minimizer over all ξ is defined as ξ(t1). We also use the minimizer

of the following criterion to define ζ(t1):

r2(t1, ζ) =
1

h
E

(

K

(

x1 − t1
h

)

[

f1(x1)− (f̃1(x1) + ζ)
]2
)

. (3.3)

It is easy to show that the minimizers have respectively the following closed forms:

ξ(t1) =
E
(

K(x1−t1
h

)f1(x1)f̃1(x1)
)

E
(

K
(

x1−t1
h

)

f̃ 2
1 (x1)

) , ζ(t1) =
E
(

K
(

x1−t1
h

)

[f1(x1)− f̃1(x1)]
)

E
(

K
(

x1−t1
h

)) .

ξ(·) and ζ(·) can be estimated via, respectively, using Y − µ̃−
∑d

j=2 f̃j(xj) to replace f1,

and the sample averages to the expectations, where µ̃ and f̃j are the initial estimates of
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µ and fj for j ≥ 2:

ξ̂(x1) =

∑n
i=1{Yi − µ̃−

∑d
j=2 f̃j(xij)}f̃1(xi1)K(xi1−x1

h
)

∑n
i=1 f̃

2
1 (xi1)K(xi1−x1

h
)

,

ζ̂(x1) =

∑n
i=1{Yi − µ̃−

∑d
j=1 f̃j(xij)}K(xi1−x1

h
)

∑n
i=1K(xi1−x1

h
)

.

Finally, the second stage estimates of f1 are respectively attained as

f̂1(x1) = f̃1(x1)

∑n
i=1{Yi − µ̃−

∑d
j=2 f̃j(xij)}f̃1(xi1)K(xi1−x1

h
)

∑n
i=1 f̃

2
1 (xi1)K(xi1−x1

h
)

, (3.4)

f̌1(x1) = f̃1(x1) +

∑n
i=1{Yi − µ̃−

∑d
j=1 f̃j(xij)}K(xi1−x1

h
)

∑n
i=1K(xi1−x1

h
)

. (3.5)

For the other additive components fj(·), j = 2, · · · , d, the construction scheme is similar;

the details are omitted here.

3.2 Asymptotics

In this part, we discuss the adaptivity property for our proposals in (3.4) and (3.5). As

the result is similar to that in Lin et al. (2009), we only present a brief description and

explanation. Theorem 2 guarantees that XA can be selected into the working model with

a probability going to one and also d is consistently estimated by d̂ with a probability

tending to one as well. Without loss of generality, we assume that the first d components

of model (3.1) are nonzero, and with a probability going to one, the working model can

be written as

yi = µ+

d̂
∑

j=1

fj(xij) + εi, i = 1, ..., n. (3.6)

Assume that the regression function fj ∈ T̄ , then it can be approximated by a function

fjM ∈ T̄M . Let rjM(xj) = fj(xj) − fjM(xj) and denote by r′′jM(xj) the second order

derivative of rjM(xj). Write σ2
K =

∫ 1

−1
u2K(u)du, JK =

∫ 1

−1
K2(u)du and let pj(xj)

12



be the density function of xj . Assume that K(·) on the support [−1, 1] is Lipschitz

continuous and
∫ 1

−1
K(u)du = 1 and

∫ 1

−1
uK(u)du = 0, and without loss of generality

that xj ∈ [0, 1] and pj(xj) > 0 for xj ∈ [0, 1]. To get the adaptivity given in the following

theorem, we need the following condition:

C1 There exist nonzero functions ejk(xj), k = 0, 1, 2, j = 1, · · · , d, such that

limM→∞Mγj0rjM(xj) = ej0(xj), lim
M→∞

Mγj1r′jM(xj) = ej1(xj),

limM→∞Mγj2r′′jM(xj) = ej2(xj), j = 1, · · · , d,

where γj2 ≤ γj1 ≤ γj0 and γj0 > 0.

This condition requests the convergence rates of the remainder terms and their deriva-

tives, which are also related to the smoothness of fj . The decreasing relationship between

the rates described by γj2 ≤ γj1 ≤ γj0 is also common. For example, if the basis functions

are chosen to be trigonometric functions or polynomial functions, the remainder term has

this property. The following theorem gives the details.

