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Abstract

Data from social media has created opportunities to understand how and why

people move through their urban environment and how this relates to crim-

inal activity. To aid resource allocation decisions in the scope of predictive

policing, the paper proposes an approach to predict weekly crime counts. The

novel approach captures spatial dependency of criminal activity through ap-

proximating human dynamics. It integrates point of interest data in the form

of Foursquare venues with Twitter activity and taxi trip data, and introduces a

set of approaches to create features from these data sources. Empirical results

demonstrate the explanatory and predictive power of the novel features. Anal-

ysis of a six-month period of real-world crime data for the city of New York

evidences that both temporal and static features are necessary to effectively ac-

count for human dynamics and predict crime counts accurately. Furthermore,

results provide new evidence into the underlying mechanisms of crime and give

implications for crime analysis and intervention.
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(Wolfgang Karl Härdle), stefan.lessmann@hu-berlin.de (Stefan Lessmann)

Preprint submitted to Elsevier February 27, 2018



1. Introduction

Crime research has investigated how social structures in and between neigh-

bourhoods influence criminal activity (Sampson et al., 1997; Mears & Bhati,

2006). Crime is facilitated or deterred not only by communal structures but

also by human dynamics. Every day, people leave their neighbourhood to com-

mute to work, shop in malls, or relax in museums or bars. Such travels create

a social flow of both crime targets and perpetrators that connect areas beyond

spatial distance, which influences criminal activity (Wikström et al., 2010). Ex-

ploitation of location-based data offers new perspectives on the mechanisms

that influence different types of crime and can help predict their occurrence.

Governmental institutions and especially police depend on adaptive, short-term

crime predictions to anticipate changes and breaks in crime patterns and allo-

cate scarce resources efficiently (e.g., Xue & Brown, 2006).

The objective of the paper is to establish the relationship between human

dynamics and crime rates. In pursuing this goal, the paper proposes predic-

tive models that extend conventional crime forecasts by incorporating spatial

dependency using three sources of data: public venues, social media activity,

and taxi flows. Joint consideration of these sources provides insights into the

marginal relevance of different predictors and accounts for possible interaction

effects. The paper suggests alternative ways to extract features from the data

sources and examines the explanatory and predictive value of the features in

an empirical study related to crime incidences in New York city using several

statistical and machine learning models.

Empirical results confirm the relevance of the proposed features. Their in-

clusion in a forecasting model improves neighbourhood-level crime predictions

for different types of crime significantly. The results also indicate interaction

effects. Features from different data sources work best when used in combina-

tion. These findings add to a better understanding of the link between crime

opportunities and incidents as well as the moderators of this link.

The paper is organised as follows: Section 2 and Section 3 discuss related
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work and the spatial and non-spatial prediction models employed therein, re-

spectively. Section 4 outlines the data sources and feature construction methods.

Empirical results are presented in Section 5 and discussed in Section 6. Section 7

concludes the paper.

2. Related Work

Theories explaining the spatio-ecological dimension of crime include opportu-

nity theory and social disorganisation theory. The former analyses crime events

as the co-occurrence of an opportunity in form of a suitable target, a lack of

supervision, and a motivated offender (Cohen & Felson, 1979). This view sup-

ports urban interventions to reduce opportunity such as blocking roads to cut

off highway connections in neighbourhoods with high rates of drive-by shootings

(Lasley, 1998). Social disorganisation theory considers neighbourhood charac-

teristics that influence the likelihood of criminal activity among inhabitants. A

lack of social control and social cohesion within a community combined with

structural disadvantages give rise to criminal behaviour. Social disorganisation

theory has been applied in a wide range of crime research such as domestic

violence (Beyer et al., 2015).

Drawing on these theories, much research examines socio-economic predic-

tors of criminal behaviour (on an individual level) and crime rates (on a neigh-

bourhood level). Examples include residential stability, ethnic heterogeneity and

population size and density (e.g. Land et al., 1990; Sampson et al., 1997; Kubrin,

2003). Spatio-temporal elements and aggregated human behavioural data have

also been considered to capture geographic crime drivers and heterogeneity in

crime rates between neighbourhoods. Brantingham & Brantingham (1991) ob-

serve that i) different crimes have different spatial distributions, ii) the spatial

concentration of crime is influenced by location characteristics, and iii) spatial

patterns are relatively stable over time.

More recent research studies how data on immediate human behaviour af-

fects crime using geo-tagged social media data and data on human movements.
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For example, prior work predicts crime from Twitter data using text mining

techniques such as term frequency (Williams et al., 2017) or topic models (Ger-

ber, 2014) for feature creation. Novel data sources and analysis methods are also

studied in terrorism and organised crime detection as well as case association

(e.g. Xu & Chen, 2004; Lin & Brown, 2006; Yang & Li, 2007).

Crime prediction has received less attention compared to the above explana-

tory studies. This causes a research gap in crime prediction regarding the syn-

thesis of space, human dynamics, and effective modelling approaches. More

specifically, studies that incorporate features related to human dynamics either

disregard the spatial dependence between observation units or are purely ex-

planatory and do not test the predictive ability of empirical models. However,

predictive power is important if model-based forecasts inform decision-making,

for example in the scope of predictive policing (Camacho-Collados & Libera-

tore, 2015). Surveying corresponding studies in the field, Table 1 illustrates the

research gap, which we aim to overcome with this study.

Table 1 suggests that considering human activity patterns (i.e., dynamics)

is popular in crime modelling. Traunmueller et al. (2014) examine correlations

between people activity features, which they derive from mobile phone data,

and monthly crime rates. A study by Williams et al. (2017) uses regression to

examine the relationship between crime, Twitter activity, and Twitter mentions

related to “broken window” theory (e.g., Hinkle & Yang, 2014). Bendler et al.

