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The recent emergence of blockchain-based cryptocurrencies has received a
considerable attention. The growing acceptance of cryptocurrencies has led
many to speculate that the blockchain technology can surpass a traditional
centralized monetary system. However, no monetary model has yet been de-
veloped to study the economics of the blockchain. This paper builds a model
of the economy with a single generally acepted blockchain-based currency. In
the spirit of the search and matching literature I use a matching function to
model the operation of the blockchain. The formulation of the money demand
is taken from a workhorse of monetary economics - Lagos and Wright (2005).
I show that in a blockchain-based monetary system money demand features
a precautionary motive which is absent in the standard Lagos-Wright model.
Due to this precautionary money demand the monetary equilibrium can be
stable for some calibrations. I also used the developed model to study how
the equilibrium return on money is dependent on the blockchain parameters
such as mining costs and rewards.
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1 Introduction

More than 1400 different blockchain-based cryptocurrencies with a total market cap-

italization of about $700 billion were in circulation in January, 20181. Over 300,000

transactions are conducted with cryptocurrencies every day and at least 1,000 off-line

locations accept cryptocurrency as means of payment2.

As Fernandez-Villaverde and Sanches (2017) write, the appearance of blockchain-

based currencies has stated many normative and positive questions for monetary eco-

nomics. These questions require a theoretical model that takes into account the most

important characteristics of the blockchain operation. According to my knowledge, no

such monetary model has yet been developed.

A growing amount of literature addresses the economic nature and the novelty of

blockchains3. Most of the papers, however, focus on case studies or a general discussion

of the blockchain protocol. Theoretical literature on private currency provision and

currency competition is extensive4. However, the existing models lack many of the

fundamental features of the blockchain operation and therefore can only partially be

applied to study blockchain-based monetary systems.

Blockchain is a protocol which defines a decentralized monetary arrangement. Finan-

cial transactions in this arrangements can be verified and executed by every participant

as opposed to banks in a traditional monetary system. Money supply evolves according

to a pre-specified rule as opposed to the policy decisions of a central bank. Blockchain-

based currencies are also different from other forms of privately supplied money known

from history5.

1www.coinmarketcap.com.
2The numbers is given for Bitcoin, the largest cryptocurrency. See https://www.coindesk.com/surge-in-

real-locations-accepting-bitcoin/ and https://www.coindesk.com/surge-in-real-locations-accepting-
bitcoin/.

3Berentsen and Schaer (2018), Swan (2015), Peter et al. (2016) to name just a few.
4For example, Cavalcanti, Erosa, and Temzelides (1999, 2005), Cavalcanti and Wallace (1999),

Williamson (1999), Berentsen (2006), Monnet (2006), Marimon et al. (2003, 2012) and more re-
cently, Fernandez-Villaverde and Sanches (2017).

5For example, during the free banking era. See Gordon (1985).
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One of the basic features of the blockchain system is the absence of currency issuers

(except for the very first units). Newly created currency units are injected into the net-

work as a reward for the execution of financial transactions. The processing of financial

transactions is called mining and the agents who conduct this activity are called miners6.

Mining requires computational time as an input and consequently costs energy. Mining

costs together with rewards determine the equilibrium supply of the mining service and

as a byproduct affect the evolution of the money supply. Another important feature of

the blockchain is that the processing of financial transactions takes time7. Hence, not

all the transaction that were requested are processed within a period (or ever). Money

market participants take a probabilistic nature of the transaction execution into account

when signing trade contracts. Moreover, they can add a fee to a transaction request to

facilitate the execution. Finally, the circulation of the blockchain-based currency features

externalities. Miners compete with each other to be the first who process a particular

transaction since only the first miner receives a reward for this transaction. Hence every

miner is successful only with a particular probability. An increase in the total num-

ber of miners negatively affects the probability of miner’s success. On the other hand,

an increase in the number of the transaction requests positively affects miners’ revenue

through an increase in transaction fees. In a similarly way a probability that a particular

transaction will be processed increases with the number of miners but decreases in the

transaction demand.

