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Abstract

Cryptocurrencies, especially Bitcoin (BTC), which comprise a new revolutionary asset

class, have drawn extraordinary worldwide attention. The characteristics of the cryptocur-

rency/BTC include a high level of speculation, extreme volatility and price discontinuity.

In this paper, we propose a pricing mechanism based on a stochastic volatility with corre-

lated jump (SVCJ) model and compare it to a flexible co-jump model by Bandi and Renò

(2016) allowing for non-affine structure. The calibration results of both models confirm the

impact of jumps and co-jumps on options obtained via simulation and an analysis of the

implied volatility curve. We show that a sizeable proportion of price jumps are significantly

and contemporaneously anti-correlated with jumps in volatility. Our study comprises pi-

oneering research on pricing BTC options. We show how proposed pricing mechanism

underscores the importance of jumps in the cryptocurrency derivatives markets.
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1 Introduction

Bitcoin (BTC), the online decentralized digital currency and crypto-based payment system, has

garnered much attention and interest worldwide since it was first introduced in 2009. The

rapidly growing research on BTC structures and operations (Becker et al., 2013; Segendorf,

2014; Dwyer, 2015), economics (Kroll et al., 2013) and financial stability (Ali, 2014; Badev,

2014; ECB, 2015) indicates a prominent role for digital currency assets in contemporary fi-

nancial markets. Discussions on alternative monetary systems can be found, for example, in

Rogojam (2014) and Weber (2016). An analysis of the legal issues involved in using Bitcoin

can be found in Elwell et al. (2013).

The purpose of this paper is first to characterize the dynamics of BTC with a popular option-

pricing model, i.e., the stochastic volatility with correlated jump (SVCJ) model, and then apply

the model to price forthcoming BTC options. Several studies have suggested econometric meth-

ods to model BTC prices, including cross-sectional regression models involving the majority of

traded cryptocurrencies and multivariate time-series models for the dynamics. For example,

Hayes (2017) performs a regression using a cross-section dataset consisting of 66 traded dig-

ital currencies to understand the price driver of cryptocurrencies. Kristoufek (2013) proposes

a bivariate Vector-AutoRegression (VAR) model for the weekly log returns of Bitcoin prices.

Bouoiyour (2019) investigates the long and short-run relationships between BTC prices and

other related variables using an autoregressive distributed lag model.
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We start our econometric analysis of the BTC price by using the ARIMA (Autoregressive Inte-

grated Moving Average) and GARCH (generalized autoregressive conditional heteroskedastic-

ity) models. Then we move on to discover the necessity of incorporating jumps into stochastic

volatility models. This investigation is motivated by the fact that the unique feature of jumps

presented in the BTC prices is ignored in most existing studies when modeling the BTC dy-

namics. One exception is Scaillet et al. (2018), who show that jumps are much more frequent

in the BTC market than, for example, in the US equity market, as shown in Bajgrowicz et al.

(2015). This implies that jumps should be considered when modeling BTC prices and options.

We, therefore, employ a model that incorporates jumps in returns and the stochastic volatility

processes: the SVCJ model introduced by Duffie et al. (2000). Numerous empirical studies

have applied the SVCJ model in different markets. For example, Eraker et al. (2003) and Er-

aker (2004) use the SVCJ model to describe equity market returns and calibrate equity option

pricing. They find strong evidence for jumps in returns and volatility in the US equity market.

Cosma et al. (2018) develop a methodology to estimate a jump-diffusion model to price Ameri-

can options or other path-dependent options. To show the importance of modeling jumps in the

BTC returns and variance dynamics, we compare our SVCJ estimate to simpler versions such

as Bates (2000) (SVJ hereafter) and the stochastic volatility (SV) model.

Furthermore, research on the BTC derivative markets has been very limited despite its necessity.

The markets for BTC futures and options traded on an unregulated exchange platform (i.e.,

Deribit) are rapidly increasing. The CME (Chicago Mercantile Exchange) Group, the world’s

leading and most diverse derivatives marketplace, launched BTC futures based on the CME CF

Bitcoin Reference Rate (BRR) on 18 December 2017. Pricing BTC derivatives (e.g., options)

brings new challenges. Unlike classic financial markets, the BTC market has a unique market

microstructure created by a set of opaque, unregulated, decentralized and highly speculation-

driven markets. Conventional financial or economic theories may fail to embrace this new asset

class. The pricing of contingent claims may not be easily adapted for the crypto market since the

frequent appearance of jumps in addition to stochastic volatility behaviour makes the markets
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incomplete. This may imply that a non-affine specification introducing nonlinearities into the

drift and diffusion term of the variance process would provide more flexibility when capturing

the sudden jumps in returns and variance than an affine specification. Studies such as Bakshi

and Ou-Yang (2006) and Chourdakis (2011), among others, propose a non-affine structure for

the volatility process. There is also a strand of literature in which the nonparametric model

setup is used to analyze whether jumps in returns and variance are important model components

(Aït-Sahalia, 2010; Barndroff-Nielsen, 2006). These studies suggest that jumps and non-affine

structures are potentially important model components.

Recently, Bandi and Renò (2016) (BR hereafter) propose a price and variance co-jump model

that generalizes the SVCJ model to capture the possible nonlinearity in the parameters of the

returns and variance processes. The BR model embraces independent and correlated jumps and

allows for the nonparametric parameter structure. The estimation uses high-frequency data. We

also apply this model to describe the dynamics of BTC. Our option analysis depends on the

experimental simulation analysis based on the results estimated from the SVCJ and BR models

because we do not have the true option market data. We find that affine models are sufficient

for modeling the dynamics of BTC through our estimation of the nonparametric BR model.

We summarize our main empirical findings as follows. First, as in the existing literature, the

results from the SVCJ and BR models indicate that jumps are present in the returns and variance

processes and adding jumps to the returns and volatility improves the model fit. Second, in

contrast to existing studies that commonly report a negative leverage effect, we find that the

correlation between the returns and volatility is significantly positive in the SVCJ model, and

we cannot find significantly negative relations between risk and return in the BR model. This

implies that increasing prices are not associated with a decrease in volatility. This is consistent

with the "inverse leverage effect" in the commodity markets reported in Schwartz and Trolled

(2009). The positive relationship between risk and volatility is reflected in the option prices

simulated based on the parameters estimated from the SVCJ model.

Third, we find that the jump size in the returns and variance of BTC is anti-correlated. The
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parameter estimates of the jump size (⇢j) from both the SVCJ and BR models are negative

(though the SVCJ estimate is insignificant). It is worth noting that the correlation between the

price jump size and the volatility jump size turns out to be significant with a negative coefficient

with high-frequency data, while tending to be insignificant for the SVCJ fitting using daily

prices. This finding is in line with existing studies of the stock market from Eraker (2004),

Duffie et al. (2000) and Bandi and Renò (2016), among others. For example, Bandi and Renò

(2016) report an anti-correlation with the nonaffine structure. Eraker (2004) finds a negative

correlation between jump size only when augmenting return data with options data, and the

negative correlation between co-jump size being identified of the implied volatility smirk. Using

high-frequency data, Jocod and Todorov (2009) and Todorov and Tauchen (2010) also reported

that the large jump size of prices and volatility is strongly anti-correlated.

Finally, we observe that the BTC option prices share properties similar to those observed in

other markets. For instance, we find that the option prices simulated from the SVCJ and BR

models decrease in moneyness from in-the-money (ITM) to out-of-the-money (OTM). The op-

tion prices increase with the time to maturity and the volatility level. Moreover, the option price

level is prominently dominated by the level of volatility and therefore greatly affected by jumps

in the volatility processes. The results from the implied volatility (IV) plots indicate that adding

jumps in returns increases the slope of the IV curves. The greater steepness of the IV curve

can be reinforced by the presence of jumps in volatility. The presence of co-jumps enlarges

the IV smile further. As evidenced from the IVs curve, options with a short time to maturity

are more sensitive to jumps and co-jumps. For the model robustness check, we replicate the

entire analysis for the CRyptocurrency IndeX (CRIX), a market portfolio comprising several

cryptocurrencies. This additional investigation is beneficial from the robustness point of view.