(2014) use Twitter and local points of interest (POI) data to capture human

activity and explore spatial dependence between crime locations. Their results

indicate that only some crimes such as burglary benefit from the inclusion of

Twitter activity. Interestingly, certain crime types such as theft are more likely

to occur when many people are in the area whereas others (e.g., motor vehicle

theft) occur when there is no activity around.

Wang et al. (2016) also consider POI data, which they integrate with taxi

flow data to model yearly crime rates for a community in Chicago. They find a

model using both types of information to outperform models using only POI or

taxi data. Such synergy hints at an interdependence between the two sources,
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Study Prediction Spatial Dynamics
Machine
Learning

Crime Type City
Time
Frame

Wang et al. (2016) X X no differentiation
between types

Chicago yearly

Bogomolov et al. (2014) X X X (hotspot
classification)

London monthly

Bendler et al. (2014) X X assault, burglary,
homicide, theft,
vandalism, etc.

San Francisco hourly

Traunmueller et al. (2014) X street vs. indoor London monthly

Williams et al. (2017) X burglary, theft,
drug possession,
criminal damage,
violent crime

London monthly

Xue & Brown (2006) X X X burglary Richmond, VA monthly

This study X X X X violent and
property crime

New York weekly

Table 1: Literature Overview
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which has also been observed by Bendler et al. (2014).

Unlike the previous studies that concentrate on explaining criminal activity,

only Bogomolov et al. (2014) and Xue & Brown (2006) explicitly consider crime

prediction. Bogomolov et al. (2014) employ telecommunication records to devise

features related to demographics and visitor number in an area. Using Random

Forests, they classify areas in the city of London as high-/low-crime depending

on whether the number of criminal incidents in the area is above/below the

median. Xue & Brown (2006) model the spatial coordinates of crime as a locally

optimal site picked by the offender from a set of spatial alternatives to commit

the crime. Concentrating on burglary, they cluster locations on the basis of their

characteristics (e.g., distance to highway) and predict both burglary incidents

and hotspots in Richmond, VA.

This study contributes to prior literature through integrating data sources

that proxy human activity patterns with geo-spatial data sources for crime pre-

diction. We also consider a weekly forecasting horizon which complements pre-

vious findings obtained at a monthly/yearly or hourly level. A weekly horizon

may be useful to inform predictive policing and to (re-)adjust tactical patrolling

plans. With such applications in mind, we also consider a broad set of alter-

native prediction methods including techniques from spatial econometrics and

machine learning. This allows us to shed light on the trade-off between model

interpretability and forecasting accuracy in crime prediction.

3. Crime Modelling Methodology

Crime rates depend on the underlying population at risk, which need not

correspond to the residential population in a geographic unit. Therefore, a

common modelling approach, which we adopt in this study, is to model counts

of crime incidents (Andresen, 2006; Malleson & Andresen, 2015). Our data

forms a panel of crime counts and covariates per census tract for each week,

indexed by i and t, respectively, over a period of six months.

Below, we describe models for this type of data including i) spatial linear
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regression (Subsection 3.1); ii) Poisson Generalised Linear Model (GLM) and

a GLM with spatial random effects (Subsection 3.2), and iii) machine learning

methods (Subsection 3.4).

Before describing modelling approaches, we introduce some notation. Mod-

elling crime counts in a city begins with the area: a specific, bounded two-

dimensional area D ⊂ R2 where D denotes the surface area of the city. This

fixed subset of irregular shape can be partitioned into a finite number of well-

defined areal units, e.g. census tracts. More formally, let the simple partition

{B1, B2, . . . , BN} form the lattice of D such that B1 ∪ B2 ∪ . . . BN = D and

Bi ∩Bj = ∅ for i 6= j.

Let crime events be realisations of a point process that occurs at random

locations in space. Let the realisations of this random spatial process be denoted

by S with elements {s1, s2, . . . , sk}. Given a point process, one can model the

number of realised events in an areal unit as a count variable. Let this count

variable be defined as m(B) =
∑

si∈S 1(si ∈ B) such that m(B) gives the

number of event points in set B. Let y denote the vector of count variables

observed at the N areal units forming D such that m(Bi) = yi where i =

1, . . . , N indexes the areal unit. This notation is easily extended to a panel

setting by specifying mt(Bi) = yit.

Spatial dependence between areas can take the form of a Markov random

field, which defines a neighbourhood for each element in y. An areal unit j is

a neighbour of areal unit i if the conditional distribution of yi depends on yj

(Cressie, 1993). Let Ni = {j : j is a neighbour of i} be the neighbourhood of

unit i. Note that Ni excludes unit i.

3.1. Linear Models

Consider the simple pooled linear panel regression model:

y = Xβ + e, e ∼ N(0, σ2INT ), (1)
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where N denotes the number of spatial units and T the number of cross-sections.

In the presence of spatial dependence, the error terms in (1) are no longer uncor-

related. Approaches to account for this include the simultaneous autoregressive

(SAR) and the conditional autoregressive (CAR) model (Cressie, 1993).

The SAR model introduces spatial structure through a spatial lag:

y = (IT ⊗ ρW )y +Xβ + ε, ε ∼ N(0, σ2INT ), (2)

where ⊗ denotes the Kronecker product, IT denotes the identity matrix of

order T , and W is a N ×N binary matrix specifying which areas are spatially

adjacent with wii = 0, and ρ is the parameters that specifies the magnitude of

spatial dependence.

The inclusion of a spatial lag of the dependent variable accounts for spatial

spillovers and a mismatch of the spatial scale with the spatial event (e.g., Cressie,

1993). Both effects occur in crime modelling since the contagion effect of crimes

leads to a diffusion through space. In addition, economic and criminal features

do not match perfectly with the spatial units. Therefore, a spatial lag SAR

model is a convenient choice to account for these characteristics.