In this paper I attempt to develop a monetary model that incorporates these key

features of the blockchain and that can be used for the formal analysis of the blockchain-

based monetary system. I study the economy with a single generally accepted blockchain-

based currency. The money demand is based on the Lagos and Write (2005) and

Fernandez-Villaverde and Sanches (2017). In the Lagos-Wright approach money de-

6I want to stress that mining is conceptually different from currency issuance.
7This is a necessary requirement for the operation of a blockchain which results from the double-

spending problem and is not an artefact of technological constraints.
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mand is endogenous rather than introduced in an ad hoc manner. Moreover, the model

already includes the (exogenous) probability of trade on the decentralized market. The

framework of this paper provides a new interpretation of this probability and makes it

dependent on the parameters of the blockchain.

The processing of the financial transactions via a blockchain is modelled by a matching

function in the spirit of the search and matching literature. The idea of a matching

function is stemming from labor economics8. It is widely used in macro models to

describe market imperfections: for example, labor market frictions9 or the credit market

mismatch10. I use the matching function to determine the probability of a miner success

as well as the probability of a transaction confirmation. Both probabilities become

functions of the number of transaction requests relative to the number of active miners.

The (endogenous) probability of transaction confirmation corresponds the probability of

trade in the Lagos-Wright model. Moreover, the matching function naturally reproduces

externalities associated with mining.

I derive a monetary equilibrium of the model in terms of the return on money. Since

the model explicitly includes some of the blockchain characteristics - such as mining

costs and rewards - I am able to analyse their effects on the equilibrium money return in

a comparative statics exercise. A higher reward to miners accelerates the money growth

and reduces the equilibrium return on money. Higher costs of mining on the contrary

put an upward pressure on the equilibrium return on money.

I also show that the agents in the economy hold an excess amount of currency units

and submit an excess amount of transactions. Since agents know that every transaction

request is processed only with a particular probability they submit more transaction

requests than necessary out of a precautionary motive. As a consequence, the money

demand function is hump-shaped: it increases for small values of the return on money

8Mortensen and Pissarides (1994) and (1999).
9See Gali (2010) for a review.

10For example, as den Haan et al., 2003, or Wasmer and Weil (2004).
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and starts to decrease after some point. If the monetary equilibrium corresponds to the

declining part of the money demand then the equilibrium is stable. These results are

not present in the model of a traditional centralized monetary system.

The rest of the paper is organized as follows. Section 2 introduces a matching function

for the money market. Section 3 describes the money demand. Section 4 presents the

miners’ problem and the evolution of the money supply. The equilibrium dynamics are

discussed in section 5. Section 6 concludes.

2 Matching on the Money Market

The economy is populated by an infinity of miners who can decide to mine financial

transactions or stay inactive. Active miners randomly choose transaction requests, verify

them and execute (which technically means add them to the blockchain). The total

number of processed transactions Tt is specified as a matching function

T (dt, CPUt) = T̄ dηtCPU
1−η
t (1)

where transaction demand dt is the number of submitted transaction requests, CPUt

is the number of computer processing units that were employed for mining. 0 < η <

1 determines the elasticity of substitution between computational units and pending

transaction requests. T̄ is a scale parameter.

According to the matching function both miners and transaction requests are needed

to ”create” new processed transactions on the blockchain. For example, if dt = CPUt

then each miner ”meets” a transaction request and Tt = dt = CPUt. If CPUt < dt then

CPUt < Tt < dt. The framework accounts for the fact that some transactions remain

pending when the transaction demand is too high. The other way around, if CPUt > dt

then we have dt < Tt < CPUt. Some miners only spend electricity on mining but do

not receive a reward. No transactions are processed when the demand for transactions
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is zero or when there is no miners in operation.

Several clarifications are in order. First, real miners process blocks of transactions.

For simplicity I assume that one block contains only one transactions with only one

currency unit. I also assume that one miner posses one computer processing unit so

CPUt is equal to the number of miners on the money market.

