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Abstract

We consider the estimation and inference in a system of high-dimensional regression equations
allowing for temporal and cross-sectional dependency in covariates and error processes, covering
rather general forms of weak dependence. A sequence of large-scale regressions with LASSO is
applied to reduce the dimensionality, and an overall penalty level is carefully chosen by a block
multiplier bootstrap procedure to account for multiplicity of the equations and dependencies in the
data. Correspondingly, oracle properties with a jointly selected tuning parameter are derived. We
further provide high-quality de-biased simultaneous inference on the many target parameters of
the system. We provide bootstrap consistency results of the test procedure, which are based on a
general Bahadur representation for the Z-estimators with dependent data. Simulations demonstrate
good performance of the proposed inference procedure. Finally, we apply the method to quantify
spillover effects of textual sentiment indices in a financial market and to test the connectedness

among sectors.

JEL classification: C12, C22, C51, C53
Keywords: LASSO, time series, simultaneous inference, system of equations, Z-estimation, Bahadur

representation, martingale decomposition

1 Introduction

Many applications in economics, finance, and statistics are concerned with a system of ul-
tra high-dimensional objects that communicate within complex dependency channels. Given a
complex system involving many factors, one builds a network model by taking a large set of re-
gressions, i.e. regressing every factor in the system on a large subset of other factors. Examples
include analysis of financial systemic risk by quantile predictive graphical models with LASSO
(Least Absolute Shrinkage and Selection Operator) (Hautsch et al., 2015; Hardle et al., 2016;
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Belloni et al., 2016|) and limit order book network modeling via the penalized vector autore-
gressive approach (Hardle et al., [2018). Another example is quantifying the spillover effects or
externalities for a social network, especially when the social interactions (or the interconnect-
edness) is not obvious (Manresa, 2013). In general, a step-by-step LASSO procedure is very
helpful for network formation. In pursuing a highly structural approach, one certainly favors a
simple set of regressions that allows multiple insights on the econometric structure. Therefore,
a sequence of regressions with LASSO is a natural path to take. Especially in cases of reduced
forms of simultaneous equation models and structural vector autoregressive (VAR) models, one
can attain valuable pre-information on the core structure by running a set of simple regressions
with LASSO shrinkage.

A first important question arising in this framework is how to decide on a unified level of
penalty. In this article we advocate an approach to selecting the overall level of the tuning pa-
rameter in a system of equations after performing a set of single step regressions with shrinkage.
A feasible (block) bootstrap procedure is developed and the consistency of parameter estimation
is studied. In addition, we provide a uniform near-oracle bound for the joint estimators. The
proposed technique is applicable to ultra-high dimensional systems of regression equations with
high-dimensional regressors.

A second crucial issue is to establish simultaneous inference on parameters. For example,
in a large-scale linear factor pricing model, it is of great interest to check the significance of the
intercepts of cross sectional regressions (connected with zero pricing errors), e.g. Pesaran and
Yamagatal (2017). Our approach is an alternative testing solution compared to the Wald test
statistics proposed therein. To achieve the goal of simultaneous inference, we develop a uni-
form robust post-selection or post-regularization inference procedure for time series data. This
method is generated from a uniform Bahadur representation of a de-biased instrumental vari-
able estimators. In particular, we need to establish maximal inequalities for empirical processes
for a general Huber’s Z-estimation. Note that the commonly used technique for independent
data, such as the symmetrization technique, is not directly applicable in the dependent data
case.

Our contribution lies in three aspects. First, we select the penalty level by controlling
the aggregated errors in a system of high-dimensional sparse regressions, and we establish the
bounds on the estimated coefficients. Furthermore, we show the implication of the restricted
eigenvalue (RE) condition at a population level. Secondly, an easily implemented algorithm
for effective estimation and inference is proposed. In fact, the offered estimation scheme al-
lows us to make local and global inference on any set of parameters of interest. Thirdly, we
run numerical experiments to illustrate good performance of our joint penalty relative to the
single equation estimation, and we show the finite sample improvement of our multiplier block
bootstrap procedure on the parameter inference. Finally, an application of textual sentiment
spillover effects on the stock returns in a financial market is presented.

In the literature, the fundamental results on achieving near oracle rate for penalized /;-
norm estimators are developed by Bickel et al. (2009). There are many related articles on
deriving near-oracle bounds using the ¢;-norm penalization function for the i.i.d. case, such

as Belloni et al.| (2011)); Belloni and Chernozhukov| (2013]). There are also many extensions to



LASSO estimation with dependent data. For example, Kock and Callot| (2015) consider the
high-dimensional near-oracle inequalities in large vector autoregressive models. However, the
majority of the literature imposes a sub-Gaussian assumption on the error distribution; this
is rather restrictive and excludes heavy tail distributions. For dependent data, [Wu and Wu
(2016)) discuss the possibility of relaxing the sub-Gaussian assumption by generalizing Nagaev-
type inequalities allowing for only moment assumptions. For the case of LASSO the analysis
assumes the fixed design, which rules out the most important applications mentioned earlier in
the introduction.

Theoretically, the LASSO tuning parameter selection requires characterizing the asymptotic
distribution of the maximum of a high dimensional random vector. (Chernozhukov et al.| (2013al)
develop a Gaussian approximation for the maximum of a sum of high-dimensional random vec-
tors, which is in fact the basic tool for modern high-dimensional estimation. Here it is applied
to LASSO inference. Moreover, |Chernozhukov et al. (2013b) deliver results for the case of (-
mixing processes. Although it is quite common to assume a mixing condition which is at base
a concept yielding asymptotic independence, it is not in general easy to verify the condition for
a particular process, and some simple linear processes can be excluded from the strong mixing
class, |Andrews| (1984). With an easily accessible dependency concept as in [Wul (2005), |Zhang
and Wu| (2017) derive Gaussian approximation results for a wide class of stationary processes.
Note that the dependence measure is linked to martingale decompositions and is therefore read-
ily connected with a pool of results on tail probabilities, moment inequalities and central limit
theorems of martingale theory. Our results are built on the above-mentioned theoretical works
and we extend them substantially to fit into the estimation in a system of regression equations.
In particular, our LASSO estimation is with random design for dependent data; therefore, we
need to deal with the population implications of the Restricted Eigenvalue (RE) condition.
Moreover, we show the interaction between the tail assumption and the dimensionality of the
covariates in our theoretical results.

In the meantime, the issue of simultaneous inference is challenging and has motivated a
series of research articles. For the case of i.i.d. data, Belloni et al.| (2011, [2014), Zhang and
Zhang| (2014), |[Javanmard and Montanari (2014), [Van de Geer et al| (2014), Neykov et al.
(2015), (Chernozhukov et al. (2016)), Zhu and Bradic (2017)), among others, develop confidence
intervals of low-dimensional variables in high-dimensional models with various forms of de-
biased /orthogonalization methods. Still in the case of i.i.d. data, Belloni et al. (2015b) establish
a uniform post-selection inference for the target parameters defined via de-biased Huber’s Z-
estimators when the dimension of the parameters of interest is potentially larger than the sample
size, where they employed the multiplier bootstrap to the estimated residuals. Wild and residual
bootstrap-assisted approaches are also studied in |Dezeure et al. (2017));|Zhang and Cheng] (2017)
for the case of mean regression. We pick up the line of the inference analysis of [Belloni et al.
(2015b) and employ it in a temporal and cross-sectional dependence framework, thus making
it applicable to a rich class of high-dimensional time series. The core proof strategy is vastly
different, as it is well known that the technique for handling the suprema of empirical processes
indexed by functional classes with dependent data is not the same as in i.i.d. cases. For instance,

the key Bahadur representation in Belloni et al. (2015b) applies maximal inequalities derived



in |Chernozhukov et al.| (2014) for i.i.d. random variables, while we derive the key concentration

inequalities based on a martingale approximation method.

The following notations are adopted throughout this paper. For a vector v = (vy,... ,vp)T,
let |v]so def maxi<j<p [vj| and |vls def ( ?:1 lvj|*)!/#, s = 1. For a random variable X, let
def def

X, € (E|X|9)Y4, ¢ > 0. For any function g : W — R, E,(9) = n~ ' 31 {g(w)} and
Gn(9) L -2 Yoieqlg(we) — E{g(wt)}]. Given two sequences of positive numbers z,, and ys,
write x, < yp if there exists constant C' > 0 such that x,,/y, < C.

The rest of the article is organized as follows. Section [2] shows the system model with a
few examples. Section [3] introduces the sparsity method for effective prediction and provides
an algorithm for the joint penalty level of LASSO via bootstrap. In Section [4] we propose
approaches to implementing individual and simultaneous inference on the coefficients. Main
theorems are listed in Section Bl In Section [6] and [ we deliver the simulation studies and
an empirical application on textual sentiment spillover effects. The technical proofs and other

details are given in the supplementary materials.

2 The System Model

In this section, we present a general framework which covers many applications in econometrics

and statistics. Consider the system of regression equations (SRE):
}/}7t:X;tB?+€j7t, EEj7th7t:O, jzl,...,J, t:].,...,n,

where X;; = (Xjk,t),lfil, K; = dim(X;;) < K. We allow the dimension K of X;; and the
number of equations, J to be large, potentially larger than n, which interplays with the tail
assumptions on the error processes €;;. Both spatial and temporal dependency are allowed and
we will obtain results on prediction and inference.

The SRE framework is a system of regression equations, which includes the following im-

portant special cases.

Example 1 (A Regression Model). Suppose that we are interested in estimating the pre-

dictive model for a response variable Uy:
U =X,7"4¢, EeX,=0,
and also predictive relations between covariates for a strict subset G:
Xt =X 00+ vy, EvpgeX g =0, keGcC{l,...K},

where X_p; = (Xg4)etr € IRE~! and |G| is the cardinality of the set G. This is a special SRE
model with
(}/1,257 Xl,ta 817157 /8(1)) = (Ut7 Xta Et, 70)7

(Yie, Xjts €56 B5) = (X(j—1).6 X (j—1).t- V(j_1),t,5?j_1)), j=2,...,J=(G[+1).

It can be seen that we only put contemporaneous exogeneity conditions for X;. It is worth



mentioning that this SRE case is closely related to the semiparametric estimation framework
studied in Section 2.4 in Belloni et al.| (2015b).

Modeling predictive relations between covariates is important for constructing joint confi-
dence intervals for the entire parameter vector (72)5:1 in the main regression equation. Indeed,
the construction relies on the semi-parametrically efficient point estimators obtained from the

empirical analog of the following moment equation:
E[(UR; — Xkov)veel =0, k€ G, (2.1)

where U,gt =U;— Xjkivgk is the response variable minus the part explained by the covariates
other than k. Note that the empirical analog would have all unknown nuisance parameters

replaced by the estimators.
Example 2 (Many Regression Models). Example [I| can be generalized to handle many
regression models of the following form:
Unt =X,/ +eme, EemsXe=0, m=1,...,M,
and also predictive relations between covariates:

X=X 00 +vky, EvpgX =0, keGcC{l,....,K},

where G should be a strict subset of {1,..., K} for the strict exogeneity assumption to hold.
This is again a special SRE with

(}/j,tan,hgj,tHB?) = (Uj,t7Xt7 Ej,h’)/;')% ] = 17 ceey M7

(Yjits Xjitr €.t ) = (X(Gontyor X—(Gomyr V-2 O —ar))s G =M +1,...,0 = M +|G|.

Here, the understanding of the predictive relations between covariates is important for con-
structing joint confidence intervals for the entire parameter vector {(72, )5 1M ;. Indeed, the
construction relies on the efficient point estimators obtained from the empirical analog of the

following orthogonalized moment equation:
El(Upis — Xei Vo)Vt =0, k€G, m=1,...,M, (2.2)

where U%k’t = Unys — Xlrk,ﬂ?n(fk) is the response variable minus the part explained by the

covariates other than k.

Example 3 (Simultaneous Equation Systems (SES)). Suppose there are many regression
equations in the following form:

Uni =UL, 100 + X% + e, m=1,..., M.

—m,t

Move all the endogenous variables to the left-hand side and rewrite the model in the vector
form
DU, =T'X; + &,



which is also called the structural form of the model. Suppose that D is invertible. Then the

corresponding reduced form is given by
Ut:BXt+Vt, EI/m7tXt:O, m — 1,...,M, (23)

with B = D 'T" and v, = D~ '¢,. In this case the Y;+'s and Xj;’s in SRE have no overlapping

variables. A high-dimensional SES can be considered as a special case of SRE with
(ij,ta Xj,t7 Ej,ts 6?) = (Uj,t7 Xta Vjt, B;r)a .7 = 17 s 7M'

Example 4 (Large Vector Autoregression Models). In the case where the covariates
involve lagged variables of the response, SRE can be written as a large vector autoregression
model. For example, the VAR(p) model,

p
U= BUy+e, EenplUie=0, m=1,...,M, (2.4)
/=1
where Uy = (U1, Uay, . . ., UM,t)T, and ¢; is a M-dimensional white noise or innovation process;

see e.g. Chapter 2.1 in |Lutkepohl (2005). It is a special SRE case again with

(Yjits Xjts i 05) = Uy (Uily, o UL p) g, (B

2.1 Practical Examples

Example 5 (Identification Test for Large Structural Vector Autoregression Models).
Denote Uy = (U1, Uay, . . -, UMyt)T. A large structural VAR can be represented in the following

form (without loss of generality, consider only lag one):
AU = BUp—1 + &,

where A (invertible) and B are M x M matrices. The structural shocks e, satisfy E(¢;) = 0 and

Var(e¢) = Ins. The corresponding reduced form is given by
Ut = DUt_l + v, (25)

with D = A7!'B and v, = A~ !¢, where v, is denoted as the reduced form VAR shocks.
Suppose v spans the space of €;. The crucial question is the identification of A. Typically,
the covariance matrix of the reduced form shock v; is estimated with M (M + 1)/2 restrictions,
which are smaller than the M? restrictions needed to pin down &;. Adopting the identification
approach proposed by Stock and Watson (2012), we may use external instruments that are
correlated with the shock of interest and are uncorrelated with other shocks. Without loss of

generality, suppose the structural shock of interest is ;. Then we can define z;; as an external



instrument for the jth structural shock satisfying

E(gjezje) # 0,
E(aj/izj’t) = 0, fOI'j/#j.

Thus, we propose to regress z;; on v;:
— T, 4
Zju = Vg 05 + €jt.

In practice, v, are replaced by the residuals obtained from a large VAR reduced form regres-
sion as in example The estimator of §; is denoted as 5Aj. It can be obtained by LASSO
estimation, which give us a sparse estimator of the jth row of the matrix A~! up to a scaling
factor. Repeating this step for any j, one may formulate estimators for each row and perform
simultaneous inference/hypothesis testing on the structural matrix A~!,

In summary, this is also a special case of SRE with
(5/]',157 Xj,t7 Ejity B?) = (Uj,tv U—j,t—ly Vt, D;l—)7 .7 = 17 s 7M7

(E’,t,Xj,t,Ej,t,ﬁjO') = (2G—m)ts Vs €=yt Oj—mr))s J =M +1,...,2M.

Example 6 (Cross-sectional Asset Pricing). Denote Yj; as the excess return for asset j
and period t. Asset pricing models explain the cross sectional variation in expected returns
across assets; see e.g. (Cochrane| (2009). In particular, the variation of expected cross sectional
returns is explained by the exposure to K — 1 factors X, k = 1,..., K —1. One commonly

used way to estimate an asset pricing model is to run a system of regression equations:
K-1
Yii=Bjo+ > BikXjkt + €ty (2.6)
k=1

where Xji,’s are the factor returns (assumed to be excess returns of zero-cost portfolios).
The selection of factors is a critical issue and the SRE framework addresses this issue, in
particular when the number of factors K is large. See Feng et al| (2017) for a detailed model-
selection exercise on picking asset pricing factors. The factor premiums are E(X,j+) and the
pricing errors are ;9. Usually, asset pricing imposes the restriction that all 3;o’s are zero. Our
simultaneous inference framework naturally serves the purpose of simultaneously testing the
zero pricing errors in a cross sectional regression setup. Namely, we are interested in testing
Hy: Bjo=0,Vj =1,...,J versus Hy : 3 such that ;o # 0. Our test procedure in Section
can be directly applied to achieve this goal.