To summarize our contributions, we are the first paper to thoroughly investigate the BTC returns

and return variances with advanced option-pricing models, i.e., the SVCJ and BR models. Our

results have practical relevance in terms of model selection for characterizing the BTC dynam-

ics. We document the necessity of incorporating jumps in the returns and volatility processes of

BTC, and we find that jumps play a critical role in the option prices. Our approach is directly
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applicable to pricing in the forthcoming BTC option market. Our results are also important for

policymakers to design appropriate regulations for the BTC market and for investors to create

appropriate risk-management and portfolio-selection strategies.

The paper is organized as follows. Section 2 presents results of the econometric analysis of

BTC. Section 3 studies the BTC return and variance dynamics with the SV, SVJ and SVCJ

models. Fitting of the BR model is investigated in Section 4. Section 5 implements the option-

pricing exercises. Section 6 documents an examination of the CRIX, while Section 7 concludes

the study.

2 The BTC dynamic

The dynamics of BTC prices depicted in Figure 1 give us a glimpse of its evolution. A dramatic

surge was observed after March 2017 due to widespread interest in cryptocurrencies (CCs).

The subsequent drop in June was caused by a sequence of political interventions. Indeed, sev-

eral governmental announcements of bans on initial coin offerings (ICOs), for example, have

spurred intensive movements on CC markets.

Figure 1: BTC Prices and Returns
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Notes: This figure graphs the BTC daily price (left panel) from 31/07/2014 to 29/09/2017 and BTC returns (right
panel). The returns (Rt) are calculated as Rt = ln(Pt)� ln(Pt�1), where Pt is the BTC price at time t.

Figure 1 indicates that BTC prices do not behave like conventional stock prices. One records ex-
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Table 1: Estimation result of ARIMA(2,0,2)

Bitcoin
Coefficients Estimate Standard deviation
intercept c 0.002 0.001
a1 -0.867 0.304
a2 -0.596 0.177
b1 0.868 0.321
b2 0.539 0.190

Notes: This table reports the parameter estimated from ARIMA (2,0,2) with BTC
daily returns calculated as the log-first difference based on the prices from 31/07/2014
to 29/09/2017. The residual distributions are assumed to be Gaussian. The maximized
likelihood value is 2231.7. The AIC and BIC are -4451.4 and -4415.74, respectively.

tremely high volatility and scattered spikes. These prices are far from being stationary. The dif-

ferentiation and detrending, or change point detection are required. After an inspection through

the ACF and PACF plot in Figure 2, we start with an ARIMA(p, d, q) model,

a(L)�yt = bL"t (1)

where yt is the variable of interest, �yt = yt � yt�1, L is the lag operator and "t a stationary

error term. Model selection criteria such as AIC or BIC indicates that the ARIMA(2, 0, 2) is

the model of choice. The parameters estimated from the ARIMA(2,0,2) are reported in Table 1.

The significant negative signs in a1 and a2 indicate an overreaction, that is, a promising positive

return today leads to a return reversal in the following two days or vice versa. Hence, the CC

markets tend to overreact to good or bad news, and this overreaction can be corrected in the fol-

lowing two days. An ARIMA model for the CC assets, therefore, suggests predictability due to

an “overreaction”. The Ljung-Box test confirms that there is no serial dependence in the residu-

als based on the ARIMA(2, 0, 2) specification. The details of these numerical computations are

available in the quantlets used. Note that the squared residuals carry incremental information

that is addressed in the following GARCH analysis.
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Figure 2: ACF and PACF of BTC

Notes: This figure plots the ACF and PACF for BTC returns. The returns are the log-first difference calculated
based on the price from 31/07/2014 to 29/09/2017. The x-axis plots the lags, and the y-axis plots the ACF and
PACF values.

2.1 GARCH Model

The GARCH model reflects the changes in the conditional volatility of the underlying asset in a

parsimonious way. Duan (1995) develops a GARCH option-pricing model in the context of the

continuously compounded GARCH return process. A similar approach is taken in Heston and

Nandi (2000). The volatility properties of digital currency assets have been studied in a vast

amount of literature that applies GARCH-type methods (Hotz-Behofsits et al., 2018; Chu et al.,

2017; Chan et al., 2017; Conrad et al., 2018).

Let us start with a GARCH-type model for characterizing the conditional variance process of

BTC. The ARIMA-t-GARCH model with t-distributed innovations used to capture fat tails is

as follows:

a(L)�yt = bL"t (2)

"t = Zt�t, Zt ⇠ t(⌫)

�2
t = ! + �1�

2
t�1 + ↵1"

2
t�1 (3)

8

 Electronic copy available at: https://ssrn.com/abstract=3159130 



where �2
t represents the conditional variance of the process at time t and t(⌫) refers to the zero-

mean t distribution with ⌫ degrees of freedom. The choice of the t-distribution rather than the

Gaussian distribution is supported by Hotz-Behofsits et al. (2018) and Chan et al. (2017).

The covariance stationarity constraint ↵1 + �1 < 1 is imposed. As shown in Table 2, the �1

estimate from BTC indicates a persistence in the variance process, but its value is relatively

smaller than those estimated from the stock index returns (see Franke et al. (2019)). Typically,

the persistence-of-volatility estimates are very near to one, showing that conditional models for

stock index returns are very close to being integrated. By comparison, BTC places a relatively

higher weight on the ↵1 coefficient and relatively lower weight on the �1 to imply a less-smooth

volatility process and striking disturbances from the innovation term. This may further imply

that the innovation is not pure white noise and can occasionally be contaminated by the presence

of jumps.

In addition to the property of leptokurtosis, the leverage effect is commonly observed in prac-

tice. According to a large body of literature, starting with Engle and Ng (1993), the leverage

effect refers to an asymmetric volatility response given a negative or positive shock. The lever-

age effect is captured by the exponential GARCH (EGARCH) model by Nelson (1991),

"t = Zt�t

Zt ⇠ t(⌫)

log(�2
t ) = ! +

pX

i=1

�i log(�
2
t�i) +

qX

j=1

gj
�
Zt�j

�
(4)

where gj (Zt) = ↵jZt + �j(|Zt�j| � E|Zt�j|) with j = 1, 2, . . . , q. When �j = 0, we have

the logarithmic GARCH (LGARCH) model from Geweke (1986) and Pantula (1986). To ac-

commodate the asymmetric relation between stock returns and volatility changes, the value of

gj (Zt) must be a function of the magnitude and the sign of Zt. Over the range of 0 < Zt < 1,

gj (Zt) is linear in Zt with slope ↵j + �j , and over the range �1 < Zt  0, gj (Zt) is linear in

Zt with slope ↵j � �j .
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Table 2: Estimated coefficients of t-GARCH(1,1)

Coefficients Estimates Robust std t value
BTC
! 3.92e� 05 1.49e� 05 2.63
↵1 2.28e� 01 4.46e� 02 5.12
�1 7.70e� 01 5.13e� 02 14.98
⌫ 3.64e+ 00 4.08e� 01 8.91

Notes: This table reports the estimated parameters from the t-GARCH(1,1) model. The robust
version of standard errors (robust std) are based on the method of White (1982).

Table 3: Estimated coefficients of t-EGARCH(1,1) model

Coefficients Estimates Robust std t value
BTC
! 3.84e� 05 1.47e� 05 2.61
↵1 1.05e� 03 5.10e� 02 0.98
�1 9.52e� 01 1.54e� 02 61.73
�1 4.16e� 01 6.64e� 02 6.25
⌫ 3.26e+ 00 4.16e� 01 7.82

Notes: This table reports the estimated parameters from the t-EGARCH(1,1) model. The
robust version of standard errors (robust std) are based on the method of White (1982).

The estimation results based on the ARIMA(2,0,2)-t-EGARCH(1,1) model are reported in Ta-

ble 3. The estimated ↵1 is no longer significant, showing a vanished sign effect. However, a

significant positive value of �1 indicates that the magnitude effect represented by �1(|Zt�1| �

E|Zt�1|) plays a bigger role in the innovation in log(�2
t ).

