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Abstract

This paper presents a new approach to non-parametric cluster analysis

called Adaptive Weights Clustering (AWC). The idea is to identify the

clustering structure by checking at different points and for different scales

on departure from local homogeneity. The proposed procedure describes

the clustering structure in terms of weights wij each of them measures

the degree of local inhomogeneity for two neighbor local clusters using

statistical tests of “no gap” between them. The procedure starts from

very local scale, then the parameter of locality grows by some factor

at each step. The method is fully adaptive and does not require to

specify the number of clusters or their structure. The clustering results

are not sensitive to noise and outliers, the procedure is able to recover

different clusters with sharp edges or manifold structure. The method

is scalable and computationally feasible. An intensive numerical study

shows a state-of-the-art performance of the method in various artificial

examples and applications to text data. Our theoretical study states

optimal sensitivity of AWC to local inhomogeneity.

∗Financial support from the Deutsche Forschungsgemeinschaft via the IRTG 1792 ”High Dimensional

Non Stationary Time Series”, Humboldt-Universität zu Berlin, is gratefully acknowledged.
†The research is supported by the Russian Science Foundation (project no. 14 50 00150).
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1 Introduction

Methods for cluster analysis are well established tools in various scientific fields. Appli-

cations of clustering include a wide range of problems with text, multimedia, networks,

and biological data. We refer to the book Aggarwal and Reddy (2013) for comprehensive

overview of existing methods. Here we briefly overview only basic approaches in cluster-

ing, their advantages and problems. First we mention the so called partitional cluster-

ing. These algorithms try to group points by optimizing some specific objective function,

thereby using some assumptions on the data structure. The most known representatives

of this group of methods are k-means Steinhaus (1956) and its variations. k-means finds

a local minimum in the problem of sum of squared errors minimization. The partitional

algorithms generally require some parameters for initialization (number of clusters K )

and also are nondeterministic by their nature. Also k-means usually produces spherical

clusters and often fails to identify clusters with a complex shape. Hierarchical methods

construct a tree called dendrogram. Each level of this tree represents some partition of

data with root corresponding to only one cluster containing all points. The base of the

hierarchy consists of all singletons (clusters with only one point) which are the leaves

of the tree. Hierarchical methods can be split into agglomerative and divisive clustering

methods by the direction they construct a dendrogram. The main weakness of hierarchi-

cal algorithms is irreversibility of the merge or split decisions. Density-based clustering

was proposed to deal with arbitrary shape clusters, detect and remove noise. It can be

considered as a non-parametric method as it makes no assumptions about the number

of clusters, their distribution or shapes. DBSCAN Ester et al. (1996) is one of the most

common clustering algorithms. DBSCAN estimates density by counting the number of

points in some fixed neighborhood and retrieves clusters by grouping dense points. If

data contains clusters with a difference in density then it is hard or even impossible

to set an appropriate density level. Another crucial point of this approach is that the

quality of nonparametric density estimation is very poor if the data dimension is large.

Spectral clustering methods Ng et al. (2002) explore the spectrum of a similarity matrix,

i.e. a square matrix with elements equal to pairwise similarities of data points. Spectral

clustering can discover nonconvex clusters. However, the number of clusters should be

fixed in advance in a proper way, and the method requires a significant spectral gap be-

tween clusters. Affinity Propagation (AP) Frey and Dueck (2007) is an exemplar-based

clustering algorithm. In the iterative process AP updates two matrices based on simi-
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larities between pairs of data points. AP does not require the number of clusters to be

determined, whereas it has limitation: the tuning of its parameters is difficult due to

occurrence of oscillations. Graph-based methods represent each data point as a node of a

graph whose edges reflect the proximity between points. For a detailed survey on graph

methods we refer to Zhu (2005).

After all, the following main problems arise in clustering algorithms: unknown number

of clusters, nonconvex clusters, unbalance in sizes or/and densities for different clusters,

stability with changing parameters. For big data the complexity is also very important.

A theoretical study of the clustering problem is difficult due to lack of a clear and

unified definition of a cluster. Probably the most popular way of defining a cluster is

based on connected level sets of the underlined density Wishart (1969); Hartigan (1975)

or regions of relatively high density Seeger (2001). Existing theoretical bounds require to

consider regular or r0 -standard clusters which allows to exclude pathological cases Ester

et al. (1996); Rigollet (2007). However, this approach cannot distinguish overlapping or

connected clusters with different topological properties. This paper does not aim at giving

a unified definition of a global cluster. Instead we offer a new approach which focuses on

local cluster properties: a cluster is considered as a homogeneous set of similar points.

Any significant departure from local homogeneity is called a “gap” and a cluster can be

viewed as a collection of points without a gap. An obvious advantage of this approach is

that it can be implemented as a family of tests of “no gap” between any neighbor local

clusters. The idea is similar to multiscale high dimensional change point analysis where

the test of a change point is replaced by a test of a gap; cf. Frick et al. (2014). The

method presented in the next section involves the ideas of agglomerative hierarchical (by

changing the scale of objects from small to big), density based (by nonparametric test)

and affinity propagation (by iteratively updating the weights). The “adaptive weights”

idea originates from propagation-separation approach introduced in Polzehl and Spokoiny

(2006) for regression types models. In the clustering context, this idea can be explained

as follows: for every point Xi , the clustering procedure attempts to describe its largest

possible local neighborhood in which the data is homogeneous in a sense of spatial data

separation. Technically, for each data point Xi , a local cluster Ci is described in terms

of binary weights wij and includes only points Xj with wij = 1 . Thus, the whole

clustering structure of the data can be described using the matrix of weights W which is

recovered from the data. Usual clustering in the form of a mapping X 7→ C can be done

using the resulting weights wij . The weights are computed by the sequential multiscale

procedure. The main advantage of the proposed procedure is that it is fully adaptive

to the unknown number of clusters, structure of the clusters etc. It applies equally

well to convex and shaped clusters of different type and density. We also show that



efimov, k., adamyan, l., and spokoiny, v. 4

the procedure does not produce artificial clusters (propagation effect) and ensures nearly

optimal separation of closely located clusters with a hole of a lower density between them.

The procedure involves only one important tuning parameter λ , for which we suggest an

automatic choice based on the propagation condition or on the “sum of weights heuristic”.

Numerical results indicate state-of-the-art performance of the new method on artificial

and real life data sets. The main contributions of this paper are:

1. We propose a new approach to define a clustering structure: a cluster is built by a

group of samples with “no gap” inside. This allows to effectively recover the number

of clusters and the shape of each cluster without any preliminary information.

2. The method can deal with non-convex and overlapping clusters, it adapts automat-

ically to manifold clustering structure and it is robust against outliers.

3. The proposed procedure demonstrates state-of-the-art performance on wide range

of various artificial and real life examples and outperforms the popular competitive

procedures even after optimising their tuning parameters. It is computationally

feasible and the method applies even to large datasets.

4. The procedure controls the probability of building an artificial cluster in a homo-

geneous situation.

5. Theoretical results claim an optimal sensitivity of the method in detecting of two

or more clusters separated by a hole of a lower density due to multiscale nature of

the procedure.

The rest of the paper is organized as follows. Section 2 introduces the procedure

starting from some heuristics. Its theoretical properties are discussed in Section 3. The

numerical study is presented in Section 4. The proofs are collected in Section 5. Some

technical details as well as more numerical examples are postponed to Appendix.

2 Nonparametric Clustering using Adaptive Weights

Let {X1, . . . , Xn} ⊂ IRp be an i.i.d. sample from the density f(x) . Here the dimension p

can be very large or even infinite. We assume for any pair (Xi, Xj) that a known distance

(or non-similarity measure) d(Xi, Xj) between Xi and Xj is given, for instance, the

Euclidean norm ‖Xi−Xj‖ . This is also the default distance in this paper. The proposed

procedure operates with the distance matrix
(
d(Xi, Xj)

)n
i,j=1

only. For describing the

clustering structure of the data, we introduce a n × n matrix of weights W = (wij) ,

i, j = 1, . . . , n . Usually the weights wij are binary and wij = 1 means that Xi and Xj
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are in the same cluster, while wij = 0 indicates that these points are in different clusters.

The matrix W is symmetric and each block of ones describes one cluster. However, we

do not require a block structure which allows to incorporate even overlapping clusters.

For every fixed i , the associated cluster Ci is given by the collection of positive weights

(wij) over j . One can consider a more general construction when wij ∈ [0, 1] and this

value can be viewed as probability that the other point Xj is in the same cluster as Xi .

The proposed procedure attempts to recover the weights wij from data, which ex-

plains the name “adaptive weights clustering”. The procedure is sequential. It starts

with very local clustering structure C(0)i , that is, the starting positive weights w
(0)
ij are

limited to the closest neighbors Xj of the point Xi in terms of the distance d(Xi, Xj) .

