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Abstract

In this paper, we study the latent group structure in cryptocurrencies market
by forming a dynamic return inferred network with coin attributions. We develop
a dynamic covariate-assisted spectral clustering method to detect the communities
in dynamic network framework and prove its uniform consistency along the hori-
zons. Applying our new method, we show the return inferred network structure and
coin attributions, including algorithm and proof types, jointly determine the mar-
ket segmentation. Based on the network model, we propose a novel “hard-to-value”
measure using the centrality scores. Further analysis reveals that the group with a
lower centrality score exhibits stronger short-term return reversals. Cross-sectional
return predictability further confirms the economic meanings of our grouping results
and reveal important portfolio management implications.
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1 Introduction

The invention of Bitcoin by Satochi Nakamoto (Nakamoto, 2008) in 2008 spurred the cre-

ation of many new cryptocurrencies known as Altcoins. As of April 18th, 2018, more than

800 cryptocurrencies are trading actively worldwide with more than $100 billion market

capitalizations. The growing number of altcoins stimulates the investors to investigate the

internal relationships between those altcoins and to make a fortune with it. Nevertheless,

unlike equities market uses industry classification (GIC and SIC), we have no stringent

criteria to classify the cryptocurrencies. Although many of them use similar cryptographic

technologies, subtle differences in algorithmic designs or other characteristics may lead to

complete different price trajectories. Due to the same reason, the fundamental characteris-

tics of cryptocurrencies are hard to price, and thus makes it worthwhile to figure out how

fundamental characteristics (e.g. algorithm and proof type) differentiate the performance

of different cryptocurrencies.

As a natural question, one may wonder whether the same classification methodology

used in equities market can be applied to cryptocurrencies. However, market segmentation

of cryptocurrencies is a more complicated issue than that of equities in many aspects, and

one of most severe issue is the data scarcity. For example, Hoberg and Phillips (2016)

provide a new measure of product differentiation based on textual analysis of 10-Ks to

generate a set of dynamic industry structure and competition. They find the new industry

classification is not only useful to understand how industry structure changes over time

but also to learn how firms react to dynamic changes within and around their product

markets. Comparing to equities market, cryptocurrencies market only serves Blockchain-

based start-ups with very few reports on earnings or related fundamental information.

Although White Paper is required to describe company business models and future plans

before Initial Coin Offering (ICO), the uncertainty remains high given fake ICOs and

unpredictable market environment or regulations changes. This makes the content of ICO

White Paper not as much informative as 10-Ks. Consequently, instead of the White Paper,

we extract representative fundamental information of each mining contract, i.e., algorithm

and proof types, as additional information input given that Blockchain technology mainly

depends on its algorithm and rewarding system. In addition, we use return comovement to
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proxy the fundamental similarity of each cryptocurrency to enrich the dataset. Since the

cryptocurrencies are traded in high-frequency, return information is particularly important

as it serves as a timely information for understanding the dynamics of market structure.

Apart from data scarcity, there are still several technical obstacles when we start deal-

ing with the real data. Firstly, in order to build up network linkages using coin returns,

for each coin we need to select from nearly 200 candidate coins whose returns are signif-

icantly correlated with it. Due to overfitting issue, simple linear regression is apparently

inappropriate for this situation. Besides, we also need to incorporate fundamental charac-

teristics into the return-inferred network to assist classifying cryptocurrencies. Therefore,

to tackle these problems, we develop an efficient method to classify the cryptocurrencies

into 5 groups and provide theoretical justifications to guarantee its consistency. Specifi-

cally, we first use the adaptive Lasso to recursively regress each coin’s return on other coins

to help us choose the crypto coins that possess the most significant explanatory power,

and we take this significance as a network linkage between the coins in each period. Then,

based on the dynamic degree corrected stochastic blockmodel (DDCBM), we design a dy-

namic covariate-assisted spectral clustering algorithm to incorporate both historical linkage

information and fundamental characteristics into classification procedures.

In the empirical study, we estimate the group memberships of each cryptocurrency using

the first two and a half years observations, namely, from 2015-07-01 to 2017-12-30. Then,

we proceed to investigate the economic meanings as well as investment implications behind

them using the most recent observations, i.e. from 2018-01-01 to 2018-03-31. By comparing

the within-group centrality score with the cross-group centrality score of each group, we

find our algorithm captures both fundamental characteristics and return information better

than the benchmark algorithm in all cases. Scrutinizing the composition of fundamental

characteristics in each group, we find the group with the most rarely used algorithm and

proof types suffers strongest return reversal. Moreover, a contrarian trading strategy shows

that the low centrality group gains the highest profit with a daily return of 5.01%, and this

is statistically significantly higher than the daily return of high centrality group which is

1.34%.

This paper makes several important contributions to classic finance as well as FinTech
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literatures. Firstly, we provide a new machinery for studying cryptocurrencies market

segmentation that can be applied to a wide variety of assets. Specifically, we extend

spectral clustering methods (see Binkiewicz et al., 2017; Zhang et al., 2017; Tao, 2018, etc.)

to identify communities in dynamic networks in presence of both time-evolving membership

and node covariates. To make a full use of relevant information, we faces challenges caused

by the features of real data, namely time dependency, degree heterogeneity, sparsity and

node covariates. In this case, our newly proposed the community detection method can

resolve all the aforementioned data issues at one shot. In the meantime, this method can

also be simply extended to cover more asset specific characteristics for a better classification

purpose.

