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Abstract

IV regression in the context of a re-sampling is considered in the work. Comparatively, the contri-

bution in the development is a structural identification in the IV model. The work also contains a

multiplier-bootstrap justification.
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1 Introduction

In the work a non-parametric regression with instrumental variables is considered. A general frame-

work is introduced and identification of a target of inference is discussed. Furthermore, multiplier

bootstrap in a general form is considered and justified. Moreover, the procedure is used to test a

hypothesis on a target function.

2 Identification in non-parametric IV regression

2.1 iid model

Introduce independent identically distributed observations(
Yi, Xi, {W k

i }k=1,K

)
i=1,n

∈ Ω (2.1)

from a sample set

Ω
def
= IR⊗Q⊗ IR⊗K

on a probability space (Ω,F (Ω) , IP ). Let Q ⊂ IR be a compact and random variables are respectively

coming from Y1 ∈ IR, X1 ∈ Q and W k
1 ∈ IR.

Assume a system of K + 1 non-linear equations

IEW 1
1 (Y1 − f(X1)) = 0,

IEW 2
1 (Y1 − f(X1)) = 0,

...

IEWK
1 (Y1 − f(X1)) = 0,∫

Q f
2(x)dx = const.

(2.2)

A parametric relaxation of the system introduces a non-parametric bias. For an orthonormal functional

basis {ψj(x) : Q→ IR}j=1,∞ define

f̂(x)
def
=

J∑
j=1

ψj(x)θ∗j
def
= Ψ(x)Tθ∗ (2.3)

such that

θ∗j
def
=

∫
Q
f(x)ψj(x)dx.



Then a substitution f(x)→ f̂(x) transforms (2.2) and gives

IEW 1
1

(
Y1 − f̂(X1)

)
= δ1,

IEW 2
1

(
Y1 − f̂(X1)

)
= δ2,

...

IEWK
1

(
Y1 − f̂(X1)

)
= δK ,∫

Q f̂
2(x)dx = const,

(2.4)

with a bias

∀k > 0 δk
def
= IEW k

1

(
f(X1)− f̂(X1)

)
. (2.5)

Particular case of (2.4) under parametric assumption (δk = 0) and with a single instrument (K = 1)

is a popular choice of a model with instrumental variables ([1],[8]). The system is rewritten asIEW 1
1

(
Y1 − f̂(X1)

)
= 0,∫

Q f̂
2(x)dx = const,

⇒


η∗T1 θ = IEW 1

1 Y1,
J∑
j=1

θ2j = const
(2.6)

with the definition η∗T1
def
=
(
IEW 1

1ψ1(X1), IEW
1
1ψ2(X1), ..., IEW

1
1ψJ(X1)

)
.

Lemma 2.1. The statements are equivalent.

1. There exists and unique solution θ∗ to (2.6).

2. ∃!β > 0 such that θ∗ = βη∗1 is a solution of (2.6).

Proof. A solution to (2.6) can be represented as

θ∗ = αQ⊥η
∗
⊥ + βη∗1

for a fixed α, β and Q⊥η
∗
⊥ such that η∗T⊥ η

∗
1 = 0 and Q⊥ is a rotation of an orthogonal to η∗1 linear

subspace in IRJ . If the vector θ∗ is unique then α must be zero otherwise there exist infinitely many

distinct solutions (Q⊥η
∗
⊥ 6= Q′⊥η

∗
⊥ ). On the other hand for α = 0 the vector θ∗ is unique.

The second statement helps to obtain exact form of a solution to (2.6)

f̂(x) = β
J∑
j=1

ψj(x)η∗1j =
IEW 1

1 Y1
J∑
j=1

(
IEW 1

1ψj(X1)
)2

J∑
j=1

ψj(x)IEW 1
1ψj(X1). (2.7)

Hence, the correlation of instrumental variable W 1 with features X1 (note η∗1j = IEW 1
1ψj(X1)) identi-

fies f̂(x) (up to a scaling) making the choice of the variable W 1 a crucial task. An empirical relaxation



to (2.6) in the literature (see [1],[8]) closely resembles the following form{
Y 1 = ZTπβ + ε1,

Y 2 = ZTπ + ε2,
(2.8)

for Y 1,Y 2, ε1, ε2 ∈ IRn, Z ∈ IRJ×n, π ∈ IRJ , β ∈ IR and(
ε1,i
ε2,i

)
∼ N

(
0,

(
λ1 ρ

ρ λ2

))
or alternatively (lemma [2.1]){

IEW 1
1 Y1 = η∗T1 θ

∗,

‖η∗1‖2 = const
⇒

{
W 1

1,iY1,i = W 1
1,iΨ

T (X1,i)θ + ε1,i,

‖W1,iΨ(X1,i)‖2 = W 1
1,iΨ

T (X1,i)θ/β + ε2,i

corresponding to the latter system up to a notational convention

W 1
1,iY1,i

def
= Y 1,i, ‖W 1

1,iΨ(X1,i)‖2
def
= Y 2,i, W 1

1,iψj(X1,i)
def
= Zji and θ

def
= βπ.

The model was theoretically and numerically investigated in a number of papers (see [1],[8]) and in

the article (see ’Numerical’) is used as a numerical benchmark.

The lemma [2.1] is a special case example of a more general statement on identification in (2.4).

Lemma 2.2. The statements are equivalent.

1. There exists and unique solution f̂(x) to the system (2.4).

2. A solution to (2.4) is given by f̂(x) =
J∑
j=1

ψj(x)θidj where θid is a solution to an optimization

problem

θid = argmin
x∈IRJ

‖x‖2 s.t.


η∗T1 x = IEW 1

1 Y1 − δ1,
η∗T2 x = IEW 2

1 Y1 − δ2,
...,

η∗TK x = IEWK
1 Y1 − δK

(2.9)

with η∗Tk
def
=
(
IEW k

1 ψ1(X1), IEW
k
1 ψ2(X1), ..., IEW

k
1 ψJ(X1)

)
.

Proof. The model (2.4) turns into

IEW 1
1

(
Y1 − f̂(X1)

)
= δ1,

IEW 2
1

(
Y1 − f̂(X1)

)
= δ2,

...

IEWK
1

(
Y1 − f̂(X1)

)
= δK ,∫

Q f̂
2(x)dx = const,

⇒



η∗T1 θ = IEW 1
1 Y1 − δ1,

η∗T2 θ = IEW 2
1 Y1 − δ2,

...,

η∗TK θ = IEWK
1 Y1 − δK ,

J∑
j=1

θ2j = const.

(2.10)



A solution to (2.10) is an intersection of a J-sphere and a hyperplane IRJ−K . If it is unique the

hyperplane is a tangent linear subspace to the J-sphere and the optimization procedure (2.9) is solved

by definition of the intersection point. Conversely, if there exist a solution to the optimization problem

then it is guaranteed to be unique as a solution to a convex problem with linear constraints and by

definition f̂(x) satisfy (2.4).

An important identification corollary follows from the lemma [2.2].

Theorem 2.3 (Identifiability). Let f(x) ∈ H [Q] and instrumental variables {W k}k=1,K to be such

that

lim
J→∞

δk = 0,

then ∃! CI > 0 s.t. a functions on a ball

F def
= {‖f‖2L2[Q] = CI}

contain a single solution to (2.2).

Proof. In (2.4) identifiability is equivalent to
∫
Q f(x)Ψ(x)dx = θid with ‖θid‖ <∞ (lemma [2.2]) and

the approximation converges limJ→∞ f̂(x) = f(x) in complete metric space H [Q] to a solution of

IEW 1
1

(
Y1 − f̂(X1)

)
= δ1,

IEW 2
1

(
Y1 − f̂(X1)

)
= δ2,

...

IEWK
1

(
Y1 − f̂(X1)

)
= δK ,∫

Q f̂
2(x)dx = const,

⇒



IEW 1
1 (Y1 − f(X1)) = 0,

IEW 2
1 (Y1 − f(X1)) = 0,

...

IEWK
1 (Y1 − f(X1)) = 0,∫

Q f
2(x)dx = const.

Then it inherits the equivalence from the lemma [2.1] and the ball

F def
= {‖f‖2L2[Q] = CI}

with CI
def
= ‖θid‖2L2[Q] <∞, contains only a single solution.

Assume otherwise, there exists C 6= CI s.t. {‖f‖2L2[Q] = C} and {‖f‖2L2[Q] = CI} contain unique

solutions, then they must be distinct as {‖f‖2L2[Q] = C} ∩ {‖f‖2L2[Q] = CI} = ∅. Thus, by definition

solutions to a respective parametric relaxations of (2.2) are unique and distinct for any J > J0 greater

than some fixed J0 (δCk 6= δCJk )

IEW 1
1

(
Y1 − f̂(X1)

)
= δC1 ,

IEW 2
1

(
Y1 − f̂(X1)

)
= δC2 ,

...

IEWK
1

(
Y1 − f̂(X1)

)
= δCK ,∫

Q f̂
2(x)dx = C,

↔



IEW 1
1

(
Y1 − f̂(X1)

)
= δCI1 ,

IEW 2
1

(
Y1 − f̂(X1)

)
= δCI2 ,

...

IEWK
1

(
Y1 − f̂(X1)

)
= δCIK ,∫

Q f̂
2(x)dx = CI .



Alternatively the lemma [2.2] states that there exist two distinct solutions to the respective optimiza-

tion problem (2.9). However, in the limit J → ∞ - δCIk → 0 and δCk → 0 - optimization objectives

coincide contradicting the assumption.

Remark 2.1. One can trace in the lemma [2.1] as well as in the theorem [2.3] that a restriction in

L2 [Q] norm in (2.2) enables identifiability. Otherwise an Lq [Q] norm leads to an ill-posed problem.

2.2 non-iid model

Redefine (
Yi, Xi, {W k

i }k=1,K

)
i=1,n

∈ Ω = IR⊗Q⊗ IR⊗K (2.11)

on a probability space (Ω,F (Ω) , IP ). Let Q ⊂ IR be a compact, random variables from Yi ∈ IR,

Xi ∈ Q, W k
i ∈ IR and let the observations identify uniquely a solution to the system

∀i = 1, n



IEW 1
i

(
Yi − f̂(Xi)

)
= δ1,

IEW 2
i

(
Yi − f̂(Xi)

)
= δ2,

...

IEWK
i

(
Yi − f̂(Xi)

)
= δK ,∫

Q f̂
2(x)dx = CI .

⇒ ∀i = 1, n



η∗1,iη
∗T
1,iθ = η∗1,iZ

i
k

η∗2,iη
∗T
2,iθ = η∗2,iZ

i
k

...,

η∗K,iη
∗T
K,iθ = η∗K,iZ

i
k

J∑
j=1

θ2j = CI .

(2.12)

in the particular case with

η∗Tk,i
def
=
(
IEW k

i ψ1(Xi), IEW
k
i ψ2(Xi), ..., IEW

k
i ψJ(Xi)

)
and Zik

def
= W k

i Yi − δk.

Identification in non iid case complicates the fact that n is normally larger than J leading to possibly

different identifiability scenarios. Distinguish them based on a rank of a matrix

r
def
= rank

(
n∑
i=1

K∑
k=1

η∗k,iη
∗T
k,i

)
= rank

(
n∑
i=1

K∑
k=1

IEW k
i Ψ(Xi)IEΨ

T (Xi)W
k
i

)
. (2.13)

Note that the rank and, thus, a solution to [2.12] depends on a sample size n (K is assumed to

be fixed). However, there is no prior knowledge of what r corresponds to the identifiable function

f(x) ∈ H [Q]. Therefore, the discussion requires an agreement on the target of inference.

A way to reconcile uniqueness with the observed dependence is to require the function f(x) ∈ H [Q]

and r to be independent from n. The model (2.12) makes sense if it points consistently at a single

function independently from a number of observations. Define accordingly a target function.

Definition 2.4. Assume ∃N ≤ ∞ s.t. ∀n ≥ N the rank r = const, then call a function f̂(x) ∈ H [Q]

a target if it solves (2.12) ∀n ≥ N .

Remark 2.2. In the case of n < N a bias between a solution and the target n > N has to be

considered. However, in the subsequent text it is implicitly assumed that a sample size n > N .



Based on the convention [2.4] introduce a classification:

1. Complete model: ∀J > 0 ∃N ≤ ∞ s.t. ∀n > N the rank r = J .

2. Incomplete model: ∃J1 > 0 s.t ∀J > J1, n > 0 the rank r ≤ J1.

Identification in the ’incomplete’ model is equivalent to the iid case with the notational change for

the number of instruments K ↔ J1 and respective change of K equations with instruments to the

J1 equations from (2.12). Otherwise ’completeness’ of a model allows for a direct inversion of (2.12).

Generally a complete model is given without the restriction F def
= {‖f‖2L2[Q] = CI}

∀n > N : ∀i = 1, n



IEW 1
i

(
Yi − f̂(Xi)

)
= δ1,

IEW 2
i

(
Yi − f̂(Xi)

)
= δ2,

...

IEWK
i

(
Yi − f̂(Xi)

)
= δK .