Theorem 3 (Adaptivity) Assume that Condition C1 holds as n → ∞. For x1 ∈ (0, 1),

the bias and variance of the second stage estimates in (3.4) and (3.5) have the following

representations:

bias(f̂1(x1)) =
1

2
h2σ2

Kr
′′
1M(x1) + o(h2M−γ12) +O(M−γ10) +O(n−1M),

bias(f̌1(x1)) =
1

2
h2σ2

Kr
′′
1M(x1) + o(h2M−γ12) +O(M−γ10) +O(n−1M),

var(f̂1(x1)) =
σ2JK

nhp1(x1)
+O(n−1) +O(n−2h−2),

var(f̌1(x1)) =
σ2JK

nhp1(x1)
+O(n−1) +O(n−2h−2).
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The proof of the theorem is similar to that of Theorem 1 of Lin et al. (2009). We

omit the detail here. The theorem shows that although the variance is the same as that

of the common kernel estimation, the bias can adapt to the smoothness of the underlying

function f1. More precisely, since the value of |r′′1M(x1)| can describe the smoothness

of f1, the more smooth the function f1 is, the smaller the value of |r′′1M(x1)| is, and

consequently, the smaller bias the estimates in (3.4) and (3.5) have. Furthermore, when

f1 is smooth enough, |r′′1M(x1)| → 0 as n → ∞ where M is dependent on n, the biases

of the estimates are of the order smaller than h2. In this case, the estimates are super-

consistent in the sense that the convergence rate in mean squared error is faster than the

standard order of n−4/5. Particularly, if f1 satisfies h
2|r′′1M(x1)| = O(n−1/2), the estimates

can achieve the convergence rate n−1 of parametric estimation.

3.3 Bandwidth Selection

For the adaptive estimation procedure, cross-validation (CV) is applied. For the com-

ponent f1(x1), we describe the selection procedure. First assume that the parameter µ

and functions fj(xj), j = 2, ..., d are known. Then model (3.1) can be rewritten as a

one-dimensional non-parametric regression:

yi − µ−
d

∑

j=2

fj(xij) = f1(xi1) + εi, i = 1, ..., n.

Denoted by f̂i1(x1), the leave-one-out form is defined as

CV(h) = n−1
n

∑

i=1

{(

yi − µ−
d

∑

j=2

fj(xij)
)

− f̂i1(xi1)
}2
w(xi1), (3.7)

where w(·) is a weight function. Let hc = arg infh∈Hn
CV(h), where the interval Hn =

(h, h̄), and h and h̄ satisfy the regularity conditions in Härdle and Marron(1985) that
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the choice is based on the following criterion:

lim
n→∞

d(m̂h, m)

infh∈Hn
d(m̂− h,m)

= 1, (3.8)

where m is a non-parametric function, m̂h is the kernel estimate with bandwidth h,

and d is the averaged squared error. The obtained hc depends on the parameter µ and

the functions fj(xj), j = 2, ..., d, which are in fact unknown. We replace the unknown

parameter µ and the function fj(xj), j = 2, ..., d, respectively by the leave-one-out forms

µ̃i and f̃ij(xj) of the first-stage estimates µ̃ and f̃j(xj) and define

C̃V(h) = n−1
n

∑

i=1

{(

yi − µ̃−
d

∑

j=2

f̃ij(xij)
)

− f̂i1(xi1)
}2
w(xi1), (3.9)

and

h̃c = arg inf
h∈Hn

C̃V(h). (3.10)

C̃V(h) = CV(h) + o(1), a.s., see Lin et al.(2009).

3.4 The Algorithm

For our two-stage estimation, the algorithm can be summarized the following steps.

1. Use the LASSO for model (2.4) with the original dataset {xi, yi}ni=1. γ̂λ is the

LASSO estimate according to λ which is chosen by the BIC or the CV.

2. Find the locations of the nonzero components {j : γ̂j 6= 0} =: Ω, and the number

of nonzero components d̂ = #{j : γ̂j 6= 0} =: |Ω|.