Example 7 (Network Formation and Spillover Effects). There is an emerging literature in
economics concerning quantifying spillover effects and network formation. One leading example
is as in Manresa| (2013), which attempts to quantify social returns to research and development
(R&D). Here, Uj; is taken to be the log output for firm j and time ¢. This output is loading
on Dj; (capital stock for firm j and period t), and the aggregated spill-overs from the capital

stock of other firms Zi# w;; D; ¢ The regression equation also controls for other covariates X ;



(e.g., log labor, log capital etc.):

D+ ZwijDi,t + ’Y]‘TXj,t + €5t (2.7)
1#]
where w;; is referred to as the spillover effects of the R&D development of firm ¢ on firm j. This

again is contained in the SRE with
(ijlt? Xj,ta it 52) = (Uj,t7 (Djia D——r_] ts X]Tt)—ra Ejts (Bja waj)ja 'YJT)T)v J=1..,J

Our simultaneous inference procedure (Section can be applied to check the significance of
the spillover effects for any set of parameters of interest. As an analogy, the presented framework
displays a general class of network models, where Uj; is taken to be the nodal response, and D; ;
are the nodal covariates. Global or local inference on the network parameters w;; is the subject
of research. Section [7] is devoted to inference on the spillover effects of a textual sentiment

index.

Comment 2.1. Suppose there is unobserved heterogeneity in U;;, e.g. Uj; = 04j+zi¢j wi; D; ¢
+ej.+, where w;; characterizes the spillover of individual 7 on j, and «; is the individual fixed
effect. For this situation consider the demeaned version to eliminate the individual specific
effects and work with the new model: ﬁjjt = Z#] wUDZ ¢t +€j.¢, where th =Uj— Zt 1Ujits
ﬁi,t =D;;— % Y1 Digy Ejt = €54 — % > i1 €jt, under the condition that U;; has no feedback
effects on D;; (for example, D;; should not be the lagged variable of Uj ;).

3 Effective Prediction Using Sparsity Method

In this section, we show our model setup and the LASSO estimation algorithm, including the

joint penalty selection procedure.

3.1 Sparsity in SRE

The general SRE structure makes it possible to predict Y;; using X;; effectively. Note that the
dimension of X ; is large, potentially larger than n. Without loss of generality we assume exact

sparsity of 5}) throughout the paper:

si=Blo<s=o(n), j=1,...J (3.1)

It is now well understood that sparsity can be easily extended to approximate sparsity, in which
sorted absolute values of coefficients decrease faster to zero, with an additional bias term in the
bound.

For this situation one employs an ¢1-penalized estimator of B? of the form:

n

K;
1
,BJ = arg min — Z(Yﬂt Z 1Bk, (3.2)

BeR¥i N i



where A is the joint "optimal" penalty level and W;;’s are penalty loadings, which are defined

below in (3.3]).

A first aim is to obtain performance bounds with respect to the prediction norm:

1/2

~ of [1 & ~
)= Bl |2 o (XLB - Y]
t=1

and the Euclidean norm: .
-~ def = 1/2
1B = 82 {3 (B — 89232

k=1

To achieve good performance bounds, we first consider "ideal" choices of the penalty level and

the penalty loadings. Let
1 n
Sik = —= 3 ',tX‘k:,t7
J /n ; Jtrg

where for a moment we assume to be able to observe g;; = Y;; — X ]T ¢ ,6’;-). In practice one obtains

an approximation by stepwise LASSO. Set

def

\I’jk = Var(Sjk), (33)

01 _ o) def N : , ,
A (1 —a) = (1 —a) — quantile of 2Cﬁ1<j<r?,?§k<K|S]k/\Iij" (3.4)
where ¢ > 1, e.g., c= 1.1, and 1 — « is a confidence level, e.g. a = 0.01.
Theoretically, we can characterize the rate of \°(1 — ) by the tail probability of Sjr. To

calculate A°(1 — a) from data, we can also use a Gaussian approximation based on:

Q(l —a) def (1 — o) — quantile of 1<j<r?,£1i§kgl( | Zjk /Y k|,
where {Z;;,} are multivariate Gaussian centered random variables with the same covariance as
{Sji}. Alternatively, we can employ a multiplier bootstrap procedure to estimate IC empirically
to achieve a better finite sample performance; see for example |Chernozhukov et al.| (2013a). In
case of dependent observations over time, it is understood that data cannot be resampled directly
as in the the i.i.d. case, as the dependency structure of the underlying processes will be lost. A
usual solution to this problem is to consider a block bootstrap procedure, where the data are
grouped into blocks, resampled and concatenated. In particular, we will adopt an estimate of

IC by a multiplier block bootstrap procedure.

3.2 Multiplier Bootstrap for the Joint Penalty Level

In this subsection, we introduce an algorithm to approximate the joint penalty level via a block
multiplier bootstrap procedure, which is particularly nonoverlapping block bootstrap (NBB).

Consider the system of equations with dependent data:

Vie=X\B) +ejp, EejpXju=0, j=1,..J t=1...n, (3.5)



S1

S2

S3

Run the initial ¢;-penalized regression equation by equation, i.e. for the jth equation,

n K;

B —arg min 3 (Vio— X107 + 22 S |l U, (36)

BER™ M "=

where \; are the penalty levels and Wj;, are the penalty loadings. For instance, we
can take the X-independence choice using Gaussian approximation (in the heteroscedas-
ticity case): 2¢y/n® {1 — o//(2K;)} for )\;, where ®(-) denotes the cdf of N(0,1),
o = 0.1, ¢ = 0.5, and choose y/lvar(Xj;&;,) for the penalty loadings, where &;; are
preliminary estimated errors and Ivar(Xj; ;) is an estimate of the long-run variance

>o0e oo E(Xjk €5, thk,(t,g)Evjy(t,g)), e.g. the Newey-West estimator is given by

P
> k(/pn) cov(Xjrie Xik -0, t—0)):
f:—pn
with k(z) = (1 —]2])1(|z| < 1). We note that the X-independent penalty (using Gaussian
approximation) is more conservative, as the correlations among regressors can be adapted

in the X-dependent case (using a multiplier bootstrap) with a less aggressive penalty level.

Obtain the residuals for each equation by &;; = Yj; — XjTtBj, and compute ;. =

lvar(Xjk,tgj,t) .

Divide {€;.} into I, blocks containing the same number of observations b,, n = byl,,

where b,,,l,, € Z. Then choose A = Qqu 1—a) where qg?]_a) is the (1 — a) quantile of
(B )y . (B]

1<j<rf]1’211§k<K\ij /¥jk|, and Z; " are defined as

ibn,

Jk = IZ i > EXgkl, (3.7)

I=(i—1)bp+1

e;i are i.i.d. N(0,1) random variables independent of the data.

Comment 3.1 (Block bootstrap procedures). (i) Concerning the determination of b,, we

shall report the fitting errors with several block sizes b,, in the simulation study. If it is
the case that n cannot be divided by b,, with no remainder, one can take l,, = |n/b,] and

drop the remaining observations.

Other forms of multiplier bootstrap with any random multipliers centered around 0 can

also be considered.

Alternative block bootstrap procedures can be adopted, such as the circular bootstrap
and the stationary bootstrap among others; see for example Lahiri et al| (1999)) for an

overview.

10



4 Valid Inference on the Coefficients

With a reasonable fitting of LASSO on hand, we can proceed to investigate the issue of simul-
taneous inference. This section focuses on SRE of Example 2. We allow the covariates in each
equation to be different.

The basic idea to facilitate inference is to formulate the estimation in a semi-parametric
framework. With partialing out the effect of the nonparametric coefficient(s), we can achieve
the desired estimation accuracy of the parametric component of interest. This trick is referred
to as "Neyman orthogonalization". Notably, the procedure is equivalent to the well known de-
sparsification procedure in the mean square loss case, which is developed for the inference on the
estimated zero coefficients by LASSO. It thus serves the same purpose of generating a (robust)
de-sparsified estimation for LASSO inference.

We list three algorithms to estimate a subset of parameters B?k,, for (j,k) € G. Algorithm 1
is easy to implement and algorithm 2 is tailored to the cases of heavy-tailed distribution of the
error term, as Least Absolute Deviation (LAD) regression is well known to be robust against
outliers. Algorithm 3 considers a double selection procedure aimed at remedying the bias due
to omitted variables by one step selection, while also accounting for the cases of heteroscedastic
errors.

Algorithm 1: LS-based algorithm

S1 Consider Y; = X}y, tﬁjk + X tﬁ g+ 5] t, run (post) LS LASSO procedure (for each
(j,k) € G), and keep the quantlty X! (k) tﬁ

S2 Run LASSO (for each (j,k) € G) by regressing Xj;; = X;E*k) ﬂ?(fk) + vk ¢, and keep

the residuals as U = Xk — XjT(—k),t’AVj(—k)'

S3 Run LS IV regression of Y} ; — X;E_k)igﬁ]ik) on X ; using v ; as an instrument variable,

attaining the final estimator B][.k.
Algorithm 2: LAD-based algorithm

S1 and S2 are the same as Algorithm

S3’ Run LAD IV regression of Yj; — XJ—‘L K t@“([k) on X using Uj;; as an instrument vari-
able, attaining the final estimator Bﬁ] We refer to Belloni et al.| (2015b)); |(Chernozhukov

and Hansen (2008) for more details about how to achieve the estimator in this step.

Comment 4.1. Our algorithms follow patterns discussed in Belloni et al.| (2013} [2015a) in the
i.i.d. settings. The IV estimator obtained in S3 of Algorithm [I]reduced to the de-biased LASSO
estimator (Zhang and Zhang), [2014; Van de Geer et al., |[2014) and is also first-order equivalent
to the double Lasso method in Belloni et al| (2011, 2014)). In particular, the estimator under

LS IV regression (2-step least square regression) is given by

B = (@ Xi) 1000 (Y — X[ By

jkt Jm"

e k (4.1)

AT
= (Ujk,tXJk ]kt
m#k ]k’t
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The second line in is exactly the same as the de-biased or de-sparsified LASSO estimator
given in Eq. (5) in|Zhang and Zhang (2014)) or Eq. (5) in|Van de Geer et al.|(2014). As remarked
in |Belloni et al.| (2013,[2015al), one can alternatively implement an algorithm via double selection
as in Belloni et al.| (2011} [2014)). In particular, heteroscedastic LASSO is employed in S2” and
the TV regression is replaced by a either LASSO or LAD regression on the target variable and

all covariates selected in the first two steps. ]
Algorithm 3: Double selection-based algorithm

S1” Run LS LASSO (for each j) of Y ; on X ;:

1 1 Ag
ﬂj[.] = argmﬁlnEZ(YJyt *X;—tﬂy + ﬁ@]ml

t=1

S2"” Run Heteroscedastic LASSO (for each (j,k) € G) of X, on Xj_p 4

)

n

R 1 S U
Tj(—k) = argmin -~ ;(Xjk,t = Xjrn)” + Tk

where penalty loadings fj can be initialized as \/lvar{Xj&t(Xjk,t — %Z?:l Xjke)} and
then refined by /lvar(X,,05), for € # k, and 0y = Xjpst — XjT(_k) Aj(—k) can be

obtained by using the initial ones.

S3” Run LS regression of Yj; on Xji, and the covariates selected in S1” and S2":

3][2] = arg mﬂin{i tzn;(yj,t — X/ 8)* : supp(B_x) C SUPP(BJ[-?_,C)) U supp(Fj(—)) }-
S3"” Run LAD regression of Yj; on X, and the covariates selected in S1” and S2”:

B = aegimin( 3 [V = X781 supp(3) € suwp(BLL ) Usuop(3)

As shown in [Belloni et al.[(2011) and Belloni et al. (2015al), the double selection approach in S3”
or S3" creates an orthogonality condition with respect to the space spanned by the covariates
selected by both steps, and thus generates an orthogonal relation to any space spanned by a
linear projection of the covariates, e.g. v;, . Therefore, the inference on the parameters may
still be applied as in the framework of Algorithm [I] and

4.1 Confidence Interval for a Single Coefficient

We discuss an inference framework developed for a single coefficient obtained from the afore-
mentioned algorithms.
Let v ( ]t,ﬁjk, h;ji) denote the score function, where Z;; = (Y, t,XT)T, hin(Xj(—)e) =

(X tﬁj V(- k)) Consider the LAD-based case with 95 (Z; ¢, Bjk, hjr) = {1/2—

def
( < jkt/BJk+X tIBJ k’))}vjkt? define Wik = E{(\f Do jkt) b= Ze,_(n 1)(
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. . def def 0 E{v(Z;1,8,09)}
%)COV("‘/’?k,ww?k,(t—z)) with w?k,t = wjk<ijt7/8§‘]k’h9k)v and ;i = = aét = ‘B:ﬂ?k'AS

shown in Corollary [5.7| we have the limit distribution of B 2],
ik

- ~ c
oint 2 (B — 89 5 N(0, 1), (4.2)

where 05, = (cbj_,fwjk)l/ 2. Therefore, the two-sided 100(1 — «) confidence interval by asymptotic
normality for ﬁ?k is given by

Clix(e) : (B — Gn V2071 (1 — a/2), B + G V2071 (1 - a/2)). (4.3)

Suppose we are interested in testing Hy : ﬁ?k = 0. For this purpose we employ the uniform
Bahadur representation (Theorem [5.8)) to construct the confidence interval via a bootstrap

procedure. In particular, the distribution of the asymptotically pivotal statistics:

V(B — 89

Tip, = 4.4
Jk &]k ) ( )

is approximated via its block multiplier bootstrap counterpart:

1 In ibp, N
= n Yoo > Gk (4.5)

=1 I=(i—1)by+1

where (jr; = —¢j_klaj_kl ?k’t, ej; are independently drawn from N(0,1), I, and b, are the
numbers of blocks and block size, respectively.

Let 5 be any consistent estimator of ;. Then the confidence interval is given by
A2 o~ = a2, A~ -
CLy(a) : (B = 5en™ g1 — a/2), B + 55n™ g (1 = a/2)], (4.6)

where ¢7;.(1 — «/2) is the (1 — /2) quantile of the bootstrapped distribution of |T7;].

Comment 4.2. Alternative bootstrap procedures may be considered as well, e.g. the residual

multiplier bootstrap procedure:
~ T 5[
Ejt = Y1 — Xj,tﬁj[- !

then divide {€;.} into l,, blocks of size b,, where byl, = n, and for each block i =1,...,1,,

. IR . .
eir = (Gt — - Z€j7t)€j7i, fort € {(i —1)bp + 1,...,ib,}.
t=1

Define Y]*t = XjTt@[.l] + 5;% and compute the bootstrap counterpart as

o
. _ VB~ B

where Bjk and ij are estimated using the bootstrap sample {Yj’jt, Xt}

13



4.2 Joint Confidence Region for Simultaneous Inference

We now continue to extend the single coefficient inference to simultaneous inference on a set
of coefficients. As shown in the practical examples in Section [2.1] it is essential to conduct
simultaneous inference on a group of parameters GG. In this case, the null hypothesis is: Hy :
Bjk = 0, V(j, k) € G, and the alternative Hy : fj;, # 0, for some (j, k) € G, where the group
G is a set of coefficients with cardinality |G|. Suppose for the j-th equation there are p; target
coefficients and the cardinality |G| = Z}-] pj. This can be understood as a multiple estimation
problem compared to Section Without loss of generality, we can rearrange the order of
the variables and rewrite the regression equation for each j as (consider the LAD-based model
here)

D;j K;
Yie=> XuBu+ > XjpiBy+ein F(0)=1/2 (4.7)
I=1 l=p;+1

One follows the algorithms to obtain Ejl(l <l pj) for each j. Then the idea of simul-
taneous inference is very straightforward. We aggregate the statistics T} in by taking
the maximum and minimum over the set G. Finally, the component-wise confidence interval is
constructed with the quantiles of the bootstrap statistics over all bootstrap samples.

Denote ¢ (1 — a/2) as the (1 — «/2) quantile of (ﬁ?é{ijk" A joint confidence region is
then:

{8 e R : max T < q5(1—a/2) and min Tjr > —q5(1 - a/2)} (4.8)

and for each component (j, k) € G, the confidence interval (ﬁjk (o) is given by [Bﬁ] G 2qk(1-

a/2), Bﬁ] + G~ Y2g5 (1 — a/2)]. We show in Corollary the consistency of this bootstrap

confidence band in simultaneous inference.