Secondly, we contribute to the existing literature on investors’ behavioural bias, in most

of which short-term return reversal is a robust and economically significant evidence. For

instance, Jegadeesh (1990) adopts a reversal strategy that buys and sells stocks on the

basis of their prior-month returns and holds them for one month, resulting in profits of

about 2% per month spanning from 1934 to 1987. Two possible explanations of short-term

reversal profits that are widely accepted by previous literature. In majority (see Shiller,

1984; Black, 1986; Subrahmanyam, 2005, etc.), short-term reversal profits indicates that

investors overreact to information, or fads, or simply cognitive errors. Others suggest

that short-term reversal profits are generated by the price pressure while the short-term

demand curve of a stock is downwardly sloping and/or the supply curve is upwardly sloping

(Grossman and Miller, 1988; Jegadeesh and Titman, 1995). Campbell and Wang (1993)

find that uniformed trading activities trigger a temporary concession in price, which, when

absorbed by those who provide liquidity, will lead to a price reversal as a compensation for

the liquidity providers. In addition, Berkman et al. (2012) provide empirical evidence that

attention-generating events (high absolute returns or strong net buying by retail investors)

contribute to higher demand by individual investors, generating temporary price pressure

at the open and thus the elevated overnight returns that are reversed during the trading

day. In our paper, we also document a strong return reversal effect and provide new

explanations to it through investors behaviour channel. In particular, we construct a

novel measure of “valuation hardness” using the centrality scores of fundamental-inferred
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network structure, which reflects the popularity of a fundamental setting employed by the

cryptocurrencies market. We then suggest the hypothesis that cryptocurrencies with low

centrality scores (rare common settings in the fundamental algorithm and proof types) tend

to be hard-to-value cryptocurrencies due to less peer fundamental information is revealed

by the market. Consistent with the spirit of Berkman et al. (2012), we find these “hard-

to-value” cryptocurrencies reveal stronger return reversal effect than those easy-to-value

ones. Most recently, Detzel et al. (2018) provide the first equilibrium model featuring

technical traders and assets without cash flows. In particular, the paper suggests Bitcoin

traders must rely heavily on the price trajectories which reflect the common belief of the

investors in the market. In our case, we further point out that investors not only collect

information from coin’s historical price but also from its peer cryptocurrencies in terms of

similar fundamental settings. In this case, cryptocurrencies that adopt unique technologies

(i.e., algorithms and proof types) have less information available in the market due to

fewer peer fundamental settings employed by other cryptocurrencies than those adopting

common technologies. This will result in a stronger investors’ behaviour bias.

Last but not the least, we deepen the understanding of cryptocurrencies market in both

market segmentation and portfolio construction. Cryptocurrency is now a fast emerg-

ing alternative asset class that urges for deeper academic understanding and explorations.

Numerous literature in this area study asset pricing inference from different angles while

limited work shows economic linkage of cryptocurrency fundamentals and its performance.

Ong et al. (2015) evaluate the potential of cryptocurrency using social media data and

find that merged pull requests of GitHub, number of merges, number of active account

and number of total comments are the four key variables determining the market cap-

italization of cryptocurrency. Elendner et al. (2015) study the top 10 cryptocurrencies

by market capitalization and find that the returns are weakly correlated with each other.

Trimborn and Härdle (2017b) construct CRIX, a market index which consists of a selection

of cryptocurrencies that represent the whole cryptocurrencies market, and show that the

cryptocurrencies market which is momentarily dominated by Bitcoin still needs a represen-

tative index since Bitcoin does not lead the market. Given the low liquidity in the current

altcoin market compared to traditional assets, Trimborn and Härdle (2017a) propose a
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Liquidity Bounded Risk-return Optimization (LIBRO) approach that takes into account

liquidity issues by studying the Markowitz framework under the liquidity constraints. Chen

et al. (2018) study the option pricing for cryptocurrency based on a stochastic volatility

model with correlated jumps. Lee et al. (2017) compare cryptocurrencies with traditional

asset classes and find that cryptocurrency provides additional diversification to the main-

stream assets, hence improving the portfolio performance. As an innovation of FinTech,

cryptocurrency fundamentals display different features from the traditional assets and these

features indeed bring in certain new effects on the price evolution. In this case, our pa-

per contributes to better understanding to the fundamental of the market structure by

proposing a new clustering method. By dividing cryptocurrencies into five groups accord-

ing to our classification method, we provide solid empirical evidence to how fundamental

characteristics take an impact on the cryptocurrencies prices.

The remainder of the paper is organized as follows. In section 2, we introduce the model

and the method designed for estimating the dynamic group structure, and we demonstrate

the effectiveness of our method by simulation. In section 3, we employ our method to

classify the cryptocurrencies and explain the economic interpretation behind the grouping

results. Then, in section 4, we check the time series and cross-sectional return predictability

and demonstrate its portfolio implications. Lastly, we conclude in section 5. All the proofs

and technical details are provided in the appendix.

2 Models and Methodology

In this section, we will extend the dynamic covariate-assisted spectral clustering (CASC)

algorithm (Tao, 2018) to deal with the dynamic version of uni-partite spectral-contextualized

stochastic block model (SC-SBM) proposed by Zhang et al. (2017), which will be applied to

modelling the group structure of the cryptocurrencies network in the following sections. We

then provide the theoretical justification of the algorithm and conduct several simulations

to show the consistency of this method.
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2.1 Dynamic Network Model with Covariates

To study the block structure of dynamic network, we consider a dynamic network defined as

a sequence of random undirected graphs with N nodes, GN,t, t = 1, · · · , T , on the vertex set

VN = {v1, v2, · · · , vN} which does not change over horizons. For each period, we model the

uni-partite network structure with the degree-corrected spectral-contextualized stochastic

block model (SC-SBM) introduced by Zhang et al. (2017). Specifically, we observe adjacency

matrices At of the graph at time instances ςt = t/T where 0 < ς1 < ς2 < · · · < ςT = 1. The

adjacency matrix At is generated by

At(i, j) =


Bernoulli(Pt(i, j)), if i < j

0, if i = j

At(j, i), if i > j

(1)

where Pt(i, j) = Pr(At(i, j) = 1). Basically, we assume that the probability of a connection

Pt(i, j) is entirely determined by the groups to which the nodes i and j belong at the

moment ςt. In particular, if zi,t = k and zj,t = k′, then Pt(i, j) = Bt(zi,t, zj,t) = Bt(k, k
′).

In this case, for any t = 1, · · · , T , one has the population adjacency matrix

At := E(At) = ZtBtZ
>
t , (2)

where Zt ∈ {0, 1}N×K is the clustering matrix such that there is only one 1 in each row

and at least one 1 in each column.