3. For the additive model, estimate each fj(·), j ∈ Ω by the adaptive method we

provided above. This step includes two substeps: (1) Provide initial Estimates µ̃

and f̃j(xj), j ∈ Ω; (2) Adjust them to be adaptive estimates.
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For convenience, in the simulations below, the initial estimates are computed by the

COSSO without penalty (the tuning parameter λ = 0 in the COSSO), and the bandwidth

selection is based on the 5-fold CV.

4 NUMERICAL STUDIES

In this section, all the results are based on 100 replications. The following three quantities

are used to measure the selection accuracy: (1) MS, the mean value of model size (the

number of selected components); (2) TP, the mean value of the true positive variables

selected; (3) FP, the mean value of the false positive variables missed. Their standard

deviations are in parentheses.

4.1 Nonparametric Regression Models

In this subsection, we examine the performance of our selection method for nonparametric

models.

Example 1 Consider the following models:

Y = exp{X1 + · · ·+X5√
5

}+ ε, (4.1)

Y =
(

5[X3
1 +X3

2 +
1

4
(X1 +X2)

2 − 1

4
(X1 −X2)

2]
)3/5

+ ε. (4.2)

Y =
(

5X1 + 5X2 + 10X2
3 + 10X2

4

)3/5

+ ε, (4.3)

Models in this example are regarded as nonparametric ones. Model (4.1) has d = 5

significant predictors, model (4.2) has an interaction term with d = 2, because it has

another expression Y =
(

5[X3
1 + X3

2 + X1X2]
)3/5

+ ε. Model (4.3) is with d = 4 and

contains two square functions that are symmetric about 0. Xi = (Xi1, Xi2, . . . , Xip)
T , i =
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1, ..., n, Xi1, ..., Xip are independently distributed with U(-1,1). The errors εi, i = 1, ..., n,

follow the normal distribution N(0, σ2) with the variance σ2 such that the signal-to-noise

ratio is 3 : 1. Sample size is n = 200. The LASSO is applied and the results are reported

in Table 4.1.

Table 4.1: Performance of Example 1

p = 10 p = 30 p = 50

Model MS TP FP MS TP FP MS TP FP

(4.1) 5.05(0.26) 5(0) 0.05(0.26) 5.08(0.34) 5(0) 0.08(0.34) 5.04(0.24) 5(0) 0.04(0.24)

(4.2) 2.01(0.10) 2(0) 0.01(0.10) 2(0) 2(0) 0(0) 2(0) 2(0) 0(0)

(4.3) 2(0) 2(0) 0(0) 1.99(0.10) 1.99(0.10) 0(0) 1.98(0.14) 1.98(0.14) 0(0)

From the results in Table 4.1, we can see that our method can well identify the active

predictors in the first two models (4.1) and (4.2). However, it can only identify X1 and

X2 in model (4.3), while is not able to find X3 and X4 in the square functions. This

confirms that our method heavily relies on the asymmetry of the predictor distribution.

This is the main limitation of our method.

To be a remedy, an ad-hoc approach may be considered to take care of symmetry issue.

Note that our method transfers the original model to be a linear model Y = a+ bτ1X + e

and see if any component Xi significantly affects Y . From this idea, we may consider to

check whether a polynomial of Xi significantly affects Y . For instance, a second order

polynomial Y = a+ bτ1X + bτ2X
2 + e could be considered. In other words, for any Xi, we

will examine the relationship between Y and a+ bτ1Xi + bτ2X
2
i . Higher order polynomial

such as of third order or fourth order could also be considered. This selection approach

may be regarded as a higher order “approximation” to the underlying model between Y

and X . The predictor Xi is selected if any coefficient of Xj
i , either j = 1 or 2, is nonzero.

In Table 4.2, “Square” means a + b1X + b2X
2 is used. Similarly, “Cubic” and “Fourth”
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mean that the third and fourth order polynomials are used.