5 Main Theorems

In this section, we present the theoretical foundations for the procedures given earlier. In
particular, we discuss the properties of the theoretical choices of penalty level and the validity

of the other two empirical choices, as well as the theoretical support for the simultaneous

inference.
Throughout the whole section, we define Sy def 172 Y1 € Xkt S = (Sjk)é(:l, and
W def Var(Sj), which is the square root of the long-run variance of Xjj.e;;, namely

{32 E(Xj7k7thk’(t_g)€j’t€j’(t_z))}1/2. Recall that for a single equation LASSO, we select
the penalty in the following ways:

a) theoretically, for each regression, \; is )\?(1 — «) (IC), i.e. the (1 — a) quantile of
20\/711135?% |Sjk/V k| (note that this penalty takes into account the correlation among

regressors and is design adaptive);

b) an empirical choice given a Gaussian approximation result is: Q;(1 —«) def 2¢y/n® {1 -
af(2K;)};
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c) another empirical choice of the penalty level is A;(1 — o) as the (1 — a) quantile of
20\/511&35% |Z ][-f] /U ikl (Z J[f} ’s are defined in (3.7))), and obtainable via the multiplier block

bootstrap technique.

5.1 Near Oracle Inequalities under 1C

We first provide the oracle inequalities for the single equation LASSO estimation Bj obtained
from (3.6) under the ideal choices (IC). For this purpose, a few assumptions and definitions are

required.

(Al) For j =1,...,J,k =1,...,K, let X+ and ¢;; be stationary processes admitting the
following representation forms Xi: = gju(Fi) = gjk(-..,&—1,&) and g5 = hj(F) =
hj(...,m—1,m:), where &,n are i.i.d. random elements (innovations or shocks, allowing

for overlap, see Comment across t, Fy = (..., &—1,M—1,&, M), gjk(-) and hj(-) are
measurable functions (filters). E(Xje5:) =0, for any j,ke1,---,J,1,--- | K.

Definition 5.1. Let Fy be Fy with § replaced by an i.i.d. copy of &, and X7 , = 9ik(Ff).
For q > 1, define the functional dependence measure 0q ;i ¢ o 9ix(F) — 956 (F)llg = | Xkt —
X;MHq, which measures the dependency of § on Xji. Also define Ap, gk fof Y2 Og ket
which measures the cumulative effect of &9 on Xjp t>m. Moreover, we introduce the dependence
adjusted norm of Xjrt as || Xk, llq, e SUP,so(m + 1)*Ap, gik(s > 0). Similarly, we define
1€, [lg.c-

For more details on this functional dependency measure, see |Wu (2005). It should be
noted that admits a wide class of processes. The largest value of ¢ which ensures a finite
dependence adjusted norm characterizes the dependency structure of the process. The moment-
based measure is directly connected with the impulse functions. A few examples for univariate
time series Z; are listed in Appendix B in the supplementary materials; for more examples
please refer to Wul (2011)).

(A2) Restricted eigenvalue (RE): given ¢ > 1, for 3 € IRKi| with probability 1 — o(1),

def , Vi lBljpr

Kilc) = min
10 |Brel1<elBr; 11, 820 |Br; 1

> 0,

where T} o {k: ;‘)k # 0} and s; = |Tj| = o(n), Bryx = Br if k € T}, Bryp = 0 if k ¢ Tj.

(A3) lgj, llg,c < oo and ||Xjk,~ lg,c <00 (q=8).

Comment 5.1. We allow for overlap in the elements in & and 7, as long as the contempora-
neous exogeneity condition E(Xjcj¢) = 0 is satisfied. For example, consider the VAR(1)
model: Y; = AY,_; + &, with Y;,e;, € IR’, and suppose that Y; admits the representa-
tion ¥; = >12, Ale,; with e,_; as measurable functions of ¢é_o,...,&_;. Thus Xjkt =
9ik(- - 1) = S o[AlRer—1-1, where [AY; is the kth row of the matrix Al k = 1,...,J.

In this case no serial correlation in the innovations e;s would be sufficient for E(Xe;:) = 0.
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Comment 5.2. We show in Theorem |A.1| (see the supplementary materials) that the RE
and RSE conditions can be implied by assumptions on the corresponding population

variance-covariance matrix. This illustrates the feasibility of the RE/RSE assumption.
Lemma 5.1 (Prediction Performance Bound of Single Equation LASSO). Suppose |(A1) and
(A2) (with ¢ = <t},¢ > 1), under the exzact sparsity assumption ([3.1)) and given the event
Aj > 26\/ﬁlr<r}€a<>§(|5jk/\lljk] and another event which RE holds, then with probability 1 —o(1), B;
obtained from (3.6) satisfy

~ Ni\/S5
T iV " .
|3; 5] ljpr < (1+1/c) ni; (@) 12}2% Wk (5.1)

In addition, if [(A2) (with 2¢) holds, then with probability 1 — o(1),

- 142¢),/5; -~
0 ( j 0
Bj — Bjh < Wfﬁj = B ljpr- (5.2)
Lemma follows Theorem 1 of Belloni and Chernozhukov| (2013). As the proof is built
on inequalities and for the case of dependent data [(Al)|it remains unchanged, we omit the

detailed proof here. To further characterize the rate of IC, we provide a tail probability for

20\/ﬁlr<1}€a<>§{ |Sjk/ V| under the moment assumption ((A3), In particular, the rate depends on

the dependence adjusted norm || X .€;5.|g,c-

Theorem 5.1. Under|(Al) and|(A3), we have

K | X . lq
— Jk7'€J7'||q,§
P(QC\/ﬁlg}cagx |Sie/¥ k| = 1) <Cropnr qu_l 7\161%

nl| Xjn, €515
(5.3)

K
+ Co Z exp
k=1

where for ¢ > 1/2—1/q (weak dependence case), wy, = 1; for ¢ <1/2—1/q (strong dependence
case), wy = nd/2=1=sa_ C, Cy,C43 are constants depending on q and s.

Under the choice (IC) A)(1 — a) is given by the (1 — a) quantile of 26\/ﬁlg}ca<)§(]5jk/‘lljk\,
combining the results of Lemma and Theorem we can get the bounds for )\?(1 —«) and

further obtain the oracle inequalities as in Corollary [5.1]

Corollary 5.1 (Bounds for )\?(1 — «) and Oracle Inequalities under 1C). Under [(A1)H(AS3)
given )\9(1 — «) satisfying

201 - a) . max {10, facy/mlogK/a) V [ Xe. 5 s (K /) 1} (5.)

1<k<K
and the exact sparsity assumption (3.1), then Bj obtained from (3.6) under IC satisfies

log(K/a)
\/ﬁ

max ‘I’jk{HXjk,fj,-Hz,c

r(é) 1<kE<K q,gnl/q_l(wnK/O‘)l/q}a
9 >

(5.5)
with probability 1 — o — o(1), where for ¢ > 1/2 — 1/q (weak dependence case), wy, = 1; for

|B~j - 6?|j,l77" 5 V HXjk,'Ej,-

¢ < 1/2—1/q (strong dependence case), w, = nd/>=171,
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Comment 5.3. The Nagaev type of inequality in has two terms, namely an exponential
term and a polynomial term. It should be noted that if the polynomial term dominates, the
above bound does not allow for ultra high dimension of K. Basically, we only allow for a
polynomial rate K = O(n°), and the rate of K interplays with the dependence adjusted norm
|’Xjk7'5jv‘ ‘Z,C'
bounds tend to zero for sufficiently large n), for example we need ¢ < ¢ — 1 — vq/2, if there

<=0()and 0 < v < 1 such that

In particular, to make sure that the estimators are consistent (i.e. the error

exists ¢ as the maximal number to guarantee || Xy .€;..

s; = O(n").

We now discuss the case of sub-Gaussian tail or sub-exponential tail, which is mostly assumed

in the literature.

Comment 5.4. Suppose a stronger exponential moment condition is satisfied,

) — E(Xjk€je| F=1)]lg < 00, (5.6)

o
1k €5, lls, = sup g™ 29 de=supq” Y STIE(XG,
t=0

q=2

where || X .€;.||y, is interpreted as the dependence adjusted sub-exponential (v = 1) or sub-
Gaussian (v = 1/2) norm, and 6, ;; denotes the predictive dependence measure. In this case,
applying the exponential tail bounds as in Theorem 3 of [Wu and Wu (2016), we arrive at the
following error bounds with probability 1 — o — o(1),

~ 55 log(K /o) }!/?
By = Blsar 5 205 e Wl X o B (5.1)

This bound (5.7) works with ultra-high dimension rate exp(n®) (a < 1) of K as only the

exponential term shows in the inequality.

5.2 Gaussian Approximation for Dependent Data

Now we look at the validity of the choice of Q;(1—«), which relies on a Gaussian approximation

theorem. First we define the Kolmogorov distance between any two K-dim random vectors.

Definition 5.2. Let X = (X1, ---,Xg)" € RK, Y = (Y3,--- ,Yg)" € RK. The Kolmogorov

distance between X and'Y is defined as
p(X,Y) = sglg |P(| X |00 = 7) = P(|Y |oo = 7)|.
r/
For each single equation j, aggregate the dependence adjusted norm over £ =1,..., K:

def .
11X5, loo llgc < sup(m +1 Z Ogits Oqa = IIXje = Xloollg: (5-8)

where ¢ > 1 and ¢ > 0. Moreover, define the following quantities

def def 2
B 2 max 1k, ol o Tiae 2 2, qu(zn . ||q/)

def

Ojac = Tjge A {2WX ‘OOHQ€HEJ7 <(log K) 3/2} (5.9)
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Some additional assumptions are required. Define Ly ; = {®; 4 ®;40(log K)2}'/s, Wy ; =
(086 0+®75.0) {log(Kn)}T, Wy =02, {log(Kn)}, Ws = [n~{log(Kn)}*/20), 54 ]}/ (1/2=71/0),

Nij = (n/log K)7201,, , Noj =n(log K)72®, 7 , N1 j = {n'/?(log K)~'/20;, }/(1/27<).

(A4) i) (weak dependency case) Given Oja,¢ < oo with ¢ > 4 and ¢ > 1/2 — 1/q, then
0, 240172 {log(Kn)}3/? — 0 and Ly max(W7 j, Wa ;) = o(1) min(Ny j, Na ;).
i) (strong dependency case) Given 0 < ¢ < 1/2 — 1/g, then 09, (log K)'/? = o(n°) and
Ly max(Wy j, Wa j, Ws ;) = o(1) min(Na j, N3 ;).

The assumptions impose mild restrictions on the dependency structure of covariates and
error terms. They include a wide class of potential correlation and heterogeneity (including
conditional heteroscedasticity), with possible allowance of the lagged dependent variables. Two
examples of large VAR and ARCH for high-dimensional time series can be found in Appendix

B in the supplementary materials.

Theorem 5.2 (Gaussian Approximation Results for Dependent Data). Under|(A1) and|(A3)
for each j =1,...,J assume that there exists a constant c; > 0 such that
n%l<nK Var(Xjr1€jt) = ¢j, then we have

X

p(D;'S;.. D7 Z;) =0, asn — oo, (5.10)

where Z; ~ N(0,%;), ¥; is the K x K long-run variance-covariance matriz of Xje;+, and D;

is a diagonal matriz with the square root of the diagonal elements of ¥;, namely

{ > E(XGraXjna-neiica—n)}? =/ Var(Sjr), fork=1,..., K.

{=—0o0
Theorem justifies the choice of A; as Q;(1 — «), which leads to the following corollary:

Corollary 5.2. Under the conditions of Theorem[5.3, for each j we have

sup |P{ max 20f|5’]k/\ll]k| QRQil—a)}—(1-a)—0, asn— occ. (5.11)
ae(0,1)

It is worth noting that in practice the variance involved in the Gaussian approximation in
is not known; we shall discuss how we estimate the variance and also the validity of the Gaussian
approximation result with an estimated variance. Given the realization Xj1€j1,...,X;n€jn,
we propose to estimate the K x K long-run variance-covariance matrix »; for j = 1,...,J as

follows, given E X ;e = 0, and consider:

R 1 b ibn ibn
Si=rr o (Y Xusi)( Y X)) (5.12)
=1 1=(i—1)bp+1 I=(i—1)bn+1

Moreover, the following corollary ensures that the Gaussian approximation results still hold if

we use the estimate in ((5.12)).
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Corollary 5.3. Let the conditions of Theorem hold, and assume ®; o4 < 00 with q > 4,
b, = O(n") for some 0 < n < 1. Let F, = n, for¢ > 1—2/q; F. = lnb%ﬂ_gqn, for
1/2 - 2/q < ¢ < 1—2/q; F, = 1Y U2p12=42 g5« < 1/2 — 2/q. Further assume
n~!(log K)3/? max {nl/zb}/Z@?’Qq’g,nl/Qb}Lﬂ\/lcngiK@i&g,Fg/ql"qu’g} = o(1). Then for each j
we have

p(ﬁ}lsj., D;le) — 0, asn — oo, (5.13)

where D; = {diag(3;)}/2.

5.3 Multiplier Block Bootstrap Procedure

In this subsection, we discuss how A;(1 — «) is attainable via block bootstrap. The data over
t = 1,...,n are divided into [,, blocks with the same number of observations b,, n = byl,
(without loss of generality), where by, l,, € Z.

B B . . B
Recall that Aj(1 —a) = 20\/5%[;(]1_04)’ qj[,7(}1_a) is the (1 — a) quantile of 1152}%2][,6}/\11%\,

where 7 ][f] are defined as
B 1 ln ibn
ij = % Z ejﬂ- Z €leXjle, (5.14)
i=1 I=(i—1)bp+1

and e;; are i.i.d. N(0, 1) random variables independent of X and e.
In fact, the above construction relies on knowing the true residuals €;;. In practice, one
needs to pre-estimate them using a conservative choice of penalty levels and loadings. The issue

of generated errors can be dealt with using a similar argument as in the proof of Corollary

Theorem 5.3 (Validity of Multiplier Block Bootstrap Method). Under|(A1) and|(A3), and
assume Pj o4 < 00 with ¢ > 4, b, = O(n") for some 0 < n < 1 (the detailed rate is calculated
in (A.1)) in the supplementary materials), then we have

(B]
/U] < gt —(l-a)| = — 0. .
azl(lol,)l) | P (12}%}( EYAZTIRS q]’(lia)) (1—a) =0, asn— oo (5.15)

5.4 Joint Penalty over Equations

In this section we provide results for joint equation estimation. The dimension along k& =
1,...,Kandj=1,...,J will be considered together by vectorization, resulting in the dimension
K J. Following the results for the single equation (where j is fixed), we generalize the theorems
above to multiple equations case by changing the dimension from K to K.J.

Recall that the theoretical choice A\°(1 — «) is defined as the (1 — «) quantile of

1<k<nl1(?1xg jg]QC\/ﬁ|Sjk /¥ |. First, we provide the analogue results of Theorem|5.1/and Corollary
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Theorem 5.4. Under|(A1) and|(A3), we have

1 X €511
AP < q 2k, C4, g6
P(2C\/ﬁlgk£§1{%};j<(]’sjk/quk‘ r) <Croopnr™ Jz:ﬂ; W,
J K —-C 2\112
3T
+Cs Z Z exp —jk> (5.16)
j=1k=1 n” k 8]7 H2g

where for ¢ > 1/2—1/q (weak dependence case), w, = 1; for ¢ < 1/2—1/q (strong dependence

case), wy, = nd/2-1=s4_ | Cy,C3 are constants depending on q and .

Corollary 5.4 (Bound for A°(1 — ) and Oracle Inequalities under IC). Under and
given \°(1 — «) satisfies

W) {1 o/ log(KT/a) VX 55 la(nma K T/) /1) (5.17)

additionally assume that the RE condition [(A2) holds uniformly over equatwns j=1...,J
with probability 1 — o(1), and under the exact sparszty assumption (3.1)), then BJ obtained from

(3.2)) under IC satisfy
log(K J,
s = Bliar 5 05 s, Wit e, {15 1 ST o0 s (519
with probability 1 — o — o(1), where for ¢ > 1/2 — 1/q (weak dependence case), w, = 1; for
¢ < 1/2—1/q (strong dependence case), wy, = n9/2=1=54  qnd the constant C depends on the

RE constants.

The other empirical choices of the joint penalty level can be:
a) Q1 —a) ¥ 2c,/md 11 — /(2K J)};

ooy def [B] (B] . _ : (B] 1y .
b) A(1—a) = 26\/ﬁq(1_a), where q(;” ) is the (1 — ) quantile of 1<k<r?<?1xgj<J|ij AZE

For @ again we need the Gaussian approximation results for the vectorized process S dof
Vec[{(Sjk)le}jzl] = ﬁ S &, where X, dof vec[{(ijej,t)é{:l}}-]:l] similar to Theorem
and Corollary to justify the choice of A as Q(1 — «).