Since conventional stochastic blockmodel presumes that each node in the same group

should have same expected degrees, Karrer and Newman (2011) propose a degree correction

approach to overcome this unrealistic assumption. Following Karrer and Newman (2011),

we introduce the degree parameters ψ = (ψ1, · · · , ψN) to capture the degree heterogeneity

of the groups. In particular, the edge probability between node i and j at time t is given

by

Pt(i, j) = ψiψjBt(zi,t, zj,t). (3)

In addition, to resolve identifiability issue, Karrer and Newman (2011) impose the restric-

tion that ∑
i∈Gk

ψi = 1, ∀k ∈ {1, 2, · · · , K}. (4)
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Then, denote Diag(ψ) by Ψ , the population adjacency matrices for dynamic degree-corrected

spectral-contextualized stochastic blockmodel (SC-DCBM) is

At = ΨZtBtZ
>
t Ψ, (5)

Define the regularized graph Laplacian as

Lτ,t = D
−1/2
τ,t AtD

−1/2
τ,t , (6)

where Dτ,t = Dt + τtI and D is a diagonal matrix with Dt(i, i) =
∑N

j=1At(i, j). As shown

in Chaudhuri et al. (2012), including the regularization parameter can help improve the

spectral clustering performance on sparse networks. Therefore, we choose the regularized

parameter τt according to the convention (Qin and Rohe, 2013) by taking the value of

average node degree in each period, i.e. τt = N−1
∑N

i=1Dt(i, i).

Now, we introduce the bounded covariates associated to each vertex X(i) ∈ [−J, J ]R,

i = 1, · · · , N for all t = 1, · · · , T . In Binkiewicz et al. (2017), they add the covariance XX>

to the regularized graph Laplacian and perform the spectral clustering on the similarity

matrix, and Tao (2018) extends the static similarity matrix to cover the dynamic case as

below:

St = Lτ,t + αtC. (7)

where C = XX> and αt ∈ [0,∞) is a tuning parameter that controls the informational

balance between Lτ,t andX in the leading eigenspace of St. As a generalization of the model,

Zhang et al. (2017) refines Binkiewicz et al. (2017) by replacing C with Cw = XWX>.

Similarly, we make the same generalization to Tao (2018) by substituting C with the new

covariate assisted component Cw
t = XWtX

>, and the population similarity matrix now

becomes

St = Lτ,t + αtCwt , (8)

where Lτ,t = D−1/2τ,t AtD
−1/2
τ,t and Cwt = XWtX .

This is a non-trivial generalization as it addresses several limitations of dynamic CASC

(Tao, 2018). Firstly, Wt creates a time-varying interaction between different covariates.

For instance, we may think of different refined algorithms that stem from the same origins.

Such inheritance relationships will potentially leads to an interaction between the cryp-

tocurrencies. In addition, as time goes by, some algorithms may become more and more
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popular while the others may near extinction. Thus, this interaction would also change

over time. These interactions are not included in C.

Secondly, we can easily select covariates by setting certain elements of Wt to zero. This

is necessary as it helps us to model the evolution of technologies. At some point of time,

some cryptographic technology may be eliminated due to upgrading or cracking. Therefore,

Wt offers us the flexibility to exclude covariates which cannot be easily done with C.

Lastly, as suggested in Zhang et al. (2017), C presumes that similarity in covariates leads

to high probability of node connection. However, it may not be true in cryptocurrencies

network. Due to the open source nature of blockchain, cryptocurrency developers can easily

copy and paste the source codes and launch a new coin without any costs. Consequently,

it causes severe homogeneity in cryptocurrencies market. Nevertheless, this homogeneity

does not necessarily end up with co-movement of prices in reality. Some of coins are even

negatively correlated with each other. In this case, we can just set Wt(i, i) to be negative

and Cw
t will in the end bring the coins with different technologies closer in the similarity

matrix.

2.2 Dynamic Covariate-assisted Spectral Clustering

To perform dynamic CASC, we face two major difficulties: (i) setting of Wt, (ii) estimation

the similarity matrix with dynamic network information. For the first issue, we follow

Zhang et al. (2017) by setting Wt = X>Lτ,tX which measures the correlation between

covariates along the graph. For the second issue, we follow Pensky and Zhang (2017) by

constructing the estimator of St with discrete kernel method to weigh the historical network

information. Specifically, we first pick an integer r ≥ 0, and obtain three pairs of sets of

integers

Fr = {−r, · · · , 0}, Dr = {T − r + 1, · · · , T},

and we assume that |Wr,l(i)| ≤ Wmax, where Wmax is independent of r and i, and satisfies

1

|Fr|
∑
i∈Fr

ikWr,l(i) =

1, if k = 0,

0, if k = 1, 2, · · · , l.
(9)

Obviously, the Wr,l is a discretized version of continuous boundary kernel that only

9



weighs the historical observations. This kernel assigns the more recent similarity matrices

with the higher scores and . To choose an optimal bandwidth r, Pensky and Zhang (2017)

propose an adaptive estimation procedure using Lepski’s method. Here, we directly apply

their results and construct the estimator for edge connection matrices St as below

Ŝt,r =
1

|Fr|
∑
i∈Fr

Wr,l(i)St+i. (10)

Once we obtain the estimate of St, we then consider the eigen-decomposition of St =

UtΛtU
>
t for each t = 1, 2, · · · , T . As discussed in Lei and Rinaldo (2015), the matrix Ut

now may have more than K distinct rows as a result of degree correction whereas the rows

of Ut still only point to at most K directions. Therefore, we apply the spherical clustering

algorithm to find a cluster structure among the rows of a normalized matrix U+
t with

U+
t (i, ∗) = Ut(i, ∗)/‖Ut(i, ∗)‖. Specifically, we consider the following spherical k-means

spectral clustering: ∥∥∥Ẑ+
t Ŷt − Û+

t

∥∥∥2
F
≤ (1 + ε) min

Z+
t ∈MN+,K

Yt∈RK×K

∥∥∥Z+
t Yt − Û+

t

∥∥∥2
F

(11)

Finally, we extend Ẑ+
t to obtain Ẑt by adding N −N+ many canonical unit row vectors at

the end. Ẑt is the estimate of Zt from this method. The detailed algorithm is summarized

as below.

To ensure the performance of the dynamic covariate-assisted spectral clustering method,

we first make some assumptions on the graph that generates the dynamic network. The

major assumption we need here is the assortativity which ensures the nodes within the

same cluster are more likely to share an edge than nodes in two different clusters.

Assumption 1. The dynamic network is composed of a series of assortative graphs that are

generated under the stochastic block model with covariates whose block probability matrix

Bt is positive definite for all t = 1, · · · , T .