Second, from the technical point of view miners can mine empty blocks and still

receive a reward. The matching function rules this out. I argue that mining of empty

blocks is not sustainable in equilibrium. If no transactions are verified and added to the

blockchain the currency can not be effectively used as a mean of exchange. The value of

such currency is zero in the long run and the reward is valueless for miners.

Third, the matching function states that an increase in CPUt raises Tt. Many of the

real blockchains periodically adjust the level of mining difficulty (and hence the mining

costs) depending on the number of miners. These adjustments stabilize the number

of transactions processed per unit of time. If, for example, CPUt increases and, as a

result, Tt rises then after a while the difficulty is increased and the number of verified

transaction goes down again11. For such cryptoscurrencies this model can be applied to

characterize a short run equilibrium.

Forth, my specification implies that a higher transaction demand makes it easier for

miners to ”meet” transaction requests. This is not true for real blockchains. Miners can

always find a pending transaction at no costs. However, a higher transaction demand

raises the fees that agents attach to their transaction requests and thus positively affects

the profit of miners. I do not introduce fees explicitly. Instead, I assume that a positive

effect of higher dt comes from an increase in the probability of a miner’s success.

Following the standard approach in the search and matching literature I character-

ize the money market in terms of market tightness θ = dt
CPUt

which is the number of

transaction requests per miner.

11In case of the Bitcoin blockchain the difficulty is adjusted approximately once in 2 weeks.
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The matching function naturally introduces the externalities into the model. The

probability of transaction confirmation σ(θt) increases with the number of miners and

decreases with the total transaction demand on the market. The probability of success

for miners λ(θt) increases with the transaction demand and decreases with the number

of miners on the market.

σ(θt) =
T (dt, CPUt)

dt
= T

(
1,

1

θt

)
= T̄ θη−1

t , σ′(θt) < 0 (2)

λ(θt) =
T (dt, CPUt)

CPUt
= T (θt, 1) = T̄ θη, λ′(θt) > 0 (3)

To sum up, too many transaction requests per miner implies an inefficiently small

transaction confirmation probability in the model. In the real world we observe it

through an increase in transaction fees. Too many miners relative to the transaction

demand implies an inefficiently low probability of a miner’s success. In reality a higher

competition on the mining market results in higher energy consumption.

3 Demand for Money and Transactions

Money demand arises from a double coincidence problem as in the Lagos and Wright

(2005) search theoretic approach. I only briefly sketch the framework and refer the reader

to the original paper or to Fernandez-Villaverde and Sanches (2017) for the detailed

derivations.

A continuum of buyers and a continuum of sellers, both of measure 1, live in the

economy. Every period buyers are randomly assigned to sellers. Every buyer-seller pair

negotiates on a deal according to which a seller produces and sells a particular amount

of goods qt to the buyer against a payment pt. The buyer and the seller in every pair

might never see each other again. Consequently they cannot rely on a credit and have

to use money as a means of payment to be able to trade12.

12In the Lagos and Wright (2005) every agent produces a unique good. Money is required to overcome
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The negotiation of trade deals is achieved by ”take-it-or-leave-it” offers from buyers

to sellers. Denote the utility function of the buyer as u(qt) and the disutility from work

of the seller as w(nt) where nt is an amount of labor input13. The production function

of the seller is linear and takes labor as the only input, qt = nt. Hence w(nt) = w(qt).

The first best amount of production and trade q∗ is determined by u′(q∗) = w′(q∗). If

β is a discount factor, φt is a value of a currency units in terms of real goods and mt is

money holdings of the buyer then the bargaining problem can be written as

max
qt,dt

[u(qt)− βφt+1pt] (4)

s.t. −w(qt) + βφt+1pt ≥ 0 (5)

pt ≤ mt (6)

The buyer wants to maximize his utility minus the real value of the payment. The

participation constraint (5) ensures that a seller wants to participate in the trade deal. It

always holds with equality. The liquidity constraint (6) states that the payment cannot

excess the buyer’s money holdings. Depending on whether the liquidity constraint is

binding or not we might have an interior or a corner solution:

qt =


q∗ if φt+1mt ≥ β−1w(q∗t )

w−1(βφt+1mt) if φt+1mt < β−1w(q∗t )

φt+1pt =


β−1w(q∗) if φt+1mt ≥ β−1w(q∗t )

φt+1m̂t if φt+1mt < β−1w(q∗t )

the double coincidence problem - that each party in the pair wants the good of the counter-party and
the barter is possible. Exogenous distinction between buyers and sellers does not affect the results.