Let &, & Vec[{(ij)f:l}}-]:l]. We first aggregate the dependence adjusted norm over
j=1....Jand k=1,... K:

def *
11 Joollqs = sup(m +1)° Z Ogits Oqt = [[1% — X7 |oollg, (5.19)

t=m

where ¢ > 1, and ¢ > 0. Moreover, define the following quantities

o ot /2 2/q /2 2/q
16l 4 . el q q
O =2 max Xk llaslles llos: Tas 2(5:\%“ > <kZUZl” )

def
Ogc = Tos A1 X |ollgsles, llg,s (log K.7)*?}. (5.20)
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Let Ly = [®4,Py0{log(KJ) IV, Wy = (9§ ) + ®4 ) {log(K Jn)}7, Wa = &3 {log(KJn)}*,
Ws = [n*C{log(KJn)}3/2@j’2q’§]1/(1/2*§71/q)’ Ny = {n/ log(KJ)}q/Q(H)gq,o
Ny = n{log(K J)}72®,2, N3 = [n'/?{log(K J)}~ /205 ]}/ (1/2=<),

(A5) i) (weak dependency case) Given Oy, < oo with ¢ > 4 and ¢ > 1/2 — 1/q, then
Ogq. M2 {log(K Jn)}3/? — 0 and Ly max(W7, Wa) = o(1) min(Ny, Na).
i) (strong dependency case) Given 0 < ¢ < 1/2 — 1/q, then g, {log(KJ)}'/? = o(n®)
and Lj max (Wi, Wa, W3) = o(1) min(Ng, N3).

Consider the case with Oy, = O((KJ)/) and &y, = O(1) where ¢ > 1/2 — 1/q.
Then O, n'/971/2{log(KJn)}*/? — 0 becomes KJ{log(nKJ)}*¥/? = o(n%/?=1), which im-
plies Ly max(Wy, Ws) = o(1) min(Ny, N2). This means that to make hold, the dimension
K J has to satisfy the condition such that K.J{log(K.J)}3%/2 = o(n%/2-1).

Theorem 5.5. Under|(Al), |(A3) and|(A5), for each k =1,...,K, j=1,...,J assume that

there exists a constant ¢ > 0 such that min Var(Xj1€5¢) = ¢, then we have
1<k<K1<G<T

p(D7IS,D71Z) -0, asn— oo, (5.21)

where Z ~ N(0, E~) Y5 is the JK x JK long-run variance-covariance matriz of ??t, and D 1is

a diagonal matriz with the square root of the diagonal elements of ¥ 7, namely

{Z E( Xkt Xk (1—0)E4,t€5,(t— @))}/ =/ Var(Sj), fork=1,...,K,j=1,...,J.

l=—00

Corollary 5.5. Under the conditions of Theorem we have

P 2 /Ul QL —a)} —(1— , . 22
azl(lol?l)l {1<k<I?<E,L1X<j<J evn|Sjk/Vikl < Q1 —a)} = (1 —a)] =0, asn—oo.  (522)

Corollary 5.6. Under the conditions of Theorem and assume Poq . < 00 with q > 4,
b, = O(n") for some 0 <n < 1. Let F. =n, for¢>1—2/q; F. = lnb%/2_<q/2, for1/2 —2/q <
¢<1—-2/q; F. = l%/4_§q/2b%/2_gq/2, for¢ <1/2—2/q. Given

nH{log(KJ)}¥/? max {n'/2b}/2®3_ _,n'/?b}/?\ Jlog(K J)®3 ., F2/1T3, } = of

then we have

p(ﬁflg‘, Dilg) — 0, asn— oo, (5.23)
ibn ibn oA\ T
where D = {dlag( )}1/2 Z~ = bnln le ( lb (i—1)bp+1 )(Zlb (i—1)bp+1 Xl) :

Lastly, we need to show the validity of Let 2181 ¢ Vec[{(Zj[k])k 1} ] and ¥ of
Vec[{(\I/jk)szl}le]. Similarly to Theorem |5.3| we have the following results:

Theorem 5.6. Under and assume ®oq o < 00 with ¢ > 4, b, = O(n) for some
0 <n <1 (the detailed rate is calculated in (A.2)) in the supplementary materials), then

fn < sup |P(I 217 /W) < (X e) = P(Z/Uloe <7)| =0, asn 00,  (5.24)
relR
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and
sup |P( |S/\Il|oo\q?}a))—(l—a)|—>0, asn — oo. (5.25)
ae(0,1)

5.5 Post-Model Selection Estimation

LASSO estimation is known to be biased especially for large coefficients. Therefore, a post-
selection step helps to reduce the bias by running an OLS as a second step on the selected

covariates in the first step. In particular, we consider the 2-step OLS post-LASSO estimator:
i) ¢1-penalized regression (LASSO selection)
1 A
Bj =arg min — > (Vie = X18)" + = D 18kl (5.26)
BER™I M i " =1

where A is the joint penalty level obtained above.

ii) We run the post-selection regression (OLS estimation)

ﬁ[ - = arg mln { Z it — X]Ttﬁ)Q Bk =0,k ¢ fj}, (5.27)

BeR¥i —

=~ def < <
where T; = supp(8;) = {k € {1,..., K;}: B # 0}.

To provide the prediction performance bounds for the OLS post-LASSO estimators, we need

the following restricted sparse eigenvalue (RSE) condition:

(A6) Restricted sparse eigenvalue (RSE): given p < n, for 8 € IRX, with probability 1 — o(1),

1812,
|5Tc|o<p 840 |63

i (p)g def mi ‘B’pr

def
>0, ¢ip
|5Tc|o<p/#o 1813 i) =

Here p denotes the restriction on the length of the active set of Ty. When T; = 0, is

reduced to the standard sparse eigenvalue condition. Moreover, let 1;(p) def E%S)) and denote

by p; 4 |T; \ Tj| the number of components outside T} e supp(ﬂo) ={ke{l,...,K;}: Bjk +
0} selected by LASSO in the first step. The performance bounds for the OLS post-LASSO

estimator are shown in the following theorem:

Theorem 5.7 (Prediction Performance Bounds for OLS Post-LASSO). Given[(A1) and[(A3),
suppose|(A2) (with ¢ = < ¢ > 1) (mdm )| (with p; = |T \T}j|) hold umformly over equations
with probability 1 — o(1), then under the exact sparsity assumption , for any T > 0, there

is a constant Cr independent of n, for all j =1,...,J we have

<G, \/@ log () + log(en ()

1B — 89,

log(KJ/a)
vn

V| Xk, €5, Hq,cnl/qil(wnKJ/a)l/qh

(5.28)
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with probability 1 — o — 7 — o(1), where for ¢ > 1/2 —1/q (weak dependence case), wy, = 1; for
¢ <1/2—1/q (strong dependence case), wy, = nd/2=1-sq, oj is the square root of the long-run

variance of €4, and the constant C depends on the RE constants.

The proof of Theorem [5.7]is a direct application of Theorem 5 of [Belloni and Chernozhukov
(2013)) by inserting the bound for A°(1—«) (5.17) provided in Corollary and thus is omitted.

5.6 Simultaneous Inference

This subsection develops theory corresponding to Section [4] A key Bahadur representation
which linearize the estimator for a proper application of the central limit theorem for inference
is provided.

Recall that for each j =1,...,J, the following model is considered

Y4 Z XjktB5y + Z Xk By, +jts Fe,(0) =1/2, (5.29)
k=p;+1
Xike = X m Ve vkt B Xjcme) =0, k=1,....p;. (5.30)

In this subsection, we show the validity of the joint confidence region for simultaneous inference
on Hy : Jk = 0,Y(j,k) € G, with |G| = ijlpj. In particular, for j = 1,...,J, ?k (k =
1,...,p;) are the target parameters. Theoretically, we formulate the estimation as a general
Z-estimation problem, with the leading examples as the LAD/LS cases. Nevertheless, it can
also include a more general class of loss function.

For each (j,k) € G, we define the score function as ;r{Zj, Bjk, hjr(Xj(—r)+)}, where
Zjy %ef (Yie, X ;t)T and the vector-valued function hji(+) is a measurable map from IRK-!
to RM (M is ﬁxed) In particular, in our linear regression case we have hjk( i(—k)t) =
( k1 Bi(—k )t’yj( k), and for the LAD regression ¢u{ Zjt, Bjk: hije(Xj(—r) )} = {1/2—

(Yj,t k,tﬁgk + j(—k ’tﬁj ) H( Xkt — j(_k),ﬂj(— k))-

Assume that there exists s = s, > 1 such that |ﬁ?(_k)]0 < \’yo ylo <'s, for each (4, k) € G.
Moreover, we assume that the nuisance function hgk = (h(;)k M admlts a sparse estimator
?ij = (ﬁjk,m)%zl of the form

~

hjk,m(Xj(—k)J) = XjT(_k),téjk,m, ‘(/g\jk,m’O <s, m=1,..., M,

where the sparsity level s is small compared to n (s < n).

The true parameter B 7. is identified as a unique solution to the moment condition

E[wjk{Zj,t,ﬂ?ka h?k(Xj(fk),t)}] =0. (5.31)

However, the object arg zero E,|[¥jx{Zj+, Bjk. hgk(Xj(,k)yt)}]\ does not necessarily exist due
Bk €Lk

to the discontinuity of the function %;;. The estimator (j; is obtained as a Z-estimator by

solving the sample analogue of (5.31])
EnlviidZjt, Biws hie(Xj-m )Y < infy g NEalsid Zt, Bis ik (Xj—),e) I + o(n g ),
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where gy, e {log(e|G|)}'/? and ﬁjk is defined in |(C2)
We now lay out the following conditions needed in this section, which are assumed to hold

uniformly over (j,k) € G.

(C1) Orthogonality condition:

E{d}]k( iz ]ka )‘X t}|h:h?k(xj(7k),t):0' (5'32)

(C2) The true parameter ]Qk, satisfies (5.31)). Let Bj; be a fixed and closed interval and gjk

be a possibly stochastic interval such that with probability 1 —o(1), [3; 0 41 C gjk C

def _ def

B, where 1, 1 1/2<1ogan>1/2(;g3x [0 ot el 002 s 100 ], s an
f

max(JK,n,e), and zp?kt 4 Vir{Z; le ?k( (k) Te = n'/4 for ¢ > 1/2 — 1/q and

re =n'?= for ¢ < 1/2 - 1/q.

(C3) Properties of the score function: the map (8, h) — E{t;r.(Zj+, B, h)| Xj(_k) ¢} is twice con-
tinuously differentiable, and for every 9 € {3, h1,...,ha},
Elsupges,, 109 E{vji(Zj1, B, )| X _i,t}12] < C1; moreover, there exist measurable func-
tions ¢1(-), 2(), constants Ly, La, = 1, v > 0 and a cube
Tik(Xj(—p)p) = X%:lﬁk,m(Xj(—k),t) in RM with center hQ 1 (Xj(—k),t) such that for every
0,0 € {B,h1, ..., har} wehave sup(g pyep, x T30 (X, _py.0) |519819/ E{vjk(Zjt, B, M) Xy} <
(X~ ) E{JO(X i, '} < L1y, and for every 8,8 € Bjg, h,h' € Tjp(X j(—k)t) We
have E[{¢k(Zju, 8,h) — %k( Zju, B 1) P IX il < (X (18 = B+ [h = B[3),
and E{|€2(X;_y ,t)\ } < Lan.

(04) Identiﬁability: 2‘ E[Qﬁjk{ j s ﬁ, h?k( J(=k), t)}” = ’(ﬁ]k(ﬁ - ]Ok,)‘ N c1 holds for all ﬁ € Bjk,
def
where ¢jx = 05 B[Vt {Zj 1, B B3 (X (i) }] and [djx] > 1

(C5) Properties of the nuisance function: with probability 1 — o(1), ?ij € Hji, where Hj, =
X%:lij’,m and each H;j ., being the class of functions of the form Bjk,m(Xj(—k;)J) =
Xy Oiteoms 10kmlo < 85 Bjgm € Tjkn and E[{jkm (Xjry.e) = hm (Xj(—h)0)}]
Cin~ts(logan) max ([ Xk, €5, llg.c V 1 Xk, 0, 15.0)-

N

(C6) The class of functions Fj = {z — ¢jk{z,ﬁ,ﬁ(xj(_k))} : B € Bjr,h € Hjp U {hgk}} (z
is a random vector taking values in a Borel subset of a Euclidean space which contains

the vectors w;_y) as subvectors) is pointwise measurable and has measurable envelope

J
Fj, > fsup |f], such that F' = (jHI:;?X Fjy, satisfies E{F(2)} < oo for some ¢ > 4.

G]:Jk

(C7) Dimension growth rates: there exist sequences of constants p, | 0,4, | 0 such that
pZ/Q(Lgnslog an) 240121 (slogan)? = o(g; ') and n=/?(slog a,)/?+n~'r.(sloga,)? =
O(pn).

(C8) The second-order moments of scores are bounded away from zero, i.e.,
wit = E([ = it il Zie, B W (X (-, )}%) = 1.
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(C9) The density of error fe;(-) is continuously differentiable and both of f; (-) and f. (-) are

bounded from the above. Recall that A, % Vec[{(Xjk,t)szl}le]. For ¢ > 2, assume the
dependence adjusted norm |||X.|s |4 is finite. The following restrictions are assumed:

2o an) 72 s (13 e+ o a0 mas 105 ], = o)
| ma |5/3E{¢Jk:( By h )| Fm1, Xk }|Hq<—(’){(slogan)1/gpn 1,

BGBJk (] k)eG

v/2— 1/2
e 2%, 108 i j,,ﬁ,h2k>|f.71,Xj(_k),.}H2,<=0<p,/2 Lo,

1I<r}ca<xK(||ng €5,] "ij,(J k)G

_ (’)(nl/Qs_l/Q),

1g}€a<XK(||Xjk,‘€j,-|q,<vHXjkajk,‘llq,c) focllas, , max

= O{p”/2L17/12n1/2s_1(10ga )_1/2}
s (18,25 o G ) B3 85 MIF 1 X Yl

= 0{n'?(slogan)""?pn}.

||5hm E{¥k(Z;.., By M) F—1, Xy, Hlae

In addition, assume the dependence adjusted sub-Gaussian norm Hi/J?k,,.le J» (defined in
(5.6)) is finite.

Conditions [(C1)H(C4)| and [(C8)| assume mild restrictions on the Z-estimation problems.
They include the LAD-based regression (used in Algorithm [2)) with nonsmooth score function.

In we suppose that the nuisance parameters have estimators with good sparsity and
convergence rate properties. As discussed in previous sections, given the ideal choice of the
tuning parameter, the oracle inequalities provided in Corollary and Comment ensure
that our proposed algorithms can produce the estimator of the form | Bﬁ]_k) — ﬁ?(_k) lipr S
V'slog(ay)/nmaxi<r<r | Xk, €j.|lqc (with probability 1—o(1)), under the exponential moment
condition in The moments of the envelopes are assumed to be bounded in As
indicated in Belloni et al| (2015b)), it can be accommodated to a bound growing with n by
adjusting For the case with n='/2r (s, loga,)?? = o(1), implies n~'s%(loga,,)® =
o(1) if v = 2, and n~!'s?(loga,)® = o(1) if v = 1. Moreover, different from the i.i.d. case,

imposes additional constraints on the rate of p, regarding the dependence adjusted norm.
As for (C9), for the LAD regression case, since the sub-gradient of the score function ;. {-} is

bounded, it is sufficient to impose the sub-Gaussian assumption on vjy, ;.