Assumption 2. There are at most s <∞ number of nodes can switch their memberships

between any consecutive time instances.

Assumption 3. For 1 ≤ k ≤ k′ ≤ K, there exists a function f(·; k, k′) such that Bt(k, k
′) =

f(ςt; k, k
′) and f(·; k, k′) ∈ Σ(β, L), where Σ(β, L) is a Hölder class of functions f(·) on
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Algorithm 1: Covariate-Assisted Spectral Clustering in the Dynamic SC-DCBM

Input : Adjacency matrices At for t = 1, · · · , T ;

Covariates matrix X;

Number of communities K;

Approximation parameter ε.

Output: Membership matrices Zt for any t = 1, · · · , T .

1 Calculate regularized graph Laplacian Lτ,t and weight matrix Wt.

2 Estimate St by Ŝt,r defined in (10).

3 Let Ût ∈ RN×K be a matrix representing the first K eigenvectors of Ŝt,r.

4 Let N+ be the number of nonzero rows of Ût, then obtain Û+ ∈ RN+×K consisting

of normalized nonzero rows of Ût, i.e. Û+
t (i, ∗) = Ût(i, ∗)/

∥∥∥Ût(i, ∗)∥∥∥ for i such

that
∥∥∥Ût(i, ∗)∥∥∥ > 0.

5 Apply the (1 + ε)-approximate k-means algorithm to the row vectors of Û+
t to

obtain Ẑ+
t ∈MN+,K .

6 Extend Ẑ+
t to obtain Ẑt by arbitrarily adding N −N+ many canonical unit row

vectors at the end, such as, Ẑt(i) = (1, 0, · · · , 0) for i such that
∥∥∥Ût(i, ∗)∥∥∥ = 0.

7 Output Ẑt.
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[0, 1] such that f(·) are ` times differentiable and

|f (`)(x)− f (`)(x′)| ≤ L|x− x′|β−`, for any x, x′ ∈ [0, 1], (12)

with ` being the largest integer smaller than β.

Assumption 4. Let λ1,t ≥ λ2,t ≥ · · · ≥ λK,t > 0 be the K largest eigenvalues of St for

each t = 1, · · · , T . In addition, assume that

δ = inf
t
{min

i
Dτ,t(i, i)} > 3 ln(8NT/ε) and αmax = sup

t
αt ≤

a

NRJ2ξ
,

with

a =
3 ln(8NT/ε)

δ
and ξ = max(σ2‖Lτ‖F

√
ln(TR), σ2‖Lτ‖ ln(TR), NRJ2/δ),

where σ = maxi,j ‖Xij −Xij‖φ2, Lτ = supt Lτ,t.

To establish the consistency of covariate-assisted spectral clustering for dynamic SBM,

we need to figure out the upper bounds for the misclustering rates. Following Binkiewicz

et al. (2017), we denote Ci,t and Ci,t as the cluster centroids of the ith node at time t

generated using k-means clustering on Ut and Ut respectively. Then, we define the set of

misclustered nodes at each period to be

Mt =
{
i:
∥∥Ci,tO>t − Ci,t∥∥ > ∥∥Ci,tO>t − Cj,t∥∥, for any j 6= i

}
, (13)

where Ot is a rotation matrix that minimizes ‖UtO>t − Ut‖F for each t = 1, · · · , T .

The error has two folds. The first source of the error is the estimation error of St
using the discrete kernel estimator. The second source of the clustering error comes from

the spectral clustering algorithm. Then, we can derive the uniform upper bound for the

misclustering rate for the covariate-assisted spectral clustering for dynamic SC-DCBM.

Theorem 1. Let clustering be carried out according to the Algorithm 1 on the basis of

an estimator Ŝt,r of St. Let Zt ∈ MN,K and Pmax = maxi,t(Z
>
t Zt)ii denote the size of

the largest block over the horizons. Then, under Assumption 1-4, as N, T,R → ∞ with

R = o(N), the misclustering rate satisfies

sup
t

|Mt|
N
≤ c(ε)KW 2

max

m2
zNλ

2
K,max

{
(4 + 2cw)

b

δ1/2
+

2K

b
(
√

2Pmaxrs+ 2Pmax) +
NL

b2 · l!

( r
T

)β}2

.
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with probability at least 1 − ε, where λK,max = maxt{λK,t} with λK,t being the Kth largest

absolute eigenvalue of St, where b =
√

3 ln(8NT/ε), λK,max = maxt{λK,t} and c(ε) =

29(2 + ε)2.

The last problem we face is the choice of tuning parameter, r and α, and the estimation

of number of groups, K. For the choice of r, we directly apply Lemma 4.5 of Tao (2018)

and Lepski’s method, and obtain

r̂ = max

{
0 ≤ r ≤ T/2 :

∥∥∥Ŝt,r − Ŝt,ρ∥∥∥ ≤ 4Wmax

√
N‖St‖∞
ρ ∨ 1

, for any ρ < r

}
. (14)

Next, for choice of αt, following Tao (2018), we just choose αt to achieve the balance

between Lτ,t and Cw
t , i.e,

αt =
λK(Lτ,t)− λK+1(Lτ,t)

λ1(Cw
t )

. (15)

Lastly, for the estimation of K, we have several choices. Wang and Bickel (2017) propose

a pseudo likelihood approach for choosing the number of clusters for stochastic blockmodel

without covariates and prove its consistency. Chen and Lei (2017) propose a network

cross-validation procedure to estimate the number of clusters by utilizing the adjacency

information of stochastic blockmodel. Most recently, Li et al. (2016) refines the network

cross-validation approach by proposing an edge sampling algorithm. In our case, we can

directly apply network cross-validation approach by inputting the similarity matrix instead

of adjacency matrix1.

2.3 Monte Carlo Simulations

In this section, we carry out some simulations under different model setups and make

comparisons with existing clustering methodologies to demonstrate the finite sample per-

formance of our clustering algorithms. Our benchmark algorithms are the dynamic degree

corrected spectral clustering for sum of squared adjacency matrix (DSC-DC) by Bhat-

tacharyya and Chatterjee (2017) on the averaged similarity matrix and the dynamic spec-

tral clustering method (DSC-PZ) by Pensky and Zhang (2017).