At each step (or scale) k ≥ 1 , the weights w
(k)
ij are recomputed by means of statistical

tests of “no gap” between C(k−1)i and C(k−1)j ; see the next section. Only the neighbor

pairs Xi, Xj with d(Xi, Xj) ≤ hk are checked, however the locality (or scale) parameter

hk and the number of scanned neighbors Xj for each fixed point Xi grows in each step.

The resulting matrix of weights W is used for the final clustering. The core element of

the method is the way how the weights w
(k)
ij are recomputed.

2.1 Adaptive weights wij : test of “no gap”

Suppose that the first k− 1 steps of the iterative procedure have been carried out. This

results in collection of weights
{
w

(k−1)
ij , j = 1, . . . , n

}
for each point Xi . These weights

describe a local “cluster” associated with Xi . By construction, only those weights w
(k−1)
ij

can be positive for which Xj belongs to the ball B(Xi, hk−1)
def
= {x : d(Xi, x) ≤ hk−1} ,

or, equivalently, d(Xi, Xj) ≤ hk−1 . At the next step k we pick up a larger radius hk

and recompute the weights w
(k)
ij using the previous results. Again, only points with

d(Xi, Xj) ≤ hk have to be screened at step k . The basic idea behind the definition of

w
(k)
ij is to check for each pair i, j with d(Xi, Xj) ≤ hk whether the related clusters are

well separated or they can be aggregated into one homogeneous region. We treat the

points Xi and Xj as fixed and compute the test statistic T
(k)
ij using the weights w

(k−1)
i`

and w
(k−1)
j` from the preceding step. The test compares the data density in the union

and overlap of two clusters for points Xi and Xj . The formal definition involves the

weighted empirical mass of the overlap and the weighted empirical mass of the union of

two balls B(Xi, hk−1) and B(Xj , hk−1) shown on Figure 2.1. The empirical mass of the

overlap N
(k)
i∧j can be naturally defined as

N
(k)
i∧j

def
=
∑
` 6=i,j

w
(k−1)
i` w

(k−1)
j` .
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Figure 2.1: Test of “no gap between local clusters”. Top, from left : Homogeneous

case; N
(k)
i∧j ;N

(k)
i4j ;N

(k)
i∨j ; Bottom: from left : Homogeneous case. “Gap” case. Manifold

clustering.

In the considered case of indicator weights w
(k−1)
ij , this value is indeed equal to the num-

ber of points in the overlap of B(Xi, hk−1) and B(Xj , hk−1) except Xi, Xj . Similarly,

the mass of the complement is defined as

N
(k)
i4j

def
=
∑
6̀=i,j

{
w

(k−1)
i` 1I

(
X` 6∈ B(Xj , hk−1)

)
+ w

(k−1)
j` 1I

(
X` 6∈ B(Xi, hk−1)

)}
.

Note that N
(k)
i4j is the number of points in C(k−1)i and C(k−1)j which do not belong to

the overlap B(Xi, hk−1) ∩B(Xj , hk−1) . Finally, mass of the union N
(k)
i∨j can be defined

as the sum of the mass of the overlap and the mass of the complement:

N
(k)
i∨j

def
= N

(k)
i∧j +N

(k)
i4j .

To measure the gap we consider the ratio of these two masses:

θ̃
(k)
ij = N

(k)
i∧j
/
N

(k)
i∨j . (2.1)

This value can be viewed as an estimate of the value θ
(k)
ij which measures the ratio of

the population mass of the overlap of two local regions C(k−1)i and C(k−1)j relative to the

mass in their union:

θ
(k)
ij

def
=

∫
B(Xi,hk)∩B(Xj ,hk)

f(u)du∫
B(Xi,hk)∪B(Xj ,hk)

f(u)du
. (2.2)

Under local homogeneity one can suppose that the density in the union of two balls is

nearly constant. In this case, the value θ
(k)
ij should be close to the ratio q

(k)
ij of the

volume of overlap and the volume of union of these balls:

q
(k)
ij

def
=

∫
B(Xi,hk)∩B(Xj ,hk)

du∫
B(Xi,hk)∪B(Xj ,hk)

du
=

Vol∩(dij , hk−1)

2 Vol(hk−1)−Vol∩(dij , hk−1)
, (2.3)
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where Vol(h) is the volume of a ball with radius h and Vol∩(d, h) is the volume of the

intersection of two balls with radius h and distance dij = d(Xi, Xj) between centers.

The ratio θ
(k)
ij /q

(k)
ij will be called the gap coefficient. If the gap coefficient is significantly

smaller than one, this can be treated as a gap between two local clusters at scale k .

The new weight w
(k)
ij can be viewed as a randomized test of the null hypothesis

H
(k)
ij of no gap between Xi and Xj against the alternative of a significant gap at scale

k . This is a composite hypothesis which reads as θ
(k)
ij /q

(k)
ij ≥ 1 against θ

(k)
ij /q

(k)
ij < 1 .

The construction is illustrated by Figure 2.1 for the homogeneous situation and for the

situation with a gap.

To quantify the notion of significance, we consider the statistical likelihood ratio test

of “no gap” between two local clusters. The corresponding test statistic can be motivated

by the following statistical problem. Let X1, . . . , Xn ∈ IRp be an i.i.d. sample and B,C

be two non-overlapping measurable sets in IRp . Suppose we are interested to check the

relation IP (B) ≥ q
{
IP (B) + IP (C)

}
for a given value q ∈ (0, 1) against the one-sided

alternative IP (B) < q
{
IP (B) + IP (C)

}
. Let

SB
def
=

n∑
i=1

1I(Xi ∈ B), SC
def
=

n∑
i=1

1I(Xi ∈ C).

Lemma A.1 from Appendix A shows that corresponding likelihood ratio test statistics

can be written as

T = (SB + SC)K
(
θ̃, q
) {

1I(θ̃ ≤ q)− 1I(θ̃ > q)
}
,

where θ̃
def
= SB/(SB + SC) , and K(θ, η) is the Kullback-Leibler (KL) divergence between

two Bernoulli laws with parameters θ and η :

K(θ, η)
def
= θ log

θ

η
+ (1− θ) log

1− θ
1− η

.

It is worth noting that the test statistic T only depends on the local sums SB and SC .

One can also use the symmetrized version of the KL divergence:

Ks(θ, η)
def
=

1

2

{
K(θ, η) + K(η, θ)

}
= (θ − η) log

θ(1− η)

(1− θ)η
.

Now we apply this construction to the situation with two local clusters. The set B is

the overlap of the balls B(Xi, hk) and B(Xj , hk) , while C stands for its complement

within the union B(Xi, hk−1) ∪ B(Xj , hk−1) . Then the weighted analog of the mass of

the overlap SB is given by N
(k)
i∧j , while SB + SC is extended to the mass of the union

N
(k)
i∨j yielding the test statistic T

(k)
ij of the form

T
(k)
ij = N

(k)
i∨j K

(
θ̃
(k)
ij , q

(k)
ij

) {
1I(θ̃

(k)
ij ≤ q

(k)
ij )− 1I(θ̃

(k)
ij > q

(k)
ij )
}
. (2.4)
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Polzehl and Spokoiny (2006) used a similar test of the hypothesis θ
(k)
ij = q

(k)
ij for defining

a homogeneous region within an image. In the contrary to that paper, we consider a one

sided test with a composite null θ
(k)
ij ≥ q

(k)
ij . The value q

(k)
ij from (2.3) depends only on

the ratio t
(k)
ij = dij/hk−1 with dij = d(Xi, Xj) . If d(Xi, Xj) = ‖Xi − Xj‖ , then q

(k)
ij

can be calculated explicitly (Li (2011)): q
(k)
ij = q(t

(k)
ij ) with

q(t) =

2
B
(
p+1
2 , 12

)
B
(

1− t2

4 ,
p+1
2 , 12

) − 1

−1 , (2.5)

where B(a, b) is the beta-function, B(x, a, b) is the incomplete beta-function, and p is

the space dimension. The argument t ∈ [0, 1) and the function can be tabulated.

The famous Wilks phenomenon Wilks (1938) claims that the distribution of each test

statistic T
(k)
ij is nearly χ2 -distributed under the null hypothesis. This justifies the use

of family of such tests T
(k)
ij properly scaled by a universal constant λ which is the only

tuning parameter of the method. See below at the end of this section.

2.2 The procedure

This section presents a formal description of the procedure. First we list the main

ingredients of the method, then present the algorithm.