The CAR model introduces a spatial dependence parameter in the error

term. Large-scale variation is captured in the regression parameters. Small-

scale spatial variation is modelled in the error. This yields the following model:

y = Xβ + ε, (3)

ε ∼ N
(
0, σ2{IT ⊗ (IN − δW )−1}

)
,

where W is again a N × N spatial adjacency matrix and δ denotes the mag-

nitude of spatial dependence between neighbouring regions. The CAR model

introduces spatial structure as a Markov random field such that the conditional

distribution of each area depends on the neighbourhood. The distribution of yit
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conditional on all yjt in Ni is given as

yit|yjt ∼ N

X>itβ +
∑
j

δwij(yjt −X>jtβ), σ2
i

 , (4)

for i 6= j, where σ2
i denotes the conditional variance.

3.2. Count Models

Linear models offer a broad framework to include spatial structure but fail

to accommodate the integer-valued and non-negative nature of crime counts.

Small counts are better modelled by a Poisson regression. In the case of crime

counts, the Poisson parameter λ represents the average incident count:

λ = E(y |X) = eX
>β . (5)

The Poisson distribution assumes random variables to be independently

identically distributed. Spatial dependence between crime counts violates this

assumption. Poisson Generalised Linear Mixed Models (GLMM) account for

spatial dependence by incorporating a random effect in the GLM predictor.

GLMM model the expectation of Poisson distributed y as a linear combination

of fixed effects X and random effects Z with a logarithmic link function (Agresti,

2007):

log λit = X>itβ + Zitηi. (6)

Here, the random effect Zη is a spatial-specific random effect, which introduces

the spatial structure of a Markov random field. Z is specified as an indicator

matrix of the spatial units such that Zη is a random intercept added to the

conditional mean. More specifically, Z is a NT × N stacked matrix of matrix

IN stacked T times such that Z = block diagonal (IT ⊗ IN ). The distribution

of the random vector η is assumed to be multivariate normal:

η ∼ N(0, D), D = σ2Q−1. (7)
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Q is a symmetric spatial dependency matrix determined by the neighbourhood

structure with entries:

Qij =


|Ni| if i = j,

−1 if j ∈ Ni and i 6= j,

0 if j /∈ Ni and i 6= j,

(8)

where the |Ni| entries on the diagonal denote the size of the neighbour set and

neighbours are indicated by −1 (Leroux et al., 2000, p. 186). Unlike the non-

spatial Poisson GLM, the variance of the model in (6) is not only unequal to

the expectation, it accounts for both overdispersion of the variance and spa-

tial dependence. The parameters in (6) and (7) are estimated using restricted

maximum likelihood (REML) and Fisher Scoring (Kneib, 2003).

3.3. Predictors

The predictions for weekly crime counts are obtained by using the best linear

unbiased predictor or its panel equivalent (Baltagi et al., 2011). Table 2 gives

the predictors for the time period T + S for the regression models. The SAR

Model Predictor

LR ŷT+S = XT+S β̂

SAR ŷT+S = (IN − ρW )−1XT+S β̂

+ (IN − ρW )−1û

CAR ŷi,T+S = X>i,T+S β̂ +
∑
j δwij(

T−1
∑T
t=1(yjt −X>jtβ̂)

)
GLM ŷT+S = exp(XT+S β̂)

GLMM ŷT+S = exp(XT+S β̂ + ZT+S η̂)

Table 2: Predictors for the spatial linear regression models considered in the study.

predictor is obtained by spatially lagging the linear predictor and adding the

spatially lagged error vector of the model. The CAR predictor is obtained

by taking a time-averaged conditional expectation (Cressie et al., 1999). In
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practice, the variance components and spatial parameters are unknown and

replaced by their maximum likelihood estimates.

3.4. Machine Learning Approaches

Previous models make assumptions about the data-generating process and

consider a linear additive relationship between crime counts and covariates.

Machine learning techniques are more flexible and account for non-linearity in

a data-driven manner (Kuzey et al., 2014). We concentrate on random forest

(RF), gradient boosting machines (GBMs), and feed-forward artificial neural

networks (ANNs), all of which have shown promising results in previous studies

(e.g. Bhattacharyya et al., 2011; Delen, 2010).

RF develops an ensemble of size k through drawing k bootstrap samples from

the training data. The base models in RF consist of individual decision trees,

which are grown from the bootstrap samples. To increase randomness among

the base models, RF determines the best split during tree growing among a

randomly sampled subset of covariates (Breiman, 2001). The model prediction

consists of the simple average calculated across the k base models.

GBMs embody the idea of additive modelling. The algorithm incremen-

tally develops an ensemble through adding base models that are fitted to the

residuals—more specifically the negative gradient of the loss function—of the

current ensemble. GBM predictions are obtained by calculating a weighted av-

erage over base model forecasts, whereby the weights are determined during

gradient descent (Friedman, 2002).

An ANN model consists of interconnected layers of processing units (neu-

rons) with connection weights representing the model parameters. Estimating

an ANN model involves minimising some loss function with respect to connec-

tion weights using gradient-based methods. ANNs calculate the output of a

neuron as a non-linear transformation of the weighted sum over its input neu-

rons. The transformations are called activation functions and allow an ANN to

capture non-linear patterns in data (Kim & Kang, 2016).

Machine learning methods exhibit meta-parameters such as the number of
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trees in RF. We consider candidate settings for each meta-parameter and de-

termine the best setting (i.e., minimal MSE) on a validation sample. Interested

readers find a comprehensive discussion of the above and other machine learning

methods and practices in, e.g., Hastie et al. (2009).

4. Data Integration and Feature Construction

The paper models crime counts via features of census, POI data, spatial

influence, taxi flow, and Twitter activity. The features come from different data

sources with different time frames. The most recent complete overlap is June 1,

2015 to November 29, 2015. We chose this period for subsequent analysis and

aggregate temporal data to weekly intervals, which begin uniformly on Monday.