Table 4.2: Performance of Example 1 by Modified Method

p = 10 p = 30 p = 50

Model (4.1)

Method MS TP FP MS TP FP MS TP FP

Square 5.09(0.29) 5(0) 0.09(0.29) 5.04(0.20) 5(0) 0.04(0.20) 5.01(0.22) 5(0) 0.01(0.22)

Cubic 5.10(0.41) 5(0) 0.10(0.41) 5.01(0.10) 5(0) 0.01(0.10) 4.97(0.17) 4.97(0.17) 0(0)

Fourth 5.22(0.82) 5(0) 0.22(0.28) 5.01(0.10) 5(0) 0.01(0.10) 49.02(2.0) 5(0) 44.02(2.30)

Model (4.2)

Square 2.02(0.14) 2(0) 0.02(0.14) 2(0) 2(0) 0(0) 2(0) 2(0) 0(0)

Cubic 2.10(0.54) 2(0) 0.10(0.54) 2(0) 2(0) 0(0) 2(0) 2(0) 0(0)

Fourth 2.31(1.14) 2(0) 0.31(1.14) 3.08(2.86) 2(0) 1.08(2.86) 49.96(0.20) 2(0) 47.96(0.20)

Model (4.3)

Square 4.14(0.40) 4(0) 0.14(0.40) 4.40(0.96) 4(0) 0.40(0.96) 4.55(2.29) 4(0) 0.55(2.29)

Cubic 4.12(0.36) 4(0) 0.12(0.36) 4.49(2.58) 3.98(0.14) 0.51(2.57) 3.22(3.11) 2.87(1.05) 0.35(2.78)

Fourth 4.34(0.98) 4(0) 0.34(0.98) 4.11(2.46) 3.77(0.58) 0.34(2.36) 12.08(15.49) 3.32(1.09) 8.76(15.06)

Results in Table 4.2 tells the “Square” performs best. Through Models (4.1)-(4.3), it

could select the true active components 100% correctly and the false positive number is

very small. This method also works for model (4.3) with small FP values. The “Cubic”

and “Fourth” seems to choose, either too less or too more, than the true values when p

is large. Overall, the second order polynomial is worthy of recommendation.

4.2 Application to Additive Models

Here, the COSSO (Lin and Zhang 2006) (for p < n), and the Boosting (Bülhmann and

Yu 2003) (for p ≥ n) are taken for comparison because they have been proved to be

powerful. In the following example, we design two scenarios with p = 10, n = 100, and

p = 100, n = 100.
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Example 2 The model is as follows:

Y = f1(X1) + f2(X2) + f3(X3) +

p
∑

i=4

fi(Xi) + ε, (4.4)

where f1(x) = 5(x − 1), f2(x) = 20(x − 0.5)Φ(−|x − 0.5|), f3(x) = −4x3 + 1, and

fi = 0, i = 4..., p, p = 10. The data Xi = (Xi1, Xi2, . . . , Xip)
T , i = 1, ..., n, Xi1, ..., Xip are

independent having the following two distributions:

(1) Trimmed AR(1): W1, ...,Wp ∼ N(0,1) i.i.d., andX1 = W1, Xj = ρXj−1+(1−ρ2)1/2Wj ,

j = 2, ...d. Trim Xj in [−2.5, 2.5] and scale to [0, 1],

(2) Compound Symmetry: W1, ..,Wp, U ∼ Uniform (0, 1) i.i.d., letXj = (Wj+tU)/(1+t).

Therefore, corr(Xj, Xk) = t2/(1 + t2), j 6= k.

Also the errors εi, i = 1, ..., n, follow the normal distribution N(0, σ2), where σ2 is chosen

according to the standard deviation of signal-to-noise ratio (SNR) at around 3 : 1. In

the simulations, ρ = 0, 0.5, and t = 0, 1. As estimation is also involved, we then report

ISE as well to measure the estimation accuracy. Here ISE = E[f̂(Xi)− f(Xi)]
2, which

is estimated by 10000 testing points from the same distribution with the training points,

where f(Xi) =
∑p

j=1 fj(Xij), is the true conditional mean function. For the comparison

with the COSSO and the Boosting, we use the codes of these two methods available

online. For the Boosting, the default values ν = 0.1, df = 4 are for the shrinkage factor

ν and the degrees of freedom df .

We consider the following two cases.

Case I: Results reported in Table 4.3 are based on p = 10, n = 100. We compare

our proposed two-stage estimation for additive models with the COSSO. Our two-stage

method is abbreviated to be “LLSS”.