We compare the model performances between two types of GARCH models through informa-

tion criteria, and a t-EGARCH(1,1) model is suggested. Note that, as shown in Figure 3, the QQ

plots demonstrate a deviation from the student-t. In Chen et al. (2017), GARCH and variants

such as t-GARCH, EGARCH have been reported, and, while they are seen to fit the dynamics

of BTC nicely, they still could not handle the extreme tails in the residual distribution. Equipped

with these findings and taking into account the occasional interventions, we opt for the models

with jumps for better characterization of CC dynamics. The presence of jumps is indeed more

likely in this decentralized, unregulated and illiquid market. Numerous political interventions

also suggest the introduction of the jump component into a pricing model.
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Figure 3: The QQ plot for BTC based on the residuals of t-GARCH(1,1) model

3 SVCJ: affine specification

Although we have fitted a variety of financial econometrics models to the BTC price, there

still is evidence of nonstationarity and fat tails in the residuals. The political interventions and

influential media comments in the past and the hype created by sudden price moves motivates

us to consider more flexible and richer SV models with jumps. Here we begin with an affine

type of specification, and switch to a more general non-affine setting in Section 4. We focus

the analysis on BTC and then present the results for CRIX in Section 6 and the appendix as a

robustness check.

3.1 Models

In order to calibrate the BTC dynamics with the SV and SVCJ models regarding returns and

volatility, we employ the continuous time model of Duffie et al. (2000) that encompasses the

standard jump diffusion and the SV with jumps in returns only (SVJ) model of Bates (1996).

More precisely, let {St} be the price process, {d logSt} the log returns and {Vt} be the volatility
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process. The SVCJ dynamics are as follows:

d logSt = µdt+
p
VtdW

(S)
t + Zy

t dNt (5)

dVt = (✓ � Vt)dt+ �V

p
VtdW

(V )
t + Zv

t dNt (6)

Cov(dW (S)
t , dW (V )

t ) = ⇢dt (7)

P(dNt = 1) = �dt. (8)

Like in the Cox-Ingersoll-Ross model,  and ✓ are the mean reversion rate and mean rever-

sion level, respectively. W (S) and W (V ) are two correlated standard Brownian motions with

correlation denoted as ⇢. Nt is a pure jump process with a constant mean jump-arrival rate �.

The random jump sizes are Zy
t and Zv

t . Since the jump-driving Poisson process is the same in

both (5), (6), the jump sizes can be correlated. The random jump size Zy
t conditional on Zv

t , is

assumed to have a Gaussian distribution with a mean of µy + ⇢jZ
v
t and standard deviation set

to �y. The jump in volatility Zv
t is assumed to follow an exponential distribution with mean µv:

Zy
t |Zv

t ⇠ N(µy + ⇢jZ
v
t , �

2
y); Zv

t ⇠ exp(µv). (9)

The correlation ⇢ between the diffusion terms is introduced to capture the possible leverage

effects between returns and volatility. The media and hype interventions may be correlated as

well. The correlation term ⇢j takes care of that. The SV process
p
V t is modelled as a square

root process. With no jumps in the volatility, the parameter ✓ is the long-run mean of Vt, and

the process reverts to this level at a speed governed by the parameter . The parameter �V is

referred to as the volatility of volatility, and it measures the variance responsiveness to diffusive

volatility shocks. In the absence of jumps, the parameter µ measures the expected log-return.

It is a rich model since it also covers SV and SVJ approaches. If we set Zv
t = 0 in (9), then

jumps are only present in prices, we obtain the SVJ model of Bates (1996). Taking � = 0

such that jumps are not present, the model reduces to the pure SV model originally proposed

by Heston (1993). If we set  = ✓ = �V = 0 and define Zv
t = 0, the model reduces to the pure

12
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jump diffusion introduced in Merton (1976).

3.2 Estimation: Markov Chain Monte Carlo (MCMC)

Several studies propose different methods to estimate option prices (or diffusion process). For

example, Singleton and Umantsev (2002), Pan (2002) and others develop procedures based on

the general method of moment (GMM) that exploit the known characteristic functions of affine

models. Calibration of observed option prices with the help of a Fourier transformation has

been advocated by Duffie et al. (2000). However, methods based on simulation have also been

employed for the analysis of options pricing. These methods include the method of simulated

moments of Duffie and Singleton (1993), the indirect inference methods of Gourieroux et al.

(1993) and the efficient method of moment (EMM) method of Gallant and Tauchen (1996).

The generality of simulation-based methods offers obvious advantages. For example, Jacquier

et al. (1994) who propose a method for estimating discrete-time SV models from returns data.

Their works show that MCMC is particularly well suited to deal with SV models. Jacquier

et al. (2004) extend this idea into multivariate models. Eraker et al. (2003) and Eraker (2004)

have also developed the MCMC-based estimation of jump-diffusion models using equity returns

data. Eraker et al. (2003) identify several advantages of using the MCMC approach over other

estimation models because MCMC methods are computationally efficient and the estimating

is more flexible when using simulations. The MCMC method also provides more accurate

estimates of latent volatility, jump sizes, jump times, etc. A general discussion and review of

the MCMC estimation of continuous-time models can be found in Johannes and Polson (2009)

Here, we calibrate the SVCJ model using the MCMC method. Doing this allows for a wide

class of numerical fitting procedures that can be steered by a variation of the priors. Given that

there are no BTC options yet, the MCMC method is more flexible in calibrating the stochastic

variance jumps and thus able to reflect the market price of risk (Franke et al. (2019). The
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empirical calibration is based on the following Euler discretization:

Yt = µ+
p

Vt�1"
y
t + Zy

t Jt (10)

Vt = ↵ + �Vt�1 + �V

p
Vt�1"

v
t + Zv

t Jt, (11)

where Yt+1 = log(St+1/St) is the log return, ↵ = ✓, � = 1 �  and "yt , "vt are the N(0, 1)

variables with correlation ⇢. Jt is a Bernoulli random variable with p(Jt = 1) = � and the jump

sizes Zy
t and Zv

t are distributed as specified in (9). The daily data sample from 01/08/2014 to

29/09/2017 is used to estimate the model. All returns are in decimal form.

Now we give a brief description on how to calibrate the SVCJ model with MCMC (see also

Johannes and Polson (2009), Tsay (2005) and Asgharian and Bengtsson (2006) for more de-

tails). We define the parameter vector as ⇥ = {µ, µy, �y,�,↵, �, �v, ⇢, ⇢j, µv} and Xt =

{Vt, Z
y
t , Z

v
t , Jt} as the latent variance, jump sizes and jump. Recall that Yt is the log-returns.

The MCMC method treats all components of ⇥ and X
def
= {Xt}t=1,..,T as random variables. The

fundamental quantity is the joint pdf p(⇥, X|Y ) of parameters and latent variables conditioned

on data using the Bayes formula:

p(⇥, X|Y ) = p(Y |⇥, X) p(X|⇥) p(⇥). (12)

The Bayes formula can be decomposed into three factors: p(Y |⇥, X), the likelihood of the

data, p(X|⇥) the prior of the latent variables conditioned on the parameters and p(⇥) the prior

of the parameters. The prior distribution p(⇥) has to be specified beforehand and is part of the

model specification. In comfortable settings, the posterior variation of the parameters, given the

data, is robust with respect to the prior. We will touch on this point again when we display our

empirical results.

The posterior is typically not available in closed form, and therefore simulation is used to obtain

random draws from it. This is done by generating a sequence of draws, {⇥(i), X(i)
t }Ni=1 which

form a Markov chain whose equilibrium distribution equals the posterior distribution. The point

14
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estimates of parameters and latent variables are then taken from their sample means.

We use the same priors specified in Asgharian and Nossman (2011), who estimate a large group

of international equity market returns with jump-diffusion models using the MCMC method.

Their results have proved that the following priors make the posterior mean a wide range of

possible realistic estimates: µ ⇠ N(0, 25), (↵, �) ⇠ N(02⇥1, I2⇥2), �
V
2 ⇠ IG(2.5, 0.1), µy ⇠

N(0, 100), �y
2 ⇠ IG(10, 40), ⇢ ⇠ U(�1, 1), ⇢j ⇠ N(0, 0.5), µV ⇠ IG(10, 20) (Inverse Gaus-

sian) and � ⇠ Be(2, 40) (Beta Distribution). The full posterior distributions of the parameters

and the latent-state variables can be found in Asgharian and Nossman (2011) and Asgharian

and Bengtsson (2006). We have varied the variance of the priors and found stable outcomes,

i.e., the reported mean of the posterior that is taken as an estimate of ⇥ is quite robust relative

to changes in variance of the prior distributions. The posterior for all parameters except �V and

⇢ are all conjugate (meaning that the posterior distribution is of the same type of distribution

as the prior but with different parameters). The posterior for Jt is a Bernoulli distribution. The

jump sizes Zy
t and Zv

t follow a posterior normal distribution and a truncated normal distribu-

tion, respectively. Hence, it is straightforward to obtain draws for the joint distribution of Jt,

Zy
t and Zv

t . However, the posteriors for ⇢, �V
2 and Vt are nonstandard distributions and must be

sampled using the Metropolis-Hastings algorithm. We use the random-walk method for ⇢ and

Vt , and independence sampling for �2
V . For the estimation of posterior moments, we perform

5000 iteratations, and in order to reduce the impact of the starting values we allow for a burn-in

for the first 1000 simulations.