The final data set covers 26 weeks. We use the first 24 weeks of data for model

estimation. Machine learning models require auxiliary data for meta-parameter

tuning (e.g., Carneiro et al., 2017). For such models, we use the first 22 weeks

for model training and weeks 23 and 24 for tuning. The last two weeks serve

as out-of-sample prediction set. Such split-sample setup is common practice in

comparisons of alternative forecasting methods (e.g., Sermpinis et al., 2012).

The spatial unit of analysis are census tracts as defined by the US Census

Bureau. We integrate area-referenced census data with point-referenced data

from other sources using geo-coordinate matching. For example, we use the

coordinates of a tweet to identify the Census track in which it was posted.

The following subsections introduce the data sources. Developing features

from these sources is non-trivial and leaves some degrees of freedom. Therefore,

we elaborate on alternative options for feature engineering and how the final set

of features has been selected.

4.1. Census

Demographic variables are taken from Summary File 1 of the 2010 census

data (U.S. Census Bureau, 2017). Based on previous studies on violent and

property crime (e.g., Wang et al., 2016), we select the following eight demo-

graphic census variables: the total population in the census tract, the median
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age of the population, the percentage of males, the percentages of the black,

Asian, and Hispanic population, respectively, the percentage of female-headed

family households, and the rate of vacant accommodation. The spatial structure

in the CAR, SAR, and Poisson GLMM models is defined through the spatial

neighbourhood matrix W (3). We define tracts as neighbours when they share

a boundary. On average, a census tract is connected to six others.

We exclude census tracts with a residential population of less than 50 from

the analysis because the estimates in these areas are not reliable. This concerns

uninhabited areas such as cemeteries, but also Central Park and JFK Airport.

We also exclude islands such as Staten Island and City Island because their

spatial distance to the nearest large landmass exceeds 2 km. Regions separated

by water but connected through a bridge shorter than 1 km are defined as

neighbours as well. This is relevant when considering the connections between

Manhattan and Brooklyn.

4.2. New York City Crime Data

Data on criminal incidents is provided by the New York City Police Depart-

ment (New York City Police Department, 2016). Each report includes detailed

information on crime date, type, and location. We focus on violent and prop-

erty crime because they represent serious threats to public safety. In addition,

the spatial distribution of crime incidents differs between these crimes, which

facilitates examining the proposed features in a context of varying spatial de-

pendence. Violent crime encompasses murder and non-negligent manslaughter,

robbery, and aggravated assault (Federal Bureau of Investigation, 2014). Prop-

erty crime comprises burglary, larceny-theft, motor vehicle theft, and arson.

Using shapefiles of New York City by the Department of City Planning New

York (2017), we map the coordinates of these crimes to census tracts. Since

rape incidence are not geo-located in the NYPD dataset, we exclude this crime

from the analysis.

Figures 1a and 1b show the spatial distribution of crime across census tracts

for the analysis period of June to November 2015. Clearly, violent crime clusters
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(a) Violent Crime (b) Property Crime

Figure 1: Number of crime incidents between June and November 2015. In the property crime
map, the area around Penn Station (largest outlier with 2002 incidents) is excluded for more
consistent colour scaling.

primarily in Harlem, the Bronx, and certain parts of Queens. Property crime

shows a more even distribution. Notable exceptions include i) the downtown

Manhattan area with a lot of transitory traffic and many tourists, ii) census

tracts with shopping centres such as the Gateway Center or the Queens Center,

which attract high numbers of shoplifting, and iii) cooperative housing project

Co-op City in the Bronx with its own security force. The strength of spatial

correlation between areas is tested using Moran’s I. For both crime types and

every time period, the null hypothesis of no spatial dependence is rejected with

p < .000.

4.3. Foursquare

We gather POI data from Foursquare; a mobile app that recommends places

based on a user’s location and preferences. Through its API, Foursquare’s

location database facilitates extracting the coordinates of restaurants, schools,

or museums. All venues are categorised along nine main dimensions: nightlife,

food, arts & entertainment, residence, shops, travel, outdoors & recreation,

college & education, and professional. We consider POI data a characterisation

of the census tract. Different POI categories attract different groups of people at
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different times of day. For example, one can expect that more nightlife venues

attract drunken behaviour at night. In total, we obtain 47,113 POI in the

geographic area of interest.

Three different ways of constructing the POI feature are considered: 1. The

total counts of venues per category, 2. the share of categories on the total number

of venues in the census tract, and 3. an entropy measure, typically used in

ecology to quantify population diversity. Specifically, we use the Shannon index

(Shannon, 1948), which is defined as

H = −
C∑
i=1

Ni
N
· log

(
Ni
N

)
(9)

where Ni denotes the total number of venues in venue category i, N =
∑
iNi,

and C is the total number of categories. H can be considered an extension of

the second option to construct the POI feature in that the fraction Ni

N equals

option 2.

4.4. Taxi

The NYC Taxi & Limousine Commission (2016) provides the taxi flow data.

Their dataset covers over 1.3 billion individual trips from January 2009 to June

2016, including start and end point of the trip, how many passengers entered,

how many minutes the trip took, how much it cost, and how it was paid. Figure 2

illustrates the coordinates of taxi pickups and dropoffs. Comparing Figures 2a

and 2b, it is clear that most taxi trips begin in Manhattan and Brooklyn and

end all over the city. We argue that taxi flows provide a connection between

different neighbourhoods beyond spatial proximity alone, which makes them a

valuable source for crime modelling.

We consider all trips within New York City in the analysis time frame but

exclude trips that start or end outside the analysis area. This gives 70,288,218

trips in the 26 weeks. We aggregate individuals trips to a weekly connection

flow matrix F , with rows (columns) of F referring to the census tract where the

trip started (ended). Hence, fij denotes the number of trips made from tract i

15



(a) Pickups (b) Dropoffs

Figure 2: Coordinates of complete taxi trips in New York City in week 46 in 2015.

to j for each time interval. In view of a substantial number of missing values in

the TLC data on passenger counts, we use the number of trips in the analysis.