1As we will show in the subsequent section, when we use dummy variables to indicate different technology

attributes, the covariate matrix Cw
t behaves just like an adjacency matrix. Therefore, we can directly apply

network cross-validation to similarity matrix in our study.
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Firstly, we set the block probability matrix Bt to be

Bt =
t

T


0.9 0.6 0.3

0.6 0.3 0.4

0.3 0.4 0.8

 , with 1 ≤ t ≤ T.

and the order of polynomials for kernel construction L = 4 for all simulations. The

number of communities K is assumed to be known throughout the simulations, and the

time-invariant node covariates is set to R = bln(N)c dimensional with values X(i, j)
i.i.d∼

Uniform(0,10) with i ∈ {1, · · · , N} and j ∈ {1, · · · , R}. All experiments are replicated 100

times

Our first simulation checks the clustering performance under growing size of the network.

The number of nodes in the network varies from 10 to 100 with step size 5. The time span

is T = 10. The results are summarized in Figure 1(a). Clearly, we can observe that,

as the size of the graph grows, the misclustering rates of all spectral clustering methods

based on literature decrease sharply and our method dominates DSC-PZ. Besides, it can

be observed that DSC-DC perform very badly when the size of the network is small (below

50) while CASC-DC still possesses an acceptable misclustering rate. This shows clearly

that our method gains a huge advantage over the existing spectral clustering method for

dynamic SC-DCBMs. In addition, it shows that although using covariate alone (DSC-Cw)

for clustering is unsatisfactory, we can still add covariate to adjacency matrix for clustering

and achieve a better grouping result. This evidence to some extent justifies the use of

covariate information in our methodology.

Next, we check the performance of our method comparing with other methods under

growing maximal number of group membership changes. In the simulation settings, we

hold the total number of vertices to be 100, then we allow the each-period group member-

ship changes, s, to vary in set {0, N/50, N/25, N/20, N/10, N/5, N/4, N/2, N}. The total

number of horizons is T = 10 and the results are summarized in Figure 1(b). As shown

in the figure, we can conclude that all methods are sensitive to total number of group

membership changes. In other words, the more unstable the group membership is, the

higher the misclustering rate will be. In spite of that, our method still achieves a lower

misclustering rate than the benchmark methods in all cases.
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Figure 1: This figure reports the misclustering rate of different spectral clustering algo-

rithms. CASC-DC stands for the covariate-assisted spectral clustering method we devel-

oped for dynamic degree corrected stochastic blockmodel. DSC-DC denotes the dynamic

spectral clustering methods developed in Bhattacharyya and Chatterjee (2017). DSC-PZ

denotes the dynamic spectral clustering methods developed in Pensky and Zhang (2017).

DSC-Cw denotes the dynamic spectral clustering only based on covariate information. In

subfigure (a), the number of nodes varies from 10 to 100, and the number of membership

changes is fixed as s = N1/2. In subfigure (b), the number of nodes is fixed as 100, while the

number of membership changes varies from 0 to 100. In both figures, the horizon T = 10

and all simulations are repeated 100 times.
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3 Network Construction

In this section, we study the latent group structure of cryptocurrencies market by applying

our covariate-assisted spectral clustering methods to analysing the dynamic networks for-

mulated by cryptocurrencies returns. We first introduce how we identify linkages between

cryptocurrencies using adaptive Lasso regression, and construct the network. Then, we

try to answer the question how do fundamental information and return structure jointly

determine the cryptocurrencies market segmentation.

3.1 Data and Variables

We collect data on the daily historical price, trading volume and contract information

of cryptocurrency from the website Cryptocompare.com, which is an interactive platform

and provides us a free API access to download the data. We start with the top 200

cryptocurrencies2 for our analysis, and the number then becomes 199 after excluding those

with incomplete contract information data. The whole sample period spans from 2015-

08-01 to 2018-03-31 with in-sample period for community detection from 2015-07-01 to

2017-12-31 and the rest 3 months as out-of-sample period (2018-01-01 to 2018-03-31).

For node covariates, which are fixed over time, we collect algorithm and proof types

from the contract information. In fact, these covariates are not chosen arbitrarily. Instead,

we have profound reasons for selecting these characteristics.

Algorithm, which is in short for hashing algorithm, plays a central role in determining

the security of the cryptocurrencies. For each cryptocurrency, there is a hash function

in mining cryptography, e.g. Bitcoin uses double SHA-256 and Litcoin uses Scrypt. As

security is one of the most important features of cryptocurrencies, the hash algorithm

naturally determines the intrinsic value of a cryptocurrency. In the above example, scrypt

system was put into use with cryptocurrencies in an effort to improve upon the SHA256

protocol which preceded it and which bitcoin is based on. Specifically, scrypt was employed

as a solution to prevent specialized hardware from brute-force efforts to out-mine others for

bitcoins. As a result, Scrypt altcoins require more computing effort per unit, on average,

2We sort all cryptocurrencies according to the history, trading volume and maximum daily transaction

price and pick up the top 200 cryptocurrencies as of 2017-12-31.
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than the equivalent coin using SHA256. The relative difficulty of the algorithm confers

relative value.

Proof Types, or proof system/protocol, is an economic measure to deter denial of service

attacks and other service abuses such as spam on a network by requiring some work from the

service requester, usually meaning processing time by a computer. For each cryptocurrency,

it will at least choose one of the protocol as transaction verification method, e.g. Bitcoin

and Ethereum use Proof-of-Work, Diamond and Blackcoin use Proof-of-Stake. In this case,

how efficient of the proof protocol determines the reliability, security and effectiveness of

the coin transactions, which will also affect the value of the cryptocoins.

3.2 Return Inferred Network Structure

As introduced in the previous section, we have collected a data sample of 199 cryptocurren-

cies. Therefore, to improve estimation and inference as well as to avoid over-fitting for the

general regression, we employ the adaptive Lasso proposed by Zou (2006). The adaptive

Lasso estimates are defined as:

b̂∗i = arg min

∥∥∥∥∥rsi,t − αi −
N∑
j=1

bi,jrj,t

∥∥∥∥∥
2

+ λi

N∑
j=1

ŵi|bi,j|, (16)

where rj,t is the standardized return for cryptocurrency j, b̂∗i = (b̂∗i,1, · · · , b̂∗i,N)
′

is an N

dimensional vector of adaptive Lasso estimates, λi is a non-negative regularization param-

eters, and b̂i,j is the weight corresponding to |bi,j| for j = 1, · · · , N in the penalty term.