(2.14)

In this case a natural objective function for an inference is a quasi log-likelihood

L(θ)
def
= −1

2

K∑
k=1

n∑
i=1

(
Zik − ηiTk θ

)2
(2.15)

again with

ηiTk
def
=
(
W k
i ψ1(Xi),W

k
i ψ2(Xi), ...,W

k
i ψJ(Xi)

)
and

Zik
def
= W k

i Yi − δk.

3 Testing a linear hypothesis: bootstrap log-likelihood ratio test

Introduce an empirical relaxation of the biased (2.4)

W 1
i Ψ

T (Xi)θ = W 1
i Yi − δ1 + ε1,i,

W 2
i Ψ

T (Xi)θ = W 2
i Yi − δ2 + ε2,i,

...

WK
i Ψ

T (Xi)θ = WK
i Yi − δK + εK,i,

‖θ‖2 = CI

(3.1)

with centered errors εk,i. Courtesy of the lemma [2.2], a natural objective function is a penalized quasi

log-likelihood

L(θ)
def
=

n∑
i=1

`i(θ)
def
= −1

2

K∑
k=1

n∑
i=1

(
Zik − ηiTk θ

)2 − λ‖θ‖2

2
(3.2)



with

ηiTk
def
=
(
W k
i ψ1(Xi),W

k
i ψ2(Xi), ...,W

k
i ψJ(Xi)

)
and Zik

def
= W k

i Yi − δk.

Maximum likelihood estimator (MLE) and its target are given

θ̃
def
= argmax

θ∈IRp
L (θ) and θ∗

def
= argmax

θ∈IRp
IEL (θ) .

For a fixed projector {Π ∈ IRJ×J : IRJ → IRJ1 , J1 ≤ J} introduce a linear hypothesis and define a

log-likelihood ratio test

H0 : θ∗ ∈ {Πθ = 0},

H1 : θ∗ ∈ {IRp \ {Πθ = 0}},

TLR
def
= sup

θ
L (θ)− sup

θ∈H0

L (θ) . (3.3)

The test weakly converges TLR → χ2
J1

to chi-square distribution (theorem 4.3) and it is convenient to

define a quantile as

zα : IP
(

(TLR − J) /
√
J < zα

)
≥ 1− α.

It implies that limJ→∞ zα = 1
2erf

−1(1− α) and that zα weakly depends on a dimension ∃C <∞ s.t.

∀J > 0, zα < C.

For a set of re-sampling multipliers

{ui ∼ N (1, 1)}i=1,n

define bootstrap L [(θ) conditional on the original data

L [(θ) =

n∑
i=1

`i(θ)ui
def
=

n∑
i=1

(
K∑
k=1

(
−
(
Zik − ηiTk θ

)2
2

− λ‖θ‖2

2nK

))
ui.

and corresponding bootstrap MLE (bMLE) and its target

θ̃
[ def

= argmax
θ∈IRp

L [ (θ) and θ̃
def
= argmax

θ∈IRp
IEL [ (θ) = argmax

θ∈IRp
L (θ) .

A centered hypothesis and a respective test are defined accordingly

H [
0 : θ̃ ∈ {Π(θ − θ̃) = 0},

TBLR
def
= sup

θ
L [ (θ)− sup

θ∈H [0

L [ (θ) . (3.4)

And analogously z [α : IP [
(

(TBLR − J) /
√
J < z [α

)
≥ 1 − α. The theorem [4.4] enables the same

convergence in growing dimension limJ→∞ z
[
α = 1

2erf
−1(1− α).

Under parametric assumption - ∀k > 0 the non-parametric bias is zero δk = 0 - the bootstrap

log-likelihood test is empirically attainable and the quantile z [α is computed explicitly. On the other



hand an unattainable quantile zα calibrates TLR. Between the two exists a direct correspondence. In

the section [??] it is demonstrated that z [α can be used instead of zα.

Multiplier bootstrap procdeure: (3.5)

• Sample {ui ∼ N (1, 1)}i=1,n computing z [α satisfying IP [
(

(TBLR − J) /
√
J < z [α

)
≥ 1− α

• Test H0 against H1 using the inequalities

H0 : TLR < J + z [α
√
J and H1 : TLR > J + z [α

√
J.

The idea is numerically validated in the section ’Numerical’. Its theoretical justification follows im-

mediately.

4 Finite sample theory

In a most general case neither an objective estimates consistently f(x) ∈ H [Q] nor a model (2.1) is

justified as a suitable for arbitrary L(θ). Moreover, a regression with instrumental variables adds an

additional concern, chosen instruments can be weakly identified (see section [7]) and an inference in

the problem might involve a separate testing on weakness complicating an original problem.

Finite sample approach (Spokoiny 2012 [9]) is an option to merry a structure of L(θ) with a

properties of a probability space (2.1) and automatically account for an unknown nature of instruments

in a regression problem.

Finite sample theory: (4.1)

• [Identifiability] σ2k
def
= IE

(
Zik − ηiTk θ

∗)2 <∞ and n
K∑
k=1

(
σ2k − 1

)
IEη1kη

1T
k < λ

• [Error/IV] ∀k an error Zik − ηiTk θ
∗ is independent from Zik and ηiTk

• [Design] supj ‖
K∑
k=1

D−10 η
i
k,j‖ ≤ 1/2 with D2

0 =

(
n

K∑
k=1

IEη1kη
1T
k

)
+ λI

• [Moments] ∃λ0, C0 <∞ s.t. IEeλ0εi ≤ C0 with εi
def
=

K∑
k=1

(
Zik − IEZik

)
• [Target] ∃N > 0 s.t. for a sample size ∀n ≥ N and any subset A of the size |A| ≥ N of the

index set {1, 2, 3..., n} the solution to
∑
i∈A
∇IE`i(θ) = 0 is unique.

Remark 4.1. The conditions validate the one from Spokoiny 2012 [9] p. 27 section 3.6 on penalized

generalized linear model with the link function g(v) : IR → IR in the considered case g(v)
def
= v2. As

for the condition ’Target’ see the discussion below.



4.1 Wilks expansion

The conditions (4.1) give a ground to statistical analysis of a quasi log-likelihood. An objective function

assumes concentration of an estimation θ̃ around the parameter θ∗. Thus, the log-likelihood behavior

dominantly depend on a local approximation in the vicinity of the target. Based on the conditions

(4.1) one can derive formally the Wilks expansion (Spokoiny 2012 [9]) for the quasi log-likelihood

L(θ).

Theorem 4.1. Suppose conditions (4.1) are fulfilled. Define a score vector

ξ
def
= (∆IEL(θ∗))−1/2∇L(θ∗).

then it holds with a universal constant C > 0∣∣∣∣√2L(θ̃,θ∗)− ‖ξ‖
∣∣∣∣ ≤ C (J + x) /

√
Kn

at least with the probability 1− 5e−x.

Bootstrap analogue of the Wilks expansion also follows. It was claimed in theorem B.4, section

B.2 in Spokoiny, Zhilova 2015 [11].

Theorem 4.2. Suppose conditions (4.1) are fulfilled. Define a bootstrap score vector

ξ [
def
= (∆IEL(θ∗))−1/2∇

(
L [(θ∗)− L(θ∗)

)
,

then it holds with a universal constant C > 0∣∣∣∣∣
√

2L [
(
θ̃
[
, θ̃
)
− ‖ξ [‖

∣∣∣∣∣ ≤ C (J + x) /
√
Kn

at least with the probability 1− 5e−x.

Moreover, the log-likelihood statistic follows the same local approximation in the context of hy-

pothesis testing and the TLR satisfies (see appendix - section (8.5)).

Theorem 4.3. Assume conditions (4.1) are satisfied then with a universal constant C > 0∣∣∣√2TLR − ‖ξs‖
∣∣∣ ≤ C (J + x) /

√
Kn

with probability ≥ 1− Ce−x. The score vector is defined respectively

ξs
def
= D

−1/2
0

(
∇ΠθL(θ∗)− (I −Π)∆IEL(θ∗)ΠT

(
(I −Π)∆IEL(θ∗) (I −Π)T

)−1
∇(I−Π)θL(θ∗)

)
,

and Fisher information matrix

D2
0

def
= −Π∆IEL(θ∗)ΠT+(I −Π)∆IEL(θ∗)ΠT

(
(I −Π)∆IEL(θ∗) (I −Π)T

)−1
Π∆IEL(θ∗) (I −Π)T .



Similar statement can be proven in the bootstrap world.

Theorem 4.4. Assume conditions (4.1) are fulfilled then with probability ≥ 1− Ce−x holds∣∣∣√2TBLR − ‖ξs[‖
∣∣∣ ≤ C (J + x) /

√
Kn,

with a universal constant C > 0, where a score vector is given

ξs[
def
= D

−1/2
0

(
∇ΠθL [(θ∗)− (I −Π)∆IEL(θ∗)ΠT

(
(I −Π)∆IEL(θ∗) (I −Π)T

)−1
∇(I−Π)θL

[(θ∗)

)
.

The theorem is effectively the same for L(θ) as the re-sampling procedure replicates sufficient for

the statement assumptions of a quasi log-likelihood (shown in section 8.3 Appendix).

4.2 Small Modelling Bias

In view of the re-sampling justification a separate discussion deserves a small modeling bias from

Spokoiny, Zhilova 2015 [11]. The condition appears from the general way to prove the re-sampling

procedure. Namely, for a small error term it is claimed

sup
t
|IP (TLR < t)− IP (TBLR < t)| ≤ error + ‖H−10 B2

0H
−1
0 ‖op

with the matrices

H2
0 =

n∑
i=1

IE∇`i(θ∗)∇T `i(θ∗) and B2
0 =

n∑
i=1

∇IE`i(θ∗)∇T IE`i(θ∗),

where the term ‖H−10 B2
0H
−1
0 ‖op is assumed to be of the error order essentially meaning that the

deterministic bias is small. However, the assumption

‖H−10 B2
0H
−1
0 ‖op ∼ error

appears in the current development only in the form of the condition ’Target’ in (4.1). The substitution

is possible due to the next lemma.

Theorem 4.5. Assume that the condition ’Target’ holds, then ‖H−10 B2
0H
−1
0 ‖op = 0.

Proof. By definition of a target of estimation

N∑
i=1

∇IE`i(θ∗0) = 0, and ∇IE`j(θ∗1) +

N∑
i=1

∇IE`i(θ∗1) = 0.

The condition ’Target’ implies that θ∗ = θ∗0 = θ∗1. Meaning, that any particular choice of the term

∇IE`j(θ∗) with the index j ∈ {1, 2, 3..., n} is also zero -
N∑
i=1
∇IE`i(θ∗0) =

N∑
i=1
∇IE`i(θ∗1). Thus, B2

0 = 0

and the statement follows.



5 Gaussian comparison and approximation

There are two results that constitute a basis for the re-sampling (3.5). The first - Gaussian comparison

- is taken from Götze, F. and Naumov, A. and Spokoiny, V. and Ulyanov, V. [4] and adapted to the

needs and notations in the work.

Theorem 5.1. Assume centered Gaussian vectors ξ0 ∼ N (0, Σ0) and ξ1 ∼ N (0, Σ1) then it holds

sup
t
|IP (‖ξ1‖ < t)− IP (‖ξ0‖ < t)| ≤ sup

j={0,1}
C
√
TrΣj‖I −Σ−10 Σ1‖op

with a universal constant C <∞, where ‖ · ‖op stands for the operator norm of a matrix.

The second - Gaussian approximation - has been developed in the appendix (section [8.7]).

Introduce the notations for the vectors

ξ1
def
=

n∑
i=1

ξ1,i, and ξ0
def
=

n∑
i=1

ξ0,i

such that

1. ξ1,i0 and ξ0,i1 are independent and sub-Gaussian

2. IEξ1ξ
T
1 = IEξ0ξ

T
0 = Σ.

Then a simplified version of the theorem [8.27] from the appendix holds.

Theorem 5.2. Assume the framework above, then

sup
t
|IP (‖ξ1‖ < t)− IP (‖ξ0‖ < t)| ≤ C (TrΣ)3/2√

n

with the universal constant C <∞.

Finally, the critical value zα and the empirical z [α are glued together by a matrix concentration

inequalities from the section (8.6).

The essence of the re-sampling is to translate the closeness of zα and z [α into the closeness of the

matrices IEξsξsT ∼ IEξs[ξ
sT
[ -with the help of the Wilks expansion (theorems [4.3,4.4]) and Gaussian

comparison result - and approximate unknown ξs, ξ
s
[ by the respective Gaussian counterparts. It all

amounts to the central theorem.

Theorem 5.3. The parametric model (2.4) in the introduction - δk = 0 - under the assumption (4.1)

enables ∣∣∣IP ((TLR − J) /
√
J > z [α

)
− α

∣∣∣ ≤ C0
J3/2

√
Kn

+ C1

√
J log J + x

Kn

with a dominating probability > 1− C2e
−x and universal constants C0, C1 <∞.

Remark 5.1. Note that the critical value z [α depends on experimental data at hand and is fixed when

the expectation is taken IE 1I
(

(TLR − J) /
√
J > z [α

)
with respect to the data generating TLR statistics.