The available records suggest an average of 1.6 passengers per trip.

The taxi flow feature is then constructed as t = Fy such that neighbouring

crime rates are weighted by the magnitude of flow F . It is crucial to note that the

crime vector y is lagged by a week to prevent unintended implicit simultaneity

of the response and its predictors. We refrain from incorporating a week index

w as in tw = Fwyw−1 for ease of notation.

We propose three different ways to construct t and demonstrate the calcu-

lation for t1, the feature of example region 1:

1. Raw multiplication: One can define t as the simple matrix multiplication

of the flow matrix F and the crime count vector y:

t1 = f11y1 + . . .+ f1nyn.

2. Normalised by source: The taxi flow arriving in each census tract is nor-

malised by the total number of flows leaving the source census tract. For

example, the flow leaving the second census tract towards the first tract
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is normalised by all flows leaving from the second tract:

t1 =
f21

f21 + f23 + . . .+ f2n
y2 + . . .+

fn1∑n
i=1 fni

yn.

3. Normalised by destination: The taxi flow arriving in each census tract is

normalised by the total number of flows arriving in that census tract:

t1 =
f21

f21 + f31 + . . .+ fn1
y2 + . . .+

fn1∑n
i=1 fi1

yn.

Around 25% of all taxi trips end in a census tract that is not a neighbour of

the tracts they started in. This means that the taxi feature captures connections

between census tracts that go beyond spatial proximity.

4.5. Twitter

Downloading historic Twitter data is inherently limited as the Twitter GET

search/tweets API provides access to tweets published in the last week only.

However, given the unique tweet ID, the Twitter GET statuses/lookup API

returns the full tweet from any point in time. The tweet IDs used here are

sourced from Pfeffer & Morstatter (2016) who provide IDs to tweets published

in the United States between June 1, 2015 to November 30, 2015.

After retrieving the data including the time stamp, text, language and coor-

dinates, each tweet is mapped to the corresponding census tract. We aggregate

the number of tweets per week and census tract, and implement six versions

of the Twitter feature: 1. Using the full activity, 2. counting night-time tweets

only, 3. using logged full activity, 4. using logged night-time activity. Any tweet

sent out between 22pm and 6am contributed to the night-time feature. Taking

the logarithm of the tweets served to reduce variation between census tracts.

4.6. Evaluation and Feature Selection

For each feature group, different variable definitions have been proposed

out of which we select the best definition per feature category using a variable

selection procedure. Our procedure involves estimating a CAR model on the first

22 weeks of data, and examining model performance in terms of mean-squared

error (MSE) on the two consecutive weeks (the validation period). Variable
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Table 3: MSE values for crime predictions from CAR models including POI data in the form
of the total counts of venues per Foursquare category together with alternative definitions of
the Twitter and taxi features.

(a) Property crime

Twitter Taxi

Raw Destination Source

All 3.6890 3.6922 4.1847
Night 3.6682 3.6786 4.0864
log All 3.6246 3.6320 4.0081
log Night 3.6284 3.6049 4.0357

(b) Violent crime

Twitter Taxi

Raw Destination Source

All 0.5220 0.5023 0.5193
Night 0.5218 0.5041 0.5200
log All 0.5129 0.5020 0.5096
log Night 0.5200 0.5020 0.5137

selection for prediction purposes where the underlying process is still of interest

is notoriously difficult. Some variables may be important in explaining but not

useful in predicting an outcome. While some machine learning techniques such

as Random Forests entail variable importance rankings that can guide variable

selection, they may pick up non-linear relationships that linear models cannot

accommodate. This would give machine learning models an unfair advantage in

subsequent comparisons. Therefore, we select feature groups through optimising

predictions of a linear model. We chose the CAR model for its straightforward

dependence structure.

Tables 3a and 3b show MSE values for property and violent crime. We

present results for alternative definitions of the Twitter and Text features. For

the POI feature, we find the total counts of venues per Foursquare category

to perform better than the two alternatives, the venue share and the entropy

measure H across both types of crime and all possible definitions of the Twitter

and taxi features. In the following, we refer to this definition as non-normalised

POI feature.

Overall, we observe the best results with the non-normalised POI feature,

logged nightly tweet activity, and taxi data normalised by destination. For

the taxi and Twitter feature, some form of normalisation, either by taking the

logarithm or weighting the flows, improves predictions; presumably through

reducing the range of the variables. For the POI feature, however, using total
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Features Settings

1 2 3 4 5 6 7 8

Census X X X X X X X X
POI X X X X
Taxi X X X X
Twitter X X X X

Table 4: Definition of experimental settings in terms of different groups of crime predictors

counts outperforms normalisation and the entropy measure. The counts preserve

differences in the POI distribution across New York City which appears to be

more important to crime prediction than the shares of categories. Note that

logged total tweet activity yields the same MSE as the logged nightly tweet

activity for violent crime. To preserve consistency in the analysis of property

and violent crime, we choose logged nightly activity.

5. Results

We consider eight different combinations of the feature groups to shed light

on cross-group interactions. The census data serves as baseline and is included

in all settings. The other groups are added in all possible combinations. Table 4

documents the settings, which we number from 1 to 8 in the remainder.

We begin with examining the regression models to appraise the explanatory

power of the individual features and their interactions. The black-box character

of machine learning models conceals such information. We consider learning

methods when testing the predictive power of crime forecasting models.

In view of the (still) large number of 2 types of crime × 5 models × 8 feature

settings = 80 regressions, results in the form of regression coefficients are not

reproduced in their entirety. Instead, Tables 5 and 6 show the estimates from

all models for setting 8, which includes all groups of features. Regression results

for the other settings are available from the authors upon request.

For violent crime, the parameter estimates for rate of the male population,

of vacant homes, and of female-headed family households are substantial and
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are associated with higher crime counts. The negative effect of the median age

confirms earlier studies where younger people are more likely to commit crimes

and more likely to be victims of crime (Cohen & Land, 1987).