13u(0) = 0, u′(0) =∞, u′(·) > 0, u′′(·) < 0 and w(0) = 0, w′(·) > 0, w′′(·) > 0.
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Whenever the buyer has an amount of real balances m∗ = β−1w(q∗) at hand he transfers

this amount to the seller and consumes the optimal amount q∗. If the buyer has less real

money balances at hand he simply spends all his money and gets whatever the seller is

willing to produce for this payment.

In the standard Lagos-Wright model buyers and sellers are able to trade with an

exogenous probability σ. In the current model trade also occurs only with the probability

σ(θt). However, the interpretation is different. In the current set-up the buyer-seller pair

needs to transfer pt currency units through a blockchain (one transaction is assumed to

contain one currency unit). Each transaction is processed with the probability σ(θt).

The pair thus submits dt transaction requests such that pt = σ(θt)dt. Since the buyer

can only transfer currency units that he possesses, money demand equals the transaction

demand, mt = dt.

Denote as γt = φt+1

φt
the return on money. Money demand stays finite only when

γt ≤ β−1. Apart from the endogenous probability of trade money demand function is

identical to Lagos, Wright (2005) and Fernandes-Villaverde and Sanches (2017).

σ(θt)
u′(qt)

w′(qt)
+ 1− σ(θt) =

1

βγt+1
(7)

φt+1mt = β−1w(qt) (8)

Condition (8) comes from the bargaining solution. Condition (7) is defined by the utility

maximization of a buyer. It determines the amount of trade as a function of the return on

money given the trade probability. If γt+1 = β−1 then qt = q∗. This result corresponds

to the Friedman (1969) rule.

One important feature of the Lagos-Wright model is a centralized market phase at

the beginning of every period. On the centralized market buyers can freely adjust their

money holdings and sellers can spend the earnings from the period before. This makes

the distribution of money holdings degenerate.
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Again, the detailed derivation of (7) and the discussion about the centralized market

can be found in Lagos and Wright (2005).

4 Miners and Money Supply

The money market features a free entry for miners. Every miner uses one computer

processing unit CPU to process a transaction request and pays real costs P et cφt. Here

P et is the price of electricity in currency units and c is a fixed amount of electricity that

one CPU consumes.

With probability λ(θt) the miner ”meets” a transaction request, processes it and

receives r currency units as a reward. The reward can be spend in the next period and

thus has a real value φt+1r.

Free entry drives miners’ profits to zero, therefore 14

P et cφt = βλ(θt)rφt+1 (9)

If we were able to specify the electricity price in terms of consumer goods then we would

be able to determine a real price of money. For example, if electricity is a consumer

good itself then its price equals the price level in the economy 1
φt

. Then the (expected)

future real price of money is driven by the electricity consumption of miners and their

reward φt+1 = c
β.λ(θt)r

.

Alternatively, the model needs to include an electricity market to describe the dy-

namics of P et . I start with a simple version of the model by assuming that only a part of

the total electricity demand comes from miners. Hence mining cannot significantly affect

the electricity price. In other words I assume that the price is exogenous and constant:

P et = P e ∀t and ψ ≡ P ec. Note that nominal costs ψ and the nominal reward r are per

transferred currency unit and 0 < ψ < 1 and 0 < r < 1.