It can be seen from Table 4.3 that, no matter the predictors have correlation or not,

our LLSS method wins in this case. Both COSSO and LLSS can select all the positive
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Table 4.3: Measurements for model (4.4) case I, n = 100, p = 10.

method ISE(sd) MS(sd) TP(sd) FP(sd) ISE(sd) MS(sd) TP(sd) FP(sd)

Trimmed AR(1), ρ = 0 Compound Symmetry, t = 0

COSSO 0.053(0.025) 3.720(1.147) 3.0(0) 0.720(1.147) 0.107(0.057) 3.710(1.192) 3.0(0) 0.710(1.192)

LLSS 0.041(0.017) 3.080(0.307) 3.0(0) 0.080(0.307) 0.091(0.052) 3.070(0.293) 3.0(0) 0.070(0.293)

Trimmed AR(1), ρ = 0.5 Compound Symmetry, t = 1

COSSO 0.010(0.004) 3.590(1.055) 3.0(0) 0.590(1.055) 0.023(0.011) 3.850(1.445) 3.0(0) 0.850(1.445)

LLSS 0.008(0) 3.030(0.171) 3.0(0) 0.030(0.171) 0.018(0.008) 3.030(0.171) 3.0(0) 0.030(0.171)

variables, however, LLSS has smaller ISE, MS and FP. The adaptive approach works

better.

Case II: In this case, the setting is the same as that in Case I, except that n = 100, p =

100. As the COSSO may not be able to handle the p = n case, we thus make a comparison

with the Boosting (Bülhmann and Yu 2003). To efficiently apply our proposed two-stage

method for additive models when p = n in Case II below, we use the SIS and ISIS

(Fan and Lv 2008) to first reduce the dimensionality by using the codes provided Fan

and Lv (2008) available online. For the fair play, we also check the performance of the

Boosting when the SIS and the ISIS are used to help on reducing the dimensionality

before performing the Boosting. The results are reported in Table 4.4.

From the results in Table we can have the following observations. First, although

the Boosting can handle the p ≥ n case, the selection is not very efficient. Second, the

SIS can help on reducing the dimensionality, but the models could be too parsimonious

to loss some important variables as we can see smaller TP than the true number of the

important variables in the table. In this situation, the ISIS can help on rescuing them.

Third, although the models are in favor of the competitors, our method only has slight
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Table 4.4: Measurements for model (4.4), case II, n = p = 100.

Trimmed AR(1), ρ = 0 Trimmed AR(1), ρ = 0.5

method ISE(sd) MS(sd) TP(sd) FP(sd) ISE(sd) MS(sd) TP(sd) FP(sd)

Boosting 0.228(0.090) 16.490(2.176) 3(0) 13.490(2.176) 0.383(0.148) 16.360(2.272) 3(0) 13.360(2.272)

SIS + Boosting 0.218(0.324) 7.640(1.133) 2.960(0.197) 4.680(1.205) 1.279(0.840) 8.120(1.365) 2.390(0.490) 5.730(1.728)

ISIS + Boosting 0.108(0.056) 4.30(1.573) 3(0) 1.30(1.573) 0.170(0.093) 4.270(1.254) 3(0) 1.270(1.254)

SIS + LLSS 0.233(0.345) 7.40(1.675) 2.960(0.197) 4.440(1.684) 1.290(0.909) 6.770(1.958) 2.390(0.490) 4.380(1.927)

ISIS + LLSS 0.127(0.098) 4.420(1.776) 3(0) 1.420(1.776) 0.152(0.104) 4.420(1.464) 3(0) 1.420(1.464)

Compound Symmetry, t = 0 Compound Symmetry, t = 1

method ISE(sd) MS(sd) TP(sd) FP(sd) ISE(sd) MS(sd) TP(sd) FP(sd)

Boosting 0.135(0.049) 14.870(2.372) 3(0) 11.870(2.372) 1.117(0.705) 14.920(2.187) 3(0) 11.920(2.187)

SIS + Boosting 0.158(0.330) 6.840(1.261) 2.960(0.197) 3.880(1.335) 2.423(0.809) 8.150(1.009) 2(0) 6.150(1.009)