Property crime is associated with different parameters. Most importantly,

the rate of female-headed family households has a large, negative association

with property crime counts. Interestingly, the reverse is true for another co-

variate of social cohesion, the vacancy rate, which is positively correlated with

property crime counts.

Both crime types are positively associated with some POI venue types. Re-

gression coefficients suggest that an increment of one venue in either the food

or professional category is associated with a 2% increase in property and a 1%

increase in violent crime counts.

A single additional residential venue, often elderly homes, is associated with

a 3% decrease in property crime; an intuitive result when considering the higher

presence of watchful neighbours. A similar result is observed for nightlife venues

which are associated with a 3% decrease. Violent crime, however, is only weakly

positively associated with nightlife venues. This may again refer to the presence

of capable guardians where areas with lots of people around at night are less

vulnerable to, e.g. burglary, whereas violent crime may rise in areas with alcohol

outlets. Unsurprisingly, shopping venues are more strongly positively correlated

with property than with violent crime and are associated with a 6–10% increase

in property crime count.

The taxi feature is significant in all settings and is associated with a crime

count increase between 5% and up to 25% for both crime types.

With respect to spatial dependence, we find that estimates of the corre-

sponding parameter in the CAR model are considerably larger than in the SAR

model. For the CAR model, the δ estimate throughout the eight settings and

crime types is 0.1357. For the SAR model, we obtain an average ρ estimate

of 0.0629. The CAR model implies local autocorrelation where crime counts

depend mainly on their neighbours. The spatial structure implied by the SAR

model is more global. In this regard, we find evidence for substantial local cor-
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relation of crime counts (from the CAR model), whereas the comparatively low

but also significant estimate in the SAR model suggests that global dependence

is only weak.

To complement the previous explanatory analysis, Tables 7 and 8 report

forecast accuracy in terms of MSE of alternative crime prediction models. With

few exceptions, we observe a trend of MSE values being largest in setting 1,

which uses census variables only, and decreasing upon adding novel features

related to Twitter activity, taxi flow, or POI among the spatial econometric

models. Among the machine learning models, incorporating novel features of-

ten improves accuracy. However, we observe a decrease of model performance

compared to the baseline setting 1 more often than in the case of spatial econo-

metric models.

With respect to the performance of different model families, machine learning

models outperform spatial econometric models across both feature groups and

crime types. This illustrates that crime is driven by relationships more complex

than the ones identified through linear regression models. The random effects

estimated in the Poisson GLMM further emphasise this view. The density of

the random effects for violent crime is shown in Figure 3. While the distribution

is normal for property crime, there is a distinct second mode in the left tails for

violent crime. This “hump” persists for the exact same 138 spatial units across

all settings. These census tracts are areas with very different, namely lower,

violent crime counts than their surrounding areas. Therefore, the random effects

appear to capture an omitted variable, which makes these areas different from

their neighbours. No other linear model accounts for this very specific violent

crime effect. This explains why the GLMM outperforms other linear models in

terms of MSE with noticeable margin in forecasting violent crimes (see Table 8).

6. Discussion

Our mixed approach of explanatory analysis and prediction reflects the dual

objective of police and policy makers. Predictive policing does not suffice to
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Figure 3: Density of random effects in Poisson GLMM across settings for violent crime
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Parameter CAR GLM1 LR GLMM1 SAR

Intercept −0.4329 −0.2881*** −0.9876*** 0.3750*** −0.9387***
(0.2500) (0.0809) (0.2295) (0.0000) (0.2267)

Population 0.0001* 0.0001*** 0.0001*** 0.0001*** 0.0001***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Median age 0.0120*** −0.0076*** −0.0003 −0.0076*** 0.0011
(0.0024) (0.0008) (0.0019) (0.0002) (0.0019)

Male −1.2503** −0.5132*** 0.9174* −0.5419*** 0.4780
(0.4012) (0.1356) (0.3833) (0.0000) (0.3787)

Black 0.6989*** 0.3935*** 0.2649*** 0.4144*** 0.1795**
(0.0939) (0.0305) (0.0666) (0.0001) (0.0658)

Asian 0.4776*** 0.1227*** 0.2305** 0.0333*** 0.1616*
(0.1089) (0.0329) (0.0713) (0.0000) (0.0704)

Hispanic 0.9588*** 0.4686*** 0.2935*** 0.4958*** 0.2343**
(0.1051) (0.0346) (0.0775) (0.0001) (0.0765)

Vacancy rate 2.3431*** 0.6035*** 2.3550*** 0.5781*** 2.0793***
(0.2139) (0.0528) (0.1837) (0.0000) (0.1815)

Female-headed HH −0.1444 −0.0275 1.5102*** −0.1374*** 1.3984***
(0.2468) (0.0905) (0.2123) (0.0001) (0.2097)

log night tweets 0.0971*** 0.2341*** 0.2018*** 0.2138*** 0.1197***
(0.0101) (0.0032) (0.0090) (0.0028) (0.0089)

Entertainment POI 0.0150*** −0.0058*** 0.0170*** −0.0045*** 0.0157***
(0.0037) (0.0013) (0.0037) (0.0013) (0.0037)

Uni POI −0.0026 0.0001 0.0022 −0.0011 0.0011
(0.0033) (0.0013) (0.0033) (0.0013) (0.0033)

Food POI 0.0545*** 0.0219*** 0.0443*** 0.0200*** 0.0514***
(0.0046) (0.0017) (0.0047) (0.0016) (0.0046)

Professional POI 0.0187*** 0.0239*** 0.0220*** 0.0239*** 0.0161**
(0.0056) (0.0021) (0.0057) (0.0020) (0.0056)

Nightlife POI −0.0606*** −0.0336*** −0.0768*** −0.0336*** −0.0710***
(0.0050) (0.0017) (0.0050) (0.0017) (0.0049)