6 Numerical: conditional and bootstrap log-likelihood ratio tests

Calibrate BLR test on a model from Andrews, Moreira and Stock [1]. In the paper the authors

proposed conditional likelihood ratio test (CLR - TCLR) used here as a benchmark. The simulated

model reads as

Y 1 = ZTπβ + ε1, (6.1)

Y 2 = ZTπ + ε2, (6.2)

where Y 1,Y 2, ε1, ε2 ∈ IRn, Z ∈ IRJ×n, π ∈ IRJ and β ∈ IR with a matrix Zi,j
def
= cos

(
2πij
n

)
, β∗ = 1

and π∗i ∼ i (see section 1). And the hypothesis

H0 : β∗ = β0 against H1 : β∗ 6= β0

on a value of a structural parameter β. For the hypothesis Moreira [8] and later Andrews, Moreira

and Stock [1] construct a CLR test based on the two vectors

S = (ZTZ)−
1
2ZTY b(bTΩb)−

1
2

and

T = (ZTZ)−
1
2ZTY a(aTΩ−1a)−

1
2

with the notations Y
def
= [Y 1,Y 2], a

T def
= (β0, 1) and bT

def
= (1,−β0). S and T are independent and

together present sufficient statistics for the model (6.1) with only T depending on instruments’ iden-

tification, thus conditioning on T and CLR test. Log-likelihood ratio statistics in (6.1) is represented

as (see Moreira 2003 [8]) -

TLR = STS − T TT +

√
(STS − T TT )2 + 4(STT )2.

Additionally Lagrange multiplier and Anderson-Rubin tests are given by

TLM =
(STT )2

T TT
,

TAR =
STS

J

The latter two are known to perform acceptably except for weakly identified case.

First, correctly specified model is generated for the sample of n = 200 and with weak instruments

(π∗TZZTπ∗ = C
n ). In this case powers of TBLR, TCLR and true TLR tests are drawn on the figure

(8.1). To be consistent TBLR is also compared to TLM and TAR. The comparison is given on the figure

(8.2) and the data in the case is aggregated in the table (1).

Moreover an important step is to check how robust TBLR to a misspecification of the model. Three

special examples are simulated:

1. ε1, ε2 ∼ Laplace(0, 1),



2. ε1i, ε2i ∼ N (0, 5inΩ),

3. ε1i, ε2i ∼ N (0, (2 + 1.5 sin(6πi/n))Ω).

Experiment (1) can be found on the figures (8.3), (8.4) and in the table (2). Numerical study of the

experiment (2) with misspecified heteroskedastic error is given on the figure (8.5) and collected in the

table (3). The last experiment is shown on the figure (8.6) and in the table (4).

Remark 6.1. All the figures and tables are collected in the end of the work.

7 Strength of instrumental variables

On practice one wants to distinguish instruments based on its strength. For the clarity of exposition

the section considers a simplified log-likelihood (2.15) identifying complete model with the Fisher

information matrix

D2
0 = −∆IEL(θ∗) =

n∑
i=1

K∑
k=1

IEη∗kiη
∗T
ki =

n∑
i=1

K∑
k=1

IEW k
i Ψ(Xi)Ψ

T (Xi)W
k
i .

Weak instrumental variables introduce an unavoidable lower bound on estimation error (lemma [7.1],

see the proof in the appendix (8.1)).

Lemma 7.1. Let conditions (4.1) hold then

∃N > 0, s.t. ∀n > N IE‖θ̃ − θ∗‖2 ≥ CJ

sup‖u‖=1

n∑
i=1

K∑
k=1

IE
(
uTΨ (Xi)W k

i

)2 ,
with a factor CJ > 0 depending on dimensionality J .

In view of a hypothesis testing it amounts to an indifference region of a test (see the section ’Numer-

ical’).

Classification of Instrumental Variables:

1. Weak instruments

sup
‖u‖=1

n∑
i=1

K∑
k=1

IE
(
uTΨ(Xi)W

k
i

)2
∼ K/C and IE‖θ̃ − θ∗‖2 ≥ CCJ

K

2. Semi-strong instruments with 0 < α < 1

sup
‖u‖=1

n∑
i=1

K∑
k=1

IE
(
uTΨ(Xi)W

k
i

)2
∼ Knα/C and IE‖θ̃ − θ∗‖2 ≥ CCJ

Kn1−α



3. Strong instruments

sup
‖u‖=1

n∑
i=1

K∑
k=1

IE
(
uTΨ(Xi)W

k
i

)2
∼ Kn/C and IE‖θ̃ − θ∗‖2 ≥ CCJ

Kn

Weak instruments effectively cancel an analysis based on a limiting distribution of a test statistics.

Therefore, an IV regression requires a treatment under the finite sample assumption.

8 Appendix

8.1 Classification of instrumental variables

Lemma 8.1. Let conditions (4.1) hold then

∃N > 0, s.t. ∀n > N IE‖θ̃ − θ∗‖2 ≥ CJ

sup‖u‖=1

n∑
i=1

K∑
k=1

IE
(
uTΨ (Xi)W k

i

)2 ,
with a factor CJ > 0 depending on dimensionality J .

Proof. Fisher expansion (Spokoiny [9]) on the set of dominating probability IP (Υ ) > 1 − Ce−x is

written as

‖D0

(
θ̃ − θ∗

)
− ξ‖ ≤ C(J + x)/

√
n.

with the matrix D2
0 =

n∑
i=1

K∑
k=1

IEW k
i Ψ(Xi)Ψ

T (Xi)W
k
i . Introduce also an inequality

‖ξ‖2 ≤
(
‖ξ −D0

(
θ̃ − θ∗

)
‖+ ‖D0

(
θ̃ − θ∗

)
‖
)2
≤ 2‖ξ −D0

(
θ̃ − θ∗

)
‖2 + 2‖D0

(
θ̃ − θ∗

)
‖2.

It gives

IE‖D0(θ̃ − θ∗)‖2 ≥ IEΥ ‖D0(θ̃ − θ∗)‖2 ≥
1

2
IEΥ ‖ξ‖2 − C(J + x)2/n

and the inquired statement follows with N > 0 s.t. infN{12IEΥ ‖ξ‖
2−C(J+x)2/N > 0} and a constant

CJ
def
= 1

2IEΥ ‖ξ‖
2 − C(J + x)2/N .

8.2 Non-parametric bias

The bias term - bJ
def
= ‖θ̂ − θ∗‖ - between parametric and non-parametric functions from the model

in chapter 2 is quantified in the lemma.

Lemma 8.2. Assume that basis functions ψj follow -

ψ
(s)
j ≤ j

sψj



with some positive constant s3. Let f(x) be s.t. f ∈ Ss where

Ss def
= {f : ||Dsg|| ≤ Cf},

with the notation Ds(·) def
= ∂s

∂x(·). Then the bias satisfies

bJ = ‖θ̂ − θ∗‖ ≤ CfJ−s.

Proof :

Straightforwardly using smoothness of functions from a Sobolev class it can be argued for s <∞ that

-

Js‖θ̂
∗
− θ∗‖ = Js‖

∑
j

θ∗jψj −
∑
j≤J

θ∗jψj‖ ≤ ‖
∑
j

θ∗j j
sψj‖ ≤ ‖Dsf‖ ≤ Cf

and the result follows.

End of Proof

8.3 Re-sampled quasi log-likelihood

A basis for the statistical investigation of a re-sampled log-likelihood builds on the probabilistic equiv-

alence with an original quasi log-likelihood. In the section one also uses notations from Spokoiny 2012

[9].

An analogue to (ED0) condition for re-sampled log-likelihood - will be referred to as (EDB0) -

readily follows from normality of re-sampling weights {ui}i=1,n.

Lemma 8.3. Suppose that conditions (4.1) are justified, then there exist a positive symmetric matrix

V0 and constants ν0 ≥ 1 and g ≥ 0 such that Var (∇ζ(θ∗)) ≤ V 2
0 and

∀‖γ‖ = 1 log IE [ exp

(
λ
γT∇ζ [(θ∗)
‖V0γ‖

)
≤ ν20λ

2

2
, |λ| ≤ g

with probability ≥ 1− e−x.

Proof. Define a vector

si
def
=
∇`i(θ∗)
‖V0γ‖

,

then using normality of re-sampling weights ui rewrite

log IE [ exp

(
λ
γT∇ζ [(θ∗)
‖V0γ‖

)
= log IE [ exp

(
λ

‖V0γ‖

(
γT

n∑
i=1

∇`(Yi,θ∗)(ui − 1)

))
=

= log IE [ exp

(
n∑
i=1

λγTsi(ui − 1)

)
≤ ν20λ

2

2

n∑
i=1

(
γTsi

)2 ≤ ν ′20 λ
2

2
,



where ν ′0
def
=
√
ν20 + Cδ for some positive constant C > 0 and small δ. The last inequality is derived

using
n∑
i=1

(
γTsi

)2 ≤ 1 +Cδ from definition of V0 and matrix concentration inequality (thm [8.20]).

Re-sampling analogue to the condition (ED2) (Spokoiny 2012 [9]) also follows.

Lemma 8.4. Let conditions (4.1) hold true then there exist a positive value ω1(r)
def
=

√
4ν20ω

2x+
2C2

δ (r)

n

and for each r ≥ 0, a constant g(r) ≥ 0 such that it holds for any v ∈ Υ (r)

log IE [ exp

(
λ

ω1(r)

γT1∇2ζ [(θ∗)γ2

‖D0γ1‖ ‖D0γ2‖

)
≤ ν20λ

2

2
, |λ| ≤ g(r).

Proof. Here it is convenient to reformulate conditions (L) and (ED2). Bound on deterministic co-

variance structure can be rewritten as

‖D−10 (D2(θ)−D2
0)D

−1
0 ‖ = ‖D−10 (−

n∑
i=1

∇2IE`(Yi,θ)−D2
0)D

−1
0 ‖ =

= ‖
n∑
i=1

(D−10 ∇
2IE`(Yi,θ)D−10 +

Ip
n

)‖ = n‖D−10 ∇
2IE`(Yi,θ)D−10 +

Ip
n
‖ ≤ δ(r),

and it follows

‖D−10 ∇
2IE`(Yi,θ)D−10 ‖ ≤

Cδ(r)

n
.

Next, rewrite (ED2) mostly in the same fashion, so that it is capable to quantify D−10 ∇2ζi(θ)D−10 .

It follows

log IE exp{λ
ω

γT1 ∇2ζ(θ)γ2
‖D0γ1‖ ‖D0γ2‖

} = log IE exp{λ
ω

n∑
i=1

γT1 ∇2ζi(θ)γ2
‖D0γ1‖ ‖D0γ2‖

} =

= n log IE exp{λ
ω

γT1 ∇2ζi(θ)γ2
‖D0γ1‖ ‖D0γ2‖

},

where ζi(v) = `(Yi,θ) − IE`(Yi,θ). This means that component-wise (ED2) condition holds true,

namely that

sup
γ1,γ2∈IRp

log IE exp{λ
ω

γT1 ∇2ζi(θ)γ2
‖D0γ1‖ ‖D0γ2‖

} ≤ ν20λ
2

2n
, |λ| ≤ g(r).

The two constitute the substance of the proof. Define complementary variables si
def
=

γT1 ∇2`(Yi,θ)γ2
‖D0γ1‖ ‖D0γ2‖

and rewrite

log IE [ exp{ λ

ω1(r)

γT1 ∇2ζ [(θ)γ2
‖D0γ1‖ ‖D0γ2‖

} = log IE [ exp{
n∑
i=1

λ

ω1(r)
si(ui − 1)} ≤ ν20λ

2

2ω2
1(r)

n∑
i=1

s2i .

To claim the statement it is sufficient to limit sum
n∑
i=1

s2i . Once again rewrite this sum using mentioned

above (L) -
n∑
i=1

s2i =

n∑
i=1

(
γT1 ∇2ζi(θ)γ2
‖D0γ1‖ ‖D0γ2‖

+
γT1 ∇2IE`(Yi,θ)γ2
‖D0γ1‖ ‖D0γ2‖

)2

≤



≤ 2
n∑
i=1

(
γT1 ∇2ζi(v)γ2
‖D0γ1‖ ‖D0γ2‖

)2

+ 2
n∑
i=1

(
γT1 ∇2IE`(Yi,θ)γ2
‖D0γ1‖ ‖D0γ2‖

)2

≤

≤ 2
n∑
i=1

(
γT1 ∇2ζi(θ)γ2
‖D0γ1‖ ‖D0γ2‖

)2

+
2C2

δ (r)

n

The left term in the sum is bounded under (ED2) and Markov exponential inequality

IP

(
γT1 ∇2ζi(θ)γ2
‖D0γ1‖ ‖D0γ2‖

≤ t
)
≤ IE exp{ λ′γT1 ∇2ζi(θ)γ2

ω‖D0γ1‖ ‖D0γ2‖
− λ′t

ω
} ≤

≤ exp{ν
2
0λ
′2

2n
− λ′t

ω
} ≤ exp{− t2n

2ν20ω
2
},

and

IP

(
γT1 ∇2ζi(θ)γ2
‖D0γ1‖ ‖D0γ2‖

≤ ν0ω
√

2x

n

)
≤ e−x.

Therefore it holds
n∑
i=1

s2i ≤ 4ν20ω
2x+

2C2
δ (r)

n
,

and now we can see that controlling ω1(r) in the way -

ω1(r)
def
=

√
4ν20ω

2x+
2C2

δ (r)

n
,

justifies inquired in the theorem inequality.