A sequence of radii: First of all we need to fix a growing sequence of radii h1 ≤
h2 ≤ . . . ≤ hK which determines how fast the algorithm will come from considering

very local structures to large-scale objects. Each value hk can be viewed as a resolution

(scale) of the method at step k . The rule has to ensure that the average number of

screened neighbors for each Xi at step k grows at most exponentially with k ≥ 1 . This

feature will be used to show the optimal sensitivity of the method. A specific choice of

this sequence is given in Appendix B. Here we just assume that such a sequence is fixed

under the following two conditions:

n(Xi, hk+1) ≤ an(Xi, hk), hk+1 ≤ b hk

where n(Xi, h) is the number of neighbors of Xi in the ball of radius h , and a, b are

given constants between 1 and 2. Our default choice is a =
√

2 , b = 1.95 which ensures

a non-trivial overlap of any two local clusters at the step k . Decreasing any of the

parameters a, b increases the number of steps hk and thus, the computational time but

can improve the separation property of the procedure. Our intensive numerical studies

showed that the default choice works well in all examples; no notable improvements can
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be achieved by tuning of these parameters. A geometric growth of the values n(Xi, hk+1)

ensures that the total number of steps K is logarithmic in the sample size n .

Initialization of weights: Define by h0(Xi) the smallest radius hk in our fixed se-

quence such that the number of neighbors of point Xi in the ball B(Xi, h0(Xi)) is not

smaller than n0 , our default choice n0 = 2p+ 2 . Using these distances we can initialize

w
(0)
ij as

w
(0)
ij = 1I

(
d(Xi, Xj) ≤ max(h0(Xi), h0(Xj))

)
.

Updates at step k : At step k for k = 1, 2, . . . ,K , we update the weights w
(k)
ij for

all pairs of points Xi and Xj with distance d(Xi, Xj) ≤ hk . The last constraint allows

us to recompute only n × nk weights, where nk is the average number of neighbors in

the hk neighborhood. The weights w
(k)
ij at step k are computed in the form

w
(k)
ij = 1I

(
d(Xi, Xj) ≤ hk

)
1I
(
T
(k)
ij ≤ λ

)
(2.6)

for all points Xi, Xj with hk−1 ≥ h0(Xi) and hk−1 ≥ h0(Xj) . The last constraint

guarantees that the weights w
(k)
ij are computed by the algorithm only when the corre-

sponding balls contain at least n0 points. The value T
(k)
ij is the test statistic from (2.4)

for the “no gap” test for points Xi and Xj . Here λ is a threshold coefficient and the

only parameter for tuning.

The output of the AWC is given by the matrix W = W (K) at the final step K which

defines the local cluster C(Xi) = (Xj : wij > 0) for each point Xi . One can use these

local structures to produce a partition of the data into non-overlapping blocks.

Tuning the parameter λ : The parameter λ has an important influence on the per-

formance of the method. Large λ -values result in a conservative test of “no gap” which

can lead to aggregation of inhomogeneous regions. In the contrary, small λ increases

the sensitivity of the method to inhomoheneity, but may lead to artificial segmentation.

This section discusses two possible approaches to fix the parameter λ . The first is not

data-driven and depends only on data dimension p . The second approach is based on

the “sum-of-weights” heuristics and is completely data driven.

The propagation approach which originates from Spokoiny and Vial (2009) suggests

to tune the parameter λ as the smallest value which ensures a prescribed level (e.g.

90%) of correct clustering result in a very special case of just one simple cluster. Namely,

we tune the parameter λ to ensure that the algorithm typically puts all points into one

cluster for the sample uniformly distributed on a unit ball. This is similar to the level

condition in hypothesis testing when the procedure is tested under the null hypothesis
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of a simple homogeneous cluster. The first kind error corresponds to creating some arti-

ficial clusters, where the probability of such events is controlled by the choice of λ . The

construction guarantees right performance of the method (w
(k)
ij ≈ 1 ) only in the very

special case of locally constant density. However, this situation is clearly reproduced for

any local neighborhood lying within a large homogeneous region. Therefore, the propa-

gation condition yields a right performance of the procedure within each homogeneous

region.

Another way of looking at the choice of λ called “sum-of-weights heuristic” is based

on the effective cluster volume given by the total sum of final weights w
(K)
ij over all

i, j . Let w
(K)
ij (λ) be the final weights obtained by the procedure with the parameter λ .

Define

S(λ)
def
=

n∑
i,j=1

w
(K)
ij (λ).

Small λ -values lead to artificial clustering with many small blocks of ones and all zeros

outside of these blocks. The corresponding S(λ) will be small as well. An increase

of λ yields larger homogeneous blocks and thus, a larger value S(λ) . Such behavior is

typically observed until λ reaches a reasonable value, then the cluster structure stabilizes

and any further moderate increase of λ does not affect S(λ) . For big λ , the procedure

starts to aggregate two or more clusters into one, this leads to a jump in S(λ) . So, a

proposal is to pick up the smallest λ -value corresponding to a plateau in the graph of

S(λ) . In the case of complex cluster structure, one can observe several plateaux, with

the corresponding λ -value for each plateau. Then we recommend to check all those

λ -values and compare the obtained clustering results afterwards. See Appendix D for

some numerical examples.

2.3 Algorithm complexity

The preliminary step of our algorithm requires to fix the sequence of radii {hk}Kk=0 , build

the distance matrix and initialize the matrix of weights. The last is updated on each step

of the algorithm. Suppose the average number of neighbors for each Xi at step k is

nk . Then finding the first nK neighbors for each point costs O(nnK log n) . At step

k we need to compute 0.5nnk statistics T
(k)
ij . Calculation of all values N

(k)
i∧j , N

(k)
i4j

costs O(nn2k) . As a result the overall complexity of step k is O(nn2k) . Note that

the local nature of the procedure allows to effectively use parallel computations. In our

approach the radii hk are fixed in a way that ensures exponential growth of nk . It

results in K = O(log n) steps and furthermore, complexity of all steps is determined by

the last step: O(nn2K) . In our experiments the datasets sample sizes are not very large
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n ≤ 10000 , therefore we used nK = n . For large datasets, one should use nK � n . In

this case at the last step we will only catch the local clustering structure for each point

and then “recover” the global structure by extracting the connected components.

3 AWC properties

This section discusses some important properties of the AWC method.

3.1 Propagation for regions with a non-constant density

The procedure is calibrated to ensure the propagation within regions with a constant

density. It is important to understand how far this property can be extended for a non-

constant density. Symmetricity arguments allow to easily extend propagation effect to

the case of a linear density. In the univariate case, one can make a further step and show

this property for regions with a concave density.

Theorem 3.1. Let the observations Xi be i.i.d. in IRp , let the data density f(x) be

supported on a region V . Consider two cases: 1) p = 1 and the density f(x) is concave;

2) p is arbitrary and f(x) is linear. If λ > C log n for some absolute constant C , then

with a probability at least 1− 2/n , it holds w
(k)
ij = 1 at any step k of the procedure.

Numerical examples illustrating this and the further results are presented in Sec-

tion 4.1. The proofs are collected in Section 5.

3.2 Separation with a hole

Now we discuss the “separation” effect between clusters for one particularly important

situation, when two homogeneous regions are separated by a hole with slightly smaller

density and we compute the weight w
(k)
ij by (2.6) for two points from different regions

each close to the hole; see Figure 2.1 “Gap” case. Let V be a set with a volume |V | and

G be a splitting hole with volume |G| such that VG
def
= V \ G consists of two disjoint

regions. To be more specific, consider two uniform clusters separated by some area (hole)

of a lower density. Let fG denote the density on G and fVG on the complement V \G .

We assume the relation fG = (1−ε)fVG for a small value ε . The separation effect would

mean that for any pair of points Xi and Xj from different clusters, the statistical test

detects this situation leading to a big value of the test statistic T
(k)
ij and to a vanishing

weight w
(k)
ij . The next two theorems answer the following question: what is the smallest

depth parameter ε of the hole which enables a consistent and precise separation? First

we establish a lower bound.
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Theorem 3.2. Let the data support V contain a fixed hole G , and the data density

f(·) be equal to f1 on the complement V \ G and to fG on G with fG = (1 − ε)f1 .

Let ε = εn as the sample size n → ∞ . If nε2n ≤ C for a fixed constant C > 0 , then it

is impossible to consistently separate the cases with ε = 0 (no gap) and ε = εn .

For an upper bound, we need a more specific description of the shape of the region V

on which the data is supported. Namely we assume that V is composed of two regions

V1 and V2 of higher density f1 separated by a hole G with a slightly smaller density

fG and the volume and shape of all three subregions V1, V2, G are nearly the same. The

next result heavily uses the multiscale nature of the procedure. Namely we focus on the

steps when the bandwidth hk approaches the global bandwidth hK . For two points Xi

and Xj from different regions this allows to assume that the union of two balls B(Xi, hk)

and B(Xj , hk) contains the whole domain V , while their overlap contains G . We show

that for such configuration the computed weights w
(k)
ij typically vanish provided that

nε2 ≥ C log(n) .