Outdoors POI 0.0219*** 0.0136*** 0.0157** 0.0116*** 0.0113
(0.0060) (0.0022) (0.0060) (0.0021) (0.0059)

Shops POI 0.1444*** 0.0586*** 0.1221*** 0.0620*** 0.1247***
(0.0050) (0.0017) (0.0050) (0.0017) (0.0050)

Travel POI 0.0351*** −0.0015 0.0328*** 0.0032 0.0362***
(0.0052) (0.0018) (0.0050) (0.0017) (0.0049)

Residential POI −0.0642*** −0.0322*** −0.0467*** −0.0280*** −0.0475***
(0.0053) (0.0021) (0.0051) (0.0020) (0.0051)

Taxi 0.1750*** 0.0478*** 0.2546*** 0.0558*** 0.2051***
(0.0043) (0.0007) (0.0038) (0.0007) (0.0037)

1 Coefficients are on the log scale.

Standard errors in parentheses. ∗p < .05, ∗∗p < .01, ∗∗∗p < .001

Table 5: Estimates and standard errors for property crime in the full setting (i.e., setting 8).
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Parameter CAR GLM1 LR GLMM1 SAR

Intercept −0.6406*** −3.2257*** −0.8597*** −11.3048*** −0.8026***
(0.0883) (0.1820) (0.0803) (0.0001) (0.0798)

Population 0.0000*** 0.0001*** 0.001*** 0.0002*** 0.0000***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Median age −0.0010 −0.0262*** −0.0021** −0.0202*** −0.0014*
(0.0008) (0.0021) (0.0007) (0.0005) (0.0007)

Male 0.7794*** 2.0454*** 1.1705*** −0.1671*** 1.0551***
(0.1417) (0.2882) (0.1341) (0.0001) (0.1332)

Black 0.2130*** 1.3509*** 0.1054*** 3.8609*** 0.0466*
(0.0332) (0.0605) (0.0234) (0.0005) (0.0232)

Asian 0.0793* 0.6692*** −0.0086 3.8710*** −0.0133
(0.0384) (0.0775) (0.0249) (0.0001) (0.0248)

Hispanic 0.3449*** 1.2161*** 0.1931*** 4.8347*** 0.1160***
(0.0371) (0.0658) (0.0272) (0.0003) (0.0270)

Vacancy rate 0.3610*** 1.3688*** 0.5714*** 0.4828*** 0.4895***
(0.0752) (0.1407) (0.0635) (0.0001) (0.0631)

Female-headed HH 0.8407*** 1.7815*** 1.6145*** −1.0915*** 1.4370***
(0.0872) (0.1637) (0.0742) (0.0002) (0.0738)

log night tweets 0.0103** 0.1092*** 0.0156*** −0.0064 0.0102**
(0.0036) (0.0067) (0.0030) (0.0064) (0.0030)

Entertainment POI −0.0003 −0.0052 0.0028* 0.0076** 0.0010
(0.0013) (0.0032) (0.0013) (0.0029) (0.0013)

Uni POI 0.0001 0.0067* 0.0020 0.0114*** 0.0015
(0.0012) (0.0029) (0.0012) (0.0032) (0.0012)

Food POI 0.0056*** 0.0151*** 0.0069*** 0.0460*** 0.0072***
(0.0016) (0.0036) (0.0016) (0.0036) (0.0016)

Professional POI 0.0063** 0.0180*** 0.0041* −0.0028 0.0042*
(0.0020) (0.0046) (0.0020) (0.0044) (0.0020)

Nightlife POI 0.0037* 0.0153*** 0.0031 0.0469*** 0.0028
(0.0018) (0.0037) (0.0017) (0.0036) (0.0017)

Outdoor POI 0.0016 −0.0057 −0.0028 0.0497*** −0.0028
(0.0021) (0.0048) (0.0021) (0.0047) (0.0021)

Shops POI 0.0036* −0.0063 −0.0003 0.0811*** 0.0002
(0.0018) (0.0040) (0.0018) (0.0039) (0.0017)

Travel POI 0.0040* −0.0115** −0.0002 −0.0064 0.0017
(0.0018) (0.0040) (0.0017) (0.0039) (0.0017)

Residential POI −0.0051** −0.0005 −0.0018 −0.0076 −0.0020
(0.0019) (0.0043) (0.0018) (0.0041) (0.0018)

Taxi 0.0531*** 0.1201*** 0.1095*** 0.0454*** 0.0880***
(0.0055) (0.0060) (0.0050) (0.0880) (0.0050)

1 Coefficients are on the log scale.

Standard errors in parentheses. ∗p < .05, ∗∗p < .01, ∗∗∗p < .001

Table 6: Estimates and standard errors for violent crime in the full setting (i.e., setting 8)
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Model Settings

1 2 3 4 5 6 7 8

LR 5.3526 4.9326 4.2713 4.6464 4.3067 4.3868 4.7538 4.2181

GLM 6.6332 6.3506 6.2617 6.1874 6.2118 6.3685 6.3065 6.1431

CAR 5.7746 5.5127 5.0709 5.3929 5.1239 5.2021 5.5228 5.0357

SAR 4.9995 4.7097 4.1641 4.4851 4.2183 4.2533 4.5534 4.1254

GLMM 6.8903 12.4732 14.0517 7.8622 8.3090 21.8949 6.8442 8.6743

RF 1.9405 1.8703 1.9334 1.9195 1.8602 1.8989 1.9400 1.9737

GBM 1.8840 1.8906 1.9048 1.9182 1.9301 1.9273 1.9276 1.9179

NN 2.1155 1.9027 1.9278 1.9638 2.0666 2.0722 2.0965 1.9696

Table 7: MSE values of different models for property crime predictions.