The lemma in turn helps to bound a stochastic part of re-sampled log-likelihood. The demonstrated

equivalence allows to translate statements for log-likelihood into the re-sampled counterpart.

A result requiring only (ED0) is the deviation bound on ‖ξ‖ (Spokoiny Zhilova 2013 [10]). In the

work of Spokoiny [9] it has been proven.

Theorem 8.5. Let (ED0) is fulfilled, then for g ≥
√

2tr(D−10 V 2
0D

−1
0 ), where V 2

0 ≥ Var∇ζ(θ∗) it

holds:

IP (‖ξ‖2 ≥ z2(x,D−10 V 2
0D

−1
0 )) ≤ 2e−x + 8.4e−xc ,

for function z2(x,D−10 V 2
0D

−1
0 ) and small positive constant xc (thm 8.6).

Let us claim the same for ‖ξ [‖ using the lemma [8.3].

Theorem 8.6. Let (EDB0) is fulfilled, then for g ≥
√

1 + Cδ
g

√
2tr(D−10 V 2

0D
−1
0 ), where V 2

0 ≥
Var{∇ζ(θ∗)} it holds with dominating probability:

IP [(‖ξ [‖2 ≥ z2(x,D−10 V 2
0D

−1
0 )) ≤ 2e−x + 8.4e−xc1 ,

for function z2(x,D−10 V 2
0D

−1
0 ) and small positive constant xc1, specified below.



The function z(x,X), where x ∈ IR and X ∈ IRp×p, is given by the following formula

z2(x,X)
def
=


tr(X2) +

√
8tr(X4)x, x ≤

√
2tr(X4)

18λmax(X2)

tr(X2) + 6xλmax(X2),

√
2tr(X4)

18λmax(X2)
≤ x ≤ xc

|zc + 2(x− xc)/gc|2λmax(X2), x ≥ xc,

where in tern numerical constants xc, zc, gc are defined as follows

2xc
def
= 2z2c/3 + log det(Ip − 2X2/3λmax(X2))

z2c
def
= (9g2/4− 3tr(X2)/2)/λmax(X2)

gc
def
=
√
g2 − 2tr(X2)/3/

√
λmax(X2).

This technical result is used extensively for the proof of squared-root Wilks result.

Another key result is that (ED2) condition justifies a bound on stochastic part of log-likelihood

function. The fact formally is stated in the next theorem.

Theorem 8.7. Let (ED2) and (I) hold then ∀v ∈ IRp following inequality is fulfilled

‖D−10 ∇ζ(θ,θ∗)‖ ≤ 6ν0ωZ(x)r.

Also ∀θ1,θ2 ∈ IRp holds

‖D−10 ∇ζ(θ1,θ2)‖ ≤ 12ν0ωZ(x)r,

where Z(x) is defined as

Z(x)
def
=


H1 +

√
2x+ g−1(g−2x+ 1)H2,

√
H2 + 2x, if H2 + 2x ≤ g2,

g−1x+ 1
2(g−1H2 + g), if H2 + 2x ≥ g2.

Here H2 = 4p and H1 = 2p
1
2 ; see theorem A.15 in [9].

Let us provide a proof of that statement.

Proof. Consider quantity ‖D−10 ∇ζ(θ,θ∗)‖ and rewrite it as ‖D−10 ∇2ζ(θ′)D0D
−1
0 (θ − θ∗)‖, then

introducing vector Y (s)
def
= D−10 ∇ζ(θ,θ∗), where s

def
= D0(θ − θ∗) we can see that ∇sY (s) =

D−10 ∇2ζ(θ′)D−10 and from (ED2) , which holds for ∇sY (s), we have for stochastic process Y (s)

by an argument from Spokoiny [9]

sup
θ∈Υ (r0)

‖D−10 ∇ζ(θ,θ∗)‖ ≤ 6ν0Z(x)ωr,

which is generally drawn from empirical processes theory. Furthermore, one can use triangle inequality

to generalize result

‖D−10 ∇ζ(θ1,θ2)‖ ≤ ‖D−10 ∇ζ(θ1,θ
∗)‖+ ‖D−10 ∇ζ(θ2,θ

∗)‖ ≤ 12ν0Z(x)ωr,

and finalize the proof.



Once again it is obviously translated using (EDB2), justified by the lemma 8.4. Therefore, formally

one comes at the theorem.

Theorem 8.8. Let (EDB2) hold true then ∀θ ∈ IRp following inequality is fulfilled

‖D−10 ∇ζ
[(θ,θ∗)‖ ≤ 6ν0ω1(r)Z(x)r,

and ∀θ1,θ2 ∈ IRp also holds

‖D−10 ∇ζ
[(θ1,θ2)‖ ≤ 12ν0ω1(r)Z(x)r.

8.4 Concentration of MLE and bMLE

This is technical part of the paper and thus the full version of theorems without unnecessary simpli-

fications is presented. An important result in the section ?? is formulated by the theorem below.

Theorem 8.9. Let conditions (L0), (L), (ED0), (ED2), (I), ((EB) ), (SMB) and (IB) hold true,

then for r0 such that following inequalities are fulfilled simultaneously
b(r)r ≥ 2z(x,B) ∨ 4

√
tr(

n∑
i=1

IEξiξ
T
i ) + 24ν0ωZ(x+ log 2r

r0
),

b(r)r ≥ 3z(x,B) + 12ν0Z(x+ log 2r
r0

)(ω + ω1(r)),

where B
def
= D−10 Var{∇L(v∗)}D−10 following inequalities are fulfilled

1. IP (θ̃ /∈ Υ (r0)) ≤ C1e
−x,

2. IP ∗(θ̃
[
/∈ Υ (r0)) ≤ C2e

−x.

Up to constants and quantities smaller than
√

p
n the concentration radii follows r0 ∼

√
p+ x

We will utilize uniform version of local deviation bound on stochastic processes ∇ζ(θ) and ∇ζ [(θ)

from theorems 8.7 and 8.8 and also bounds on ‖ξ‖ outlined in previous section to prove this result.

Proof. Let us list the key facts needed in the proof in an informal fashion to get an idea of the

background required.

1. (L) condition to bound deterministic part of log-likelihood function

−2IEL(v,v∗) ≥ b(r)r2

2. Uniform bound on stochastic processes ∇ζ(v) and ∇ζ [(v)

|ζ(v,v∗)− (v − v∗)∇ζ(v∗)| ≤ ρ(x, r)r

|ζ [(v,v∗)− (v − v∗)∇ζ [(v∗)| ≤ ρ1(x, r)r



3. Deviation bound on ‖ξ‖ and ‖ξ [‖
‖ξ‖ ≥ z(x,B)

‖ξ [‖ ≥ z(x,B)

These are sufficient to prove results number one and two in the theorem. Let us divide the proof in

parts accordingly to the results provided in the statement.

1.Real world concentration of MLE

Notice that an inequality L(θ̃,θ∗) ≥ 0 always hold and thus by definition binds MLE θ̃ structurally

to θ∗. So, if one justifies that there exist minimum r0 such that for r ≥ r0 the property breaks than

one can claim that θ̃ concentrates within Υ (r0). Therefore, one need to have a uniform bound on

log-likelihood function. Spokoiny [9] has proven that with dominating probability -

|ζ(θ,θ∗)− (θ − θ∗)ζ(θ∗)| ≤ ρ(x, r)r,

where ρ(x, r)
def
= 6ν0Z(x+ log 2r

r0
)ω. Local analogue of which is to be proved in the next section. Then

using theorem (8.5) and condition (L) it is possible to see that r0 satisfies

b(r)r ≥ 2z(x,B) + 2ρ(x, r),

then L(θ,θ∗) is most probably (≥ 1− 3e−x) less then zero.

2.Bootstrap world concentration of bMLE

Interestingly in the bootstrap world one needs to extend the set where θ̃
[

concentrates. However,

the key idea of the proof remains.

By definition  L [(ṽ [,v∗[) is positive. A uniform bound on ζ [(θ,θ∗) over IRp \ Υ (r0) translates as

|ζ [(θ, θ̃)− (θ − θ̃)∇ζ [(θ̃)| ≤ ρ1(x, r)r,

where ρ1(x, r)
def
= 6ν0Z(x+ log 2r

r0
)ω1(r). Rewriting it one has

| L [(θ, θ̃)− L(θ,θ∗)− L(θ̃,θ∗)− (θ − θ̃)∇ζ [(θ̃)| ≤ ρ1(x, r)r,

and the deviation bound on ‖ξ [‖, from theorem 8.6, and part one of the proof enable with probability

≥ 1− 3e−x an inequality

|L(θ,θ∗)| ≤ ρ(r, x)r + rz(x,B)− r2b(r)

2
.

And  L [(θ̃
[
, θ̃) is negative for r [0 satisfying inequality

b(r)r ≥ 12ν0Z(x+ log
2r

r0
)(ω + ω1(r)) + 3z(x,B).



8.5 Square root Wilks expansion

Theorem 8.10. Let conditions (4.1) to be fulfilled, then with probability ≥ 1− Ce−x holds∣∣∣√2TLR − ‖ξs‖
∣∣∣ ≤ 7♦(r0, x),

where ♦(r, x) is given by

♦(r, x)
def
= (δ(r) + 6ν0ωZ(x))r.

Proof. Compared to the body of the work redefine

v ↔ θ, θ → Πv, η ↔ (I −Π)v

In the proof one relies on local linear approximation of the quasi log-likelihood following with domi-

nating probability from bound on stochastic component (theorem 8.7) and (L0). For a quadratic form

of parameters v′ and v′1: L(v′,v′1) = (v′ − v′1)T∇L(v′1) −
‖D′0(v′−v′1)‖2

2 introduce residual on the set

Υ (r0)

α(v′1,v
′
2) = L(v′1,v

′
2)− L(v′1,v

′
2).

Then from the inequality

‖D′−10 ∇IEL(v′,v′,∗) +D′0(v
′ − v′,∗)‖ ≤ δ(r0)r0,

directly following from (L0)and theorem 8.7 one concludes for v′ ∈ Υ (r0)

‖D′−10 ∇α(v′,v′,∗)‖ ≤ ♦(r0, x),

with the notation ♦(r) = (δ(r) + 6ν0Z(x)ω)r. Triangle inequality for v′1,v
′
2 ∈ Υ (r0) gives

‖D′−10 ∇α(v′1,v
′
2)‖ ≤ 2♦(r0, x).

and it is evident that

|
√

2L(v′1,v
′
2)−

√
−2L(v′1,v

′
2)|
√
−2L(v′1,v

′
2) ≤ 4‖D0(v

′
1 − v′2)‖♦(r0, x),

fro points v′1,v
′
2 such that L(v′1,v

′
2) ≥ 0. Moving forward consider transformation matrices

K
def
=

(
1 −D−1θ Dθ,η

−D−1η Dη,θ 1

)
and

K1
def
=

(
1 −Dθ,ηD

−1
η

Dη,θD
−1
θ 1

)
,

then it can be seen that

D̂
def
=

(
D̂0 0

0 D̂1

)
= D′0K,



and furthermore

D′−10 = KD̂
−1

= D̂
−1
K1.

The transformation helps to get rid of non-diagonal entries of matrix D′0 and shape the form of the

score ξs.

Using proven above inequality under the alternative one has∣∣∣√2TLR − ‖D̂(ṽ′′ − v′′1) + b‖
∣∣∣ ≤ 4♦(r0, x),

where ṽ′′ and v′′1 are such that v′
def
= Kv′′. The fact that norm of truncated score vector is less then

norm of full vector and local expansion for D−10 ∇α yields

‖D̂0

(
θ̃
′′
− θ′′1
0

)
‖ ≤ 2♦(r0, x),

and

‖D̂0

(
0

η̃′′ − η′′1

)
− ξH‖ ≤ ♦(r0, x).

Combining these three suffice the announced statement.

In the bootstrap world an almost complete analogue of the theorem is attainable. It is evident

that it takes place since we show that exactly similar conditions as in real world are replicated in the

bootstrap world.

Theorem 8.11. Let conditions (4.1) hold then with probability ≥ 1− Ce−x∣∣∣√2TBLR − ‖ξs[‖
∣∣∣ ≤ 7♦ [(r0, x),

where ♦ [(r, x) is given by

♦ [(r, x)
def
= ♦(r, x) + 6ν0ω1(r)Z(x)r.

Let us specify the proof of this fact.

Proof :

The underlying in the previous proof result - local linear approximation of a gradient - is sufficient.

We are aiming thus at establishing -

‖D−10 ∇α
[(v,v∗)‖ ≤ ♦ [(r0, x).

It is easy to note that

‖D−10 ∇α
[(v,v∗)‖ ≤ ‖D−10 ∇ζ

[(v,v∗)‖+ ‖D−10 ∇α(v,v∗)‖ ≤ 6ν0ω1(r)rZ(x) +♦(r, x),

which follows from the theorem 8.6 and the previous proof. Therefore, for bootstrap world square root

Wilks result is true with the same notations and with a minor change for b [ ≡ 0 since the hypothesis

is exact and ♦ → ♦ [.
End of Proof



8.6 Matrix Inequalities

In the section concentration of the operator norm of a random matrix -

‖S‖∞
def
= sup
||u||=1,u∈IRp

|uTSu|,

with an additive structure S
def
=

n∑
i=1

Si is considered.