Theorem 3.3. Let a set V be split by a hole G with δ = |G|/|V | ≥ 1/3 . Let the

data density f(·) fulfill f(x) ≤ fG for x ∈ G and f(x) ≥ f1 for x ∈ V \ G with

fG ≤ (1− ε)f1 . Let Xi ∈ V1 , Xj ∈ V2 be two sample points from different regions and

let for some k ≤ K and the corresponding bandwidth hk , it holds

B(Xi, hk) ∪B(Xj , hk) = V, B(Xi, hk) ∩B(Xj , hk) ⊇ G,

|V |/3 ≤ |B(Xi, hk) ∩B(Xj , hk)| ≤ |V |/2.
(3.1)

If nε2 ≥ C log(n) for a fixed sufficiently large constant C , then the AWC procedure

assigns the weight w
(k)
ij = 0 with high probability.

The conditions (3.1) of the theorem on the shape of the sets V and G can be easily

relaxed. In fact we only need that the volume of the union B(Xi, hk) ∪ B(Xj , hk) to

be of the order |V | and significantly larger than the volume of the overlap B(Xi, hk) ∩
B(Xj , hk) . In its turn, this overlap has to include a massive part of the hole G . The

constants 1/3 and 1/2 in the last condition can be replaced by any other two positive

constants c1 < c2 < 1 .

3.3 Manifold clustering and high-dimensional data

The procedure is calibrated to ensure the propagation property which means a small

probability of artificial clustering for a full dimensional homogeneous region. It appears

that this propagation property automatically extends to the case of a low dimensional

manifold structure. Suppose that the similarity measure d(Xi, Xj) is based on the
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Euclidean distance between Xi and Xj . Let also in a local vicinity of each data point Xi

the remaining data concentrate in a small vicinity of a low dimensional linear subspace;

see Figure 2.1 bottom right. This implies that the distances d(Xi, Xj) correspond to

the effective data dimension pe rather than the original dimension p . Here we explain

why the propagation property extends to this case. Indeed, the test statistics T
(k)
ij are

built on the base of the distance matrix (d(Xi, Xj))
n
i,j=1 , and in the manifold case,

T
(k)
ij correspond to the effective dimension pe . The data dimension p does not show up

there. There is only one place in the algorithm where the dimension p appears explicitly,

namely, in the definition of the function q(·) from (2.5). And this function decreases

with p ; see Lemma A.3 from Appendix A. Artificial separation can only occur when

θ̃
(k)
ij < q

(k)
ij . Probability of such an event becomes very small in the case of manifold

data, because the estimated value θ̃
(k)
ij corresponds to the data of effective dimension

pe , while the value q
(k)
ij is computed for the full dimension p . So, one can expect that

the propagation effect will be even stronger along a low dimensional manifold. Note

however that the arguments do not apply if a low dimensional manifold crosses another

manifold of different dimension. Then the procedure indicates a non-homogeneity in the

same way as in the case of two close regions with different densities.

The manifold property allows to easily work with high-dimensional data. Suppose

that the data dimension p is large but the cluster structure corresponds to a low di-

mensional manifold of dimension m . And suppose that the distance/similarity matrix

(d(Xi, Xj))
n
i,j=1 also corresponds to this manifold structure. The definition of the adap-

tive weights does not rely on the dimension p except the definition of the function q(·)
from (2.5). We suggest to use the small “effective” dimension m instead of p for com-

puting q(t) . If our guess m correctly mimics the effective dimension of the data then the

AWC procedure will be properly tuned and preserve all its propagation and separation

properties. In Section 4 we show the results of this approach applied on real text data.

4 Numerical examples and evaluation

This section illustrates the performance of AWC by mean of artificial and real datasets.

4.1 Artificial data

First examples serve to illustrate our main theoretical results. We start with the sep-

aration result of Theorems 3.2 and 3.3. Figure 4.1 shows the dataset composed of two

uniform clusters with density f separated by a hole of lower density f/2 shown by ver-

tical lines on the first figure. We fix a point X∗ on the boarder of the left cluster marked

by red × . One can see that the local cluster of point X∗ at original steps spreads to
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Figure 4.1: Steps 1, 40, 45, 47, 52. Black balls show the cluster for the red point.

Figure 4.2: r∗0.2 for standard Gaussian data (solid lines) and averaged values of WΣ(λ, 1)

for the uniform data on the unit disk (dashed lines) for different n , λ .

the right until the radius rk reaches the proper scale to detect the gap by our test. At

the final step, the connections from the considered point X∗ do not spread over the gap.

As a result we have two clusters separated by a hole. More examples on separation with

a gap are presented in Appendix D.

One Gaussian cluster Suppose that the data are sampled from a standard normal

law N (0, IIp) in IRp . The density in this case is concave only inside a unit ball with

center in 0. Therefore, Theorem 3.1 implies the following behavior of AWC: with a high

probability, it detects a cluster of points associated with the unit ball. We fix p = 2 .

Let wij(λ) be the final weights of the AWC procedure for a particular realization of the

data given by AWC with parameter λ . Define the connectedness coefficient WΣ(λ, r)

for the ball of radius r :

WΣ(λ, r) =

∑
i,j wij(λ) 1I(‖Xi‖ ≤ r, ‖Xj‖ ≤ r)∑

i,j 1I(‖Xi‖ ≤ r, ‖Xj‖ ≤ r)
.



efimov, k., adamyan, l., and spokoiny, v. 15

Figure 4.3: Mixture of two normals with variance 1 and distance D between means.

From left : D = 4; 3; 2.5; 2.

Define also the radius r∗ = r∗α by the condition

IP
(
WΣ(λ, r∗α) ≥ 1− α

)
= 1− α.

Solid lines in Figure 4.2 show r∗α for α = 0.2 , different λ and different sample sizes

n = 100, 300, 400, 600, 800 . In addition, compute the mean of WΣ(λ, 1) for the uniform

distribution on the unit disk. These values are shown by the dashed lines on Figure 4.2.

Comparing the dashed and solid lines of the same color on Figure 4.2 reveals that for a

fixed n , the value λ which guaranties 80%-90% connectedness in the case of uniform

distribution also guaranties in the case of normal distribution that the radius of central

cluster is close to 1. This is in complete agreement with the claim of Theorem 3.1.

Separation for two Gaussian clusters Now we illustrate the separation properties

of AWC on the example of two Gaussian clusters. In this case we want to check how

AWC can find the possibly small gap between two clusters. Remind that AWC is a

fully nonparametric method. A mixture of two Gaussian distribution with nearly the

same mean is still unimodal and considered as one cluster. E.g. in the univariate case

presented on Figure 4.3, when the distance between means is less than 2 there is no gap

between clusters. Let X1, . . . , Xn ∈ IR2 be generated from standard normal distribution

N (0, II2) and Xn+1, . . . , X2n be generated from N (D, II2) . Select the parameter λ due

to suggestion of the previous section to ensure that the radius of detected central cluster

is close to 1. Explicitly for n = 100, 200, 300, 400, 600 we took λ = 4.2, 6, 6.5, 7.2, 8.3

correspondingly. Here we are interested in the separation error es from (E.1). The ideal

cluster separation in this experiment is given separated by the line (D/2, y) . Figure

4.4 shows an example of such realization. For each n and distance D we make 200

experiments. The averaged separation error esp as a function of distance between clusters

D is shown on Figure 4.5. One can see that the separation error remains quite high for

the distance D ≈ 2 for all considered sample sizes. At the same time, if the distance D

exceeds 3, the procedure starts to separate well the Gaussian clusters without using any

prior information about the structure of the underlying density.
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Figure 4.4: Mixture of two normals with n = 300, D = 3 : ideal clustering vs AWC

(λ = 6.5, esp = .05 )

Figure 4.5: Separation error for the mixture of two normals

Performance for benchmark data Next we investigate the performance of AWC

by mean of few popular artificial datasets with known cluster structure. The tuning

parameter λ of the AWC is selected using “sum-of-weights” heuristics. First we show how

AWC finds correct clusters in situations when other popular methods break down. For

the comparison we used the Python implementation of the k-means, DBSCAN, spectral

clustering and affinity propagation algorithms from scikit-learn tool Pedregosa et al.

(2011). Each method requires to fix some tuning parameter(s) and we optimized the

choice for each particular example while the AWC is used with the automatic choice. See

Appendix C for details.

We consider 3 datasets. The Pathbased (300 points), Figure 4.6 top, consists of two

clusters with Gaussian distribution surrounded by a circular cluster with an opening.