Adaptive Lasso uses `1-norm penalty to shrink the parameter estimates to prevent over-

fitting and hence, selecting most informative connections. Those cryptocurrencies selected

by adaptive Lasso will be labelled as linked coins to the cryptocurrency i. For model esti-

mation, we require at least 60 daily observations for each coin and set the initial estimation

window as 60 days (2-month observations). We repeat this process for each cryptocurrency

in each period, and finally obtain the adjacency matrix, At, which can be used to form a

series of undirected graphs.

Based on the adjacency matrix, we further explore the relative importance of each node

by deriving the centrality of a cryptocurrency. We compute eigenvector centrality score of
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cryptocurrencies, ct, using the definition

Atct = λmaxct, for each t = 1, 2, · · · , T ,

where ct = (c1,t, c2,t, · · · , cN,t)′.

In Figure 2, we visualize some subgraphs on selected dates to illustrate the structural

features of this return inferred network. Without loss of generality, we select top 5 cryp-

tocurrencies in terms of market capitalization as of 2017-12-31 from final grouping results

based on our dynamic covariate-assisted spectral clustering method. We then plot the sub-

network induced by the submatrix of the adjacency matrix on selected cryptocurrencies and

dates. The colour of node labels stand for grouping results based on return inferred net-

work structure using Bhattacharyya and Chatterjee (2017), where the group membership

is fixed over time, and the node size denotes its eigenvector centrality.

Obviously, return inferred network structure is time varying and hence provides us a dy-

namic network structure for clustering analysis. Comparing to the fixed node features, time

varying network structure delivers valuable information about investors’ opinion changes.

However, the return inferred network structure is not very stable over time3 and it could be

very sparse on some days, e.g. 10/25 cryptocurrencies do not have any connections to any

cryptocurrencies on 2016-03-15, which would lead to inconsistent classification results. In

this case, our covariate-assisted spectral clustering method comes in to solve this problem

by integrating node features to assist clustering analysis.

3.3 Contract Information Inferred Network Structure

To demonstrate how contract information can assist cryptocurrency classifications, we con-

struct a contract information inferred network to illustrate how its structure differs from

the return inferred network structure. We define that two cryptocurrencies are connected

as long as two cryptocurrencies share at least one same fundamental characteristic. Taking

Ethereum and Ethereum Classic as an example, since both of them use Ethash as their

hash algorithm, these two cryptocurrencies are regarded as connected by definition. Apart

from the algorithm, we also adopt proof types as additional fundamental information to

3This result makes sense as investors update their beliefs on daily frequency.
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(a) 2016-03-01 (b) 2016-03-05

(c) 2016-03-15 (d) 2016-03-31

1

Figure 2: This figure depicts the time varying of return inferred network structure.

In the layout, we plot 25 cryptocurrencies, including BTC, ETH, LTC and other top

cryptocurrencies within each group according combined information in terms of market

capitalization as of 2017-12-31. Connection is defined from a return regression model:

ri,t = αi +
∑N−1

j=1,j 6=i bi,jrj,t + εi,t, where ri,t is the daily return on cryptocurrency i, N is the

total number of cryptocurrencies. Adaptive Lasso is employed to estimate above regression

and only those cryptocurrency that are being selected by adaptive lasso will be linked to

cryptocurrency i. The colour of node labels stand for grouping results based on return

inferred network structure using Bhattacharyya and Chatterjee (2017) and the node size

denotes eigenvector centrality of a cryptocurrency.
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define the connections. In Figure 3, we visualize the contract information inferred network

in Figure 3 using the same set of the cryptocurrencies in return inferred network.

(a) Algorithm (b) Proof Types

(c) Combined Fundamental

1

Figure 3: This figure depicts the fundamental information inferred network structure. We

define the connection as long as two cryptocurrencies sharing the same fundamental tech-

nology. We consider two fundamental variables, namely algorithm and proof types with

their aggregated information. Node size denotes eigenvector centrality of a cryptocurrency.

As shown in Figure 3, the contract information inferred networks are less sparse than
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the return inferred networks. In fact, due to limited choices of algorithms and other attri-

butions, the coins are more likely to connect with each other when using the characteristics

to build up the linkages. However, it does not mean that using contract information alone

to define the group structure is enough. Firstly, only relying on contract information to

classify the cryptocurrencies ignores the information about time-varying connections from

market investors which is particularly important for the cryptocurrencies market. Secondly,

there are some difficulties in pricing those fundamental characteristics. Unlike corporate

fundamentals that is straightforward to pricing equities, the relationship between the value

of a cryptocurrency and its fundamental characteristics seems much more complicated.

It is possible that a new algorithm does not add any valuable features to the existing

algorithms. In fact, many developers simply copy and paste the blockchain source code

with minor modifications on the parameters to launch a new coin for speculation purpose

through ICO (Initial Coin Offering). Even though these altcoins may show little differences

between their fundamental characteristics, their abilities to generate future cash flows are

quite different. A good example is IXCoin, which is the first clonecoin of Bitcoin. Despite

Bitcoin is regarded as the most successful cryptocurrency, IXCoin is not able to duplicate

its success. The developer team stops working on IXCoin for months after the ICO. Re-

flected by its return performance, it suggests a higher risk than Bitcoin. In fact, more

evidences can be found from deadcoins4. In summary, combining contract information

with return information is necessary for revealing more informative connections between

the cryptocurrencies.

3.4 Combined Network Structure

Based on the reasoning in the previous sections, we then combine the return inferred

network and the contract information inferred network using similarity matrix, and we plot

the combined networks in Figure 4 on selected dates as in previous sections. As shown in

the figure, the linkages between cryptocurrencies not only exist within the group members,

but also exist across the groups. For example, ETH is both connected to its group members,

such as ETC and BTC, and is also connected to cryptocurrencies from other groups, such

4Matic Jurglič provides a list of deadcoins on the website: http://deadcoins.com/
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as XBC and RDD in group 1 and Doge and LTC in group 2. This suggests a possible

change of grouping membership in this developing market. In this paper, we provide the

best fit of market structure using available data sample, and hopefully, our method will

still be applicable when the market becomes more mature.