14Miners are owned by buyers and sellers in equal proportions. Consequently, outside of the equilibrium
path all profits and losses are equally redistributed among buyers and sellers.
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The free entry condition becomes:

ψφt = βλ(θt)rφt+1 (10)

Suppose that φt+1 increases and the profit of miners becomes positive. New miners enter

the money market. Consequently, the market tightness declines and so does λ(θt). This

drives the profits back to zero such that the condition (10) holds again.

Miners can not directly decide on the money supply. Money stock is increased when

the processing of new transactions Tt is rewarded.

Mt = Mt−1 + rTt (11)

Equation (11) can be written as Mt = Mt−1 + rσ(θt)dt = Mt−1 + rσ(θt)mt. On the

equilibrium path money demand mt and money supply Mt are equal.

Mt = Mt−1 + rσ(θt)Mt (12)

Mt =
1

1− rσ(θt)
Mt−1 (13)

The model predicts a constant money growth in equilibrium. The growth rate is higher,

all the other things stay equal, when 1) the reward per block r is higher or 2) the

probability of a transaction confirmation σ(θt) is higher. Since σ′(θt) < 0 the second

condition means that the money growth rate is higher when the market tightness is

lower.

Proposition 1: On the equilibrium trajectory money supply is growing with a

positive rate. Constant money supply (and constant price) equilibrium is achieved only

with a zero reward per block.
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5 Equilibrium Dynamics

Real money demand can be expressed as a function of the trade on the decentralized

market qt which is in turn a function of γt+1 and θt. From (8) one can express

z(γt+1, θt) = mtφt =
w (qt(γt+1, θt))φt

βφt+1
=
w (qt(γt+1, θt))

βγt+1
(14)

where qt is defined as (7). In equilibrium real money supply Mtφt which is driven by

(13) must be equal to the real money demand z(γt+1, θt). The dynamics of θt follow

(10). The equilibrium path is described by

z(γt+1, θt) = γtz(γt, θt−1)
1

1− σ(θt)r
(15)

ψ = βrγt+1λ(θt) (16)

ψ = βrγtλ(θt−1) (17)

which defines γt+1(γt). In contrast to Lagos and Wright (2005) demand for real money

balances depends not only on the return on money but additionally on the money market

tightness.

In the standard model money demand goes to 0 as γt converges to 0. In the current

set-up this is not necessarily true. A decline in γt reduces the miners’ profit and miners

leave the money market. Market tightness rises and σ(θt) falls. Buyers adjust their

money holdings based on two considerations. On the one hand, since currency units have

lower return, holding them is more costly and money demand declines. This purchasing

power channel is the same as in the standard Lagos-Wright framework. On the other

hand, the probability of transaction confirmations is lower. Buyers, therefore, have to

submit more transaction requests to be able to trade. Due to this precautionary motive

buyers increase their money demand. The total result depends on the specification of

functional forms and calibration.
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To analyse the equilibrium explicitly I impose functional forms for the utility func-

tion and the function of the disutility from efforts. Following Fernandez-Villaverde and

Sanches, (2017)

u(q) =
q1−g

1− g
, and w(q) =

q1+α

1 + α
,where 0 < g < 1, α ≥ 0. (18)

The money demand function (19) resembles the one in Fernandez-Villaverde, Sanches

(2017). However, the probability of trade σ(θt) is endogenous and determined by (2). θt

can be expresses as a function of γt+1 from (16)

z(γt+1, θt) =
(βγt+1)

1+α
g+α
−1

1 + α

[
σ(θt)

1− (1− σ(θt))βγt+1

] 1+α
g+α

(19)

Figure (1) plots money demand (19). I took the standard parameter values: β =0.997,

α =0.5, η=0.5, g =0.5 I chose the level of reward based on the statistics for the BTC

blockchain. According to blockchain.info15 a miner’s revenue lies between 0.6% and 1.8%

of a transaction volume. I set r=1.5%. Mining costs per block are 20% which means

ψ = 0.2. While it is difficult to estimate the electricity costs of miners the resulting

money demand function is pretty insensitive to the value of ψ.