ISIS + Boosting 0.085(0.037) 5.060(1.699) 3(0) 2.060(1.699) 0.932(0.80) 3.70(1) 3(0) 0.70(1)

SIS + LLSS 0.153(0.313) 6.770(1.746) 2.960(0.197) 3.810(1.756) 1.741(0.2) 3.930(1.81) 2(0) 1.930(1.81)

ISIS + LLSS 0.103(0.066) 5.590(2.261) 3(0) 2.590(2.261) 0.132(0.098) 3.430(0.967) 3(0) 0.430(0.967)

loss in selection efficiency when compared with ISIS+Boosting.

Overall, the newly proposed method tends to be not conservative, and competitive

to existing powerful approaches in the literature.

5 Real Data Example

We apply our method to the Hitters’ salary data which was firstly given in 1988 ASA

Garphics Poster Session. Its main interest “why they make what they make” was a main
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topic of this session organized by the American Statistical Association. Chaudhuri et al.

(1994) considered a tree model and Li et al.(2000) used a dimension reduction approach

to fit a semiparametric model. In detail, the data set consists of the numbers of times at

bat(x1), hits (x2), home runs (x3), runs (x4), runs batted in (x5) and walks (x6) in 1986,

years in major leagues (x7), times at bat (x8), hits (x9), home runs (x10), runs (x11), runs

batted in (x12) and walks (x13) during their entire career up to 1986, annual salary (Y )

in 1987, put-outs (x14), assistances (x15) and errors (x16). Let X = (x1, ..., x16)
T . The

size of the data is n = 263.

In a nonparametric regression structure, p = 16 is too large for an efficient nonpara-

metric estimation with a size of n = 263 in the sample. Therefore, there are several

attempts to work on estimation. Sufficient dimension reduction (Li, 1991; Cook 1998)

is a promising way to handle it via selecting some representative predictors or the linear

combinations of the predictors to establish the underlying model. When sliced inverse re-

gression (SIR, Li, 1991) with a BIC type structural dimension determination (Zhu, Miao

and Peng, 2006) is applied, 2 linear combinations of the 16 predictors are determined.

As there is no specific prior information about the model structure, we first fit the

data nonparametrically. For this purpose, our linear least squares sparse method in

Section 2 (denoted by LLSS here) is used to select predictors. For comparison, sliced

inverse regression (SIR, Li 1991) is also used to select projection indices to achieve the

purpose of sufficient dimension reduction. After that, nonparametric regression models

are fitted with the predictors or indices selected by these two methods. The fitting is

made by a matlab package named “Multivariant Kernel Regression and Smoothing”.

To compare the performance, we list the selected predictors and the indices, and the

regression R2 in Table 5.5.
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Table 5.5: The indices selected by the SIR, the predictors selected by the LLSS and the

R2 values
Method SIR R2 = 0.72 LLSS R2 = 0.76

Index γ̂1 γ̂2 γ̂1 γ̂2

x1 0.38 0.0 1 0

x2 -0.67 -0.06 0 0

x3 -0.02 0.01 0 0

x4 0.15 -0.04 0 0

x5 0.07 -0.04 0 0

x6 -0.21 0.00 0 0

x7 -0.09 - 0.17 0 0

x8 -0.02 -0.79 0 0

x9 0.03 0.45 0 0

x10 -0.25 -0.04 0 0

x11 -0.45 0.22 0 1

x12 0.13 0.27 0 0

x13 0.19 0.04 0 0

x14 -0.10 0.03 0 0

x15 -0.06 0.01 0 0

x16 0.02 0.01 0 0

The LLSS selected two predictors into the working model. We note that the co-

variance matrix shows that there are 3 groups to separate all predictors: {x1, · · · , x6},

{x8, · · · , x13}, and {x14, x15, x16}. Within the groups, the predictors are highly positively

correlated with the correlation coefficients around 0.8, whereas between the groups, they

are positively, but weakly correlated with the correlation coefficients around 0.2. Thus,

x1 and x11 could be regarded as the representatives of the first two sets, respectively, and

they are respectively the strength in 1986, and comprehensive strength of a player. The

number of selected predictors coincides with the dimension of central subspace deter-

mined by the SIR. Further, both the SIR and the LLSS show that the set {x14, x15, x16}

has very little contribution to the response Y . We note that when the SIR is applied,

and looking at the coefficients with large loadings, γ̂1 seems a contrast between x1 and

x2, while γ̂2 would be a contrast between x8 and x9. However, these two pairs are re-

spectively highly positively correlated with the correlation coefficients ρ ≈ 0.8. Thus, it

23



is hard to explain their meanings. In contrast, our method provides a better fitted model

with larger R2 value, which is much simpler and more interpretable.