The SVCJ model is known for being able to disentangle returns related to sudden unexpected

jumps from large diffusive returns caused by periods of high volatility. For the BTC situation

that we consider here, we are particularly interested in linking the latent historical jump times

to news and known interventions. The estimates Ĵt
def
= (1/N)

PN
i=1 J

i
t (where N is the total

number of iterations and i refers to each draw) indicate the posterior probability that there is a

jump at time t. Unlike the "true" vector of jump times, it will not be a vector of ones and zero.

Following Johannes et al. (1999), we assert that a jump has occured on a specific date t if the

estimated jump probability is sufficiently large, that is, greater than an approporiately chosen
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threshold value:

J̃t = 1{Ĵt > ⇣}, t = 1, 2, ..., T (13)

In our empirical study, we choose ⇣ so that the number of inferred jump times divided by the

number of observations is approximately equal to the estimate of �.

The SVCJ model is estimated with the daily BTC prices from 31/07/2014 to 29/09/2017. We

first calculate returns (Rt) as the log difference between BTC prices, i.e., Rt = ln(Pt) �

ln(Pt�1), where Pt is the BTC price at time t. Then we use returns to estimate the SVCJ

model. The parameter estimates (mean and variance of the posterior) of the SVCJ, SVJ and SV

models for BTC are presented in Table 4. The estimate of µ is positive. The correlation between

returns and volatility ⇢ is significant and positive. This is remarkable and worth noting since it

is different from a negative leverage effect observed over a sequence of studies in stock markets

(see, e.g., Eraker (2004)). The effect is named the "inverse leverage effect" and has been dis-

covered in commodity markets (see Schwartz and Trolled (2009)). In other words, the "inverse

leverage effect" (associated with a positive ⇢) implies that increasing prices are associated with

increasing volatility. The reason for this positive relationship between risk and returns might

be due to BTC prices being different from conventional stock prices. In general, currencies can

be seen as standard economic goods that are priced by the interaction of supply and demand on

the market. These prices are driven by the macroeconomic variables of an issuing country or

institution (or entity) such as GDP, interest rates or inflation. As there are no macroeconomic

fundamentals for digital currencies, the supply function is fixed (if the currency amount is fixed)

or it evolves according to some publicly known algorithms, which is the case for the BTC mar-

ket. The demand side of the market is not driven by an expected macroeconomic development

of the underlying economy (as there is none). It is driven only by the expected profits of holding

the currency and selling it later (as there are no profits from simply holding the currency due to

digital currencies not bearing interest). The fundamental segment of the market is completely

missing due to the fact that there are no fundamentals allowing for the setting of a "fair" price.
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The digital currency price is thus driven solely by the investor faith in the perpetual growth,

and it is not informative but rather driven by emotion and sentiment. This is the "noise trader"

behavior described by Kyle (1985) and DeLong et al. (1990). Such investors, with no access to

inside information, irrationally act on noise as if it were information that would give them an

edge. This positive leverage effect has been also reported by a few studies on the Chinese stock

market. For example, Hou (2013) has reported that, due to the lack of institutional investors,

the trading values of the Shanghai and Shenzhen stock markets are completely generated by

individual investors who have no access to inside information and irrationally act on noise.

This causes good news (positive shocks perceived by investors) to the market returns affecting

variances more than the bad news (negative shocks).

Moreover, the estimates for the SV model are much less extreme than for the SVJ and SV

models. More precisely, the volatility of variance �v is substantially reduced from 0.017 (SV)

to 0.011 (SVJ) and 0.008 (SVCJ). The mean of the jump size of the volatility µv is significant

and positive. The jump intensity � is also significant. The jump correlation ⇢j is negative but

insignificant, which parallels the results of Eraker et al. (2003) and Chernov et al. (2003) for

stock price dynamics. This effect might be due to the fact that even with a long data history,

jumps are rare events. (See the estimate of ⇢j from the non-affine specifications in Section 4.

We decided to leave the comparison between the SVCJ and non-affine models, and the relevant

discussion for that section.) In summary, the SVCJ model fits the data well by a smaller MSE

than the SVJ and SV models.

Figure 4 shows the estimated jump in returns (first row) and the jumps in volatility (middle row)

together with the estimated volatility (last row). One sees that jumps occur frequently for the

returns and volatility. Apparently, the jumps in the volatility process are much larger and more

frequent than for the returns. Figure 5 presents the in-sample fitted volatility processes for the

SVCJ and SVJ models, respectively. It is not hard to see that both models lead to a similar

overall pattern for the volatility process, though the SVCJ model produces sharper peaks for

BTC.
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Table 4: BTC parameters for SVCJ, SVJ and SV models

SV CJ SV J SV

µ 0.041 0.029 0.030
[0.022, 0.060] [0.011, 0.046] [0.014, 0.046]

µy -0.084 -0.562 -
[-0.837, 0.670] [-1.280, 0.155] -

�y 2.155 2.685 -
[1.142, 3.168] [1.519,3.850] -

� 0.041 0.029 -
[0.025, 0.056] [0.019, 0.047] -

↵ 0.010 0.010 0.009
[0.008, 0.012] [0.006, 0.015] [0.006, 0.012]

� -0.132 -0.116 -0.033
[-0.151 -0.114] [-0.137 -0.094] [-0.052 -0.013]

⇢ 0.407 0.321 0.169
[0.232, 0.583] [0.225, 0.417] [0.066, 0.271]

�v 0.008 0.011 0.017
[0.007 0.010] [0.007 0.014] [0.014 0.021]

⇢j -0.573 - -
[-1.832, 0.685] - -

µv 0.620 - -
[0.426, 0.813] - -

MSE 0.735 0.757 0.763

Notes: This table reports posterior means and 95% finite sample credibility
intervals (in square brackets) for parameters of the SVCJ, SVJ, and SV mod-
els. All parameters are estimated using BTC daily returns calculated as the
log-first difference based on the prices from 31/07/2014 to 29/09/2017.

A useful model diagnosis is to examine the standardized residuals obtained from the discrete

model, which estimates,

"yt =
Yt � µ� Zy

t Jtp
Vt�1

⇠ N(0, 1). (14)

Once these standardized residuals are calculated based on the estimated parameters, they should,

according to Equation (14), be approximately normally distributed. Figures 6 shows the QQ

plots of the standardized residuals from the fitting of different models. From these diagnostics,

it is evident that the GARCH and even the SV models are misspecified. For the SVJ and SVCJ

models, the normal plot diagnostics are substantially improved. However, it is apparent that the

SVCJ model is the preferred choice.

Finally Figure 7 graphs the 2.5th, 25th, 75th and 97.5th percentiles of the 5000 simulated prices

paths of Bitcoin for each horizon up to 30 days based on the parameters reported in Table 4

for the SVCJ, SVJ, and SV models. The blue (red) colour line shows the 2.5th (25th) and
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Figure 4: Jumps estimated in returns and volatility from the SVCJ model
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Notes: This figure graphs the estimated jumps in returns and volatility from the SVCJ model. The model is
estimated using BTC daily returns calculated as the log-first difference based on the prices from 31/07/2014 to
29/09/2017. The first-, second-, and third-subfigures plot jumps in returns, jumps in volatility and the estimated
volatility, respectively.

97.5th (75th) interval of the simulated BTC prices. The blue (red) line with a sign of �, ⇧, ⇤

shows the 2.5th (25th) and 97.5th (75th) forecast intervals for the SVCJ, SVJ, and SV models,

respectively.

Visual inspection of Figure 7 suggests that among the three models considered, the confidence

intervals of BTC prices generated by the SVCJ model are narrower, particularly at the 2.5% and

97.5% levels. In other words, the SVCJ model predicts a narrower confidence band of extreme

BTC prices than the SVJ and SV models. This implies that the SVJ and SV models produce

larger upper tails, i.e., these models overestimate the average BTC price compared to the prices

predicted by the SVCJ model. On the other hand, the larger lower tails of the SVJ and SV

models would imply that BTC would be underpriced compared to the SVCJ model.