The Orange dataset (268 points), Figure 4.6 bottom, is a ball with uniform density

surrounded by uniformly distributed sphere with a little bit higher density. Compound

Zahn (1971) is a dataset consisting of 399 points with various densities, see Figure 4.7. It
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Figure 4.6: Top (pathbased), from left : AWC (λ = 4.1 ), Spectral (σ = 0.1 ), K-means

(K = 3 ), Aff. prop. (D = 0.5 , P = −1464 ), DBSCAN ( ε = 2.1 , minsp=10); Bottom

(orange), from left : AWC (λ = 2) , spectral, K-means, affinity propagation, DBSCAN.

contains two nearly normal clusters, one small cluster surrounded by a ring cluster, and

a dense cluster inside big sparse one. Figures show best performance of each comparative

algorithm after parameter tuning. Each cluster found by the algorithms is represented

by its own unique color. Noise points in DBSCAN result are marked by black crosses.

One can see that AWC solves all challenges in these datasets such as non-convex clusters,

overlapping clusters with different intensities, manifold clustering. Other algorithms even

after optimizing can not handle most of them even after parameter tuning.

Other interesting examples are datasets DS4, DS3 from Karypis et al. (1999) used for

CHAMELEON hierarchical clustering algorithm. The AWC results are shown on Figure

4.8 and we can see that AWC can handle these datasets as well. Many popular within the

literature artificial datasets are collected in https://github.com/deric/clustering-benchmark.

AWC performance on several of them is shown on Figure 4.9. These examples include the

following challenges: manifold structure (spiral data), the density which slowly changes

inside a cluster, dense clusters with a background of low density, a dense bridge between

clusters etc. In all examples AWC does a very good job.

4.2 Text data

This section demonstrates the performance of AWC on text data, where the data dimen-

sion is very large. In our experiments we used 9 text datasets from the CLUTO toolkit

Karypis (2002) which are widely used in the literature. The basic characteristics of the

datasets are summarized in Table 1. The datasets dimension p ranges from 2886 to

10128 which makes these datasets a good benchmark for testing AWC manifold property

on high-dimensional data. CLUTO provides already preprocessed datasets. This prepro-
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Figure 4.7: Compound. Top, from left : Original, AWC (λ = 3.7 ), Spectral (σ = 0.1 );

Bottom, from left : K-means (K = 6 ), Aff. prop. (D = 0.5 , P = −737 ), DBSCAN

( ε = 1.48 , minsp=3)

Figure 4.8: AWC result for DS4 (n = 10000 ) and DS3 (n = 8000 ) with λ = 15 .

cessing includes stop-word removal and stemming. In our experiments we represent the

documents using the traditional vector space model with TF-IDF transformation: i -th

document is presented as vector Xi = {xij}dj=1 where

xij = tfij × idfj , idfj
def
= log(1 + n)− log(1 + nj) + 1.

Here tfij is the frequency of term j in the document i , nj is the number of documents

which contains the term j and idfj is the inverse document frequency. The last one

reflects how important a word is to a document in a collection. Originally the six datasets

tr11, tr12, tr23, tr31, tr41, and tr45 are derived from TREC collections (Text Retrieval

Conference, http://trec.nist.gov). The datasets re0 and re1 are taken from Reuters-

21578 text categorization test collection Lewis (1997). The dataset wap is from the

WebACE project Boley et al. (1999) where each document corresponds to a web page

listed in the subject hierarchy of Yahoo!. For evaluation we used Normalized Mutual

Information NMI from Strehl and Ghosh (2002), which is a popular measure for clustering
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Figure 4.9: AWC result for artificial datasets

accuracy in text data literature. For a true clustering structure C∗ = {C∗m}Mm=1 and some

other structure C = {Cl}Ll=1 , define nml = |C∗m ∩ Cl| , n∗m = |C∗m| , nl = |Cl| and

NMI(C, C∗) =

∑
ml nml log nnml

n∗m nl√∑
m n
∗
m log(n∗m/n)

∑
l nl log(nl/n)

.

We compared AWC with state-of-the-art algorithms for clustering textual data: Spec-

tral clustering with Normalized Cut (NCut) Shi and Malik (2000); Local Learning based

Clustering Algorithm (LLCA) Wu and Schölkopf (2006); Clustering via Local Regression

(CLOR), Sun et al. (2008); Regularized Local Reconstruction for Clustering (RLRC)

Sun et al. (2009). These methods belong to the group of spectral clustering approaches.

The results for these algorithms on our benchmark are taken from the work Sun et al.

(2009). All methods were provided with correct number of clusters K and the neighbor-

hood size k = 40 . For more details about experimental settings we refer to Sun et al.

(2009). The LLCA results are obtained after tuning the parameters. We also use the

vcluster package from CLUTO toolkit Karypis (2002) which provides a bisecting graph

partitioning-based algorithm. We used it with the prespecified correct number of clus-

ters K and the neighborhood size k = 40 . Other parameters were set by default. The

results of all methods are presented in Table 1. The maximal two numbers in each row

are marked in bold. For CLUTO, after 100 runs, we calculated the best and the worst

result among these runs, they are presented in the corresponding column of Table 1 in

the form [NMIworst,NMIbest] .

AWC also have a starting neighborhood size n0 = 40 which is similar to other

methods. The Euclidean distance was used as similarity measure. Another parameter of

AWC is the effective dimension pe used in (2.5) for computing the values q
(k)
ij . We just

set pe = 2 . In the Table 1 the result of AWC after tuning λ is marked by AWC∗ . By

AWCs we marked the result obtained with λ chosen by “sum-of-weights” heuristic. One

can see that in most cases “sum-of-weights” heuristic result is close to optimal. Table

1 shows that in 7 out of 9 datasets (tr11, tr23, tr31, tr45, re0, re1, wap) the result of

AWC is similar to the best result among all considered state-of-the-art algorithms. It is

worth mentioning that all methods except AWC were provided with the correct number
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Table 1: NMI for real-world text data sets, two best results in each row are in bold.

Algorithm

Data AWC∗ AWCs NCut LLCA CLOR RLRC CLUTO n d K

tr11 0.715 0.712 0.624 0.620 0.674 0.723 [0.637, 0.706 ] 414 6429 9

tr12 0.652 0.624 0.599 0.622 0.657 0.737 [0.632, 0.732 ] 313 5804 8

tr23 0.457 0.34 0.344 0.298 0.334 0.357 [0.409, 0.446 ] 204 5832 6

tr31 0.641 0.602 0.457 0.499 0.483 0.534 [0.615, 0.661 ] 927 10128 7

tr41 0.639 0.585 0.603 0.622 0.642 0.620 [0.639, 0.697 ] 878 7454 10

tr45 0.72 0.682 0.558 0.585 0.631 0.664 [0.605, 0.708 ] 690 8261 10

re0 0.468 0.458 0.401 0.409 0.426 0.395 [0.367, 0.429 ] 1504 2886 12

re1 0.609 0.583 0.484 0.485 0.498 0.496 [0.555, 0.607 ] 1657 3758 24

wap 0.598 0.586 0.525 0.542 0.541 0.577 [0.578, 0.611 ] 1560 8460 19

of clusters K . In addition all considered algorithms were constructed specially for text

data whereas AWC is remained unchanged and all results in this and other sections are

obtained by the same algorithm.

5 Proofs

This section presents the proofs of the main results. First we show that the value θ̃
(k)
ij is

a root-n consistent estimator of the value θ
(k)
ij for any two neighbor balls B(Xi, hk) and

B(Xj , hk) . Unlike standard results from empirical process theory, this bound is dimen-

sion free and does not involve any entropy number. The proof mainly uses combinatorial

arguments.

Lemma 5.1. For any k ≤ K and any i 6= j with d(Xi, Xj) ≤ hk , let the value θ
(k)
ij be

defined by (2.2) and its estimate θ̃
(k)
ij by (2.1). Then it holds for a fixed constant z on a

random set of probability at least 1− 2e−z

IP
(
N

(k)
i∨j K(θ̃

(k)
ij , θ

(k)
ij ) > z

)
≤ 2e−z. (5.1)

Proof. Let us fix a step k and a pair of points Xi, Xj with d(Xi, Xj) ≤ hk . Without

loss of generality, we assume i = 1 and j = 2 . Denote

B12
def
= B(X1, hk) ∪B(X2, hk), O12

def
= B(X1, hk) ∩B(X2, hk).

Given X1, X2 the remaining observations X3, . . . , Xn are still i.i.d. from the same

distribution. Let also S be the index subset of the set
{

3, . . . , n
}

. Introduce the random
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event AS by conditions X` ∈ B12 for ` ∈ S and X` 6∈ B12 for ` ∈ Sc
def
=
{

3, . . . , n
}
\ S :

AS
def
=
{
X` ∈ B12, ` ∈ S, X` 6∈ B12, ` ∈ Sc

}
.