Comment 5.5 (Discussion of the case with linear processes and LAD regression) The esti-
mation requires the dependence adjusted norm |0, E{v;x(Z;.., Jk, P)|F—1, Xj(—), Hlge and
105 E{#)j( j7.,ﬁ,hjk)|]:.,1, Xi(—k), }lgc to be finite for ¢ > 2. Suppose we have the linear
process Xji ¢ = > o0 ajki&—1 and €5 = 3720 bjimi—, with ii.d. innovations & and 7, for all
Jj=1...,Jik=1,...,K. Thus X7}, — Xjp: = ajrt(§5 — &o) and f—:;" —g = jt(n(’)‘ —10)-

And for the linear regression model, where h(X;x):) = (X; k) tBj(—k ( k),t Vi (—k W)
the conditional distribution F 7, , x, _, {(8- ﬁjk) jkt+h1— k,l} {(5 ﬁ]k) kit T
hy = hSy, 1 = 721 bjume—1}- Therefore, we have ‘F* ‘;t X LB = B X+ ha = Ry}~
st,t\ft,l, j(_k%t{(ﬁ /Bjk)) gkt 1 — jk,1}| ~ ]k)ajk £(&6 — &o)| + [bje(n5 — mo)|, and

25

q,s VHXJk Vjk,- Hq, )|||X|00H2q, H ma. |ah E{%k( jk:’ )|f 1) J( k) }|H2q<



Slmllarly, |f€ t‘ o 1’ j(_k),t{(ﬁ_ﬂ?k)X;k,t+h1 _]k 1} ff':]tl-/—‘t 1,X J(— k)t{(ﬁ /Bjk) ]kt+h1
headl S 5 BY) k(65 — €0)l + 105 (5 — m0)-

Consider the LAD regression model, where ¢;,{Z;;,5,h} = {1/2 — 1(Y;; < X0 +
h1)}(Xjk ¢ — he). It is not hard to see that |E {V;u(Z B, h) —ik(Zje, By h) HFe-1, Xj— k)7tH <
|Fe;f‘t|f;f_1,xj(_k)yt{(5— jk)X;k,t"‘hl_ jk,l} Fo gm0 X (B — /BJk) Jkt+h1 jk,l}‘—'_
| Xkt — Xt S 1(B— ?k)ajkt(£§_£0)’+|bj, (16 —m0)|+|ajkt(§5—Eo)|-
2o 1bjel < oo. Tt follows that || E{v;r(Zj., B, h)|F.—1, Xj(—p), Hlge < 00. As we can see, the

dependence adjusted norm is explicitly linked to the dependency structure of the underlying

linear processes.
Moreover, the partlal derivatives of E{1;x(Zj ¢, B, h)| Fi—1, Xj(—k),} are given by' —E[f-,{(B—
ﬁ?k)ngtJrfu W1} Xt (Xt — h2)| Fio1, Xj—pye) (worte 8), —E[fe, {(8 — B5) Xjnt + b1 —
W1 Y (X p—ho) | Fiot, Xy ) (Worte ha), — E[1/2—F {(B—B),) Xjpi+hi— ]k,lH}—t*la Xj(—k).d]
(w.r.t. hg). Then the dependence adjusted norm for the partial derivatives of
E{vjx(Zjt, B, h)|Fe—1, Xj(—k),} are finite and can be verified similarly.

Theorem 5.8 (Uniform Bahadur Representation). Under conditions [(A1), [(A3) and |(C1)-
with probability 1 — o(1), we have

n
B In' 20 (Bie — B%) + 1 2o ot S wd il = olg, ), asn— oo, (5.33)
k] t:].

9 def 0 )2
where U]k = ¢jk Wik, Wik = E(\/ﬁ 2t d)jk,t) ‘

The results in Theorem imply the asymptotic normality of the proposed estimator by
Algorithm [I] and [2] by applying central limit theorems and Gaussian Approximation.

Corollary 5.7. Under conditions|(A1), |(A3), |(C8) and|(C9), for any (j,k) € G the estimators
obtained by Algorithm [1] and[3 satisfy

o' (B — B0 5 N0, 1).

Theorem 5.9 (Uniform-Dimensional Central Limit Theorem). Under conditions |(A1) and

(A3), assume that H¢ k. |l2,c < o0, we have
“Inl2(5. — 89 5 N(0, 1
o5 n'(Bj — BJy) = N(0, 1),

uniformly over (j,k) € G.

def

Consider the vector (; def vec{ (Gir,t) (jkyeats Gt = —aj_k1¢j_;w?kyt, and define the aggre-

gated dependence adjusted norm as follows:

0o
¢ Mlg. = sup(m + 1) Y lI¢ — & loolgs (5.34)
m=0 t=m
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where ¢ > 1, and ¢ > 0. Moreover, define the following quantities

¢ def ¢ def . 1/a
Py = max |[Gk,llgs Tge = Z ({67784 38 )
(4,k)EG (ReC
def ~
05 < T A{[IC g (log |G} (5.35)

Define Lf = {®3,@20(log |G])*}/5, W = (8 ] ){log(IG|n)}, W5 = @3 {log(|Gln)}*,
W5 = [n<{log(|Gln) /200|027, N} = (n/ log|G1)*/*0f, Nj = n(log |G|) @37,
Nj = {n/*(log|GI)~1 /20, L1012,

(A7) i) (weak dependency case) Given ©,, < oo with ¢ > 2 and ¢ > 1/2 — 1/q, then
0,171/ {log(|G|n)}3/? — 0 and L, maX(Wf, W2C) = o(1) min(N¢, N§).

1/2

ii) (strong dependency case) Given 0 < ¢ < 1/2 —1/q, then 0, (log|G|)"/* = o(n®) and

Ly max(Ws, W$, W$) = o(1) min(NS, NS).

Corollary 5.8 (Consistency of the Bootstrap Confidence Interval). Under|(A7) and the same
conditions as in Theorem for each (j, k) € G assume that there exists a constant ¢ > 0 such
that (nkl)inG Var((jrt) = ¢, with probability 1 — o(1), we have

j7 E

sup |P(B;-)k € (ﬁjk(a), V(j, k) € G)— (1 —a)| =o(1), asn — oo, (5.36)
ae(0,1)
where aljk(a) f |:/§j]€ +Gn2q(1 - a/Q)}, and q(1 — a/2) is the (1 — «/2) quantile of the
(mk?XG|ij|, where Z;1,’s are the standard normal random variables and o, is a consistent
j7 e
estimator of ojy.

Following Theorem [5.8] a joint confidence region and the corresponding confidence inter-
val for each component can be constructed via a block bootstrap method. In particular, the
bootstrap statistic are defined by ﬁ Zﬁgl € Zfb:”(iil)bn 41 ij’l, where e;’s are independent and
identically distributed draws of standard normal random variables and are independent with

respect to the data sample (Zj,t)}]:l.
Corollary 5.9 (Validity of Multiplier Bootstrap). Under the same conditions as in Theorem

5.8, assume (I)g,c < 0o with ¢ > 4, b, = O(n") for some 0 < n < 1 (the detailed rate is specified

in (A.18])), we have

sup |P(8% € CLy(a), ¥(j.k) € G) — (1 — a)| = o(1), asn — o0, (5.37)
a€e(0,1)

where (A?/I;kk(oz) def [ng +GnV2q* (1 — a/2)}, and ¢*(1 — «/2) is the (1 — «/2) conditional
: L iby, =

quantile of (]I’Ilgié(Gﬁ| Zi:l €; Zl:(ifl)byrkl Cij | :

6 Simulation Study

In this section, we illustrate the performance of our proposed methodology under different
simulation scenarios. The first part concerns the performance of the jointly selected penalty

level over equations, and the second part discusses the simultaneous inference.
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6.1 Estimation with a Jointly Selected Penalty Level
Setting 1:
Consider the system of regression equations:

Vie=XB)+eje,, t=1,...nj=1,...1] (6.1)

)

where X;; € IRX. We generate X from N(0,%), where 3y, 1, = plki=k2l = = 0.5, €t i

N(0, 1). The coefficient vectors ; are assumed to be sparse. In particular, we divide the indices
{1,..., K} evenly into blocks with fixed block size 5. ﬁ?k = 10 if k and j belong to the same
block and 0 otherwise.

We take n = 100, # of bootstrap replications = 1000. We set J, K = 50,100 and 150.
The prediction norm | Bj — ﬁjo\ jpr and the Euclidean norm | Bj — ﬁ]o\g ratios are presented in
Table The ratios measure the relative difference between the results using the penalty level
determined from the equation-by-equation case and from the joint equation case (A; and X are
selected by the multiplier block bootstrap procedure introduced in Section . In particular, a

ratio smaller than 1 indicates a better performance of the jointly selected penalty level.

J=K=50 J=K=100 J=K =150
Prediction norm

Mean 0.8915 0.8381 0.7869

Median 0.9141 0.8698 0.8404
Euclidean norm

Mean 0.8962 0.8478 0.7876

Median 0.8922 0.8513 0.8109

Table 6.1: Equation-by-equation to joint equation ratios of prediction norm and Euclidean norm
(mean or median over equations). Results are averaged over 1000 simulations.

It is evident from Table that the proposed estimation procedure delivers much better
performance in terms of the two measures (more than 10%). In particular, the superiority tends
to be more evident with higher dimension of the covariates and more equations.

Setting 2:

Consider the Vector Autoregression (VAR) model of order 1:

Y, =Y, 1 +¢, t=1,...,n, (6.2)

where Y; € IRX. The matrix ®° is set to be a sparse matrix. In particular, it has a block diagonal
structure where the blocks are 5 x 5 matrices with the same parameter ¢ in all blocks. We
consider two cases where ¢ equals either 0.05 or 0.15 (in these two cases the largest eigenvalues
of ®° are 0.25 and 0.75, respectively). & Lid N(0,Ik).

We take n = 100, # of bootstrap replications = 500, K = 50,100 and 150 (in this case
J = K). We choose b, = 4,10,20,25. The prediction norm |‘$J — @9,\3-7,),« (where ®;. denotes
the jth row of ®) and the Euclidean norm |</I;j - <I>?_|2, j =1,..., K ratios (results with the

jointly estimated A relative to using the single equation \;’s, which are selected by the multiplier
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block bootstrap procedure in Section [3)) are reported in Table

¢ =0.05 ¢ =0.15
K=50 K=100 K =150 K=50 K=100 K =150
Prediction norm

Mean 0.8813 0.8464 0.7584 1.05610 1.0381 1.0221

bn =4 Median  0.9686 0.9605  0.9501 1.0458 1.0351 1.0231

b, = 10 Mean 0.8858 0.8404 0.7451 1.0812 1.0567 1.0353
Median 0.9706 0.9636  0.9487 1.0692 1.0506  1.0359

b — 20 Mean 0.8915 0.8501 0.7471 1.1017 1.0645 1.0465

" Median 0.9702 0.9636  0.9491 1.0874 1.0596  1.0455

b, = 25 Mean 0.8936  0.8491  0.7405 1.1040 1.0715 1.0412
Median 0.9725 0.9676  0.9486 1.0915 1.0625 1.0395

Euclidean norm

b — 4 Mean 0.8362 0.7947  0.5663 0.9883 0.9630 0.9375

" Median 1 1 1 1.0000 1 1

b — 10 Mean 0.8411 0.7857  0.5595 0.9773 0.9506  0.9240

" Median 1 1 1 1.0000 1 1

b, = 20 Mean 0.8485 0.7982  0.5721 0.9633 0.9396  0.9192
Median 1 1 1 0.9996 1 1

b — o5 Mean 0.8540 0.7977  0.5315 0.9584 0.9376  0.9158

" Median 1 1 1 0.9997 1 1

Table 6.2: Equation-by-equation Xj to the jointly estimated tuning parameter ratios measured
by prediction norm and Euclidean norm (mean or median over equations). Results are averaged
over 1000 simulations.

This shows that the coefficient estimation performance measured by both the Euclidean
norm and the prediction norm is in favor of the joint penalty level approach, especially in
a higher dimension case with weaker dependency. More specifically, if there exists stronger
dependency in the data, the coefficient estimation with larger block size gives lower errors (in

terms of the Euclidean norm).

6.2 Simultaneous Inference

In this subsection we consider the following regression model for the purpose of simultaneous

inference on the parameters within a system of equations

Vie=dj0f + X B +eje, dje =X 0) + e, t=1,...0n, j=1,....J, (6.3)

where oz? = o0 for all j. Also, JQ, 0;-) € IRK are assumed to be sparse. In particular, we divide
the indices 1, ..., K evenly into blocks with a fixed block size 5, % = 0.5/(k — 1] x 5), 09, =
0.25(k — L%J x b) if k and j belong to the same block and 0 otherwise.

Covariates X; € IR¥ are generated from a VAR(1) process, where the coefficient matrix has
a block diagonal structure (e.g., the blocks are 5 x 5 matrices with all entries in each block
equal to 0.1) and the innovations of the VAR process follow bid N(0,Ik). For each j, €;; and

vj+ are independently drawn from the AR(1) process with the autocorrelation coefficient as 0.5
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and i.i.d. N(0,1) innovations.

We consider the sample size n = 100. Our goal is to estimate and make inferences on the
target variables d;;’s based on the procedure proposed in Section |4, We evaluate and compare
the power and size performance of the confidence intervals constructed by the asymptotic dis-
tribution theory , block bootstrap and the simultaneous confidence regions via the
block bootstrap . The bootstrap statistics are computed based on 500 replications and we
take the block size b, = 25 because the numerical study conducted above suggests that larger

block size is more favorable in the presence of stronger dependency. To investigate the empirical

size and power performances, we generate a sequence of alternatives with either HY : a? =a
(individual inference) or Hyg : of = -+ = oY = a (simultaneous inference), where a > 0 uni-

formly lies in [0,1.5]. Note that the case of a = 0 gives the size performance under the null
hypothesis, while a > 0 illustrates the power results.

Figure [6.1] shows the empirical coverage probabilities, namely the average rejection rate of
Hg : oz? = 0 over j for individual inference and the rejection rate of Hy: o = --- = ozg =0 for
simultaneous inference under different settings of J and K. In particular, the size performances

are reported in Table The rejection rates are computed over 1000 simulation samples.

K =100,J =50 K=J=100 K =200,J=100 K =J=200

Ind. Asym. 0.000 0.001 0.000 0.000
Ind. Boot. 0.034 0.045 0.038 0.061
Simult. Boot. 0.010 0.010 0.000 0.000

Table 6.3: Size performances with different K, J’s, where we take average over j for the indi-
vidual inference.
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Figure 6.1: Average rejection rate of Hg ey

0

= 0 over j for the individual inference (solid

- asymptotics, dashed - bootstrap) and the rejection rate of Hy : af = --- = ag = 0 for

simultaneous inference (dotted - bootstrap) under several true o values (given the significance
level = 0.05).

The results show that the size can be controlled under the significance level 0.05 and the
rejection rate converges to 100% as the true o values increase. In particular, for individual in-
ference our proposed individual bootstrap approach provides a much more powerful performance
compared to constructing the confidence intervals by asymptotic distributions. We observe that
the simultaneous inference is more conservative than the individual inference and the results

are robust with increasing dimensions.

7 Empirical Analysis: Textual Sentiment Spillover Effects

Financial markets are driven by information, and this is a well-known phenomenon among
investors. More frequent news and availability of sentiment data allows study of the impact of
firm-specific investor sentiment on market behavior such as stock returns, volatility and liquidity;
see |Baker and Wurgler, [2006; [Tetlock, 2007, among others.

tools (e.g. LASSO-type estimators) are being used to model complex relationships among

Moreover, powerful statistical
individuals. For example, |Audrino and Tetereva (2017) analyze the influence of news on US

and European companies by constructing a sparse predictive network via adaptive LASSO and

related testing procedures. In this section the developed technology is applied to study textual
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sentiment spillover effects across individual stocks. This is different from the "equation-by-
equation" analysis in [Audrino and Tetereva| (2017), since we build up a system of regression

equations and implement the estimation and the inference of the network jointly.

7.1 Data Source

The empirical study in this paper is carried out based on the financial news articles published
on the NASDAQ community platform from January 2, 2015 to December 29, 2015 (252 trading
days). The data were gathered via a self-written web scraper to automate the downloading
process. The dataset is available at the Research Data Centre (RDC), Humboldt-Universitét zu
Berlin. Moreover, unsupervised learning approaches are employed to extract sentiment variables
from the articles. Two sentiment dictionaries: the BL option lexicon (Hu and Liu}, 2004) and the
LM financial sentiment dictionary (Loughran and McDonald, 2011 were used in [Zhang et al.

(2016). For each article ¢ (published on day t), the average proportion of positive/negative

words using BL or LM lexica - PosEtL, N egEtL, Pos%% N egﬂw - are considered as the text
sentiment variables. Furthermore, the bullishness indicator for stock j on day ¢ with the related
articles ¢ = 1,...,m (based on a particular lexicon) is constructed by following Antweiler and

Frank! (2004)

m m
Bj; =log[{1+ m1 Z 1(Pos;+ > Negi)}/{1+ m? Z 1(Pos;+ > Negi )} (7.1)
i=1 =1

We refer to Zhang et al|(2016) for more details about the data gathering and processing pro-
cedure. 63 individual stocks which are S&P 500 component stocks from 9 Global Industrial
Classification Standard (GICS) sectors are considered. They are traded at NSDAQ Stock Ex-
change or NYSE. The list of the stock symbols and the corresponding company names can be
found in Table [C.]]in Appendix C in the supplementary materials.