19

 Electronic copy available at: https://ssrn.com/abstract=3159130 



Figure 5: Estimated volatility from the SVCJ and SVJ models
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Notes: This figure plots the estimated volatility from the SVCJ (dotted blue) and SVJ (solid black) models. All
models are estimated using BTC daily returns calculated as the log-first difference based on the prices from
31/07/2014 to 29/09/2017.

Figure 6: QQ plots for the SVCJ, SVJ and SV models

Notes: This figure graphs the QQ plots versus standard normal for fitted standardized residuals from the SVCJ, SVJ
and SV models using BTC daily returns calculated as the log-first difference based on the prices from 31/07/2014
to 29/09/2017. We also include the QQ plot for the GARCH model using the same sample period.
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Figure 7: Predicted confidence intervals of simulated observations for the SVCJ, SVJ and SV
models

Notes: This figure graphs the confidence intervals of simulated BTC price paths up to 30 days based on the
parameters reported in Table 4 for the SVCJ, SVJ and SV models. The blue (red) line shows 2.5th (25th) and
97.5th (75th) percentiles of the simulated BTC prices. The blue (red) line with a sign of �, ⇧, ⇤ plots the 2.5th
(25th) and 97.5th (75th) percentile for the SVCJ, SVJ and SV models, respectively.
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4 SV model with jumps: non-Affine specification

4.1 Nonlinearity on return-volatility co-jumps

Imposing an affine structure in the stochastic process as documented in Section 3 may produce a

specification error. Defining pt and �t as the price and volatility process, respectively, following

the notation of BR, we therefore consider the BR non-affine jump-diffusion model:

d log(pt) = µ(�t)dt+ �t{⇢(�t)dW
1
t +

p
1� ⇢2(�t)dW

2
t }

+ cJr,tdJr + cJJr,tdJr,�,

d⇠(�2
t ) = m(�t)dt+ ⇤(�t)dW

1
t + cJ�,tdJ� + cJJ�,tdJr,�,

(15)

where ⇠(·) is an increasingly monotonic function (we will choose it as log(·) in the follow-

ing discussions), W = {W 1,W 2} is a bivariate standard Brownian motion vector and J =

{Jr, J�, Jr,�} is a vector of mutually independent Poisson processes with state-dependent in-

tensities, which are denoted as �r(�t), ��(�t) and �r,�(�t), respectively. Thus we allow for

common and independent jumps in the system. The Poisson processes are also assumed to be

independent from the Brownian motion. In order to guarantee the existence and uniqueness of

a solution to the system, it is assumed by BR that functions µ(·), m(·), ⇤(·), �r(·), ��(·), �r,�(·)

and ⇢(·) meet certain mild regularity conditions.

The BR model is estimated through the GMM method via estimated infinitesimal cross-moments.

We assume the distribution of the jumps to be normal, i.e. (cJr,t, cJ�,t) ⇠ N(µJ ,⌃J) and (cJJr,t, c
JJ
�,t) ⇠

N(µJJ ,⌃JJ), with

µJ =

2

64
µJ,r

µJ,�

3

75 , µJJ =

2

64
µJJ,r

µJJ,�

3

75 ,

⌃J =

2

64
�2
J,r 0

0 �2
J,�

3

75 , ⌃JJ =

2

64
�2
JJ,r ⇢J�JJ,r�JJ,�

⇢J�JJ,r�JJ,� �2
JJ,�

3

75 .

(16)
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For any p1 � p2 � 0, the generic infinitesimal cross-moment of order p1 and p2 is defined as:

✓p1,p2(�) = lim
�!0

1

�
E{[log(pt+�)� log(pt)]

p1 [log(�2
t+�)� log(�2

t )]
p2 |�t = �}. (17)

In particular ✓p1,0 helps identify features of the price process, and ✓0,p2 helps to identify those

of the variance process, while the genuine cross-moments with p1 � p2 � 1 are required to

identify the common parameter shared by the two processes ⇢, �r,� and ⇢J .

To conduct the GMM estimation in BR, we first need to nonparametrically estimate the cross-

moments that are in theory function(al)s of parameter (functions) of interest. The cross-moments

are estimated via the nonparametric kernel method. In particular, denote the day index as

t = 1, ..., T and the equispaced time index as i = 1, ..., N within each day. Denote rt,i,k as

the high-frequency log returns for day t, knot i and minute k. We define the closing logarithmic

prices as log(pt,i) and logarithmic spot variance estimates as

�̂2
t,i =

T

T � 1� nj

⇣�2
1

TX

k=2

|rt,i,k||rt,i,k�1| {|rt,i,k|✓t,i,k} {|rt,i,k�1|✓t,i,k�1}, (18)

where ⇣1 ⇡ 0.7979, ✓t,i,k is a suitable threshold, and nj is the number of returns whose absolute

value is greater than ✓t,i,k. Then the generic cross-moment estimator ✓̂p1,p2(�) is defined as

✓̂p1,p2(�) =

PT�1
t=1

PN
i=1 K(

�̂t,i��

h )[log(pt+1,i)� log(pt,i)]
p1 [log(�̂2

t+1,i)� log(�̂2
t,i)]

p2

�
PT

t=1

PN
i=1 K(

�̂t,i��

h )
(19)

where K(·) is a kernel function and h is the bandwidth. Finally, with the estimated cross-

moments, one can estimate the parameters of interest via the GMM method.

4.2 Estimation of and correspondence between two models

In this section, we fit the BR model using high-frequency data and discuss the comparison with

the fitting of the SVCJ model. We collect high-frequency BTC prices from Bloomberg. The

price data range is from 31/07/2014 to 29/07/2017, and we collect raw data at a frequency of
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60 seconds 24 hours a day. Following Section 5.1 of BR, we aggregate the logarithm returns of

Bitcoin over a 60-minute time range, namely rt,i,k = log pt,i,k� log pt,i,k�1, with k = 1, · · · , 60.

In addition, we also obtain the spot variance estimates for each day t and each knot i by applying

the jump robust threshold bipower variation estimator as in Equation (18).

To compare the data of the high-frequency aggregated volatility and the daily Bitcoin volatil-

ity, we plot the averaged daily spot volatility from the high-frequency data and the daily spot

volatility estimates from the SVCJ model together as in Figure 8. We observe that the two

sequences sometimes peak at a different time point despite that the general pattern agrees.

Figure 8: The averaged daily spot volatility and the daily spot volatility estimates.

Notes: This figure plots the averaged daily spot volatility from the high-frequency data (dotted line in blue) and
the daily spot volatility estimates (solid line in black)

In Table 5, we show the full model estimation results. We note that in an unreported study

we find that the nonparametric estimation suggests a parametric fit would be sufficient for the

data. Therefore only the parametric fit results are shown. The drift parameter µr is estimated

to be small and insignificant. The linear mean reversions, which can be seen as m0 and m1, are

both negative. However they are both insignificant. The volatility of volatility ⇤ is estimated

to be very significant with a value of 0.6766. The averaged number of independent jumps in

volatility is estimated at an annual rate of 0.0519 ⇤ 252, which is around 13. The estimated

number of co-jumps is around 0.0584 ⇤ 252 ⇡ 17. The mean of the independent variance jumps

is significant at a level of �0.2783. µJJ,r,0 is small (-0.0187) and negative, and µJJ,r,1 is 0.1265.
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Both parameters are insignificant at the 95% level of confidence. We do not see an obvious

tendency for the jumps to be downward, as observed in Bandi and Renò (2016).

We find that the leverage ⇢0 is estimated to be negative, i.e., �0.1485, though insignificant. The

leverage would increase with an increasing volatility level as ⇢1 is estimated to be significant

and with a value of 0.9292. The standard deviation of the jumps in return �J,r is estimated to be

significant with the value of 0.6890. When fitting a nonlinear structure to the standard deviation

of the common price jumps, the parameters �JJ,r,1 and �JJ,r,2 are both significant. The standard

deviation of jumps in volatility �J,� is estimated to be 0.8619 with significance. The standard

deviation of the common volatility jump �JJ,� is estimated to be insignificant. Notably, the

correlation of jumps ⇢J is estimated to be negative and significant with a value of �0.5257,

which is in line with BR. This negative and significant co-jump size correlation is discovered

by Duffie et al. (2000), who conclude that the price and the volatility jump sizes are "nearly

perfectly anti-correlated". Eraker (2004) finds a statistically significant correlation between the

jump sizes only when employing option data in addition to stock returns data. Bandi and Renò

(2016) also report a "nearly perfect anti-correlation" of -1.