To further explore the regression relationship between the response Y and the two

predictors, x1 and x11, we draw the scatter plots in Figure 5.1. Both show monotonicity.
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Figure 5.1: Scatter Plot

This enlightens us to further try a nonparametric additive model:

y = µ+ f1(x1) + f11(x11) + ε (5.1)

to fit this dataset. This means that x1 and x11 are regarded as the two active predictors

selected by the LLSS, and then the corresponding functions are estimated adaptively.

In Table 5.6, the results are listed. As the COSSO is particularly designed for additive

models, we also use it to select predictors to fit an additive model y = µ+
∑d

j=1 fij (xij )+ε

with a d ≤ p. Measurements are: RSS, the squared sum of residuals divided by the sample

size; R2, the coefficient of determination in regression; d̂, the number of active predictors

selected; Index, indices selected.

In Table 5.6, this further estimation makes a slightly larger R2 value when the LLSS

and the adaptive estimation are applied. The COSSO gets R2 = 0.9 larger than that of
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Table 5.6: Model fitting of the two methods

method RSS R2 d̂ Index

LLSS 0.155 0.797 2 {1, 11}

COSSO 0.077 0.900 8 {2, 6, 7, 8, 9, 11, 12, 14}

the LLSS. However, it is inefficient in selection with half out of all the predictors being

included in the working model. Again the our two-stage estimation proposed in Section 3

owns a much clearer and interpretable result at a cost, but not much, of losing a certain

regression fitting R2. Residual plots tell that the working models by both the methods

well fit the data. Thus, our two-stage estimation is worthy of recommendation.
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Figure 5.2: The residual plot
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Appendix

Proof of Theorem 1. Recall the definition of η and Z and Ad
TX = ηTZ. Also, let

η1 = AT
1Σ

1/2 recalling that A1 is a p-dimensional vector whose first d elements are 1,

otherwise 0. We have

Σ−1
x E(Xh(Y )) = Σ−1/2

x (B1, η1/‖η1‖)(B1, η1/‖η1‖)TE
(

Zh(Y )
)

= Σ−1/2
x B1B

T
1E

(

Zh(Y )
)

+ Σ−1/2
x η1η

T
1 E

(

Zh(Y )
)

/‖η1‖2

= Σ−1/2
x B1B

T
1E

(

Zh(Y )
)

+ Σ−1/2
x η1η

T
1 E

(

Zh(Y )
)

/‖η1‖2

= Σ−1/2
x B1B

T
1E

(

Zh(Y )
)

+ A1A
T
1E

(

Xh(Y )
)

/‖η1‖2

=: Σ−1/2
x B1E

(

E(BT
1Z|Y )h(Y )

)

+ chA1. (A.1)

It is obvious that the first term is equal to zero when the condition E
(

E(BT
1Z|Y )

)

= 0

almost surely. Thus (2.2) implies (2.3). On the other hand, when (2.3) holds, for any

transformation h(·), then for every component aj(Y ) of E
(

E(BT
1Z|Y )

)

, j = 1, · · · , p− 1,

we choose a function h(·) of y to be aj(Y ) so that every component of E
(

E(BT
1Z|Y )h(Y )

)

is equal to E
(

aj(Y )h(Y )
)

= E
(

a2j (Y )
)

= 0 implying that aj(Y ) = 0 almost surely.

(2.3) implies (2.2). The necessary and sufficient condition is then proved. When the

distribution of Z is elliptically symmetric, the equation (2.3) can be proved similarly by

following the argument in Li (1991), we then omit the detail.
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