The dashed line presents the demand function for a constant probability of transaction

confirmation. σ = 0.3. It corresponds to the money demand function in the baseline

model of Fernandez-Villaverde and Sanches (2017). In this case money demand uniformly

increases with γt+1. This result comes from the purchasing power channel. The solid

line plots the money demand in the current model. From the plot we see that after γt+1

reaches a particular level the money demand starts to decrease. The reason for that

is the presence of mining. When deciding on the money holdings and the transaction

demand buyers take into account that only σtdt of currency units will be transferred.

Because σ(θt) is less that one, buyers hold an excessive amount of currency and submit

15https://blockchain.info/charts/cost-per-transaction-percent
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Figure 1: Money demand as a function of the return on money.

an excessive amount of transactions. This is a precautionary money demand channel.

When return on money increases new miners enter the money market and σ(θt)

rises. Thus, the excessive demand for transactions goes down and the total money

demand declines. Figure (1) indicates that after some value of the return on money the

precautionary channel prevails and the demand for money decreases with γt+1.

The gap between the two functions quantitatively depends on the chosen parameter

values. However, qualitatively the result is robust to different calibrations. The elasticity

of substitution in the matching function most strongly affects the form of z(γt+1). The

humped shape is preserved for non-extreme values, η ∈[0.3, 0.8].

The additional precautionary channel in the money demand changes the stability

properties of the monetary equilibrium if the equilibrium γ∗ corresponds to the declining

part of z(γt+1). To see that, substitute the specifications (18) into the equilibrium
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conditions (15) - (17) to obtain the equilibrium trajectory γt+1(γt):

γ
1+α
g+α

1
η
−1

t+1

[
1− rT̄ ( ψ

T̄ rβγt+1
)
η−1
η

]
[
1− (1− T ( ψ

Tβγt+1
)
η−1
η )βγt+1

] 1+α
g+α

=
γ

1+α
g+α

1
η

t[
1− (1− T ( ψ

Tβγt
)
η−1
η )βγt

] 1+α
g+α

(20)

This expression describes the dynamics of the return on money γt+1 as a function

of γt. First, note that γ=0 is a solution of this equation. There exists a non-monetary

equilibrium with zero return on money, zero money demand and no trade on the decen-

tralized market.

Additionally, the economy can be in a monetary equilibrium with γ > 0 such that

Aγ
1−η
η + γ − 1 = 0 (21)

where A = (Tr)
1
η β

1−η
η ψ

η−1
η > 0 (22)

Let us consider a special case with η=0.5. In this case the model can be solved analyti-

cally and

γ∗ =
1

1 + βT 2r2

ψ

=
ψ

ψ + βT 2r2
(23)

The value of the γ∗ depends on the ratio r2

ψ .

Proposition 2 (comparative statics): The return on money in a monetary equi-

librium 1) is increasing with the cost parameter ψ, 2) is decreasing with the reward r.

Higher mining costs discourage miners from processing transactions and hence a

higher return on money γ∗ is required to compensate the miners. In the extreme case if

ψ goes to zero and r > 0 the miners receive a positive reward at zero costs. Infinitely

many miners enter the money market and the probability of success of a single miner goes

to zero. The number of mined blocks goes to zero and the currency becomes valueless,
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γ∗ = 0.

Higher reward r incentivizes more miners to enter the market. More currency units

are injected into the network which leads to a lower return on money. If the reward

to miners goes to zero then there is no injections of newly created currency units and

return on money stays constant. It means that the price level stays constant.

Proposition 3: In a monetary equilibrium with finite mining costs γ∗ ≤ 1 which

means that inflation is positive as long as the reward to miners is positive.

This is a pretty intuitive yet important feature of blockchain cryptocurrencies that

the model is able to correctly describe.

A blockchain-based monetary system is unable to achieve a price stability. The

presence of electricity costs requires a reward to miners in a form of newly created

currency units. Consequently, the money supply is rising by construction. Moreover, if

the blockchain protocol specifies that reward will go to zero at some point of time and

miners will be compensated solely by transaction fees, then γ∗ will converge to one and

a positive money growth rate will no longer be necessary.