As we use different assumptions than Bandi and Renò (2016), we can only find a subset of

parameter correspondence. A direct comparison of some important parameters can be found in

Table 6. We can see that for � and �r,� the parameters agree in their significance and magnitude.

For the volatility of the volatility parameter, both models indicate that it is significant. The drift

in price is estimated by both models to be positive although they disagree in significance. In

term of correlation of jumps, we find that our SVCJ model gives negative insignificant results

while Bandi and Renò (2016) also give negative but significant result.

5 Option pricing

In the previous sections, we have shown that the SVCJ and the BR models can well describe

the returns dynamics of BTC. In this section, we discuss the option prices underlying the BTC
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Table 5: BR parametric estimates and their 95% confidence inter-
vals.

no cojumps no ind. jumps full model

µr 0.0021 0.0027 0.0082
[-0.1939, 0.1981] [-0.1933, 0.1987] [-0.0444, 0.0608]

⇢0 0.0044 -0.0148 -0.1485
[-0.1150, 0.1237] [-0.1401, 0.1105] [-0.4851, 0.1882]

⇢1 -0.3744 -0.2237 0.9292
[-0.8513, 0.1025] [-0.7088, 0.2614] [0.5884, 1.2699]

m0 -0.0500 -0.0500 -0.0495
[-0.1275, 0.0275] [-0.1275, 0.0275] [-0.1475, 0.0485]

m1 -0.0168 -0.0125 -0.0600
[-0.2128, 0.1792] [-0.2085, 0.1835] [-0.2560, 0.1360]

⇤ 0.7634 0.7853 0.6766
[0.5674, 0.9594] [0.5893, 0.9813] [0.6570, 0.6963]

µJ,r 0.1577 0 2.5486
[0.0372, 0.2782] - [2.3526, 2.7446]

µJJ,r,0 0 -0.0804 -0.0187
- [-0.5383, 0.3774] [-0.1085, 0.0711]

µJJ,r,1 0 0.0192 0.1265
- [-0.6850, 0.7234] [-0.4183, 0.6713]

�J,r 0.6801 0 0.6890
[0.5453, 0.8148] - [0.4930, 0.8850]

�JJ,r,0 0 0.0864 0.0043
- [-0.3242, 0.4971] [-0.5459, 0.5544]

�JJ,r,1 0 1.8713 1.2159
- [1.8436, 1.8991] [1.0199, 1.4119]

�JJ,r,2 0 2.6521 3.9590
- [2.5377, 2.7664] [3.7630, 4.1550]

µJ,� -0.5000 0 -0.2783
[-0.5364,-0.4636] - [-0.4992, -0.0574]

µJJ,� 0 -1.9181 -0.4927
- [-2.0805,-1.7557] [-0.6429, -0.3425]

�J,� 0.7945 0 0.8619
[0.7379, 0.8511] - [0.7237, 1.0001]

�JJ,� 0 1.0705 0.0717
- [0.8716, 1.2693] [-0.0767, 0.2202]

⇢J 0 -1.0000 -0.5257
- [-1.4648, -0.5351] [-0.7217, -0.3297]

�r 0.0002 0 0.0000
[-0.1958, 0.1962] - [-0.1960, 0.1960]

�� 0.0700 0 0.0519
[0.0504, 0.0896] - [0.0323, 0.0715]

�r,� 0 0.0060 0.0584
- [-0.0136, 0.0256] [0.0564, 0.0603]

Notes: This table reports the parameter estimates of the model specified in Equation (15) using the
intra-daily BTC returns. For each parameter, we reports the estimate and the corresponding 95%
finite sample credibility intervals in parentheses. The full model is shown in the forth column,
and the second and third columns report the same model with the restriction of no co-jumps and
no independent jumps, respectively.

with the SVCJ and BR models.
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Table 6: Correspondences between estimated parameters

Hou et.al., (2019) Bandi and Renò (2016)
� 0.041⇤⇤ �r,� 0.0583⇤⇤

�v 0.008⇤⇤ ⇤ 0.6766⇤⇤

µ 0.041⇤⇤ µr 0.0082
⇢j �0.573 ⇢J �0.5257⇤⇤

5.1 BTC options

After we fix the SVCJ parameters, we advance with a numerical technique called Crude Monte

Carlo (CMC) to approximate the BTC option prices. Derivative securities such as futures and

options are priced under a probability measure Q commonly referred to as the “risk neutral”

or martingale measure. Since our purpose is to explore the impact of model choice on option

prices, we follow Eraker et al. (2003) and set the risk premia to zero. This choice can be

disputed, but for the lack of existence of the officially traded options a justifiable path to pricing

BTC contingent claims. Suppose we have an option with a payoff at time of maturity T as

C(T ), and typically for call option C(T ) = (ST � K)+. The price of this option at time t is

denoted as

E Q[exp{�r(T � t)}C(T )|Ft], (20)

where Ft is a set that represents information up to time t. We approximate the European option

prices of BTC using the CMC technique. The CMC simulation is done for 10000 iterations to

approximate the option price using the parameters reported in Table 4 for the SVCJ, SVJ, and

SV models. Since no BTC option market exists yet, we do not have real market option prices

for comparison. Thus, we chose July 2017 randomly as the experimental month in our option-

pricing simulation analysis. Throughout our entire analysis of option pricing, the moneyness

for strike K and S at t is defined to be K/St. The pricing formula is a function of moneyness

and time to maturity ⌧ = (T � t) where T is the maturity day.

In Figure 9, we plot the simulated volatility of various models based on the parameters reported

in Table 4 for the month of July 2017. It can be seen from this figure that the approximated

volatility on 15 July, 2017, had a large jump (there was a large increase observed on 15 July,
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2017, in the BTC historical prices). The sudden jump is perfectly captured by the SVCJ and SVJ

models, while the SV model cannot characterize the volatility as well as the other two models.

Assuming a BTC spot price St = 2250, the estimated BTC call option prices across moneyness

and time to maturity on July 17, 2017, obtained using the SVCJ model1 are presented in Table

7. We see that, for example, a call option on BTC with the strike K = 1250 and time to maturity

of 90 days would be traded at 1157.95 on 17 July, 2017. It is obvious from Table 7 that the BTC

option prices increase with time to maturity and decrease across moneyness from ITM to OTM.

This is consistent with option prices in the real world and also observed in the equity option

markets.

To further understand how the option price changes with respect to changes in time to maturity

and moneyness for different models, we show in Figure 10 the one-dimensional contour plot of

the option prices surface across time to maturity and moneyness estimated from the SVCJ, SVJ

and SV models for the month of July 2017. When examining moneyness, the time to maturity is

fixed at 30 days, and when looking at the time to maturity, moneyness is fixed at at-the-money

(ATM). We can see from the contour plot that the relationship between the option price and

the time to maturity or moneyness varies over time for all three models. However, one easily

seen pattern is that the approximated option price is higher when the volatility is higher, i.e.,

the colour of the contour plot is brighter. This is especially the case for options varying across

time to maturity. The SVCJ model has the most volatile pattern among the three models. This

figure conveys the homogeneous message as we can see from Figure 9 in the volatility plots.

For example, for the BTC price, we see a drastic change in the contour structure on, e.g., 15

July, 2017 as the price suddenly drops from 2232.65 USD on 15/07/2017 to 1993.26 USD. The

sudden drop in price should be attributed to the big jump in volatility shown in Figure 9, and

we can also observe this jump on 15 July in Figure 10.

Figure 11 displays the BTC call option price differences between the estimated option price

from the SVCJ and SVJ models with respect to changes in moneyness and across time to ma-

turity for July 2017. It is not hard to see that the pattern is similar to the fitted volatility shown

1We have also calculated option prices for the SVJ and SV models. These results are available upon requests
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Figure 9: Estimated volatility of BTC for July 2017: BTC

Notes: This figure plots the estimated volatility of the SVCJ, SVJ and SV models. The volatility is approximated
based on the parameters reported in Table 4 for the month of July 2017. The x-axis notes the dates in July 2017.
The blue/green/red line plots the volatility from the SVCJ, SVJ and SV models.

in Figure 9. Therefore, the price differences between the SVCJ and SVJ models are mainly

caused by the jumps in the volatility process and the volatility level, which reflects the necessity

of adopting an SVCJ model in practice.