The derivations generally follow techniques from Joel Tropp 2012 [13], supported by analysis of

operator functions from works Hansen, Pedersen [5], Effors 2008 [3] and Tropp [12]. The exposition is

self-contained and the chapter contains required prerequisites for the final result.

The main ingredient in the subsequent theory is concavity of the operator function

A→ tr{exp(H + logA)}

with respect to ordering on a positive-definite cone with H being fixed self-adjoint operator. This

fact can be found in the paper by Lieb 1973 [7]. This chapter, however, follows mostly more direct

argument of Joel Tropp 2012 [12] exploiting joint convexity of relative entropy function.

Theorem 8.12. (Lieb, 1973) For the fixed self-adjoint matrix H function

A→ tr{exp(H + logA)}

is concave with respect to positive-definite cone.

8.6.1 Concavity theorem of Leib

The proof of corollary from Leib’s concavity theorem (theorem 8.12) requires several supporting lem-

mas. Generalization of the Jensen inequality for operator functions is important, however the core

constructive point in the proof is operator convexity of entropy function. The observation allows to

infer that relative entropy as a perspective of entropy is jointly convex. In view of the fact subsequent

text contains slightly abused notation for relative entropy so that it equals exactly to the perspective.

Lemma 8.13. (Lowner-Heinz) Define operator function (Entropy) - φe(X)
def
= X logX and define

(relative entropy) - φe(X,Y )
def
= X logX −X log Y . Where X ∈ IRp×p lie in Hilbert space of positive

definite operators H++
p . Then

1. φe(X) - operator convex. Namely for any positive definite X1, X2 and λ ∈ (0, 1)

φe(λX1 + (1− λ)X2) ≤ λφe(X1) + (1− λ)φe(X2)

2. φe(X,Y ) - jointly operator convex. For any positive definite X1, Y1, X2, Y2 and λ ∈ (0, 1) holds

φe(λX1 + (1− λ)Y1, λX2 + (1− λ)Y2) ≤ λφe(X1, Y1) + (1− λ)φe(X2, Y2)



Generalization of the lemma can be found under the name - Lowner-Heinz theorem. Below is an

adopted proof of the required statement.

Proof :

Let us demonstrate that inverse function f : IR++ → IR++ s.t. f(t) = t−1 is operator convex function.

It is evident from definition for any invertible matrix A ∈ IRp×p that

λA
−1

i = 1/λAi , i = 1, p

where λAi is i-th eigenvalue of matrix A. And, therefore, also

λ
(I+A)−1

i = 1/λI+Ai = 1/(1 +
1

λA−1 ), i = 1, p

which will be useful next. Also it is worth notion that in view of continuity only middle point convexity

needs to be shown for function f(t) = t−1 being convex.

Therefore, convexity is implied by the inequality

1

2
X−11 +

1

2
X−12 −

(
X1 +X2

2

)−1
� 0

with respect to positive definite cone. Using the fact that matrix C
def
= X

−1/2
1 X2X

−1/2
1 � 0 is positive

definite helps to rearrange terms to get -

1

2
I +

1

2
C−1 −

(
I + C

2

)−1
� 0.

Multiplying from both sides left hand side of inequality with unit vectors from orthogonal basis of

eigenvectors matrix C and using relations for eigenvalues above the matrix inequality is reduced to

the p inequalities on real line

1 + λC
−1

i

2
−

 2

1 + 1

λC
−1

i

 ≥ 0, i = 1, p

which obviously hold representing difference between arithmetic and harmonic means. Therefore

f(t) = t−1 is operator convex.

Next step is to demonstrate that entropy function can be represented as a weighted sum of functions

t−1. For that purpose introduce an integral representation of power of a matrix X. It can be seen

that

Xp = cp

∫ ∞
0

tp(
1

t
− 1

t+X
)dt,

for p ∈ (0, 1) and cp is a constant depending only on p. Also multiplying by X we get

Xp = cp

∫ ∞
0

tp−1(
X

t
+

1

t+X
− I)dt,



which now converges in the interval p ∈ (1, 2). And adding here

X logX
def
= lim

p→1

Xp −X
p− 1

,

is sufficient to see that entropy is operator convex function. It follows a representation which is convex

as a sum with positive coefficients of a convex functions.

Now it is left to demonstrate that relative entropy as was defined φe(X,Y ) = X logX − X log Y is

jointly convex function. Joint convexity can be seen via Hansen-Pedersen inequality [5] and relative

entropy being perspective of φe(X) -

φe(X,Y ) = φe(XY
−1)Y.

Hansen-Pedersen inequality states

φe(A
TX1A+BTX2B) ≤ ATφe(X1)A+BTφe(X2)B

for A,B s.t. ATA+BTB = I. Then for X = λX1 + (1−λ)X2 and Y = λY1 + (1−λ)Y2 and matrices

A = λ1/2Y −1/2Y
1/2
1 and B = (1− λ)1/2Y −1/2Y

1/2
2 we receive

φe(X,Y ) = φe(A
T X1

Y1
A+BT X2

Y2
B)Y ≤ ATφe(

X1

Y1
)AY+BTφe(

X2

Y2
)BY ≤ λφe(X1, Y2)+(1−λ)φe(X2, Y2),

which ends the proof.

End of Proof

Following article by Tropp 2012 [12] let us rely on geometric properties of φe(X). Quantifying the

approach let us use Bregman operator divergence for entropy function and try to built its affine

approximation which is in turn by lemma 8.13 gives inequality

Dφe(X,Y )
def
= φe(X)− φe(Y )− (∇φ(Y ), X − Y ) ≥ 0.

Above Bregman divergence was defined - Dφe(X,Y ), and it is easy to see that Dφe(X,Y ) = 0 iff

X = Y . Therefore,the following lemma can be concluded.

Lemma 8.14. (Variational Formula for Trace) Let Y be a positive definite matrix, then

trY = sup
X>0

tr(X log Y −X logX +X)

Informally argument is presented above and one can skip the rigorous formal proof below.

Proof :

Obviously from Dφe(X,Y ) ≥ 0 follows inequality for trace of trDφe(X,Y ) ≥ 0. Therefore,

trY ≥ tr(X log Y −X logX +X).

But equality holds iff X = Y , then we conclude the statement of the lemma.

End of Proof

Operator concavity also helps to derive the following lemma.



Lemma 8.15. Function supX>0 g(X,Y ) is concave if g(X,Y ) is jointly concave.

Proof :

First, suggest existence of X1, X2 and Y1, Y2 s.t. they provide a partial maximum to function g(X,Y ).

Namely define them as

X1, Y1 : sup
X
g(X,Y1) = g(X1, Y1),

X2, Y2 : sup
X
g(X,Y2) = g(X2, Y2).

Then observe that the set of inequalities hold

sup
X
g(X,λY1 + (1− λ)Y2) ≤ g(λX1 + (1− λ)X2, λY1 + (1− λ)Y2) ≤

≤ λg(X1, Y1) + (1− λ)g(X2, Y2) = λ sup
X
g(X,Y1) + (1− λ) sup

X
g(X,Y2)

where joint operator convexity of g was used along with the definition of points (X1, Y1) and (X2, Y2).

End of Proof

Now we are in position to provide the proof of the theorem 8.12 of Lieb, 1973.

Proof :

(Theorem 8.12).

Let us start with variational formula from Lemma 8.14 for trace function saying

trY = sup
X>0

tr(−φ(X,Y ) +X).

Also from Lemma 8.13 we know that φ(X,Y ) is jointly convex and, therefore the trace of it is also

jointly convex and, thus, supremum of the trace function is convex according to Lemma 8.15. Now to

demonstrate final result it suffice to substitute Y with matrix exp{H + logA} in variational formula

for trace giving

tr exp{H + logA} = supX>0tr{−φ(X,A)−XH +X}

and finally providing the advertised statement.

End of Proof

8.6.2 Master Bound

Compared to the use of Golden-Thompson inequality

tr exp{X + Y } ≤ tr exp{X} exp{Y },



suitable for iid case one can follow theorem 8.12 and improve upper bounds on tail distribution of

operator norm of the random matrix. This improvement is inherent to the study of independent but

not identically distributed random variables.

Obvious corollary from theorem 8.12 can be useful further applications.

Corollary 8.16. For any probability measure IP and set of independent random matrices {Si, i = 1, n}
holds

IEtr exp{
n∑
i=1

Si} ≤ tr exp{
n∑
i=1

log IEi expSi}

Proof :

Product structure of probability measure composed from independent marginal parts - IP
def
=
∏n
i=1 IP

i

allows to write

IEtr exp{
n∑
i=1

Si} = IE1IE2...IEntr exp{
n−1∑
i=1

Si + log expSi}.

Using theorem 8.12 helps to arrive at

IE1IE2...IEntr exp{
n−1∑
i=1

Si + log expSi} ≤ IE1IE2...IEn−1tr exp{
n−1∑
i=1

Si + log IEn expSi}.

Iterating n-times the inequality accounting for the independence of {Si} finally relates

IEtr exp{
n∑
i=1

Si} ≤ tr exp{
n∑
i=1

log IEi expSi}

End of Proof

This result can be easily combined with Markov exponential inequality to receive a bound on operator

norm’s tail probability.

Theorem 8.17. (Master Bound) Suppose {Si ∈ IRp×p, i = 1, n} are independent and let us denote

S =
n∑
i=1

Si. Then following bound hold

IP (‖S‖∞ ≥ t) ≤ 2 inf
θ>0

e−θttr exp(
n∑
i=1

log IEi exp θSi),

for θ > 0 and ‖S‖∞ = sup‖u‖2=1 |uTSu|.

Proof :

The theorem follows directly from corollary 8.16 and Markov exponential inequality. Write

IP (‖S‖∞ ≥ z) = IP (λmax(S) ∨ λmax(−S)) ≤



≤ IP (λmax(S)) + IP (λmax(−S)).

It will be evident from the subsequent derivation that it is enough to control one of the probabilities.

Also the spectral mapping theorem allows to state ∀i

exp{θλmax(S)} = λmax exp{θS}

and combined with a trivial inequality λmax exp{S} ≤ tr exp{S} gives

IP (λmax(S) ≥ t) = IP (exp{θλmax(S)} ≥ exp{θt}) = IP (λmax exp{θ(S)} ≥ exp{θt}) ≤

≤ IP (tr exp{θ(S)} ≥ exp{θt}) ≤ e−θtIEtr exp{θS}.

Now, applying corollary 8.16 to the sum S =
∑
i
Si of independent matrices we achieve desired result

IP (||S||∞ ≥ t) ≤ 2 inf
θ>0

e−θtIEtr exp{θS} ≤ 2 inf
θ>0

e−θttr{exp(

n∑
i=1

log IEi exp θSi)}.

End of Proof

The subject of next two chapters - where we derive Bernstein inequality for two types of conditions

on matrices Si - is to bound exponential moment of each independent matrix Si, amounting to the

bound on
n∑
i=1

log IEi exp(θSi).

8.6.3 Bernstein inequality for uniformly bounded matrices.

The matrix version of Bernstein type inequality requires supporting lemma for uniformly bounded

matrices Si in a sense that ‖Si‖∞ ≤ R for some positive and universal constant R.

Lemma 8.18. Suppose that random matrices Si for i = 1, n are such that for some positive number

R we can found ‖Si‖∞ ≤ R then it holdslog IEi exp{θSi} ≤ IEiS2
i ψ2(θR)/R2 if ∀θ > 0,

log IEi exp{θSi} ≤
θ2IEiS

2
i

2(1−Rθ
3
)

if 0 < θ < 3
R ,

where we denote by ψ2(u)
def
= eu

2 − 1.

Proof :

The proof is classic and relies on the following series of inequalities. Let us decompose the expectation

of exponent

IEi exp{θSi} = IEi

[
Ip + θSi + θ2S2

i

(
Ip
2!

+
θSi
3!

+
θ2S2

i

4!
+ ...

)]
≤



≤ IEi
[
Ip + θSi + θ2S2

i

(
1

2!
+
θ‖Si‖∞

3!
+
θ2‖Si‖2∞

4!
+ ...

)]
≤

≤ Ip + θ2IEiS
2
i

[
exp{θ‖Si‖∞} − 1− θ‖Si‖∞

θ2‖Si‖2∞

]
.

To proceed further it is suffice to denote that function -
[
exp{u}−1−u

u2

]
- is non-decreasing in its argument

and, therefore, last inequality can be substituted with a bound - Ip + IEiS
2
i

[
exp{θR}−1−θR

R2

]
. Making

also contribution here from inequalities ex − x ≤ ex2 and 1 + x ≤ ex we arrive at

IEi exp{θSi} ≤ Ip + IEiS
2
i

ψ2(θR)

R2
≤ exp{ψ2(θR)IEiS

2
i

R2
}.

This concludes the first part of our statement. However, it is useful sometimes to have more convenient

expression to work with. In the fashion of sub-exponential random variables it is nice to derive result

with leading term proportional to θ2 in the right hand side of inequalities. This can be easily seen if

we estimate series -
(

1
2! + θR

3! + θ2R2

4! + ...
)

- using inequality k! ≥ 23k−2. Explicitly we have for θ ≤ 3
R(

1

2!
+
θR

3!
+
θ2R2

4!
+ ...