(a) 2016-03-01 (b) 2016-03-05

(c) 2016-03-15 (d) 2016-03-31

1

Figure 4: This figure depicts the time varying of a combined network structure based

on the similarity matrix, which combines return information and contract information

simutaneously. The color of node labels stand for grouping results based on combined

information set using degree corrected covariate-assisted spectral clustering method and

the node size denotes degree centrality of a cryptocurrency.
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Comparing with the network using single information set, Figure 4 shows that combined

network is denser and assigns the centrality scores to each cryptocurrency more evenly. It

is interesting that we may find the cryptocurrencies who have more return linkages will

have less fundamental linkages. In this case, the similarity matrix balances the return and

fundamental information and leads to balanced centrality scores. A further examination

shows that the cryptocurrencies who gain more return linkages are likely to adopt more

original algorithms or proof types, e.g. BTC and ETH. Then, from Figure 3 we can observe

that those original fundamental technologies attract less audience (smaller centrality scores)

comparing to the new ones. This reflects fundamental information are dominated by new

technologies in the market. As a result, we would expect the grouping results will shed

some light upon how technology evolutions affect the returns of cryptocurrencies.

4 Fundamental Centrality and Return Reversal

In this section, we mainly explains the economic meanings and the asset pricing implication

of the grouping results. In the first place, we show our proposed clustering approach can

fully capture both return and fundamental information by comparing the within-group

centrality scores with the cross-group centrality scores based on the adjacencies of single

information set. Then

4.1 Communities in Cryptocurrencies Network

Following the combined network structure and applying the covariate-assisted spectral clus-

tering method, the 200 cryptocurrencies are classified into five groups, and the grouping

results are summarized in Table 1. The table indicates that the largest top 5 cryptocur-

rencies (BTC, ETH, XRP, LTC and DASH) in terms of market cap are not necessarily

categorized into the same group. For example, LTC and BTC, although the return inferred

network structure suggets a good connection between these two coins, their fundamental

setting is different. BTC employes SHA256 which now becomes a minority algorithm while

LTC uses Script, which seems to be the second most popular algorithm in the market.

Similarly, Ripple employs Multiple algorithm, which is the most popular algorithm in the
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market so Ripple is different from both BTC and LTC. Its group members also tend to

employ Multiple algorithm, such as Thether and Golem.

Table 1: Representative Cryptocurrencies of Each Group.

This table lists top 10 cryptocurrencies under each group by applying covariate-assisted spectral clus-

tering to top 200 Cryptocurrencies. The estimation is based on the sample period from 2015-08-01 to

2017-12-31.

Group ID Cryptocurrency

Group 1 Stratis, PIVX, BitcoinDark, ReddCoin, FairCoin,

BlackCoin, NAV Coin, Novacoin, Energycoin

Group 2 Litecoin, BitShares, Dogecoin, DigiByte, Nxt,

SysCoin, MonaCoin, Gulden, PotCoin

Group 3 Ripple, Tether, Veritaseum, Waves, Iconomi,

Lisk, Golem, Augur, Stellar Lumens, Status

Group 4 Bitcoin, Ethereum, Ethereum Classic, Monero, Zcash,

Steem, Siacoin, GameCredits, Nexus, Ubiq

Group 5 Dash, Gnosis, Factom, Decred, Numeraire, Etheroll,

Blocknet, Namecoin, CloakCoin, BitBay

To further demonstrate how reasonable our classification results are, we compare with

our benchmark method introduced in Bhattacharyya and Chatterjee (2017) by checking

the differences between within-group connections and cross-group connections. In Bhat-

tacharyya and Chatterjee (2017), they develop the spectral clustering method for a dynamic

stochastic blockmodel with time-varying block probability and fixed group membership in

the absence of node covariates. We admit this could be an unfair comparison since our

method has taken into account for more information and studied a much more complicated

model. However, this is the only spectral clustering method available for the dynamic
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stochastic block in the literature by far. To avoid data mining issue, we add on another

contract information, maximum coin supply, which is not controled in our estimation pro-

cess as an additional test. Intuitively, if the grouping method fully captures the relevant

information, within-group connections should be stronger than the cross-group connec-

tions, in other word, the difference between them should be positive. The within-group

connections and cross-group connections are defined as below:

Within-Group Connectioni =
# of Degrees of Coins within Group i

4Ni

,

Cross-Group Connectioni =
# of Degrees of Coins between Group i and other Groups

4N̄i

,

Table 2 summarizes within-group connections and cross-group connections of different

information set, including both returns and the contract information. Panel A reports the

average return inferred connections over the sampling periods. The difference between mean

of within-group connection and cross-group connection is calculated with corresponding

significance level. Panel B and Panel C report algorithm inferred connections and proof

types inferred connections respectively, which are constants over time. The differences

between within-group connection and cross-group connection are reported in Table 2 as

below.

According to Panel A in Table 2, the return information are well captured in Bhat-

tacharyya and Chatterjee (2017)’s model as for majority of the groups, the within-group

connections are significantly higher than the cross-group connections. For example, the full

sample within-group connection is 0.104, which is higher than the cross-group connections

by 0.005. However, for contract information (Panel B and C), the results become much

weak. Both types of contract information suggest the majority groups have cross-group

connections more than within-group connections, indicating that the benchmark model

cannot accommodate the contract information to a large extent.

On the contrary, in results of Table 3 obtained through our covariate-assisted spectral

clustering method, within-group connections are much stronger than cross-group connec-

tions for both return and contract information set. As expected, our method captures

return information much better than the benchmark model in terms of the magnitude of

difference between within- and cross-group connections. In addition, our method can bet-

ter detect fundamental grouping information, namely, the overall difference between the
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Table 2: Within-group Connection and Cross-group Connections by Bhattacharyya and

Chatterjee (2017)

This table reports within-group connection and cross-group connections based on Bhattacharyya and

Chatterjee (2017). Panel A reports average return inferred connections across sample period. Panel

B and Panel C report algorithm inferred connections and proof types inferred connections respectively.

Connections are defined as

Within-Group Connectioni =
# of Degrees of Coins within Group i

4Ni
,

Cross-Group Connectioni =
# of Degrees of Coins between Group i and other Groups

4N̄i
.