The daily log returns R;; and log volatilities log(o*]z’t) for the stocks over the same time
span are taken as response variables. More precisely, the Garman and Klass| (1980) range-based
measure to represent the volatility level is employed:

ait = 0.511(uj s — djz)* — 0.019{r; 1 (ujs + djs) — 2ujsd;s} — 0.383r7

Tt (7.2)

where u;; = log(Pﬁ) - log(PJ%),de = log(Pj{Jt) - log(Pj?t),rj,t = log(Pj%) - log(PJ?t), with
PH PE
It 7 gty

In addition, the S&P 500 index returns and Chicago Board Options Exchange volatility index

Pft, and Pﬁ; denote the highest, lowest, opening and closing prices, respectively.

(VIX) are included as the state variables. The financial time series data were originally obtained

from Datastream, and GICS sector information was found at Compustat.
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7.2 Model Setting and Results

We now construct a network model to detect the spillover effects from sentiment variables to

financial variables by

rie = ¢+ B B+ 2 v+ 1j-105 + g5,
log o, = ¢ + By B + 2/ 7j +log o}, 10 + &, (7.3)

where j = 1,...,J indicate the stock symbols, By = (Bi, ... ,BJyt)T and z; includes the state
variables.

It is of interest to make inferences on the parameters §; € R’, j = 1,...J. Following
the framework introduced in Section [ an estimation procedure with three steps needs to be

implemented.
S1 For each j, run LASSO on ((7.3) and keep the estimator Bj[.l(Lj), ﬁjm, gjm and ’c\g.l].

S2 For each j, run LASSO on Bj; = (Bjj’t,z;,rji_l)THj + v;; to model the dependence
among sentiment variables. In particular, we propose to take the joint penalty level ob-
tained via block multiplier bootstrap (discussed in Section |3.2)) for this regression system.

Keep the residuals as U = Bj; — (B, 2 ,rj-1)"0;.

S3 For each (j, k), run IV regression of r;; — 65-1] - B—_'—MB][.I(L” — ,zt—'—ﬁm — 7‘j7t,13][-1] on By,

J
using ¥y as an instrument variable. Then we obtain the final estimator Bﬁ}

If for stock j, the sentiment variable of firm k is selected into the active set after the
individual significance test i.e., the null hypothesis Hék : Bjr = 0 is rejected under the block
multiplier bootstrap procedure, block size b, = 25, then we put a directional edge from k to
j. As a result, we achieve a 0 — 1 adjacency matrix describing the dependency network from
sentiment variable to financial variable. Note that the diagonal elements in the matrix show
the self-effect of stocks.

The graphical network for stock returns and volatility modelled by based on BL and
LM lexica (from 01/02/15 to 12/29/15) is depicted in Figures
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Figure 7.1: The dependency network among individual stocks from sentiment variables to re-
turn.
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Figure 7.2: The dependency network among individual stocks from sentiment variables to
volatility.

Figures depict the dependency networks among individual stocks. Given that the
time series of returns and volatility are scaled and centered before implementing the estimation
procedure, we find even denser spillover effects in the volatility analysis. This indicates the
stock volatility is more sensitive to sentiment than returns. Moreover, the relationships between
sectors are also of interest. The simultaneous confidence region constructed via the bootstrap

approach introduced in Section [£.2] may help us to detect whether the sentiment information
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from one sector has joint influence on the returns of the stocks in another sector. In particular,
we look at the null hypothesis: Hgl’SQ : Bjr =0, Vj € S1, k € S2, where S7 and S> represent
two groups of stocks that belong to two sectors, respectively. The conclusion that the sentiment
from sector Sy has a joint effect on the returns or volatility of sector S; can be drawn if the
null hypothesis is rejected with the simultaneous confidence region under the significance
level = 0.05.
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Figure 7.3: The dependency network among sectors from sentiment variables to financial vari-
ables.

Figure describes the spillover effect network from sentiment to financial variables on the
sector levels. In particular, the connections from health care to utilities and from industrials
to consumer discretionary are found to be significant in the analysis of stock returns; while
if volatility is focused on then the spillover effects from the utilities sector to the information

technology sector and from the financial sector to the consumer staple sector are detected.
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APPENDIX A: Detailed Proofs

A.1 Proofs of Single Equation Estimation

Proof of Theorem 5.1 For each j =1,...J, k =1,..., K, applying Theorem 2 of [Wu
and Wu, (2016) gives

Clenl| X5, 10 —Cya?
P(VAISi| > a) <« A sSilis 4 o ey (— 0T
(\/ﬁ‘ ]k’ = Hf) S 14 + 2 OXP nHXjk,-gj,- %S ’

where for ¢ > 1/2 — 1/q, @, = 1; for ¢ < 1/2 — 1/q, @, = n¥*71=¢_ C} C4, Cs are
three constants depending on ¢ and ¢. It follows that the conclusion holds if we set z =
(2¢)71W . O
Proof of Theorem [5.2] According to the Minkowski’s inequality and Hélder’s inequality,
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Therefore, the conditions in Theorem 3.2 of |Zhang and Wu| (2017) can be verified for the K-
dimensional stationary process X .e;.. Finally, applying that theorem yields the Gaussian

approximation results. O

Proof of Corollary Given the Gaussian approximation results in Theorem [5.2] we
have P(lg}g%wjk/‘ljjﬂ > 1) < SR P(ISjk/Yik| = 1) = 2K{1 — ®(r)}. Consequently,
taking r = ®1{1 — a/(2K)} leads to the desired conclusion. O
Proof of Corollary [5.3] For w > 0, we have

p(D;'S;.. D' Z;) = sup ‘ P(|D;'S;| =) — P(ID; ' Z)| o0 > r)’

< p(D; 'S5 D5 23) +sup P(1ID; 21l = 1| < w) + P(D;" = D)8yl > w)

J

< (DS, D7 Z;) + wyflog K +P(|(D;" = D;1)Sj | = w),

where the last line uses the arguments of Theorem 3 in |Chernozhukov et al.| (2015). Let

def = def = _ -



Vil D518 )0 As mln\IJ >cj, let w=2y, 0 <z <cj/2,y>0, then

1<k<

P(|(Dj_1 - ﬁj_l)sj-|oo > w) (Vg 2 2x/c;) + P(|D 18 oo 2 ¢jy/2)

<P =

< P(Lyy > 1)+ p(D; 85, D} Z) + P(ID} Zilue > 9/2)
It follows that

P(5;15j~, Dj_lzj) < p(Dj_lsj~, Dj_le) + ayy/log K + P(L,; > x) + P(|D; 1Z loo = ¢4/2).

Applying Theorem 5.1 of Zhang and Wu| (2017), for u > n'/?b}/2®%, . we have

7,2¢,8

EFT Ciu
P(an}u)Nq]/g‘“—{—Kexp( b<I>8>’
7,9,$

where the constants C; depend on 7, ¢, and ¢. Then we have P(L ;> x) — 0, as n — o0,
if we set 2 = YI%E max {nl/zb}/%)?,z n'/2b}/2\/log K®%  F, F?qu}. Moreover, given

Theorem and choosing y = C'y/log K (the constant C' > 0 is sufﬁmently large) yields the

conclusion. O

Proof of Theorem 5.3 Let Sj,; = f Z“’"l Dbnt1X4,k1€50, we first need to prove that

def

g 5] g L s
pn = sup| P { max (230 Win) < 715025 p = P{ max (Zin/ Vi) < rf

_fgﬂg’P{lr&@%(Zeﬂ ]m/\Ifjk) <7A|X]’7.,8j7.}—P{12’}€a§:)§(( Zik Vi) < H — 0, as n — o0.

According to Theorem 2 of (Chernozhukov et al.| (2015), p, ; is bounded by 0(5]1-/ 1vad v
log(1/8;)}/3(log K)'/3, where

Z S]k1 i 5ko,i ln E(Sjkl,iSjk27i)

Wi Wik, Wk Wik,
max |50 Sy iSjkai — bn E(Siky iSihs1)

1<k ko <K
< 1,R2

d; = max
1<k ko<K

min W, W
LV<hy ko<l IR IRz

and ax = E(lmkzg%(Z]k/\IJ]k) V2log K.
The tail probability of d; is our object of analysis. Applying Theorem 5.1 of Zhang and



Wu| (2017)), for x > 1/2b1/2<1>§2qg, we have
x KFET? Ca?
P (nd; > 20 4 12 ox ( )
( ’ min \I/J1k1 ‘I;J2k2> ~ z9/2 P nb (I);lSc
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for all large n, where F, = n, for ¢ > 1 —2/q; F. = [,b%/?79/2 for 1/2 —2/q < ¢ < 1—2/g;
F, = [9/4=<4/2p3/2=<4/2 for ¢ < 1/2 — 2/q. The constants C; depend on 7, ¢, and . This
ensures that when r = max{ V2p 202, nt2hy 2 (log K)Y29%, KQ/sz/qI?qu} the tail
probability tends to 0, as n — oo. It follows that p, ; — 0 as n — oo, given z = o(n log? K),
which implies the following conditions on b,,:

by = o(nlog* K&;3 Anlog K&.3 ), F.=o{n"?(log K)'K T4, 1. (A1)

7,24,

At last, combining the Gaussian approximation results for Sj;/¥;; and by Triangle in-

equality we complete the proof. O

A.2 Proofs of Joint Equation Estimation

Proof of Theorem [5.6] Analogue to the proof of Theorem [5.3], the conclusions are implied
by

o JKF.TY Ca?
. ' ‘ < U 2g0 2 ——
" <n6 Z <1<k1,k2<r?(1,{1<j1,jng\II“kl\P]m) x) ST (JK) exp ( nbn@gs),

for z > n'/?b}/?®3 _and all large n, where

def s S SiikaiSiokai o E(SjikyiSokai)
ISk ke SKG IS 25 \Iljlkl \I’]ék’z qjjﬂfl le]ékz ‘
In particular, when o = max {n!/2b}/203,  n1/2b}/*{log(JK)}V/2®2 , (JK)?9F2/13, |, the

tail probability tends to 0, as n — oo. It follows that p, — 0 as n — oo, given z =
o[n{log(K J)}?], which implies the following conditions on b,,:

= o[n{log(KJ)}' @, An{log(K )}’ @5 ], Fo = oln?*{log(KJ)}'K 'Ty].  (A.2)

Recall that F, = n, for ¢ > 1 —2/q; F. = [,b9/>=92 for 1/2 —2/q < ¢ < 1 —2/q;



F, = 19/4=<9/2p0/2=54/2_for ¢ < 1/2 — 2/q.
The rest of the proof is similar to that of Theorem [5.3] and thus is omitted. O

A.3 Plausibility of RE and RSE Conditions

Theorem A.1 (Plausibility of RE and RSE). Forany j =1,...,.J, suppose the vectors X,
of length K; satisfy

0<k< min 6 E(X;X)d< max §' E(Xj,thTt)é <P < o0,

Js t
16]0<s,[6]1=1 J 16]0<s,]8]1=1

where ¢ and k are positive constants. Given 5 mz|1§|< 1||(XJ<T_(5)2||2,< < o0, and for q > 2,
0<5,[0[1= ’

H|5\ me‘tgi: X X;5)2H < 00, n7V%(slog K;)V/? + n~tr (slog K;)* = o(1), where r. = n*/4 for
0<8,[0[1= ’ q,s
s >1/2—1/q and r. = /> for ¢ < 1/2 — 1/q, then the restricted (sparse) eigenvalue

conditions hold with probability 1 — o(1).

Proof of Theorem |A.1. Define the s-sparse sphere as Fy = {0 : [0|p < s,[d]2 = 1}.
According to Rudelson and Zhou (2012), the e-covering number of Fj w.r.t. the Euclidean
metric is [ = exp(slog(3eK;/me)), with m > 1. This is the cardinality of the e-cover set Il;
of Fg.

Now we proceed to check the implication of the population matrix. We know that
0T X[ X;6/n = 1 X;6]2, where X; is a n x K; matrix of X;, and X; % n='/2X,. For any
point 6 € Fj, let w5 denote the closest point to ¢ within IIs. Then we have the following

inequalities for any point 6 € Fjy,
— X8 = 7(0)} o + 1Xm(8)]2 < 1X;0ls < (X8 = m()}o + |Xjm(B)]o (A3)

We first check the right hand side of (A.3). Define ||X; ||,z o sup|X;0],. As indicated in
0EF}s

the proof of Theorem 16 in [Rudelson and Zhou| (2012), we have | X;{5 —7(0)}> < €[| X ||2.5;-
To bound gl)ax |)? (0)|2, we invoke the tail probability inequality in Lemma [A.2| Consider

the set 15, and let X () dof { (0)}? —n'w(6) T E{X;, X ], }7(0), which is a vector of the

cardinality of I1,. Let @27§ o gl)an ||X )||2§, we have
€
P( max En: uﬁt(a)’ > x) = P[ max ’|X m(8)2 —7(6)" E{X-tXTt}ﬂ(é)‘ > :z:]
m(0)els '} J w(8)€l; Jt<rg, ’



if z > \/nlogl®, . + r.(logl)3/? max |X;-T_(6)|
w(8)€lls ’

Therefore, given x,1 > 0, k —x, < \27(5)’5 < x, + % holds with probability 1 —o(1) for
all w(0) € Ils, where z,, o \/nloglci)Q,g + rg(logl):s/zl %a}l% |)v(;r(6)|H . In particular, the as-
w(6)€lls ’ a,s

a,s

sumptions max I{X, 7(8)}?||2.c < o0, ||  max (XJT,(S)2H < oo, and "% (slog K;)'/% +
m(o)ells ’ ’ q,s

6lo<s, 611 =1
n~'r.(slog K;)* = o(1) ensure that z,, = o(1).
Hence, the right inequality in leads to | X0y < €| X;llory + /Tn + V3. Taking
the supremum over all § € Fs on both sides shows that Su})|)7j§|2 < (Vo + V) /(1 =€)
€
with probability 1 — o(1). Moreover, by the left hand sidse of (A.3), we have 1 X;0], >
VE = Ty — €(\/Tn + /1) /(1 — €), with probability 1 — o(1).

Collecting the results together, we have shown that for all § € Fj,

— T, — < |X:6], < : A4
K (1 _ E) | J |2 (1 _ E) ( )

with probability 1 — o(1).
At last, with properly chosen e the RE and RSE conditions can be achieved. O

A.4 Proofs of Simultaneous Inference
A.4.1 Some Useful Lemmas

Lemma A.1 (Burkholder| (1988)). Let ¢ > 1, ¢ = min(q,2). Let M, = Y1, &; where
& € LY (ie., ||&]ly < 00) are martingale differences. Then

Mg < KZ 3O NEls where Ky =max((q — 1)~ v = 1).
t=1
Lemma A.2 (Theorem 6.2 of |Zhang and Wul (2017) Tail probabilities for high dimen-
sional partial sums). For a mean zero p-dimensional random variable X, € RP (p > 1),

let S, = >0, Xy and assume that ||| X |wllqc < 00, where ¢ > 2 and ¢ > 0, and @y, =
maxi <<y || X, |loc < 00. i) If ¢ > 1/2—1/q, then for x 2 \/nlog p®a +n1(log p)* ||| X | llgc

P(|Sh|oe 2 @) <

C., n(log p)72||| X | || —C, a?
q,S ( gp) ||| | ||q,§ + Cq,g exp < qgfﬁ >
x4 n®3



i) If 0 < <1/2=1/q, then for x 2, /nlogp®s +n'*~*(log p)**||| X | lys

C, n9?1(log p)?/2||| X | ||2 —C, x?
P(|Sn|oo 2 CL‘) < q,S ( gp) ||| | ||q,§ _’_Cq’g eXp< q,g.fl? )

x4 n®3

Lemma A.3 (Theorem 1 of |[El Machkouri et al.|(2013))). Denote Y; = f(F;), where f is some
measurable function. Let S, = >3 1 Yy, and ¢4 = ||Y: — Y¥||c. IfE(Y:) = 0, Y02, 0ct < 00,
some ¢ =2, and 02 & E(S%) — o0, then

o8, 5 N(0,1).