Model Settings

1 2 3 4 5 6 7 8

LR 0.5010 0.4954 0.4944 0.4889 0.4896 0.4967 0.4919 0.4959

GLM 0.6064 0.6023 0.6011 0.6028 0.6056 0.6056 0.6066 0.6018

CAR 0.5172 0.5041 0.5056 0.5008 0.5109 0.5094 0.5134 0.5046

SAR 0.4970 0.4909 0.4944 0.4825 0.4881 0.4904 0.4868 0.4934

GLMM 0.4737 0.4732 0.4729 0.4759 0.4742 0.4729 0.4759 0.4742

RF 0.4681 0.4650 0.4737 0.4790 0.4807 0.4729 0.4807 0.4863

GBM 0.4529 0.4569 0.4514 0.4547 0.4559 0.4509 0.4567 0.4521

NN 0.4666 0.4656 0.4549 0.4625 0.4607 0.4633 0.4676 0.4564

Table 8: MSE values of different models for violent crime predictions.
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reduce crime. Proactive policies addressing community resource deprivation and

local effects are required to complement and amplify crime reduction efforts by

police.

Points of intervention can be identified through regression analysis of the

factors which co-occur with crime. The empirical results support routine activity

and social disorganisation theory as drivers of criminal activity. In New York

City, violent crime is taking place in neighbourhoods with poor social cohesion as

evident by the positive association with vacant homes and female-headed family

households. In line with disorganisation theory, social deprivation provides the

context for delinquent, violent behaviour. Support for social disorganisation

theory is supplemented by the fact that violent crime counts are not particularly

sensitive to POI venues (cf. Table 6).

Property crime appears to be less related to the residential make up of the

census tract where the crime takes place. Multiple demographic variables are

insignificant, male and age among them. Rather than local deprivation, local op-

portunities matter as evident from the large positive coefficient for the vacancy

rate variable. Overall, the coefficients for property crime capture an ambiva-

lence between more opportunities or targets through more human activity, and

more watchful eyes, preventing crime. This is illustrated in the negative asso-

ciation of property crime with nightlife and residential venues and the positive

association with shopping venues and Twitter activity.

The notion that different circumstances drive property and violent crime

differently is further supported by the rather low correlation between the crime

types (Pearson’s r = 0.17), indicating that the two crime types take place in

very different areas.

Based on those results, crime prevention strategies need to account for this

spatial and structural spread. Property crime is highly driven by localised op-

portunities, which means that interventions need to target those intersections

of opportunity and offender. Violent crime, however, appears to emerge from

social and structural context. Corresponding crime prevention programmes can

be supported by more proactive, predictive policing strategies.
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Crime forecasting accuracy is significantly improved by accounting for chang-

ing human behaviour. The relatively low reductions in MSE when adding POI

variables to census-based crime forecast models suggest that static data does

not suffice to forecast crime counts accurately (compare Setting 1 versus Setting

2 in Table 8 and Table 7). More fine-grained and detailed data such as Twitter

and taxi data are preferable.

For violent crime, Table 8 reveals that out of the two feature categories, the

taxi feature improves crime predictions more successfully than Twitter activity

(compare results for setting 3 versus setting 4) and gives almost consistently

lower MSE values. Joint use of the taxi and Twitter feature (setting 5) does not

facilitate further improvements but consistently increases MSE compared the

better of the settings where only one feature is included. Results for property

crime do not show a clear trend whether taxi or Twitter data is preferable to

capture human dynamics. However, we observe the same tendency as in the

case of violent crime that a combination of POI with either taxi or Twitter data

outperforms the baseline and POI only setting. This suggests that the POI

feature develops full potential in combination with other features that provide

a supplementary characterisation of human dynamics.

In view of the fact that the overall most accurate crime prediction in Table 8

and Table 7 are observed in settings that share the taxi feature, we suggest

that a combination of node-specific population data in combination with edge-

specific data on social taxi flow is the best combination of different data sources

to predict crime rates. Clearly, criminals do not take a taxi to the scene of

crime. However, the taxi feature proxies human dynamics between areas and

how people proliferate crime through space. The spatial dependence matrix

models only first-order dependence of immediate neighbours. Many taxi trips

traverse multiple areas such that the taxi feature accounts for social connection

and crime proliferation beyond just neighbouring sites.

27



7. Conclusion

This paper investigates the potential of new data sources on crime modelling

and forecasting. It presents a multi-model solution to predicting the number of

crime incidents in a census tract by combining demographic data with aggre-

gated social media, venue, and flow data. In addition, it addresses the two-fold

concerns of policy makers: preventing crime before it happens and as it happens.

The linear models are crucial to understanding the social processes that gener-

ate crime within small spatial neighbourhoods. Variables in line with routine

activity theory for property and social disorganisation theory for violent crime

emerge as important explanatory variables. However, their predictive power is

limited, which speaks to the fundamental difference between explanatory and

predictive modelling.

The results from the previous section show that anonymous data on human

behaviour is crucial to predicting crime. Already well-tuned machine learning

models using baseline demographic data are still outperformed by models incor-

porating Twitter and taxi data, demonstrating the high relevance of the new

feature domains. By not only relying on previous crime observations and quin-

quennial census data but rather on abundantly available behavioural data, the

models can generalise to new areas or areas with poor reporting rates. It can

also be easily adopted in other cities.

Following an applied perspective, the proposed approach can be employed to

predict future problematic crime areas and improve police responsiveness and re-

source allocation. By analysing underlying mechanisms of different crime types,

likely causes and areas for intervention have been identified. Different crime

theories can explain different crime types. Further, night-time activity emerged

as an important predictor as well as the destination of human movement.

This work represents an extension to existing approaches of crime predic-

tions. A key element to future work on crime prediction will be accounting

for human dynamics through a city. Beyond spatial distance alone, human

movement has been shown to not only connect areas, but also propagate crime.
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Future research exploiting these data should focus on this dynamic spatial crime

proliferation.
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