Let us consider the equation (20) again. Figure (2) plots the function γt+1(γt) for the

same calibration as described above together with a 45-degreee line. The equilibrium

return on money is defined as an interception of two lines. For the used calibration

γ∗ = 0.997 which corresponds to approximately 3% inflation.

The slope of the function at γ∗ is smaller than 1. It means that the equilibrium

trajectories that start from γ0 > 0 converge to a monetary equilibrium with a positive

value of currency. Because γ∗ corresponds to the declining part of the money demand

function the precautionary channel plays a major role. The return on money declines

when the initial value is too high and rises when the initial value is too low. As before

this result holds for η ∈[0.3, 0.8].

Proposition 4: Monetary equilibrium is stable due to the presence of a precaution-
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Figure 2: Monetary steady state

ary money demand channel.

6 Conclusion

This paper proposes a monetary model of a private digital currency circulating accord-

ing to a blockchain protocol. The analysis is motivated by the recent development of

cryptocurrencies. However, the main goal of the paper is to develop a general frame-

work that would be able to describe a blockchian-based monetary system rather than to

explain empirical findings about a particular cryptocurrency. This is the first attempt

to my knowledge to build a monetary model that incorporates the basic features of the

blockchain monetary system.

I propose to use a matching function to model how miners ”meet” pending transac-

tion requests and ”create” new processed transactions on the blockchain. The matching

function natural captures the externalities of the blockchain monetary system: the prob-
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ability of a miner’s success increases with the transaction demand and decreases with

the total number of miners on the market; the transaction confirmation probability in-

creases with the number of miners and declines with the number of pending transaction

requests.

The demand side of the money market is based on the Lagos and Wright (2005).

The standard framework is altered by the fact that agents have to submit transaction

requests before they are able to transfer currency units. Every transaction request is

processed only with a particular probability and hence the trade also happens only with

a particular probability. In contrast to the Lagos-Wright approach in the current set-up

the probability of trade is endogenous. It depends on the number of miners and the

transaction demand.

I use the model to analyse the effects of mining costs and rewards on the equilibrium

outcome. The return on money in equilibrium increases with the mining costs and

decreases with the reward for miners. Higher mining costs require a higher return on

currency to compensate miners for their work and a higher reward means that a lower

return on money is sufficient.

Endogenous probability of the transaction verification and, hence, of trade changes

the properties of the money demand function. More specifically, agents hold an excessive

amount of money units due to a precautionary motive. The reason for the precautionary

money demand is the fact that every transaction is processed only with a particular

probability. With an increase in the return on money more miners start to operate and

the probability of transaction confirmation rises. Agents reduce their excessive money

holdings and the money demand goes down. In contrast to the standard model in which

the money demand uniformly increases with the return on money, in the current set up

the money demand is hump-shaped: it increases for low values of the return on money

and starts to decline after a particular level when the precautionary motive prevails.

The hump-shaped money demand function changes the stability properties of the

18



system. If in the monetary equilibrium return on money corresponds to the declining

part of the money demand function then this equilibrium becomes stable. In other

words, money cannot become valueless if its initial value is positive. If, for example, a

shock forces the return on money to go below the equilibrium level then some miners

leave the market. Individuals then have to increase their precautionary money demand

which puts an upward pressure on the money return. Similarly, the return on money

cannot explode.

The proposed model abstracts away many important and interesting ingredients of

actual blockchains-based currencies. For example, the decision to attach transaction

fees to a transaction request, miners’ decisions about the composition of the block, costs

of entering the mining market, adjustments in the difficulty or a necessity to possess a

particular amount of currency units to be allowed to mine. From the economic point of

view the paper abstracts from the social costs of the excessive electricity consumption,

the capital overinvestment and the environmental pollution. Additional features can

be introduced into the current framework at the costs of reducing the model tractabil-

ity. Many of these aspects are novel to the literature and their accurate formulation

represents an independent research topic on its own.
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