Lemma A.4. Under the same conditions as in Theorem let Bjk be any estimator such
that |5;, — B0k < Cpy with probability 1 — o(1). Then we have

-1 An < -1/2 -1 A5
nT max An S o(n” g, ), (A.5)

holds with probability 1 — o(1), where A, & n2G i (Z;, Bjk, lAzjk) — (24, ﬂjok, hgk)}.

Proof of Lemma |A.4] For any finitely discrete measure Q on a measurable space (Z, Z),
let £%(Q) denote the space of all measurable functions f : Z — IR such that || f|lg2 &
(QIf1H)Y? < oo, where Qf © [ £dQ. For a class of measurable functions F, the e-
covering number with respect to the £2(Q)-semimetric is denoted as N (e, F, || - ||o2), and
let ent(e, F) = logsupg N(€[|Fllgz2, F, || - lo2) with F' = sup;cx|f| (the envelope) denote

the uniform entropy number.

As indicated in the proof of Theorem 2 in Belloni et al| (2015b), the entropy ent(e, F) <
cslog(ay /€) for the function class F = {z — V{2, B, ﬁ(xj(_k))} — ¢jk{z,6?k, h?k(xj(_k))} :
(J,k) € G, B € B, |8 — Bl < Cpn, h € Hji.}, which has 2F as the envelope (the definition
of F is given in. Therefore, for any f € F, there exists a set F,, such that mingep, || f—
f'llo2 < € where € uf €||2F||o2 and the cardinality of the set |F,| = (a,/€)*. Then we have

S |f—w() —E{f = ()]

t=

sup < 2én,

feF

n
1




where 7(f) < arg min|| f — f'[|g2. Hence, with probability 1 — o(1),
f1eF

max A, < n'?sup|G,
(hee X fng-| ()l

= nsup|[E(f) — En{m(f)} — E() + E{n (Y + En{r(/)} — E{x(N)}]
feF
< 2né + nmax |En(f) — E(f)|

< 2n€+ nl}fé%ﬂ En(f) — EnE(f|Fim1, Xjnye)| + nmax | En ECf|1Fim1, Xjnye) — E(f)]

= 2mé+ K, + N, (A.6)

Next, we look for the bounds for K,, and N,,, respectively. Note the summands of K,, form
martingale differences. Consider the function set F,, for each f € F,, let ¢ def f(z) and
Dy def @1 — E(@i| Fiz1, Xj(—r)t). Note that ¢, and @, are vectors of length |F,| = (a,/€)*. For
m = 1,...,|F,|, the dependence adjusted norm of @,,; obeys that ||@,.|l2c < 2||@mell2 <

Alpm.ell2- And by [(C3)} [(C5)} and [(CT)} we have [|@m |5 < Lanpy,.

Apply the tail inequality as in Lemma [A.2 to the vector @;. As max |[@m. |2 <

1<m<|Fn‘

(Lanp¥)'/? and ”KI,E%Q‘)% |<,5m7.\|q3g < \/ s log(anB, and given the exponential moment condi-

tion: E{exp(bpm.)} < exp(b*0?/2) for any b € R (implied by |(C9)|), then we can see that
with probability greater than 1 — O(|F,|~! + (log|F,|)™9),

K, 5 i/nslog(a,/e) max H@m,-HZC+T<<510gan/6)3/2’| max G, {[g,

1<m<|Fy| 1<m<|Fy|
< \fnslog(an/e)(Lanp)'? + r{slog(an/e)}*.

Hence, we have

where pg, ot + rrre With 7 def /nslog(an/€)(Lanp?)?, Tho def {slog(a,/€)}? and
r. =n9for ¢ >1/2—1/qgand r. =n'/?<for¢ < 1/2 - 1/q.

Then we handle the term N,,. Again consider the function set F;,, for each f € F},, let
Py - E(ps|Fi1, Xj(—r)t) — E(1), where ¢ = f(z). Then

n
N, < max ]Z¢mt|

1<m<|Fn‘ =1



Moreover, for ¢ = 1,...,|F,|, there is a function g corresponding to each f € F,, such that
G = g(21, 8,h), where B € By, |8 — Bl < Cpn,h € Hjx, (j, k) € G. By the mean value

theorem and the continuity of the function g, we have
g(Zj,ta Ba il) :8ﬂg(zj,t7 37 E)(ﬂ - jok)
2
+ Z ahmg(Zj,t7/87 ){h ( (—=k), t) h?k,m(Xj(—k)vt)}v
m=1

where (5, h(-)) is the corresponding point which joins the line segment between (3, A(-)) and
(5]01@7 hﬁ)k()) Then

max Zwt—maxzaﬁg Z]tjﬁ, )(5— ;)k)

ISPl .25 BeF i1

+maXZZ<9hm Z B, ) {hun (X (-y) = G (X0}

hanm 1t=1

where F? and Ffj collect all the points of 8 and h according to F,, respectively.

Recall that in our linear model setting, h(X;(—x)1) = (X} 0% 1y X Von) | =
(X %10 X py000) T and B(Xrya) = (X[ 1O, 1,Xj(_k)7t9]k,2) , where 0% ., and
ijm ( =1 2) are vectors of length K; — 1. Let T}, = o {1<1< K 00107 0,0% 0, 7
0}, Tjx def {I1<I<K;—1: ijll #0 ijgl =+ 0} and X]k = Vec{( k)”)leTO UTjk}'
Now we apply Lemmaon S O 9(Zj By B) e (X yt) — hgkm(X i)} and

S 0s9(Ziy, By b h) (B — ) To this end, we define the followmg quantities:

ho def 7
q)m2< _%nai% ij?B?h)“q’g?
or M ax Xk 10,
m,q,s herh | |00 On,, 9(Z;
Let x7* © O g (Zits By 1) {on (X iy 1) — By m(Xj(—k)t)} and define the projector op-

erator P;(x}") L E E(x7*|F) — E(x" |~7:1—1)- According to Theorem 1(i) of [Wu| (2005)), it is
not hard to see that ||x™|lg.c S supgso(d + 1) 322, [|Po(X7") g, for m = 1,2. Moreover, as

Oitam = Ol < 51/ (l0g an) /n max (. Xx.€5.llac V 1 Xk vt lla), we have

m I\ i 5 1/q
1P Mg < (E[PoA10h,,9(Zs0, B, 1) XT* o Hbsmm — 00 1)
T\ i 1/q
< sy/(logan)/n max (| Xju. &5, llos V| Xjn vgncllg) (ELPo{[0h,9(Zss 5, 1) X" }]7)



It follows that X" lgc < s/(0g an)/n max (1Xe.e;.laeV 1 X vjk o) || X7 ool On 9 (Z5 B, D]
Then applying the tail probablhty bounds in Lemma [A.2] yields

max
hth

Zah g ]hﬁ? ){h ( (—k), t) h?hm(Xj(*k),t)}‘ S TN1im + T<T'N2,m;

where ry, = s*%(log an)'*{log(an/€) 2 max (|| Xk, &5, lo.c VI Xk Vi, o) Do and ravom =

s°2n=2(log a,)/*{log(a /e)}3/21r<r}€85§((H ik llae VI Xk, Vi, 0. ) 2 4 - Note that we have
the following relationships

Do S 21X ]|, ZI;‘%Hahmg(Zj,-,ﬁJ_l)HM
Ve S 21X |, | max 0y, 9(Z5.. 8, ),

where the rates of ®) , and Q _ are restricted in |(C9)

Similarly, by defining

def
,

a9,

def > 7
(I)g,G = {Ila}lg Haﬁg(zjw ﬁ? h)
BEFy,

‘max|5ﬁg ij’ﬁ)”q,c’

we have

max’Z%g( B, h) (B — )‘<rN10+T<TN207

where ry19 = pm/nslog(an/e)@g’g, TN2,0 = pn{slog(an/e)}g’/QQg’g. And [(C9)| constrains the

rates of ®§7§ and Qgg.

As a result, with probability 1 — o(1),

by letting mg{léii%}{?”]\rl’m +rervemt = Olpn, ).

As P(K,+ N, > z) < P(K, > z/2)+P(N, > x/2) and collecting the results from (A.6)),
(A.7), and (A.8), we have shown that A, satisfies

n~ ! max A, < pa.,

(j,k)eqG

where pa, = 1" (pk, +pn,) = o(n"2g1) (given € is sufficiently small, and using and

10



(C9)). O

Lemma A.5. Under the same conditions as in Theorem |5.8, we have with probability 1 —
0(1)7

(ﬁ?é{(;‘ Enwjk{thvﬁjkahgk<XJ( k), S (A.9)
Proof of Lemma Consider the class of function Fg = {z — ¥u{z, B, B (z—r)} :
(7, k) € G}, the cardinality of the set is |G|. Therefore, the corresponding covering number
is given by supo N (€| Felloz Fo, || - log) = |Gl/e, with Fg = supser, |f]. Let 49, &
Vie{ Zj: BJer W (Xj(—ry,¢) } and applying the tail probability bounds in Lemma [A.2, we have
with probability 1 — o(1),

(H;ag(G\ el Sn7t(r1+7er2) S 7, (A.10)
where i = (nlog )V mase [, s s = (1o @) mace 13, [l 7 = ¥ for s >
1/2—1/qand r. = n*/?>~< for ¢ < 1/2 — 1/q. O

Lemma A.6. Under the same conditions as in Theorem|5.8, consider the class of functions

= {z = ¥pfz, B, Mxi )} : (k) € G.B € Bjr,h € M U {R9.}}, we have with
probability 1 — o(1),

2 sup |Gl )] S pu (A.11)
feF

Proof of Lemma [A.6] The covering number of the function class F’ is given by
supo N (€| F'| a2, ', || - [lo2) = (an/€)*, with F' = supsez |f|. Also, for any f € F’, there
exists a set F), such that minpep ||f — f'llo2 < €]|F'||o2 and the cardinality of the set
[Fol = (an/€)®.

One can apply the technique we used in the proof of Lemma[A.4]to achieve the concentra-
tion inequality. Particularly, here we can consider a rougher and simpler bound for the part
of ngcnax\ En E(f|Fi—1, Xj(—r)t) — E(f)|. For each f € F), there exists a function g such that
9(z1,8,h) = E{f(2)|Fi-1, Xjwy} — E{f(2)}, where 5 € By, h € i U {1}, (G, k) € G.

As by the mean value theorem and the continuity of the function g, we have

g(Zji? 67 B) :aﬁg(Zj,tv B7 ﬁ) (B - jok)

2
+ 3 00 9(Zie, By D) (X t) — B (Xj—i0) 1
m=1

11



where (3, h(-)) is the corresponding point which joins the line segment between (5, A(-)) and
(8%, h9:.(-)). Then by Cauchy-Schwartz inequality, for m = 1,2, with probability 1 — o(1),

we have

Z(?hmg (Zje, By ) { (X <)) = By (X e)}

t=1

[Z{ahm (Z 5, 00Y) [ Z{h W (Ks00)¥)]

8 1/2

N \/_{Z{ahm Zjs, B, )}2} {E[{hm(Xj(—m,t) — B (X )17}

— 1172
S [ 32400 9(Zses 81015 ogam v (10,5 e V X 05, ) (b T3]
t=1 SPS

Let x7" dof {0n,.9(Z;s, B,h)} and define the projector operator P;(x/") o E(x!"|F) —
E(x}"|Fi—1). Then we have x7* = Y7, Pei(x}) with P (x}*) are m.d.s. over ¢. Hence, we
can apply the Burkholder inequality in[A.I|and get || Xr; Py (X712 < S5y ([P ()13 =
S Po(X™)N13 < nllx™—(x™)*||13- It follows that 7 1 x7* < /1l x™||2,c by the definition of

dependence adjusted norm. Therefore, we have shown that Y7 Oh.. 9(Z; 1, B, 1) { P (X;(_y.t) —
Mk (X))} S Vs log anlIX™ |2 max (| Xk, 5. llos V [| Xk vjk.[lq.c) and the rates of [x™ 2.

1<h<K
and 1@1}}((”)(%.@7.”% V| Xk, Vjk,|lq.c) are assumed in |(C9)|

The rest of the proof is similar as for Lemma and thus is omitted. O

A.4.2 Proofs of Section [5.6

Proof of Theorem [5.8 The sketch of the proof follows the proof of Theorem 2 in [Belloni
et al.| (2015b)).

Step 1: Let B be any estimator such that |3, — 39| < Cpy with probability 1 — o(1).
By rewriting (using the fact that E[(;u{Z;4, B3, hi (Xj—r)e)}] = 0), we have

En[wjk{Zj,thkaﬁjk(Xj( k)t )}] =E [%k{ ]k> h) (Xj(fk),t)}]

+ E[thjrd{ j,t>5, ( j(—k),t)}]‘ ~ +n'A, (A12)

B=B;1,h=h;

where A, = n'/2G, [VixlZjt, ﬁ]k‘a Jk( )} Vir{ Zjt, /Bjokv hgk(Xj(fk),t)}]-
We first observe that with probablhty 1—o(1), max(jpea An < \/ﬁsupf@; |Gn(f)|, where
F is the class of functions defined by F = {z — v{z, 8, h(x;—) } —vj{z, B% B (z5-1))} -

12



(4, k) € G, B € Bji, |B = 8% < Cpn, h € H;i.}. The key to our proof is to achieve a concen-
tration inequality for A,, such that n~! max(;pec An S o(n™1/2g, ") holds with probability
1 — o(1). This is done in Lemma [A.4]

Then we expand the second term in by Taylor expansion. Pick any 3 € Bj; such
that |8 — 89| < Cp, and h € Hj,. For any (j,k) € G, let (B, h(Xj_p,s)")" lie on the
line segment between (8, h(X;(_x):)")" and (59 0 W (Xj(—rye) ) 7. Therefore, we can write

Elvi{Zj. B, ( j(—k)t)}] as follows

Bl Zys B WX i)Y+ EDs EL il Zys B WX i X )6 — B30
+§1E(3hm E[wied Zis B M3k (X HXjow {n(K-ye) = B (K-, })
b5 B ER i Zoes B, A MK )6 — B
;mflE (OO, EDV 364 0B RO DU a0 (X 100) = B (K000}
{one (X5-10,6) = W (X9, })
S 0,00 B0 B (55 100) = B (K50 D)8 — )

m=1

(A.13)

It can be seen from the orthogonality condition (5.32)) that the third term in (A.13)) is zero.

By |(C3)[we have E(Js [wyk{ ]k? jk( (—k), t)}‘ i(= k),t]) ij{ ]k? 9k<X (—k),t)}]
= ¢;x. Moreover, each of the last three terms in (A.13)) is O(Llnpn) = o(n 1/2 1) (by [(C3)

and [(C5))). Therefore, we have shown that the second term in (A.12)) equals gzﬁjk(ﬁjk — B%) +
o(n~12g-1) uniformly over (j, k) € G. Then, combining the results in Lemma gives

En[tir{ Zie: Biws i (Xj—.) Y = E al051{Zj 0, B0 WO (X(—1.0)}]
+ o (Bjp — BY) + o(n™' g, ). (A.14)
Step 2: Next, we need to prove that inf,_z |E . [¢{Z;4, 5, hin( X nye) Y| = o(n=2g:h)
holds with probability 1 — o(1). For any (j,k) € G, we focus on any point 33 = ﬁ](-)k —

¢j_k1 En[?/’jk{zj,ta 5?ka h?k(Xj(fm,t)}], thus

(n;?gclﬁjk ]k <C max |En [wjk{Z]Uﬁjkﬂ gk(Xj(—k),t)}”

13



By Lemma , we have |35, — (5| < 7 uniformly over (j,k) € G. By [(C2)} [5), £
c1ry) C Bjx with probability 1 — o(1), thus 3} is contained in Bj), with probability 1 — o(1).
Using the continuity argument as in with 8;; = 0}, and combining the fact that
Gir(Bje — B) = — Eulind Zie, B, h3u(Xj—r2) }, we have,

EnlVind Zits Bl hi(Xj ) H = Enlind Zje, B Bo(Xicrye) Y + i (B3 — BY%) + o(n™2g, )
= o(n™ g, ).