)
≤ 1

2

( ∞∑
k=2

(θR)k−2

3k−2

)
=

1

2(1− θR/3)
,

finally justifying the second part of the lemma

IEi exp{θSi} ≤ Ip + θ2IEiS
2
i

(
1

2!
+
θ‖Si‖∞

3!
+
θ2‖Si‖2∞

4!
+ ...

)
≤

≤ Ip +
θ2IEiS

2
i

2(1− θR/3)
≤ exp

θ2IEiS
2
i

2(1− θR/3)
.

End of Proof

Matrix Bernstein inequality is easy step now to accomplish. All essential tools to provide concentration

bound for the norm of random matrix was derived above. In essence one have to have two facts - first

is the lemma 8.18 and second is master bound from previous section (theorem 8.17). Those two are

sufficient to justify Bernstein inequality for matrices.

Theorem 8.19. Suppose that random matrix S =
n∑
i=1

Si is s.t ∀i there exist positive number R

bounding above ‖Si‖∞ ≤ R. Also denote σ2
def
= ‖

n∑
i=1

IEiS
2
i ‖∞ and ψ2(u) = eu

2 − 1 then it holds for

θopt
def
=

4σ2ψ2(θoptR)
R2t

IP (‖S‖∞ ≥ t) ≤ 2p exp{−4σ2ψ2(θoptR)

R2
} = 2p exp{−θoptt},



which incurs

a. for t < 4ψ2(R)σ2

R2

def
= t2max

IP (‖S‖∞ ≥ t) ≤ 2p exp{− R2t2

4ψ2(R)σ2
} = 2p exp{−(t/tmax)2},

b.Bernstein inequality

IP (‖S‖∞ ≥ t) ≤ 2p exp{− t2

2σ2(1 +Rt/3σ2)
}

Proof :

Straightforwardly apply master bound and lemma 8.18 to get -

IP (‖S‖∞ ≥ t) ≤ 2 inf
θ>0

e−θttr exp(

n∑
i=1

log IEi exp θSi) ≤ 2 inf
θ>0

e−θttr exp

(
n∑
i=1

IEiS
2
i ψ2(θR)/R2

)
≤

≤ 2p inf
θ>0

exp
(
−θt+ σ2ψ2(θR)/R2

)
.

Analogously for the second case in lemma 8.18 for 0 < θ < 3
R

IP (‖S‖∞ ≥ t) ≤ 2p inf
θ>0

exp

(
−θt+

θ2σ2

2(1− θR/3)

)
.

And the most unwieldy thing here is to optimize over θ. Let us first deal with upper inequality above,

namely we try to choose θ in a way to receive almost Gaussian like type of behavior for tails. For that

we introduce α
def
= θ

t −
ψ2(θR)σ2

t2R2 . It is evident that if lover bound on infθ>0 α(θ) is established then an

upper-bound on right hand side of the first inequality will follow

exp
(
−θt+ σ2ψ2(θR)/R2

)
= exp{−αt2} ≤ exp{− inf

θ>0
α(θ)t2}.

To proceed we rearrange alpha in the following way

α = −

(√
σ2ψ2(θR)

θ2R2

θ

t
−

√
θ2R2

4σ2ψ2(θR)

)2

+
θ2R2

4σ2ψ2(θR)
,

and now choose θopt
def
=

4σ2ψ2(θoptR)
R2t

to approximate optimal α. Then we have α(θopt) =
4σ2ψ2(θoptR)

R2t2

and finally tail behavior -

IP (‖S‖∞ ≥ t) ≤ 2p exp{−4σ2ψ2(θoptR)

R2
} = 2p exp{−θoptt}.

Now we can analyze in more details the last formula. For example, in the case θopt < 1 it is easily

seen that ψ2(θoptR) < θ2optψ2(R) and, therefore, θopt >
R2t

4ψ2(R)σ2 , which in view of ψ2(θoptR) ≥ θ2optR
2

recovers Gaussian tail behavior

IP (‖S‖∞ ≥ t) ≤ 2p exp{− R2t2

2ψ2(R)σ2
}.



This is useful illustration that if R→ 0 then obviously one gets more Gaussian like tail behavior

Also Bernstein inequality can be recovered in a classical form. Following below statements are

usually can be seen as an argument to the proof of Bernstein like inequality and were used previously

in the proof of lemma 8.18. In words using Taylor decomposition with inequality k! ≥ 23k−2 yield

estimate for all 0 < θ < 3
R

ψ2(θoptR) ≤
θ2optR

2

2(1− 2θoptR/3)
.

Once again from definition of optimal point we can see that θopt ≥ t(1−2θoptR/3)
2σ2 and θopt ≥ t

2σ2(1+Rt/3σ2)
.

It can be easily verified for new point θ1opt
def
= t

2σ2(1+Rt/3σ2)
that θ1optR < 3 and, therefore, we receive

identical to classical Bernstein result

IP (‖S‖∞ ≥ t) ≤ 2p exp{− t2

2σ2(1 + tR/3σ2)
}.

This finalizes the proof of the theorem. It is left to establish only Bernstein type inequality in a

conventional way. For that purpose let us use the second part of lemma 8.18 which yields inequality

IP (‖S‖∞ ≥ t) ≤ 2p inf
θ>0

exp

(
−θt+

θ2σ2

2(1− θR/3)

)
.

Instead of optimization choosing θ = t
σ2(1+ tR

3σ2
)

we arrive at

IP (‖S‖∞ ≥ t) ≤ 2p exp

(
− t2

2σ2(1 + tR
3σ2 )

)

and finalize the second part of the theorem.

End of Proof

8.6.4 Bernstein ineqaulity for sub-gaussian matrices

To develop the theory in the section let us explore a bound analogous to the previous, however,

requiring only sub-Gaussian tail behavior of a norm of the random matrix S =
n∑
i=1

Si. Analogous

result can be found in the work by Koltchinskii [6].

Define for convex function ψα(u)
def
= eu

α − 1 (see van der Vaart and Wellner [14]) and operator

norm ‖Si‖op a moment

‖Si‖ψα∞
def
= IEi exp{‖Si‖αop} − 1.

If we bound this distance we will get Gaussian like behavior for tails and thus can complement our

earlier discussion with more soft bound for the tail probability. I essence we can state



Theorem 8.20. Suppose that random matrix S =
n∑
i=1

Si ∈ IRp×p is s.t ∀i there exist two positive

numbers Cn > θ and Cp > 0 for which

‖θSi‖ψ1
∞ ≤ Cp.

And choose R and δ to satisfy

δψ2(3)ψ1(3)

R3
=

1

σ2

n∑
i=1

‖6Si/R‖ψ1
∞ .

Then Bernstein matrix inequality holds again

IP (‖S‖op ≥ t) ≤ 2p exp{− t2

2σ2(1 + δ)(1 +Rt/3σ2)
},

where σ2
def
= ‖

∑
i
IEiS

2
i ‖op.

Proof :

Let us start with the bound for exponential moments analogous to the ones in lemma 8.18. One can

see for some positive constant R

IEi exp{θSi} ≤ Ip +
IEiS

2
i ψ2(θR)

R2
+ IEiS

2
i

ψ1(θ‖Si‖∞)

‖Si‖2∞
1(‖Si‖∞ > R).

The derivation remains the same as in the theorem 8.19 if the term is bounded

IEiS
2
i

ψ1(θ‖Si‖∞)

‖Si‖2∞
1(‖Si‖∞ > R)

with the goal to establish R as small as possible such that it further sharpens bound on the quadratic

term above according to the results from theorem 8.19. However, it is also important to keep reminder

term with indicator small or at least proportional to the quadratic one, which naturally requires larger

values of R. Resolving this trade off one comes at an optimal value R.

Proceed with substitution of indicator function with smooth approximation

1(‖Si‖∞ > R) ≤ ψ1(θ‖Si‖∞)R

ψ1(θR)‖Si‖∞
,

where it was used that ψ1(u)/u is non-decreasing function. Thus, it leads to

IEiS
2
i

ψ1(θ‖Si‖∞)

‖Si‖2∞
1(‖Si‖∞ > R) ≤ IEiS2

i

ψ2
1(θ‖Si‖∞)R

ψ1(θR)‖Si‖3∞
≤

≤ R

ψ1(θR)
IEi

ψ2
1(θ‖Si‖∞)

‖Si‖∞
Ip



And to be consistent sum over i of these terms needs to resemble quadratic one in the inequality above

δψ2(θR)ψ1(θR)

R3
=

1

‖
n∑
i=1

IEiS2
i ‖op

n∑
i=1

IEi
ψ2
1(θ‖Si‖∞)

‖Si‖∞
.

Observe here that the function to the left is increasing and for sufficiently large values of R and

sufficiently small δ equality can be always satisfied. However, one additionally need to bound right

hand side to demonstrate that such an R exists. It can be done by following rough estimate for

θ < Cn/2

IEi
ψ2
1(θ‖Si‖∞)

‖Si‖∞
≤ IEiψ1(2θ‖Si‖∞) ≤ Cp.

Although it is rough it provides enough evidence to justify existence of R. As to what value it equals

exactly needs to be addressed implicitly via equality above. Since solution exists one can establish

n∑
i=1

log IEi exp{θSi} ≤ (1 + δ)

‖
n∑
i=1

IEiS
2
i ‖ψ2(θR)

R2

and the first result follows from theorem 8.19.

Let us dwell here finally on the constants R and δ. From the proof of theorem 8.19 we have θR∗ < 3.

Then the definition of R above helps tp built an upper estimate R′ on it given by

δψ2(3)ψ1(3)

R′3
=

1

σ2

n∑
i=1

IEiψ1(6‖Si‖∞/R′).

and finalize the proof of theorem.

End of Proof

Apply this result to specific case when matrices Si are built based on sub-exponential random vectors

xi ∈ IRp, for which we know that

IEi exp(γxi) ≤ exp{||γ||22/2n},

holds for any i = 1, n and γ ∈ IRp. Namely, define matrix Si as

Si
def
= xix

T
i − IEixixTi .

we can draw from definition following inequality

||Si||∞ ≤ ||xi||22 + ||IEixixTi ||∞.

In view of this note one can establish next corollary.



Corollary 8.21. For matrices Si
def
= xix

T
i − IEixix

T
i , vectors xi, for which exponential moment

condition above holds with n > 2, the constants from theorem 8.20 are

R =
12p

n

and there exist 0 < α < 0.012 such that

δ ≤ α p3

n2σ2

Proof :

For this technical proof one need to upper bound θSi. And then applying definition of R and δ from

theorem 8.20 leads to the result. Notice that

‖θSi‖ψ1
∞

def
= IEi exp{θ‖Si‖∞} − 1 ≤ eθ‖IEixixTi ‖∞IEi exp{θ‖xi‖22} − 1.

The expectation on right hand side of inequality can be explicitly calculated using exponential moment

condition for xi. It is evident that such an integral converges for θ < n/2 and explicit calculation then

gives

IEi exp{θ‖xi‖22} =
1

p
√

2π
IEi

∫
IRp

exp{
√

2θxiγ −
‖γ‖2

2
}dγ ≤

≤ 1
p
√

2π

∫
IRp

exp{(2θ/n)‖γ‖2

2
− ‖γ‖

2

2
}dγ

which easily gives us

IEi exp{θ‖xi‖22} ≤ (1− 2θ/n)−p/2.

and adapting it to θSi yields

‖θSi‖ψ1
∞ ≤ eθ‖IEixix

T
i ‖∞(1− 2θ/n)−p/2 − 1.

Now choose R = 12p/n. Knowing that θR < 3 we can check that here 2θ < n/2 as required for a

norm to be finite. And using theorem 8.20 δ is given by the formula

δ =
(12p)3

ψ2(3)ψ1(3)n3σ2

n∑
i=1

‖nSi/2p‖ψ1 ≤

≤
(12p)3(en‖IEixix

T
i ‖∞/4p+1/2

√
p/(p− 1)− 1)

ψ2(3)ψ1(3)n2σ2
=

= 0.012
p3(en‖IEixix

T
i ‖∞/4p+1/2

√
p/(p− 1)− 1)

n2σ2
.

If we further note ‖IEixixTi ‖∞ ≤ C/n, then using assumption on n the order of δ is shown to be

δ ≤ α p3

n3σ2
∼ p2

n2



for a positive constant satisfying α < 0.012.

End of Proof

This example of an empirical covariance matrix demonstrates sharp - in view of small parameter p3

n -

bounds on constants R and δ, however not optimal ones.

8.7 Gaussian approximation

8.7.1 Smooth representation of Kolmogorov distance.

Introduce a smooth indicator function

f(x) = 1I(x > 0)− 1

2
sign(x)e−|x|

and define a regular difference

gα(t)
def
= IEf

(
α‖x0‖2 − αt

)
− IEf

(
α‖x1‖2 − αt

)
.

One aims at studying the limiting object

g∞(t)
def
= IE 1I

(
‖x0‖2 − t

)
− IE 1I

(
‖x1‖2 − t

)
= IP (‖x0‖ < t)− IP (‖x1‖ < t)

the difference between multivariate probabilities. The smoothing function on the other hand allows

for a structural characterization of the relation between gα and g∞.