After conditioning on X1, X2 and on AS , the subsample
{
X`

}
`∈S is still i.i.d. with

the conditional density f(x)/IP
(
AS

∣∣X1, X2

)
. Therefore, the ξ` = 1I

(
X` ∈ O12

)
’s are

given X1, X2, AS i.i.d. Bernoulli with the parameter θS = θ
(k)
12 . The deviation bound

from Polzehl and Spokoiny (2006) implies for the normalized sum θ̃S
def
= N−1S

∑
S ξ` with

NS
def
= |S| :

IP
(
NSK

(
θ̃S, θS

)
> z

∣∣X1, X2, AS

)
≤ 2e−z; z ≥ 0.

As the right hand-side of this inequality does not depend on X1, X2 , S , and AS , the

bound applies for the joint distribution in the unconditional form yielding (5.1).

Proof of Theorem 3.1 Suppose that the density function f(x) fulfills one of two

theorem conditions. Let also all the weights w
(m)
ij for m < k computed at the first

k − 1 steps of the algorithm are equal to one. It remains to show that the next step

k leads to the same results. Our inductive assumption means that we consider non-

adaptive weights w
(k)
ij which only account to the distance between points Xi , Xj , and

X` for all ` 6= i, j with d(Xi, X`) ≤ hk or d(Xj , X`) ≤ hk . Now Lemma 5.1 ensures

(5.1) for any pair Xi, Xj with d(Xi, Xj) ≤ hk and any k ≥ 1 . Also by Lemma A.2, it

holds θ
(k)
ij ≥ q

(k)
ij . For the event θ̃

(k)
ij < q

(k)
ij ≤ θ

(k)
ij we are interested in, this implies by

convexity of the Kullback-Leibler divergence w.r.t. the first argument that

IP
(
N

(k)
i∨j K

(
θ̃
(k)
ij , q

(k)
ij

)
1I
(
θ̃
(k)
ij < q

(k)
ij

)
> z
)
≤ IP

(
N

(k)
i∨j K

(
θ̃
(k)
ij , θ

(k)
ij

)
> z
)
≤ 2e−z.

This implies a uniform bound: for an absolute constant C ≤ 4

IP

(
max
i 6=j

max
k≥1

N
(k)
i∨j K

(
θ̃
(k)
ij , q

(k)
ij

)
1I
(
θ̃
(k)
ij < q

(k)
ij

)
> C log n

)
≤ 2

n
.

Proof of Theorem 3.2 Let V be a set with the volume |V | and G be a splitting

hole with volume |G| such that VG
def
= V \ G consists of two disjoint regions. Let

also the data density be equal to pG on G and to pVG on the complement V \ G .

Consider two hypothesis H0 of “no gap” pG = pVG = 1/|V | and HG of a G -gap with

pG = (1 − ε)pVG . We are interested to understand the conditions which enable us to

separate these two hypotheses. Define δ = |G|/|V | , so that |VG|/|V | = 1 − δ . Then

under H0 the data distribution is uniform on the set V with the density p0 = 1/|V | .
Further, under HG the data density is uniform on G with the density pG and on its
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complement V \G with the density pVG satisfying

|VG|pVG + |G|pG = (1− δ)|V |pVG + δ|V |(1− ε)pVG = 1,

yielding

pVG =
p0

1− δε
, pG =

p0(1− ε)
1− δε

. (5.2)

For the experiment with N observations, the condition of consistent separation between

H0 and HG is that the total Kullback-Leibler (KL) divergence between two distributions

converges to infinity. The KL divergence for the model with N i.i.d. observations is

defined as K(IP0, IPG) = IE0 log(dIP0/dIPG) . As IP0(G) = |G|p0 = |G|/|V | = δ , it

follows by (5.2)

K(IP0, IPG) = NIP0(G) log
p0
pG

+NIP0(VG) log
p0
pVG

= Nδ log
1− δε
1− ε

+N(1− δ) log(1− δε) = N log(1− δε)−Nδ log(1− ε).

If G is a hole of a fixed volume δ|V | and ε = εN → 0 , then

K(IP0, IPG) = 0.5(δ − δ2)Nε2N
{

1 +O(εN )
}

and consistent separation between P0 and PG is impossible if Nε2N remains bounded

by a fixed constant as N grows.

Proof of Theorem 3.3 Now we show that the AWC algorithm does a good job in

detecting a gap between two neighbor clusters separated by a hole G of the volume

|G| = δ|V | and the piecewise constant density given by (5.2). Let V consist of three

neighbor regions of equal cylindric shape of height h and base radius ρh for some

ρ < 1 . The hole G corresponds to the central part, so that |G| = |V |/3 and δ = 1/3 .

We consider two points Xi, Xj from different side of the hole separated by a distance

‖Xi −Xj‖ ≥ hk ≥ h at the step k . Due to the definition, it is sufficient to show that

the corresponding test statistic T
(k)
ij exceeds λ . We sketch the proof of this fact for the

“worst case” situation that the procedure did not gain any structural information during

the first k − 1 steps and all the earlier computed adaptive weights w
(k−1)
il and w

(k−1)
jl

coincide with the non-adaptive distance based weights, i.e. they are equal to one within

the balls of radius hk−1 around these points. By the theorem conditions, it holds

Ai∨j
def
= B(Xi, hk) ∪B(Xj , hk) = V, Ai∧j ⊃ G,
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and the value q
(k)
ij = |Ai∧j |/|V | satisfies 1/3 ≤ q(k)ij ≤ 1/2 . As IP (Ai∨j) = IP (V ) = 1 , it

holds

θ
(k)
ij = IP (Ai∧j) = pG|G|+ pVG |Ai∧j \G| ,

=
{
|G|(1− ε) + (|Ai∧j | − |G|)

}
pVG =

|Ai∧j | − ε|G|
|V |(1− δε)

=
q
(k)
ij − δε
1− δε

yielding

q
(k)
ij − θ

(k)
ij =

(1− q(k)ij )δε

1− δε
≥ Cε

with C ≥ 1/6 . In particular, this means that θ
(k)
ij < q

(k)
ij . Also one can bound

K1/2
(
θ
(k)
ij , q

(k)
ij

)
≥ C1ε (5.3)

with a slightly different constant C1 . To show that θ̃
(k)
ij is significantly smaller than q

(k)
ij ,

we apply Lemma 5.1. The condition Ai∨j = V implies Ni∨j = n and by Lemma 5.1

nK
(
θ̃
(k)
ij , θ

(k)
ij

)
≤ C2 log(n) . (5.4)

If θ̃
(k)
ij ≤ θ

(k)
ij , then K

(
θ̃
(k)
ij , q

(k)
ij

)
≥ K

(
θ
(k)
ij , q

(k)
ij

)
. If θ

(k)
ij < θ̃

(k)
ij ≤ q

(k)
ij , then regularity

and convexity of K(x, q) w.r.t. x, q implies

K1/2
(
θ̃
(k)
ij , q

(k)
ij

)
≥ aK1/2

(
θ
(k)
ij , q

(k)
ij

)
−K1/2

(
θ̃
(k)
ij , θ

(k)
ij

)
for some fixed constant a > 0 ; see Polzehl and Spokoiny (2006) for more details. This

together with (5.3) and (5.4) implies

K1/2(θ̃
(k)
ij , q

(k)
ij ) ≥ aC1ε−

√
C2n−1 log n ≥

√
λ/n

provided that aC1ε
√
n ≥

√
C2 log(n) +

√
λ . Together with the bound λ ≤ C log(n) this

yields a consistent separation w
(k)
ij = 1 under condition ε2 ≥ Cn−1 log(n) .

6 Conclusion

The proposed procedure AWC systematically exploits the idea of extracting the structural

information about the underlying data distribution from the observed data in terms

of adaptive weights and uses this information for sensitive clustering. The method is

appealing and computationally feasible, the numerical results indicate the state-of-the-

art performance of the method. Theoretical results show its optimality in separating of

neighbor regions.
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Appendix A Technical proofs

Lemma A.1. Let X1, . . . , Xn ∈ IRp be an i.i.d. sample and B,C be two non-overlapping

measurable sets in IRp . For a given value q ∈ (0, 1) , define one sided hypotheses

H0 : IP (B) ≥ q(IP (B) + IP (C)),

H1 : IP (B) < q(IP (B) + IP (C)).