Therefore,

max inf |En[Wid{Z;e B hin(Xicm) Nl <IEalid Zie, Bie ik (Xjciy) M| = o(n2g, 1),
(J,k)eG 563 i
(A.15)

holds with probability 1 — o(1) uniformly over (j,k) € G.
Step 3: Lastly, it is left to prove that with probability 1 — o(1), max(; ryea ]B]k — B <

Cpn, which will lead to the desired Bahadur representation. Consider the class of functions

= {z 0 Yudz, B, h(zjy)} : (4, k) € G, B € Bj, h € H U {h9.}}. From and by

the definition of Bjk we have

—n~ 2 sup |G (),
feF

En[vid Zjts Bites i (Xj i) Y| = | Elbied Zies B M X ey i) Ml oz 5z
B ﬁ]k: Jk

holds with probability 1 — o(1) uniformly over (j,k) € G.

Lemmal|A .6{ensures that n ="/ sup |G(f)| = O(pn). Furthermore, applying the expansion

in (A.13) with Jk = [ implies that

| ERd Zya B, 50 Y — Eld Zya B, B )} ]| < Clpu + Lunp?) = Olpa).

By |(C3)| along with the fact that E[{Au,(X;—r)) — h%% m(Xj—a),0)}?] < Cp? for all m =
1,...,M and any h = (h,,)M_, € H;;., we have Wlth probability 1 — o(1),

| E[isd Zir B R (X5 Ml g5, e — O(pn),(A.16)

> ‘ E[vix{Z;+, B, h?k (Xj(-m)}] |ﬁ:Ejk

uniformly over (j,k) € G.

From (A.15)) we can see that the left-hand side of (A.16)) is o(n~'/2g; ). Moreover, due to
the identification condition |(C4), the first term on the right-hand side of (A.16|) is bounded
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from below by %{|¢jk(§jk’ — B5)] Acr} and this results in B — B% < o(n™2g,1) + O(py),
with probability 1 — o(1).

In summary, we have shown that, with probability 1 — o(1),

En[tii{ Zie: Biws i (Xj )Y = Enloin{ Zje, B0 WO (X)) }]
+ o Bk — BY) +o(n~2g, ), (A.17)

uniformly over (j,k) € G. And with probability 1 — o(1), the left-hand side is o(n='/2g; ")
uniformly over (j,k) € G. Lastly, the uniform Bahadur representation can be obtained by
solving (A.17)) with respect to (@k — %)

[

Proof of Corollary The proof is an application of Theorem with verification of
conditions (C7)l

Here we focus on the estimator by Algorithm [2] as the proof of Algorithm [1} is basically
the same. In particular, with the LAD regression case, we have |G| =1, a,, = max(JK,n),
gn=1, M =2, hjk( i(—k)t) :( 005y XG5 wm) s Cird ity Biks W (Xjrye)} =
{1/2 = 1(Yje < XjeBjr + Xy, tﬁo )}(Xjkﬂf Xk )t’yj(—k))‘

Verification of |(C1) mz Our model setting assumes F; (0) = 1/2 and E(vjr| Xj—p)) = 0;

hence we have

Oy {03 (Zjt, B h)|Xj(—k),t}‘h:hok(x(ik) o = B (0)vikal Xjwat = 0,

Ons E{Ujt(Zj1, B h)|Xj<*’“)vt}‘h:hok(xj(_,€) = ~E{1/2 = F (0)1Xj-m .} = 0.

Verification of [(C2)F The true parameter 39, satisfies (5.31]) given F; (0) = 1/2. Moreover,
based on the fact that |ﬁ[1 —B9ipr S y/s(logay)/n and by Remark 2 in|Belloni et al.| (2015a)),
with probability 1 — o(1), | 6[2] %] = o(1/logn), so that for some sufficiently small ¢ > 0,
(8% £ ¢/logn] C B, C B, with probability 1 — o(1). Then the condition holds.

Verification of |[(C3)f The map

(B, h) = E{ji(Zjs, B, h)| Xj—r) i}
= E([1/2 = F. {Xu (8 = ) — X,y uBypy + ] (Kiwa — h2) | Xj—r)e)

is twice continuously differentiable as féj is continuous. For every ¥ € {f3, hy, ho},
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O E{vu(Z;4, B, h)lXj(fk),t}iS—E[faj{ ‘kt(ﬁ— 0) =X k.0 By} Xkt (X —T2) | Xy ]

(w.r.t. ) or — [f{_:]{Xjkt(B — ) — 05w+ hl}(Xjk,t ho)| X -kl (wor.t. hl) or
—E[1/2 — F. {X1:(8 — B) — XT (—h), tﬁo ) + Mt Xjn)e] (wrt. he). Hence, for every
B € Bjy,

09 E{V(Zj.t, B, W Xj(r) e H < CrE( Xl 1 X r)e) V CrE(vjn el | Xj(—nye) V 1.

Therefore, the expectation of the square of the right-hand side is bounded. Moreover, let
Tie(Xjma) = {7 € R? : |1 — Xy Bj{_iy| < cs}, where ¢z > 0 is a constant. Then for
every ¢,9" € {3, h1, ha}, we have

10909 E{¥ji(Zjt, B, B)| Xj(—p) e}
< CL1V E{ X3 (Xjne — ha)| 1 X -my b VB Xt (Xjie — ha) || Xy} V E( X il [ X )
VE([ Xt — hal [ Xj(ry0)]-

In particular,

E{1X s (Xiir = 1) [ Xy} < BUXG i 5 + 03ma)*(es + [0mal )X}
2 E{I{(XT 1 5k)” Okt (s [0 )| 1 X}

C'| t’yj k)|

NN N

And by similar computation we can show that [0y0y E{¥jx(Z; 1, B, h)| Xj(—ry i} < L(Xj—rye) =
c’ |X t%( k)| where the constants C,C’ dependd on ¢3 and C;. Lastly, for every
B,p" € Bjk, h,h' € T;i(Xj(—r)) we have

E{vn(Zjs, B, 1) = i(Zie, B0 Y Xy ) < OvE{[ X ra (X — o) | X (a3 B — 5]
+ CyE{( X — ha)? | X my et — 8] + (ta — t5)?

< O"IX Vw18 = B+ [t = ) + (22 — 15)?

< \/—<C”|XjT(fk),t7j(fk)| +2¢3) (|8 = B+ |t = t']2),

where constant C” depends on c3 and C. Consequently, we have verified the last condition

in|(C3)| by taking lo(X;(—k):) = \/_(C”|XT ﬂj( | +2¢c3) and v = 1. And given the finite
moments conditions on Xy, we have E{|¢1(X;j—x+)|*} < Lin, E{|[la(Xj(—p)e)[*} < Lap.
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Verification of [(C4); For any 5 € Bj, there exists 8’ between B?k and 3 such that

1
* 582 E[ix{Zje B, D3 (X (B = B3)%

Let ¢ = O E[Wju{Z;s, Bhn, Wi (Xj(—we)}] = i Since 03 E[vjr{Zje, B, hp(Xj—rye)}] <
C1E|X3, vjk| < Oy, we have

2| E[6{ 20, B, (X ) Y| = 26518 — 8] — Ca(B — B%)> = el B — 8%,

whenever |3 — 35| < ¢i/Cs.

Verification of |(C5); According to Comment under the sub-Gaussian assumption,
with probability 1 — o(1) we have

7l
1B,y = Bl  V/s(log an)/m max Xl

||'7j(—k:) 7] ||]P7“r§ S(IOgan)/nlg}fg(HXjkwvjk,-Hq,c,

which means the algorithms can provide an estimator of the nuisance function with good

sparsity and rate properties given IC A. Thus, by Lemma 7 in Belloni et al.| (2015a)), we have

(C5)| holds.

Verification of [(C6); We refer to the proof of Theorem 1 in Belloni et al.| (2015a).
Verification of Take s, = £,s and p, = n~?(s,loga,)"? + n~'r(s,loga,)? <

n~Y2(s, log a,)/?, under n='/?r (s, loga,)®? = o(1). Also let v = 1, Ly, < M,. Then
the condition holds given n~!(s, loga,)*M? = o(1) and n='/2r(s,loga,)? = o(1), with £,
growing slowly enough.

O]

def ik def 1,1
Lemma A.7. Let 2, = Vjd Zjt, B, D (Xj—ye) }, TIF = 05 b1 Sty Vi ys and assume

that |12 |2, < 0o. Then

T/F = O(v/n), and n~*TI* 5 N(0,1)

Proof of Lemma [A.7| Define the projector operator P;(X;) o E(Xi|F) — E(Xy| Fiq).

Note that the projection operator is directly linked to the dependence adjusted norm for
Xkt = gie(F1) = gir (-, &1, &), and [Po(Xjno)ll2 < lgin(Fo) = 9w (F)ll2 < 2[Po(Xko)ll2

17



(by Theorem 1(i) in Wu, 2005).
Let J7* dof O by iy Peci(¥2,), and it is not hard to see that T3 = Y72, Jl]n As

m J

O';kl ;klpt,l( O.0)’s form the martingale differences over ¢, according to Lemma we can

apply the Burkholder Inequality and get ||Jfﬁ||§ < (0kbi) 2 0 [ Pei( ?kt)H% < n(éfm)Q,
def * i 0o

where 5%,1 = | ?k,l —( ?k,l) |2 Thus, TJ* < VI, 5;‘ij,z < \/ﬁ||¢?k,.||2,< = O(y/n). Then

the conclusion that n=/2T9% % N(0,1) follows from Lemma in light of the fact that

E¢?k,t =0 and ||1/J?k,~||2,c < 0. O
Proof of Theorem [5.9. The proof follows directly from Lemma [A.7] O
Proof of Corollary . We apply the high-dimensional central limit theorem (Theorem

3.2 in [Zhang and Wul (2017)) to the vector o ﬁ S, ¢ oand Z o vec[{(Zje) iy Y] is

the corresponding standard Gaussian random vector, with the same correlation structure.
Then we have p(D7'S,D"'Z) — 0, as n — oo, where D is a diagonal matrix with the

square root of the diagonal elements of the long-run variance-covariance matrix of ¢;, namely
{i=e E(ijCjk’(t,@)}l/z, for k=1,...,K, j7=1,...,J. The rest of the proof is similar

{=—o00

to Corollary [5.2] and thus is omitted. O
Proof of Corollary [5.9 The proof is similar to that of Theorem and Theorem [5.6}

therefore, we omit the detailed proof here. In particular, the following conditions on b,, are

required:

b, = olmin{n(log |G| log n) 2(®S,)~*, n(log |G])*(log n) (@5 ) ~*}],

F, = ofn""(log |G| log n)~*"%| G|~/ (T%,) "},

b/ log (@)} + b/ log (b,) /2 = o{n*/*(log |G]) " (®5,) ),

b2 og {2 (log | GI)/2(@5 )2} + B/ log(b) /2 = o{n'/(log |GI)™/2(®5,) 2},
F2/10g(|GP/(T8, )%} + 2F2/10g(F.) /q = o{n(log |G |GI//(TS) 72, (A.18)

where F. = n, for ¢ > 1 —2/q; F, = 1,b4/>=<92 for 1/2 —2/q < ¢ < 1—2/q; F. =
19/4=<a/2pa/2=<a/2 for ¢ < 1/2 —2/q. O

APPENDIX B: Examples of the Dependence Measure

1. AR(1): Z; follows Z; = aZ;_; + &, with |a] < 1, & ~ i.i.d.(0,0?%). Therefore, the
MA representation is given by Z; = Y% ale;; and Z; = Y0°,ale, | + alel — aley.
12 = Z;llg = lal'lleo = &5llg, Amg S lal™; 1 Z.]lgc S $UPpzo(m +1)%lal™ < oo

~
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2. ARCH(1): An ARCH (Autoregressive conditionally heteroscedastic) model is given
by Z; = o4&, 02 = w+a?Z2 4, with w > 0, & are i.i.d. shocks and Var(Z;) = 0% < cc.
Thus, it is not hard to see that Z? = w>°,a*[[._,e .. Rewrite the model as
Zi = R(Zi_1,&1) = /(w+a?2Z? |)e;. According to Wu and Shao| (2004)), we have
the Lipschitz constant involved in the Lyapunov type condition ensuring the forward

_R(«' def
W < |agg|. Let 4 = E|agg| < 1 and assume

iteration contraction sup, .,
laeg| + | R(to, €0)| has finite gth moment. Then the process Z; has stationary solutions.
Moreover, || Z; — Z ||, < |pltlleo — €gllqs and thus A, , < |p|™. Given |u| < 1, then we

have [|Z]gc < supyzo(m + 1)*[u[™ < oo.

3. TAR (Threshold autoregressive model): Z, = 017, 11{Z; 1 < 7} + 6,7, 1\1{Z; 1 >
T} + &, where 0 and 60y are two parameters and &, are i.i.d. shocks. If 6 def
max{|0;|,|f2|} < 1 and &; has a finite a-th order moment, then the TAR model admits

a stationary solution with || Z.||qc < sup,,o(m + 1)°60™ < oo.

4. VAR (Vector autoregressive model): Without loss of generality we focus on VAR(1)
given by X; = AX;_| + &, where X;,¢; € IR?, and &; ~ i.i.d. N(0,X). If the spectral
radius of ATA, p(ATA) <1, then lim [[A[™ — 0, where ||-|| denotes the spectral norm
of a matrix. Rewrite the model as X; = >7;°, Ale,;. The existence of a stationary

solution can be checked by Kolmogorov’s three series theorem. For each equation j,

Xji — X5, = [Aj(e0 — €5), where [A"]; is the jth row of the matrix A" (E(]X;; —
X5t < A% lallle0 = egloclly: Suppose max|[[AT;l, 5 lal* (la] < 1). Then we
have max ||X;. [loc S (log /)" and [[|Xj |xllgc S (logJ)!/* as Eleilo S (log J)"2.
SYE

Similarly, suppose S, [}, < Jlal* (Ja] < 1). Then we have (S, [1X;. o) <
J(log J)Y/?4.

5. High-dimensional ARCH: Consider Y; € IR’ a high-dimensional ARCH(1) model
follows for example the general specification from Bollerslev et al.| (1988)) and Hansen
and Rahbek (1998): V; = H,'%¢,, and E(Y,Y, | F,_,) = H,, with &, ~ 1.i.d. N(0,L,). The
specification of the conditional covariance matrix H; = €2 + AYt_lYtLAT, where (2 is
positive definite and A is a J x J matrix. Studying the stationarity condition of the pro-
cess is not trivial. Define h, & vech(Hy), the selection matrix Dy (J%x J(J+1)/2) gives
vec(H;) = Djh; and its generalized inverse matrix D}L such that DjD 7= Ljsn)2
The vech notation of the iterations follows h; = vech(Q)+DF(A® A)D vech(Y; 1Y,,).
Define A & D¥(A ® A)D;, w % vech(). For simplicity we look at the pro-

cess h;, with the state space representation hy = w + G(hi—1,6,-1) = F(hi—1,61-1),

19



where F(hy_1,6i_1) = w + Avech({vech™ (hy_1)}?e,_1&; {vech ™ (h,_1)}~/?) with
vech(H;_1) = hy_1. The partial derivative matrix is A; = A(hy, &) = Ohyy1/0h] =
ADF(H}?eie] H7'* @ I,)D,, and EA, = A. Therefore, the spectral radius of AAT,
p(AAT) < 1 ensures a stationary solution to the process h;. Moreover, by solving the
state space iteration recursively, we have E |h; — h¥|y < 2E|Po(he)|; < |A{vech(X) +
w} + Avech(T)|; < {tr(AAT)M, where the projector operator P (hy) % E(he|F)) —
E(he|Fi_1) and & = EH; = Y2, AIQ(A) 7. Assume that {tr(AAT)} < Jl|c|', with
c| < 1, we have 3 [|h;.[|1c S J.

~Y

According to Hafner and Preminger| (2009), the iteration formulae are given by h; =
w(hy_y, e )+ T Ay, en)w (b ys e ) T AR, €k hi—m, where
w(h,e) = w+G(h*,€) — A(h,)h*, h* is the contraction state, and h¥_,’s lie on the line
segment between h* and h,_,. For ease of derivation, we assume a strong assumption
such that Esup;,  ||[A(hp,em)||? < s < 1forallm > 1and g > 2, where ||-|| denotes the
spectral norm of a matrix. Let h™ = {(h{,...,h )T : |h|o = 1,t = 1,... m}, it fol-
lows Esuppm [[IFL A(hn—pr1, Em—pr1)[|? < Ly Esupy, - [A(Rin—k41, Emeii) |7 <
s™. Hence, max; [y, [lgc S Co hfolloe S C(Emaxg Ry )9 (3 17y llo) " S
J(J+1)/2.

APPENDIX C: Additional Details for Empirical Analysis
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