Lemma 8.22. Assume that gα(t) has smooth second derivative. Then it satisfies an ODE

gα(t) = gα(t) +
g′′α(t)

α2
.

Moreover, an ordering holds

∀α > 0 sup
t
|gα(t)| ≤ sup

t
|gα(t)| .

Proof. The kernel function f admits an ODE representation

Lx
(
f(α‖x‖2 − αt)

)
= Lx

(
1I
(
‖x‖2 > t

))
+

1

α2

(
Lx
(
f(α‖x‖2 − αt)

))′′
t

with a linear integral operator Lx (·) and an inequality

sup
t

∣∣Lx (f(α‖x‖2 − αt)
)∣∣ ≤ sup

t

∣∣Lx (1I (‖x‖2 > t
))∣∣

follows from the characterization of extreme points - second derivative in maximum is negative and

positive in minimum. The same applies for the difference gα(t).



A natural candidate for the investigation of an underlying structure of the problem is Fourier

analysis as the ODE in the lemma [8.22] resembles an oscillator with a complex α. Thus, define a

spectrum of gα(t) and g∞(t) as follows

G∞(ω) = F (g∞(t)) =

∫ ∞
−∞

g∞(t)e−iωtdt

Gα(ω) = F (gα(t)) =

∫ ∞
−∞

gα(t)e−iωtdt

respectively and with the convention for ω being a frequency scaled by 2π. Additionally we analytically

extend the spectra on ω ∈ C which is the derivation crucial in the inversion step and we elaborate on

that later (see lemma 8.23).

Easy to notice that in the Fourier world the connection between G∞(ω) and Gα(ω) is straightfor-

ward and given by

Gα(ω) = G∞(ω)− ω2

α2
Gα(ω)

which yields

Gα(ω) =
α2G∞(ω)

(α− iω)(α+ iω)
. (8.1)

The central observation for further analysis is that α can be taken as a complex number α ∈ C in the

ODE leaving equation 8.1 intact.

Introduce supplementary clockwise oriented contours S(r),−iS(r) in complex plane.

Im(z)

Re(z)

-r

r

−iS(r)

Im(z)

Re(z)
-rr

S(r)

One option to find the closed-form connection between Gα(ω) and G∞(ω) independent from α is to

integrate Gα(ω) over α ∈ −iS(r). The step gains an additional smoothness as we will see below. After



inspecting the poles of Gα(ω) on the picture

Im(α)

Re(α)

-r

r

−iω
.

iω
.

−iS(r)

it is obvious in view of the Cauchy’s residue theorem to conclude for the convolution

1

iπ

∫
−iS(r0)

(−α)k−1Gα(ω)dα = (8.2)

=
1

iπ

∫
−iS(r0)

(−α)k+1G∞(ω)

(α+ iω)(α− iω)
dα =


(iω)kG∞(ω) ω ∈ S(r0),

(−iω)kG∞(ω) −ω ∈ S(r0),

0 else.

where we also multiplied the spectrum by additional (−α)k−1 to generalize and expand on the idea

later (see corollary 8.26).

The formula 8.2 gives clear explanation how initial function g∞(t) can be regularized through

the gα(t). The answer above suggests that convolution of our ’kernels’ gα(t) is equivalent to the

differentiation. For now the connection is settled in the Fourier world and one need to translate the

result back into the initial objects. For the purpose let us rewrite the Fourier inversion formula as an

integration in a complex plane.

Lemma 8.23. Assume continuous p.d.f. of ‖x0‖2 and ‖x1‖2, then the functions gα(t) and g∞(t) can

be represented as

gα(t) =
1

2π

∫
S(r0)

Gα(ω)eiωtdω

and

g∞(t) =
1

2π

∫
S(r0)

G∞(ω)eiωtdω

for t > 0 and r0 s.t. S(r0) covers all the poles of a spectrum G∞(ω).

Proof. Let us compute explicitly G∞(ω) to proceed -

G∞(ω) =

∫ ∞
−∞

g∞(t)e−iωtdt = IE [F (1I(x0 ∈ Bt))−F (1I(x1 ∈ Bt))]



=
IEe−iω‖x0‖2 − IEe−iω‖x1‖2

i
√

2πω
+

√
π

2
IEe−iω‖x0‖2δ(ω)− IEe−iω‖x1‖2δ(ω)

=
IEe−iω‖x0‖2 − IEe−iω‖ξ1‖2

iω
√

2π
.

On the other hand the contour S(r) can be seen as a sum of the real-line and semicircle parts -

S(r) = [−r, r] ∪Arc(r) - where the latter conforms the limit

lim
r→∞

∫
Arc(r)

G∞(ω)eiωtdω ≤ lim
r→∞

πr sup
ω∈Arc(r)

|G∞(ω)| ≤

≤ lim
r→∞

sup
ω∈Arc(r)

∣∣∣IEe−iω‖x0‖2 − IEe−iω‖x1‖2
∣∣∣ = 0.

Therefore, the inverse is given as an integral over S(∞)

g∞(t)
def
=

1

2π

∫ ∞
−∞

G∞(ω)eiωtdω +
1

2π

∫
Arc(∞)

G∞(ω)eiωtdω

=
1

2π

∫
S(∞)

G∞(ω)eiωtdω.

Defining now the critical points of G∞(ω), Gα(ω) as {ωj=1,n} and {ωj=1,n,−iα, iα} respectively (see

the equation 8.1) we see that by the assumption of the lemma they are covered by the S(r0).

Im(ω)

Re(ω)
-r r

S(r0)

..

. ωj−1..

. ωj.

. ωj+1

.

.

Therefore, the Cauchy’s residue theorem puts the equivalence

g∞(t) =
1

2π

∫
S(∞)

G∞(ω)eiωtdω =
1

2π

∫
S(r0)

G∞(ω)eiωtdω

and completes the argument.

Remark 8.1. Note that in the proof above we conclude from positiveness of ‖x0‖2, ‖x1‖2 that all the

poles but for the iα lie above the real line.



With these two facts - the inversion above and convolution over α - one comes to the concluding

step of the section. From the α perspective the pole structure of the G∞(ω) looks like it is drawn on

the picture below.

Im(α)

Re(α)

-r0

r0

....... .
−iωj

. .

−iS(r0)

Where by the definition of r0 the convolution over α preserves the pole structure of g∞(t). Thus,

the inversion from the lemma [8.23] allows to relate explicitly the function g∞(t) and a part of the

equation 8.2 where ω ∈ S(r0). Merging the two one can state the theorem.

Theorem 8.24. Assume k-continuous c.d.f. of ‖x0‖2 and ‖x1‖2, then it holds

g(k)∞ (t) = (−1)k2i

∫
−iS(r0)

αk−1gα(t)dα.

for r0 s.t. S(r0) covers all the poles of the spectrum G∞(ω).

Proof :

Justified by the lemma [8.23] and using the equation [8.2] integrate over α∫
−iS(r0)

(−α)k−1gα(t)dα
L 8.23

=
1

2π

∫
−iS(r0)

(−α)k−1
∫
S(r0)

Gα(ω)eiωtdωdα

=
1

2π

∫
S(r0)

iπ (iω)kG∞(ω)eiωtdω =
i

2

(∫
S(r0)

G∞(ω)eiωtdω

)(k)

t

L 8.23
= −g

(k)
∞ (t)

2i
.

The answer concludes the proof.

End of Proof

The theorem in turn amounts to the corollaries.

Corollary 8.25. Introduce a function

hα(x, t) = max{‖x‖2 − t, 0}+
1

2α
e−α|‖x‖2−t|

and an integral operator

A (·) def
= 2i

∫
−iS(r0)

IE (·) dα,



then under assumptions in the theorem [8.24] we have for k = 1

IP
(
‖x0‖2 < t

)
− IP

(
‖x1‖2 < t

)
= A (hα(x1, t)− hα(x0, t)) .

Corollary 8.26. Introduce a function

hα(x1,x0, t) =

∫ t

0

[
f(α‖x1‖2 − αx)− f(α‖x0‖2 − αx)

]
dx

and an integral operator

B (·) def
= 2i

∫
−iS(r0)

IE (·)αdα,

then under assumptions in the theorem [8.24] we have for densities of ‖x1‖2 and ‖x0‖2

ρ‖x1‖2(t)− ρ‖x0‖2(t) = Bhα(x1,x0, t).

In essence the theorem 8.24 and corollary 8.25 allow for the direct application of a simple Taylor

expansion to the function hα. Namely the statements claim that one can differentiate under the

operator A. It is a subject of the next chapter to explore the use case of Gaussian approximation.

8.7.2 GAR on Euclidean balls.

The road-map of the following application case of the section above is to use purely Taylor decompo-

sition up to the third term. Aside from the fact the proof is technical and presents no specific interest

except for the outcome, which is comparable to the work of Betnkus 2005 [2].

Classic Lindenberg construction entails the following framework -

• Define vectors ξ1
def
=

n∑
i=1
ξ1,i and ξ2

def
=

n∑
i=1
ξ2,i s.t.

1. ξ1,i and ξ2,i are independent mutually and over i = 1, n

2. IEξ1,iξ
T
1,i = IEξ2,iξ

T
2,i = Σ/n

• and design the chain vector

ξ/i
def
=

i−1∑
j=0

ξ1,j +
n+1∑
j=i+1

ξ2,j

with a convention ξ1,0 = ξ2,n+1 = 0.

With the introduced notations one claims.

Theorem 8.27. Assume continuous measures and the framework above, then it holds

sup
t
|IP (‖ξ1‖ < t)− IP (‖ξ2‖ < t)| ≤ CIP (TrΣ)3/2

r40√
n



with the universal constant

CIP
def
= 48 sup

i=1,n,‖γ‖2=1

[
IEi

∣∣∣γT ξ/i + γTa
∣∣∣3 +

1

r0
IE/i

∣∣∣γT ξ/i + γTa
∣∣∣]

and a distribution dependent only vector a.

Proof :

Let us start the proof forming a chain

g∞(t) =

n∑
i=1

IEig
i
∞(t) =

=

n∑
i=1

IEi

[
IP/i

(
‖ξ/i + ξ1,i‖2 > t

)
− IP/i

(
‖ξ/i + ξ2,i‖2 > t

)]
,

where the latter chaining sum is called the Lindenberg device. The main objective of the device is to

exploit independence of ξ/i, ξ1,i and ξ2,i amounting to the cancellation of first and second terms in

Taylor expansion.

However to exploit Taylor decomposition we first define smooth counterpart of the Lindenberg

summand gi∞(t) as per the corollary 8.25

hiα(ξ1,i, ξ2,i, t)
def
= IE/i

[∫ t

0
f
(
α‖ξ/i + ξ1,i‖2 − αx

)
dx−

∫ t

0
f
(
α‖ξ/i + ξ2,i‖2 − αx

)
dx

]
.

From the theorem 8.24, the contour integral over |α| < r0 recovers the limiting difference

IP
(
‖ξ/i + ξ1,i‖2 > t

)
− IP

(
‖ξ/i + ξ2,i‖2 > t

)
= Ahiα(ξ1,i, ξ2,i, t)

= 2i

∫
iS(r0)

IEih
i
α(ξ1,i, ξ2,i, t)dα

for some fixed positive constant r0. On the other hand assuming continuous pdf the function

fα(x, t)
def
= IE/i

∫ t

0
f
(
α‖ξ/i + x‖2 − αx

)
dx

is tree times continuously differentiable with respect to x and admits Taylor expansion up to the third

term.

Computing derivatives one has

• ∂fα(0,t)
∂x = 2αIE/if

(
α‖ξ/i‖2 − αt

)
ξ/i

• ∂2fα(0,t)
∂x∂x = 4α2IE/if

′
(
α‖ξ/i‖2 − αt

)
ξ/iξ

T
/i + 2αIE/if

(
α‖ξ/i‖2 − αt

)
Ip



• ∂3fα(a,t)
∂x∂x∂x = 8α3IE/if

′′
(
α‖ξ/i + a‖2 − αt

)(
ξ/i + a

)
⊗
(
ξ/i + a

)
⊗
(
ξ/i + a

)
+8α2IE/if

′
(
α‖ξ/i + a‖2 − αt

)(
ξ/i + a

)
⊗ Ip

and, therefore, we obtain for the zero, first and second order approximation of the difference IEi
[
fα(ξ1,i, t)− fα(ξ2,i, t)

]
• IEi [fα(0, t)− fα(0, t)] = 0

• IEi
[
∂T fα(0,t)
∂ξ1,i

ξ1,i −
∂T fα(0,t)
∂ξ2,i

ξ2,i

]
= 0

• IEi
[
ξT1,i

∂2fα(0,t)
∂ξ1,i∂ξ1,i

ξ1,i − ξT2,i
∂2fα(0,t)
∂ξ2,i∂ξ2,i

ξ2,i

]
= 0

by the designed independence of the ξ/i, ξ1,i and ξ2,i.