Then the likelihood-ratio test statistic T for testing the null hypothesis H0 against the

alternative H1 is given by

T = (SB + SC)K
(
θ̃, q
) {

1I(θ̃ ≤ q)− 1I(θ̃ > q)
}
,

where K(θ, η) is the Kullback-Leibler (KL) divergence between two Bernoulli laws with

parameters θ and η :

K(θ, η)
def
= θ log

θ

η
+ (1− θ) log

1− θ
1− η

and

θ̃ =
SB

SB + SC
. (A.1)

Proof. Define A as the complement of B and C : A
def
= (B ∪C)c . Let also a = IP (A) ,

b = IP (B) , c = IP (C) , and

SA
def
=

n∑
i=1

1I(Xi ∈ A), SB
def
=

n∑
i=1

1I(Xi ∈ B), SC
def
=

n∑
i=1

1I(Xi ∈ C).

The log-likelihood L(a, b, c) for the multinomial model with the parameter (a, b, c) reads

L(a, b, c) = SA log a+ SB log b+ SC log c+R,

where the remainder R does not depend on a, b, c from [0, 1] . Now for a fixed ρ ∈ [0, 1] ,

define

L̂(ρ)
def
= sup

a+b+c=1, b=ρ(b+c)
L(a, b, c).

Then, the maximum likelihood under null hypothesis H0 can be written as

L̂0
def
= sup

1>ρ≥q
L̂(ρ).

Under the alternative

L̂1
def
= sup

0<ρ<q
L̂(ρ),
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and the likelihood ratio test statistic T is defined as the difference between L̂1 and L̂0 :

T
def
= L̂1 − L̂0 .

Introduce also the quantity

L̂ = sup
a+b+c=1

L(a, b, c)

Optimization under the constraint a + b + c = 1 yields in view of SA + SB + SC = n

that

L̂ = SA log
SA
n

+ SB log
SB
n

+ SC log
SC
n

+R .

It is also easy to see that

L̂ = max
ρ
L̂(ρ) = L̂(θ̃)

with θ̃ from (A.3).

Similar optimization under the additional constraint b = ρ(b + c) (see below at the

end of the proof)

L̂(ρ)
def
= sup

a+b+c=1, b=ρ(b+c)
L(a, b, c)

= SA log
SA
n

+ (SB + SC) log
SB + SC

n
+ SB log ρ+ SC log(1− ρ) . (A.2)

Consider the derivative of L̂(ρ) :

∂L̂(ρ)

∂ρ
=
SB
ρ
− SC

1− ρ
=
SB − (SB + SC)ρ

ρ(1− ρ)
=

(SB + SC)

ρ(1− ρ)
(θ̃ − ρ). (A.3)

It follows

∂L̂(ρ)

∂ρ
> 0 ⇐⇒ 0 < ρ < θ̃

∂L̂(ρ)

∂ρ
< 0 ⇐⇒ 1 > ρ > θ̃ .

To calculate L̂0, L̂1 we need to consider two cases:

q ≤ θ̃ =⇒ L̂0 = L̂, L̂1 = L̂(q)

q > θ̃ =⇒ L̂0 = L̂(q), L̂1 = L̂.
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The likelihood ratio test statistic is defined as the difference between L̂ and L̂0 :

T
def
= L̂1 − L̂0 =

{
L̂− L̂(q)

}{
1I(θ̃ ≤ q)− 1I(θ̃ > q)

}
= (SB + SC)

{
θ̃ log

θ̃

q
+ (1− θ̃) log

1− θ̃
1− q

}{
1I(θ̃ ≤ q)− 1I(θ̃ > q)

}
.

Note that this test statistic can be written as

T = (SB + SC)K
(
θ̃, q
) {

1I(θ̃ ≤ q)− 1I(θ̃ > q)
}

as required.

It remains to check (A.2). The Lagrange function for this optimization problem reads

as follows

L(a, b, c, ν, µ) = SA log a+ SB log b+ SC log c− ν(a+ b+ c− 1)− µ(b− ρ(b+ c)).

The partial derivatives of the Lagrange function are:

∂L
∂a

=
SA
a
− ν = 0

∂L
∂b

=
SB
b
− ν − µ(1− ρ) = 0

∂L
∂c

=
SC
c
− ν + µρ = 0

∂L
∂ν

= a+ b+ c− 1 = 0

∂L
∂µ

= b− ρ(b+ c) = 0.

These equations can be rewritten as follows:

a =
SA
ν

b =
SB

ν + µ(1− ρ)

c =
SC

ν − µρ
1 = a+ b+ c

c =
b(1− ρ)

ρ

Combining second, third and fifth equations

SC
ν − µρ

=
(1− ρ)

ρ

SB
ν + µ(1− ρ)

µ = −ν ρ(SB + SC)− SB
ρ(1− ρ)(SB + SC)
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and

b = ν−1
SB

1− ρ(SB+SC)−SB
ρ(SB+SC)

=
ρ(SB + SC)

ν

c = ν−1
SC

1 + ρ(SB+SC)−SB
(1−ρ)(SB+SC)

=
(1− ρ)(SB + SC)

ν
.

It follows from a+ b+ c = 1 :

SA
ν

+
ρ(SB + SC)

ν
+

(1− ρ)(SB + SC)

ν
= 1

ν = SA + SB + SC = n.

Finally we derive

a =
SA
n

b =
ρ(SB + SC)

n

c =
(1− ρ)(SB + SC)

n

which yields the assertion.

Our next lemma helps to check that in a region with a linear or univariate concave

density, the gap coefficient for any two overlapping balls is not smaller than 1 . Here we

assume that d(Xi, Xj) = ‖Xi −Xj‖ .

Lemma A.2. Consider the situation with a linear or univariate concave density f(x)

for x ∈ V . For any pair Xi, Xj ∈ V with d(Xi, Xj) ≤ hk , the value θ
(k)
ij from (2.2)

fulfills

θ
(k)
ij

q
(k)
ij

≥ 1,

where the value q
(k)
ij corresponds to a constant density f0(x) ≡ C .

Proof. We write h in place of hk for ease of notation. In the case of a linear density, it

holds θ
(k)
ij = q

(k)
ij by symmetricity arguments. In the case of a univariate concave density

consider a linear function g(x) such that it coincides with f(x) in points Xi − h and

−Xi + h : g(Xi− h) = f(Xi− h), g(−Xi + h) = f(−Xi + h) . Concavity of f(x) implies

f(x) ≥ g(x), x ∈ A def
= [Xi − h,−Xi + h],

f(x) ≤ g(x), x ∈ B def
= [−Xi − h,Xi + h] \ [Xi − h,−Xi + h].
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It follows ∫
A f(x)dx∫

A f(x)dx+
∫
B f(x)dx

≥
∫
A g(x)dx∫

A g(x)dx+
∫
B f(x)dx

≥
∫
A g(x)dx∫

A g(x)dx+
∫
B g(x)dx

= q.

This yields the result.

One more result specifies the case of manifold structure for the underlying density.

Lemma A.3. Fix a dΠ -dimensional hyper-plane Π ∈ IRp , pΠ < p . Consider the

manifold M in IRp which can be represented as

M =
⋃
x∈Ω

Πx

where Ω ∈ IRp is a convex set of dimension pΩ ≤ p − pΠ and diameter h , such that

subspace of Ω is orthogonal to Π . Πx is a shifted hyper-plane Π such that x ∈ Πx .

Consider two points O1, O2 ∈ M and two balls B1 = B(O1, R) , B2 = B(O2, R) with

radius R and centers in O1, O2 . Then for R� h it holds

Vd((B1 ∩B2) ∩M)

Vd((B1 ∪B2) ∩M)
≈ qpΠ > qp

where qp is equal to q
(
|O1O2|
R

)
from (2.5) with the corresponding dimension p , |O1O2|

is the distance between O1, O2 , Vp is p -dimensional volume.

Proof. The considered case is represented on Figure 2.1 bottom right. Then

Vd((B1 ∩B2) ∩M)

Vp((B1 ∪B2) ∩M)
=

∫
x∈Ω VpΠ ((B1 ∩B2) ∩Πx) dx∫
x∈Ω VpΠ ((B1 ∪B2) ∩Πx)

≈ (R� h)

≈ VpΩ (Ω)VpΠ ((B1 ∩B2) ∩ΠO1)

VpΩ (Ω)VpΠ ((B1 ∪B2) ∩ΠO1)
=
VpΠ (BpΠ

1 ∩B
pΠ
2 )

VpΠ (BpΠ
1 ∩B

pΠ
2 )

= qpΠ ,

where B
pΠ
1 ,BpΠ

2 are the balls in IRpΠ with radii R and distance between centers |O1O2| .
From equation (2.5) it follows: dΠ < p⇒ qpΠ > qp .