5.2 BTC implied volatility smiles

It is well known that stochastic volatility determines excess kurtosis in the conditional dis-

tribution of returns. The excess kurtosis causes symmetrically higher implied Black Scholes

volatility when strikes are away from the current prices, e.g., the level of moneyness is away

from the ATM level. This phenomenon is called the "volatility smile". It is well documented

in the existing literature that the effect is stronger for short and medium maturity options than

for long maturity options for which the conditional returns are closer to normal (Das and Sun-

daram (1999)). The presence of co-jumps, and the negative correlation between the presence

of co-jumps sizes yield additional sources of skewness in the conditional distribution of stock

returns (Bandi and Renò (2016)).

To further examine the option-pricing property of BTC, we approximate the implied Black

Scholes volatility from various models for different degrees of moneyness (strike/spot) and

different times to maturity. First, the European call option prices are simulated using the model
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Figure 10: Call option prices across moneyness and time to maturity: BTC

Notes: This figure graphs the call option prices surface counterplot across different moneyness and different times
to maturities for the month of July 2017, as shown in the right-hand side labels. When looking at moneyness, the
time to maturity is fixed at 30 days, and when looking at the time to maturity, moneyness is ATM. The colour in
the graph represents the price level; the brighter the colour, the higher the price.

Figure 11: Call option price differences between thr SVJ and SVCJ models: BTC

Notes: This figure plots the option price differences between the SVCJ and SVJ models for July 2017. When
looking at moneyness, the time to maturity is fixed at 30 days, and when looking at the time to maturity,
moneyness is ATM. The colour in the graph represents the price difference level; the brighter the colour, the larger
the difference between the price from the SVCJ and SVJ models.
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Table 7: Call option price of BTC on 17/07/2017 from the SVCJ model

K\⌧ 1 7 30 60 90 180 360 720
1250.00 1069.18 1017.81 1099.87 1125.90 1157.95 1248.98 1361.04 1365.96
1350.00 959.02 959.02 1006.02 1066.67 1094.08 1224.48 1302.60 1316.03
1450.00 885.20 860.15 929.32 995.45 1046.89 1099.35 1258.83 1438.90
1550.00 802.38 791.34 901.27 950.34 1015.76 1114.94 1192.24 1332.08
1650.00 707.97 739.10 825.07 882.17 902.32 1062.17 1175.59 1282.36
1750.00 625.86 678.22 786.88 856.72 896.56 962.79 1192.61 1338.49
1850.00 552.26 618.94 697.11 785.62 862.83 897.74 1110.36 1289.51
1950.00 502.28 545.58 663.47 740.32 819.72 903.60 1052.09 1229.45
2050.00 425.46 511.28 629.14 741.65 772.51 905.30 1027.76 1193.43
2150.00 358.30 460.57 597.44 683.55 740.64 870.66 1036.76 1164.23
2250.00 302.88 408.62 543.02 633.31 720.57 872.42 938.68 1051.71
2350.00 265.91 378.10 492.86 594.01 651.03 783.37 887.62 1064.33
2450.00 211.26 347.79 470.85 580.30 657.43 761.39 940.90 1085.75
2550.00 193.69 304.13 437.06 547.15 608.36 766.19 914.62 1101.72
2650.00 156.38 266.64 421.86 518.27 571.42 719.92 827.17 992.20
2750.00 136.24 247.38 397.92 484.70 556.31 651.86 863.10 1066.75
2850.00 135.28 228.47 345.42 465.75 541.61 672.76 788.25 955.97
2950.00 100.02 202.57 341.11 413.75 488.15 627.52 780.53 917.27
3050.00 103.45 179.93 313.83 424.23 496.05 619.88 758.99 911.33
3150.00 82.59 162.72 290.90 371.20 450.85 593.10 752.88 888.89
3250.00 72.93 140.40 273.97 358.26 442.91 571.96 726.49 933.57

Notes: This table reports the approximated call option prices at different time to maturity ⌧ and
strike prices K the SVCJ model on 17/07/2017 based on the parameters reported in Table 4. The
numbers in the first row are the time to maturity. The numbers in the first column are the strike
prices. The spot BTC price is assumed to be 2250.

parameters reported in Table 4 for the SVCJ, SVJ and SV models. Then the volatility from

various models is implied from the Black Scholes model based on the options approximated

from different models. We consider four times to maturity: one week, one month, three months

and one year. We report the implied volatility surface as a function of moneyness and time to

maturity. The results indicate that jumps in returns and volatility include important differences

in the shape of the implied volatility (IV) curves, especially for the short maturities options.

Figure 12 shows the IV curves for the SVCJ, SVJ and SV models for four different maturities

and across moneyness. It can be seen from Figure 12, that adding jumps in returns steepens

the slope of the IV curves. Jumps in volatility further steepen the IV curves. For short maturity

options, the difference between the SVCJ, SVJ and SV models for far ITM options is quite large,

with the SVCJ model giving the sharpest skew among the three models. The difference between

the SVCJ and SV volatility is approximately 2-3% for up to one month. It is interesting to note

that all three models have a one-side volatility skew, implying that ITM options prices are higher

than the OTM options. This could be due to the skewness in the conditional distribution of BTC

returns (Das and Sundaram (1999)) and/or that the negative co-jump size yields an additional

source of skewness (Bandi and Renò (2016)). As time to maturity increases, the volatility
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curve flattens for all models. According to Das and Sundaram (1999), jumps in returns result

in a discrete mixture of normal distributions for returns, which easily generates unconditional

and conditional nonnormalities over short frequencies such as daily or weekly. Over longer

intervals, e.g., more than a month, a central-limit effect results in decreases in the amount of

excess and kurtosis. Indeed, diffusive stochastic volatility models may generate very flat curves,

such as a flat BTC IV for three-month and one-year times to maturity.

However, for the SVCJ model, the curve flattens at a slightly higher level. The implied volatility

of the SVJ model is closer to the SVCJ model than the SV model. The difference between the

SVCJ, SVJ and SV models becomes larger with short time to maturity options, i.e., the one-

week and one-month times to maturity. Similar results have been documented in other studies

in which these models have been applied to equity index data. Eraker et al. (2003), Eraker

(2004) and Duffie et al. (2000) find that jumps in returns and variance are important in capturing

systematic variations in Black Scholes volatility. In general, although the BTC market has the

unique feature of having more jumps, which makes it different from other mature markets (e.g.,

equity), the option prices and the IV from the affine models generally follow the conventional

characteristics reported from other option markets.

We have also estimated the BR IVs with the same time to maturity and moneyness used for

the SVCJ IVs. We simulate the option prices using the model parameter reported in column

4 of Table 5. We distinguish the case of ⇢J , which is set to be a model-fitted parameter from

the SVCJ fit or to be zero, i.e., the IV surface corresponds to a case with a correlation between

jump sizes equaling -0.5257 or a correlation between jump sizes equaling to zero. The IVs as a

function of moneyness from the BR model are plotted in Figure 13. We can see that the IVs of

the BR model agree with the SVCJ model. We see a one-side volatility skew, implying that the

ITM call option prices are higher than the OTM call options. However, due to the significantly

negative jump-size correlation ⇢J , the slope of the IVs from the BR full model is much steeper

than the BR model with a case of uncorrelated jump sizes. The impact of the negative jump

size correlation is much stronger for short time to maturity options, i.e., the one-week and one-

month times to maturity. This is mentioned in the results of Duffie et al. (2000) as well, who find
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Figure 12: The IV for the BTC market: the SVCJ, SVJ and SV models

Notes: This figure plots the Black Scholes IV for the BTC market based on the SVCJ, SVJ and SV models. The
x-axis shows moneyness and the y-axis shows the IV. Four times to maturity have been considered: one week,
one month, three months and one year. The lines with �, ⇤, ⇧ plots the IVs of the SVCJ, SVJ and SV models,
respectively.

a superior fit of the IV smirk when calibrating a more negative correlation between jump sizes.