The Taylor expansion of IEih
i
α(ξ1,i, ξ2,i, t) then reads as

IEih
i
α(ξ1,i, ξ2,i, t) =

1

6
IEi

[
∂3fα(ai, t)

∂ξ1,i∂ξ1,i∂ξ1,i
· ξ1,i ⊗ ξ1,i ⊗ ξ1,i −

∂3fα(bi, t)

∂ξ2,i∂ξ2,i∂ξ2,i
· ξ2,i ⊗ ξ2,i ⊗ ξ2,i

]
for some vectors ai, bi depending implicitly on ξ1,i and ξ2,i respectively. The difference is obviously

bounded by

IEih
i
α(ξ1,i, ξ2,i, t) ≤

1

6
IEi

∣∣∣∣∂3fα(ai, t)

∂ξi∂ξi∂ξi

∣∣∣∣ ‖ξ1,i‖3 +
1

6
IEi

∣∣∣∣∣∂3fα(bi, t)

∂ξ̃i∂ξ̃i∂ξ̃i

∣∣∣∣∣ ‖ξ2,i‖3
and it holds

IEih
i
α(ξ1,i, ξ2,i, t) ≤

1

6
sup
‖γ‖2=1

∣∣∣∣∂3fα(a∗, t)

∂ξi∂ξi∂ξi
γ ⊗ γ ⊗ γ

∣∣∣∣ IEi‖ξ1,i‖3+1

6
sup
‖γ‖2=1

∣∣∣∣∣∂3fα(b∗, t)

∂ξ̃i∂ξ̃i∂ξ̃i
γ ⊗ γ ⊗ γ

∣∣∣∣∣ IEi‖ξ2,i‖3
for some constant vectors a∗, b∗. But additionally we know for a fixed a∣∣∣∣∂3fα(a, t)

∂x∂x∂x

∣∣∣∣ =
∣∣∣4α3IE/if

′′
(
α‖ξ/i + a‖2 − αt

)(
γT ξ/i + γTa

)3
+

+4α2IE/if
′
(
α‖ξ/i + a‖2 − αt

)(
γT ξ/i + γTa

) ∣∣∣ ≤
≤ 4r30IEi

∣∣∣γT ξ/i + γTa
∣∣∣3 + 4r20IE/i

∣∣∣γT ξ/i + γTa
∣∣∣

by f ′ ≤ 0.5 and f ′′ ≤ 0.5 and thus∫
iS(r0)

IEih
i
α(ξ1,i, ξ2,i, t)dα ≤

CIP r
4
0

4
(IEi‖ξ2,i‖3 + IEi‖ξ2,i‖3)

Therefore, using the bound on the moments from lemma 8.28 in the appendix and summing over

Lindenberg chain, we come at the inquired statement

sup
t

∣∣IP (‖ξ1‖2 > t)− IP (‖ξ2‖2 > t)
∣∣ ≤ CIP (TrΣ)3/2

r40√
n
.



End of Proof

Following the general scheme of a proof of the Berry-Esseen bound we are bound to work with the

moments of a random vector, therefore in need of the technical lemma.

Lemma 8.28. Under the assumptions in the framework above holds

IEi‖ξi‖3 ≤ 14 (TrΣ/n)3/2

Proof :

Generally for - IEi‖ξi‖k we can write

IEi‖ξi‖k =
k

2

∫ ∞
0

IP (‖ξi‖2 > s)s(k−2)/2ds

Theorem 3.1 or 4.1 from Spokoiny, Zhilova [10] on the sharp deviation bound for a sub-Gaussian vector

ξi suggests for s > 0

IP (‖ξi‖2 > p+ s) ≤ 2e
− s2

6.6p
∨ s

6.6 .

and additionally for a s ∈ [−p, 0] we know

IP (‖ξi‖2 > p+ s) ≤ 1.

We also note that under dimension we understand p = TrΣ/n in the derivation. Since it was mentioned

in the introduction that we work with an appropriately scaled random vectors.

Using following change of variables s = s′ + p
n we come at the inequality

IEi‖ξi‖k =
k

2

∫ ∞
−p

IP (‖ξi‖2 > p+ s′)(s′ + p)(k−2)/2ds′ ≤

≤ k
∫ ∞
0

e
− s2

6.6p (s′ + p)(k−2)/2ds′ +
k

2

∫ 0

−p
(s′ + p)(k−2)/2ds′ ≤

≤ kpk/2
∫ ∞
0

e−
ps2

6.6 (s′ + p)(k−2)/2ds′ + k (p)k/2 ≤

≤ kpk/2
∫ ∞
0

e−
s2

6.6 (s+ 1)(k−2)/2ds+ kpk/2

and explicit calculation for k = 3 yields the result

IEi‖ξi‖3 ≤ 14p3/2.

End of Proof



8.8 Log-likelihood multiplier re-sampling

Theorem 8.29. The parametric model (2.4) in the introduction - δk = 0 - under the assumption (4.1)

enables ∣∣∣IP ((TLR − J) /
√
J > z [α

)
− α

∣∣∣ ≤ C0
J3/2

√
Kn

+ C1

√
J log J + x

Kn

with a dominating probability > 1− C2e
−x and universal constants C0, C1 <∞.

Proof. Using respective Wilks expansions let us reduce the log-likelihood ratio statistics TLR, TBLR
to the norms of score vectors ‖ξs‖, ‖ξs[‖ - sub-exponential random vectors based on the finite sample

theory assumptions (section [4]). One has from the theorems [4.3,4.4]∣∣∣√2TLR − ‖ξs‖
∣∣∣ ≤ C (J + x) /

√
Kn,∣∣∣√2TBLR − ‖ξs[‖

∣∣∣ ≤ C (J + x) /
√
Kn.

Both score vectors are reduced to the respective Gaussian counterparts

ξ̃
s

[ ∼ N

(
0,

1

n

∑
i

ξsiξ
sT
i

)
, ξ̃

s
∼ N

(
0, IEξsξsT

)
.

In view of Gaussian approximation result (theorem 5.2) one can state

sup
t

∣∣∣IP (‖ξs‖ < t)− IP
(
‖ξ̃

s
‖ < t

)∣∣∣ ≤ C J3/2

√
Kn

with a universal constant C <∞, and analogously the theorem implies

sup
t

∣∣∣IP (‖ξs[‖ < t)− IP
(
‖ξ̃

s

[‖ < t
)∣∣∣ ≤ C J3/2

√
Kn

with the universal constant C < ∞. In turn, Gaussian comparison result [5.1] and Bernstein matrix

inequality allow to derive

sup
t

∣∣∣IP (‖ξ̃s[‖ < t
)
− IP

(
‖ξ̃

s
‖ < t

)∣∣∣ ≤ C1

√
J‖I −

(
IEξsξsT

)−1/2 1

n

∑
i

ξsiξ
sT
i

(
IEξsξsT

)−1/2 ‖op
thm8.20
≤ C1

√
J log J + x

Kn

with an exponentially large probability 1− C2e
−x.

Finally, let us use the anti-concentration result (theorem 2.7) from Götze, F. and Naumov, A. and

Spokoiny, V. and Ulyanov, V. [4], stating for a Gaussian vector x ∼ N (0, Σ)

IP (t < ‖x‖ < t+ ε) ≤ Cε

‖Σ‖Fr
.



It allows to translate Wilks expansions into the probabilistic language. Assembling all the statements

in a cohesive structure one comes at

sup
t

∣∣∣IP ((TLR − J) /
√
J < t

)
− IP

(
(TBLR − J) /

√
J < t

)∣∣∣
Wilks+AC+GAR

≤ sup
t

∣∣∣IP ((‖ξ̃s‖ − J) /√J < t
)
− IP

((
‖ξ̃

s

[‖ − J
)
/
√
J < t

)∣∣∣+ 2C
J + x√
JKn

+ 2C
J3/2

√
Kn

GComp
≤ C1

√
J log J + x

Kn
+ 2C

J + x√
JKn

+ 2C
J3/2

√
Kn

,

which helps to infer straightforwardly the statement of the theorem.
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Figure 8.1: The empirical power of TLR, TBLR and TCLR with weak instruments.
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Figure 8.2: The empirical power of TLR, TAR and TLM with weak instruments.
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Figure 8.3: The empirical power of TLR, TBLR and TCLR with weak instruments and Laplace errors.
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Table 1: Power weak instrumental variables.

β1 − β0 LR BLR CLR AR LM

0.48 1 1 1 0.99 1

0.56 1 1 1 0.97 1

0.64 1 0.99 1 0.88 0.99

0.72 0.96 0.92 0.95 0.74 0.92

0.8 0.69 0.63 0.74 0.5 0.76

0.88 0.29 0.33 0.4 0.28 0.46

0.96 0.07 0.1 0.12 0.17 0.11

1.04 0.02 0.04 0.01 0.12 0.05

1.12 0.13 0.1 0.06 0.12 0.15

1.2 0.46 0.39 0.37 0.23 0.29

1.28 0.75 0.6 0.71 0.37 0.49

1.36 0.91 0.85 0.86 0.57 0.81

1.44 0.99 0.97 0.94 0.77 0.95

1.52 1 1 0.99 0.88 0.99

1.6 1 1 0.99 0.95 1

1.68 1 1 1 0.98 1

1.76 1 1 1 0.99 1

DATA: n=200, q=5, π∗TZZTπ∗ = 4
n , Ω

(
1 0

0 1

)



Figure 8.4: The empirical power of TLR, TAR and TLM with weak instruments and Laplace errors.
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Figure 8.5: The empirical power of TLR, TBLR and TCLR with weak instruments and heteroskedastic

errors.
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Table 2: Power - Weak instrumental variables and Laplace noise.

β1 − β0 LR BLR CLR AR LM

0.02 1 1 1 1 1

0.16 1 1 1 0.96 0.99

0.3 1 1 1 0.93 0.97

0.44 1 1 1 0.75 0.89

0.58 0.99167 0.95833 0.98333 0.41 0.67

0.72 0.83333 0.71667 0.76667 0.24 0.39

0.86 0.4 0.30833 0.3 0.13 0.17

1 0.075 0.05 0.041667 0.05 0.05

1.14 0.15 0.1 0.19167 0.07 0.09

1.28 0.49167 0.45833 0.45833 0.07 0.16

1.42 0.84167 0.75833 0.86667 0.19 0.3

1.56 0.975 0.94167 0.95833 0.28 0.56

1.7 1 1 1 0.45 0.77

1.84 1 1 1 0.57 0.85

1.98 1 1 1 0.8 0.92

2.12 1 1 1 0.93 0.94

2.26 1 1 1 0.97 0.97

DATA: n=200, q=5, π∗TZZTπ∗ = 2.56
n



Table 3: Power - Weak instrumental variables and heteroskedastic noise.

β1 − β0 LR BLR CLR AR LM

-0.26 1 0.99167 1 1 1

-0.12 1 0.98333 1 1 1

0.02 1 0.98333 1 1 1

0.16 1 0.975 1 1 1

0.3 0.98333 0.95 1 1 1

0.44 0.9 0.89167 1 0.98333 0.99167

0.58 0.825 0.73333 0.95 0.94167 0.93333

0.72 0.59167 0.51667 0.73333 0.80833 0.8

0.86 0.25 0.2 0.5 0.7 0.50833

1 0.033333 0.05 0.24167 0.5 0.24167

1.14 0.033333 0.0083333 0.24167 0.50833 0.19167

1.28 0.11667 0.041667 0.35833 0.63333 0.35833

1.42 0.25833 0.18333 0.55833 0.73333 0.59167

1.56 0.475 0.41667 0.775 0.825 0.775

1.7 0.64167 0.55 0.89167 0.9 0.89167

1.84 0.775 0.68333 0.975 0.95833 0.95

1.98 0.86667 0.80833 0.99167 0.975 0.975

2.12 0.91667 0.86667 0.99167 1 0.99167

2.26 0.96667 0.91667 1 1 0.99167

2.4 0.99167 0.93333 1 1 0.99167

DATA: n=200, q=5, π∗TZZTπ∗ = 2.56
n



Figure 8.6: The empirical power of TLR, TBLR and TCLR with weak instruments and heteroskedastic

(periodic) errors - case 3.
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Table 4: Power - Weak instrumental variables and Heteroskedastic periodic noise.

β1 − β0 LR BLR CLR AR LM

0.16 1 1 1 1 1

0.3 0.98333 0.99167 1 0.99167 1

0.44 0.95833 0.96667 0.99167 0.96667 1

0.58 0.875 0.85 0.95 0.9 0.98333

0.72 0.60833 0.55833 0.825 0.8 0.84167

0.86 0.23333 0.26667 0.55833 0.55 0.49167

1 0.033333 0.075 0.21667 0.35 0.175

1.14 0.05 0.0083333 0.18333 0.35 0.16667

1.28 0.18333 0.091667 0.36667 0.525 0.325

1.42 0.375 0.35 0.625 0.68333 0.58333

1.56 0.58333 0.6 0.825 0.81667 0.825

1.7 0.78333 0.75833 0.94167 0.91667 0.925

1.84 0.90833 0.89167 0.975 0.95833 0.96667

1.98 0.94167 0.95833 0.975 0.99167 0.99167

2.12 0.95833 0.98333 1 1 0.99167

2.26 0.98333 0.98333 1 1 0.99167

2.4 0.98333 0.99167 1 1 0.99167

DATA: n=200, q=5, π∗TZZTπ∗ = 2.56
n
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