Appendix B Fixing the sequence hk

A sequence hk ensuring

n(Xi, hk+1) ≤ an(Xi, hk), hk+1 ≤ b hk, (B.1)

can be fixed as follows. Let us collect for each point Xi the distances h`(Xi) between Xi

and its n` -s neighbor, ` = 1, . . . ,M . In the homogeneous case, all h`(Xi) for a fixed `

and different i are of the same order. However, one can often observe a high variability
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of such radii in the inhomogeneous situation. Let a set
{
h∗` , ` ≥ 0

}
be obtained by

putting all series
{
h`(Xi), ` = 0, 1, . . . ,K

}
together in the increasing order. We will

select the radii hk sequentially from this set to ensure the condition (B.1). Set h0 = h∗0 .

Equivalently, h0 is the smallest radius among all h0(Xi) . Then select the largest index

`1 such that

max
i

n(Xi, h
∗
`1

)

n(Xi, h0)
≤ a

and set h1 = h∗`1 . The construction of sequences {h`} ensures that such `1 > 1 exists.

Continue in this way. If hk = h`k is the radius selected at step k , then the next radius

hk+1 is selected using the largest index `k+1 > `k such that hk+1 = h∗`k+1
ensures the

condition. Stop when hk reaches the largest possible value hK . The condition (B.1)

can be weaken by just controlling the fraction of points for which the inequality (B.1)

can be violated.

Appendix C Other clustering procedures

Here we briefly describe the details how the concurring procedures were implemented.

Each clustering method used in the evaluation requires to fix some tuning parameter(s).

For each method we optimized the choice for its every parameter by taking the best result

over evenly spaced values from the prespecified range. For k -means clustering the best

result is chosen from 100 algorithm runs for each k : 1 ≤ k ≤ 3K , where K is the true

number of clusters taken from the data.

DBSCAN Ester et al. (1996) takes eps and minsp as the parameter combination

to determine dense points, where eps is the maximum distance between two samples

to be considered in the same neighborhood, and minsp is minimum number of points

required to form a dense region. For the best result of DBSCAN we evaluated over

eps ∈ [mindist,maxdist] and minsp ∈ [1, N ] , where maxidst(mindist) is the maxi-

mum(minimum) pairwise distance between the data elements and N is the data set size.

DBSCAN can identify points as noise which are colored black on figures. The noise is

considered as a separate cluster.

Spectral clustering constructs affinity matrix using either kernel function such the

Gaussian (RBF) kernel or a k-nearest neighbors connectivity matrix Zelnik-Manor and

Perona (2004). For the first case, the scaling factor σ and degree of RBF kernel are

tuned by varying over σ ∈ [mindist,maxdist] and degree up to 4. For the second case,

the parameter for number of neighbors n ∈ [1, N ] is tuned. For each parameter value

the best result from 100 runs with random initialization is taken. As a final result the

best output of all cases is taken.
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Affinity propagation has two parameters for tuning: dumping factor D from [0.5, 1]

and preferences P for each point to be chosen as exemplars Frey and Dueck (2007). We

set P to a global shared value varying from minimum to maximum value of pairwise

similarities (negative Euclidean distance) between data points. The adjustment of these

parameters was rather difficult because of high sensitivity of the results to the parameter

choice.

Appendix D Examples on separation ability of AWC

Here we consider the case of two dense clusters A and C separated by an area of lower

density B . Explicitly we consider a rectangle with sizes 2 × 3 and three area inside it

presented on the Figure D.1. The left and right areas have the same density p , while

the area in between has density fε = (1− ε)f , ε ∈ [0, 1] . An example of such generated

data with ε = 0.3 , n = 1000 is shown on the middle plot of the Figure D.1; in the last

plot true clusters are labeled by colors.

Figure D.1: From left: clusters’ areas, realization, true clustering. ε = 0.3, n = 1000

We expect that AWC separates the left and right clusters. In this experiment we are

not interested in the behavior of AWC in between. To measure how good AWC separates

the clusters A and C we will use the separation error es :

es =

∑
i 6=j
|ŵij | 1I(w∗ij=0) 1I(i,j∈A∪C)∑
i 6=j

1I(w∗ij=0) 1I(i,j∈A∪C)
,

where w∗ij are true weights and ŵij are answer weights of AWC.

Let us fix the overall number of points n and the parameter ε . After running 200

experiments we can calculate the average separation error es(n, ε) . For all experiments

we count which part of them has error es > 0.1 . For each n the probability having

separation error es > 0.1 as a function of ε is shown on the right plot of Figure D.2.

On the left plot of Figure D.2 we show for each number of points n what difference in

density ε we can detect such that it guaranties probability of error level es > 0.1 being

less than 0.1. E.g. for n = 1000 the value ε = 0.47 guaranties that the probability

of es > 0.1 is less than 0.1. For each n the parameter λ was chosen to have average

propagation error ep equal to 0.1. Hereby run the procedure on data with n points and
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Figure D.2: The smallest density gap ε(n) yielding IP (es > 0.1) ≤ 0.1 for different n

and IP (es > 0.1) for different n and the gap coefficient ε .

ε = 0 and take the minimum λ with propagation error ep = 0.1. True clustering in this

case is one cluster containing all points.

Appendix E Experiments on Real World datasets

The quality of the method depends on its separation and propagation ability. The sepa-

ration quality of the method can be regarded as its ability to separate different clusters.

The propagation quality is considered as its ability to aggregate points from the same

cluster. As the method is formulated in terms of weights, it is natural to measure these

two types of misweighting error via the final computed weights ŵij : es counts all con-

nections (positive weights) between points from different clusters, while ep indicates the

number of disconnecting points in the same cluster:

es =

∑
i 6=j
|ŵij | 1I(w∗ij=0)∑
i 6=j

1I(w∗ij=0)
, ep =

∑
i 6=j
|1− ŵij | 1I(w∗ij=1)∑
i 6=j

1I(w∗ij=1)
, (E.1)

where w∗ij denote the true weights describing the underlying clustering structure. The ep

and es are just weighted parts of the well known metric for cluster analysis comparison

called Rand index R Rand (1971). In our notation rand index can be represented as

R = 1−

∑
i 6=j
|ŵij | 1I(w∗ij=0) +

∑
i 6=j
|1− ŵij | 1I(w∗ij=1)∑

i 6=j
1I(w∗ij=0) +

∑
i 6=j

1I(w∗ij=1)

def
= 1− e.

Further we will use the general error e
def
= 1−R instead of Rand index.

Now consider the behavior of the algorithms on real world data. The data sets are

taken from UCI repository Lichman (2013) , except the Olive data; see

http://www2.chemie.uni-erlangen.de/publications/ANN-book/datasets/oliveoil/. Iris data
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Figure E.1: Comparison on real datasets

set contains 3 type of iris plants. Wine data is the result of a chemical analysis of wines

grown in the same region in Italy but derived from three different cultivars. Seeds com-

prise kernels belonging to three different varieties of wheat. Thyroid is clinical data used

to predict patients thyroid functional state. Ecoli data is used for classification of the

cellular localization sites of proteins. Olive is a group of olive oil samples from nine differ-

ent regions of Italy. Wisconsin stands for Wisconsin Breast Cancer Database designated

whether samples are benign or malignant. Banknote data set was extracted from images

that were taken from genuine and forged banknote-like specimens. The data set sizes n ,

number of attributes d and clusters K are listed in Table 2.

Similarly to the experiments on artificial data, each algorithm was set with its best

parameter configuration minimizing the general error e . Algorithms performances are

listed in Table 2. Here for every algorithm only general error e is presented. The

graphical interpretation of the Table 2 is shown on Figure E.1. Here x-axis represents the

error level and y-axis shows the number of databases. For each clustering algorithm we

construct its plot as the function showing for any error threshold a number of databases

where the error level is below this threshold. Thus each line is non-decreasing function

and the best algorithm is the one lying on the left. One can see that AWC demonstrates

the best performance on the majority of databases. The value of the sum of weights

statistic S(λ) is shown on Figure E.2.
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Figure E.2: S(λ) Iris (Top-link), Seeds (top-right), Ecoli (bottom-link), Olive(bottom-

right)

Table 2: Real world data sets error e for each method, the best two results are in bold

Algorithm

Data AWC AWC sow k-m GMM Affinity DBSCAN Spectral n d K

Iris 0.05 0.05 0.050 0.034 0.05 0.117 0.188 150 4 3

Wine 0.101 0.132 0.096 0.099 0.096 0.268 0.189 178 13 3

Seeds 0.148 0.148 0.21 0.289 0.178 0.292 0.148 210 7 3

Thyroid 0.089 0.089 0.08 0.097 0.147 0.135 0.247 215 5 3

Ecoli 0.125 0.125 0.122 0.167 0.106 0.17 0.134 336 7 8

Olive 0.093 0.093 0.1 0.153 0.076 0.127 0.065 572 8 9

Wisconsin 0.067 0.070 0.077 0.112 0.098 0.074 0.133 699 9 2

Banknote 0.193 0.194 0.395 0.423 0.362 0.214 0.237 1372 4 2
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