Similarly, Eraker (2004) finds a statistically significant correlation between jump size only when

employing option data in addition to returns data. Bandi and Renò (2016) also shows that anti-

correlated jump sizes are a fundamental property of prices and volatility. However, the use of

high-frequency data is sufficient to reveal this property with no further need for option data.

6 Robustness check using the CRyptocurrency IndeX (CRIX)

The CRyptocurrency IndeX, a value-weighted cryptocurrency market index with an endoge-

nously determined number of constituents using some statistical criteria, is created by Trimborn

and Härdle (2018). It is constructed to track the entire cryptocurrency market performance as

closely as possible. The representativity and the tracking performance can be assured as CRIX

considers a frequently changing market structure. The reallocation of the CRIX happens on a
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Figure 13: The IV for the BTC market: BR model

Notes: This figure plots the implied Black Scholes volatility for the BTC option prices based on the BR model. The
x-axis shows moneyness, and the y-axis shows the IV. Four times to maturity have been considered: one week, one
month, three months and one year. The IVs are based on the simulated option prices using the model parameters
reported in Table 5. The full model uses parameters from column 4 of Table 5. A co-jumps correlation of 0 means
that ⇢J is set to zero while the other parameters remain the same as in the full model.
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monthly and quarterly basis (see Trimborn and Härdle (2018) and thecrix.de for details).

CRIX has been widely investigated in the pioneering research on cryptocurrencies, including

by Hafner (2018), Chen and Hafner (2019) and da Gama Silva et al. (2019). Here we perform

an analysis of CRIX since this additional investigation is beneficial from a robustness point of

view. Analogous to the investigation of BTC dynamics in Section 2, the econometric treatment

for CRIX is implemented and reported. In brief, we summarize our major findings here. (See

the appendix for the relevant figures and tables.) Firstly, we find that the shape estimates in

the ARIMA-t-GARCH model along with the QQ plots shown in the appendix indicate a fatter

tail in the return distribution of CRIX compared to that of BTC. Some constituents, typically

altcoins (alternatives to bitcoin), in the CRIX may behave more extremely than BTC does. This

indicates that the CRIX makes itself riskier than BTC as altcoins (smaller capitalization) are

typically riskier than BTC (bigger capitalization). We can parallel this inference to the size

effect of stocks. The calibration of the SVCJ model in Table 8 conveys a similar configuration.

The mean jump size of the CRIX volatility process is reported as 0.709, which is relatively

higher than 0.620 for BTC shown in Table 4.

In addition, we report a pricing analysis of CRIX options. Considering a class of SV models,

the fitted call option prices during July 2017 across moneyness and times to maturity are shown

in Figure 14. Needless to say, a salient rise in the approximated volatility is clearly evident on

July 17, 2017. The sudden jump is perfectly captured by the SVCJ and SVJ models but not by

the SV model. More specifically, Figure 15 displays the price difference between the estimated

option price from the SVJ, SV and SVCJ models with respect to changes in moneyness and

across time to maturity. The price gap between the SVJ and SVCJ models is attributed to the

presence of jumps in the volatility process and the level of volatility, which again is in favor

of the SVCJ model applied to the crypto market index. In general, we confirm the consistency

between BTC and the CRIX.
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Figure 14: Call option prices across moneyness and time to maturity: CRIX

Notes: This figure graphs the call option prices surface counterplot across moneyness and time to maturities for
the month of July 2017 for CRIX. When looking at moneyness, the time to maturity is fixed at 30 days, and when
looking at the time to maturity, moneyness is ATM. The colour in the graph represents the price level; the brighter
the colour, the higher the price.

Figure 15: Call option price differences between the SVJ and SVCJ models: CRIX

Notes: This figure plots the CRIX call option price differences between the SVCJ and SVJ
modesl for July 2017. When looking at moneyness, the time to maturity is fixed at 30 days,
and when looking at time to maturity, the moneyness is at-the-money. The colour in the graph
represents the price difference level; the brighter the colour, the larger the difference between
the price from the SVCJ and SVJ models.
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Table 8: Parameters for the SVCJ, SVJ and SV models: CRIX

SV CJ SV J SV

µ 0.042 0.0437 0.017
[0.030, 0.054] [0.027, 0.061] [0.000 0.034]

µy -0.0492 -0.515 -
[-0.777, 0.678] [-1.110, 0.079] -

�y 2.061 2.851 -
[1.214, 2.907] [1.349, 4.354] -

� 0.0515 0.035 -
[0.038, 0.065] [0.017, 0.052] -

↵ 0.0102 0.026 0.010
[0.009, 0.012] [-0.012 0.063] [0.007 0.012]

� -0.188 -0.240 -0.038
[-0.205, -0.170] [-0.383, -0.096] [-0.056 -0.020]

⇢ 0.275 0.214 0.003
[0.140, 0.409] [0.014, 0.415] [-0.130 0.136]

�v 0.007 0.016 0.018
[0.005, 0.009] [-0.001, 0.033] [0.014 0.022]

⇢j -0.210 - -
[-0.924, 0.503] - -

µv 0.709 - -
[0.535, 0.883] - -

MSE 0.673 0.707 0.736

Notes: The table reports posterior means and 95% credibility intervals (in
square brackets) for the parameters of the SVCJ, SVJ and SV models. All
parameters are estimated using CRIX daily returns calculated as the log dif-
ference based on the prices from 31/07/2014 to 29/09/2017.

7 Conclusion

"The Internet is among the few things that humans have built that they do not truly understand"

according to Schmidt and Cohen (2017). Cryptocurrency, a kind of innovative internet-based

asset, brings new challenges but also new ways of thinking for economists, cliometricians and

financial specialists. Unlike classic financial markets, the BTC market has a unique market

microstructure created by a set of opaque, unregulated, decentralized and highly speculation

driven markets.

This study provides a way of pricing crytocurrency derivatives using advanced option-pricing

models such as the SVCJ and BR models. We find that in general, the SVCJ model performs

as well as the non-affine BR model. Consistent with the evidence from the equity market, we

find that the correlation between the jump sizes in returns and the volatility process is anti-

correlated. The jump-size correlation is statistically (marginally) negative in the BR (SVCJ)
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model. Deviating from the equity market, we cannot obtain a significant negative "leverage

effect" parameter ⇢, which implies a nonnegative relation between returns and volatility. The

reason for this relationship might be that BTC is different from the conventional stock market,

not only because the BTC market is highly unregulated but also due to the fact that the BTC

price is not informative (as there are no fundamentals allowing the BTC market to set a "fair"

price) and is driven by emotion and sentiment. This speculative behaviour can be explained by

the "noise trader" theory from Kyle (1985). The positive relation might result from the fact that

BTC investors irrationally act on noise as if it were information that would give them an edge.

We find that option prices are very much driven by jumps in the returns and volatility processes

and co-jumps between the returns and volatility. This can be seen from the shape of the IV

curves. This study provides a grounding base, or an anchor, for future studies which aim to

price cryptocurrency derivatives. This study provides useful information for establishing an

options market for BTC in the near future.
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Coefficients Estimates robust std t value
CRIX
! 4.93e� 05 2.69e� 05 1.83
↵1 2.23e� 01 4.28e� 02 5.45
�1 7.76e� 01 5.62e� 02 13.81
⌫ 3.10e+ 00 2.19e� 01 14.15

Table 9: Estimated coefficients of t-GARCH(1,1) model

Coefficients Estimates robust std t value
CRIX
! 4.93e� 05 2.69e� 05 1.83
↵1 5.58e� 02 4.34e� 02 1.34
�1 9.62e� 01 1.38e� 02 69.43
�1 5.36e� 01 1.39e� 01 3.85
⌫ 2.42e+ 00 2.42e� 01 10.02

Table 10: Estimated coefficients of t-EGARCH(1,1) model

8 Appendix: Collected CRIX results

This appendix presents the empirical results of CRIX covering (1) the econometric analysis of

its dynamics shown in Tables 9 and 10 (2) jumps in returns and volatility from the SVCJ model

shown in Figure 16 and (3) the estimated volatility from the SVCJ and SVJ models shown in

Figure 17. In general, a general consistency can be found between the CRIX and BTC.
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Figure 16: Jumps estimated in returns and volatility from the SVCJ model: CRIX
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Figure 17: Estimated volatility from the SVCJ and SVJ models: CRIX
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