*, **, and *** indicates statistical significance at the 10%, 5% and 1% levels respectively.

Return Algorithm Proof Types

Within Cross Diff. Within Cross Diff. Within Cross Diff.

G1 0.110 0.106 0.004*** 0.186 0.197 -0.012 0.294 0.248 0.046

G2 0.100 0.097 0.003 0.174 0.200 -0.027 0.236 0.242 -0.006

G3 0.118 0.107 0.010*** 0.287 0.238 0.050 0.177 0.220 -0.044

G4 0.111 0.092 0.019*** 0.222 0.213 0.009 0.231 0.236 -0.005

G5 0.082 0.093 -0.012*** 0.186 0.196 -0.010 0.241 0.235 0.006

All 0.104 0.099 0.005*** 0.211 0.209 0.002 0.236 0.236 0.000
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Table 3: Within-group Connection and Cross-group Connections by Dynamic CASC.

This table reports within-group connection and cross-group connections based on Covariate-assisted

Spectral Clustering. Panel A reports average return inferred connections across sample period. Panel

B and Panel C report algorithm inferred connections and proof types inferred connections respectively.

Connections are defined as

Within-Group Connectioni =
# of Degrees of Coins within Group i

4Ni
,

Cross-Group Connectioni =
# of Degrees of Coins between Group i and other Groups

4N̄i
.

*, **, and *** indicates statistical significance at the 10%, 5% and 1% levels respectively.

Return Algorithm Proof Types

Within Cross Diff. Within Cross Diff. Within Cross Diff.

G1 0.137 0.110 0.027*** 0.261 0.111 0.150 0.692 0.072 0.620

G2 0.144 0.113 0.031*** 0.379 0.163 0.216 0.660 0.198 0.462

G3 0.046 0.065 -0.019*** 0.807 0.151 0.656 0.622 0.046 0.576

G4 0.132 0.111 0.020*** 0.071 0.129 -0.057 0.829 0.223 0.606

G5 0.107 0.103 0.004*** 0.179 0.175 0.004 0.207 0.217 -0.010

All 0.113 0.101 0.013*** 0.339 0.146 0.194 0.602 0.151 0.451
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within- and cross-group centrality scores for both algorithm and proof types in Table 3

are all significantly positive comparing to Table 2. These results indicate that fundamental

information introduces extra dimension of commonality for classify cryptocurrencies, and it

improves information extraction from return dynamics by emphasizing the content behind

the fundamental commonality induced return comovement.

Given the economic meanings of our grouping results, we now try to deepen the under-

standing our classification results by studying its asset pricing inference. We explore how

to utilize our grouping information to make profit from a portfolio manager?s perspective.

We initiate our tests from two angles with one based on the rational information diffusion

channel and the other one based on behavioural bias interpretation. For testing informa-

tion diffusion channel, we apply a similar testing procedure in the equities market (Hong

et al., 2007; Rapach et al., 2015; Menzly and Ozbas, 2010) to the cryptocurrencies mar-

ket. We have found limited evidence to support the information diffusion interpretation.

Specifically, in the equities market, the cross-industry information is known to significantly

predicts future returns of other industries, while it does not hold for the cryptocurrencies

market. Actually, the cross-group information does not show any significant return pre-

dictability in cryptocurrencies market by Fama-MacBeth regression. This is not because

the market is efficient enough to reflect all the information immediately, but it is a result

of the fact that the market is crowded with sentiment that the fundamental information

is far away from being priced. Although many investors apply the blockchain technology

to their business, no one knows how to price these technologies, thus making it difficult to

provide an explanation through information diffusion channel.

Therefore, we turn to the alternative channel, which focuses on invertors behavioural

bias. As illustrated in Baker and Wurgler (2006), stocks that are newer, smaller, more

volatile, less profitable, and those with analogous characteristics, hard to value or arbi-

trage, tend to suffer from strong sentiment bias or behavioural bias. Similarly, in the

cryptocurrencies market, numerous literatures have documented sentiment effect (see Cre-

tarola et al. (2017) for a comprehensive review.), and this motivates us to focus on the

behaviour channel to study the asset pricing inference of our grouping results. We first

examine the node covariate centrality score, which is defined as degree centrality of the
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covariate matrix, and hypothesize that the fundamental centrality reflects the popularity

of the fundamental settings of a group. Then, we argue that the investors who trade the

coins in the group with a lower centrality score (less popular technologies) may face higher

information asymmetry. The reason is that for the groups with special settings (the funda-

mental is less likely to be employed by other groups), investors have less peer fundamental

information to assist understanding its price, which makes coins hard to value for investors.

Besides, the liquidity for the altcoin market is much worse than the equities market so the

arbitrage cost is very high. In this case, investors’ speculation behaviour will create tem-

porary price pressure which will result in a strong return reversal in the next trading day.

Formally, we propose following hypothesis:

Hypothesis: Contrarian strategy is more profitable for the groups with lower node

covariate centrality scores.

4.2 Group Centrality and Characteristic Distribution

From this section onwards, we will conduct several empirical tests to check the hypothesis

proposed in the previous section. Firstly, as shown in Figure 5(c), Group 1 receives the

lowest centrality score under a combined fundamental setting, and it indicates this group

may have the most special settings comparing to other groups. Therefore, we may expect

Group 1 to suffer from the most severe behavioural bias due to hard-to-value effect. By

contrast, the centrality score of Group 3 is the highest, so it would has the most common

fundamental settings, and thus the weakest return reversal is expected.

To verify the findings above, we then investigate the fundamental setting such as the

algorithms and proof types among the five groups. Figure 6 plots the overall technology

distribution of top 200 cryptocurrencies. Surprisingly, instead of SHA256 and Ethash

(which are BTC and ETH fundamental algorithm respectively), “Multiple” algorithm5 is

the most widely used algorithm, (more than 35% of cryptocurrencies tend to use this new

technology) in the current market according to Figure 6(a). In addition, Scrypt and X11

5Multiple is an algorithm that allows developers to mine any of the five used algorithms ? Scrypt,

SHA256D, Qubit, Skein or Myriad-Groestl. Given this feature, it attracts more developers to contribute

their computing power hence driving the developing of the market.
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(a) Algorithm (b) Proof Types

(c) Combined Fundamental

1

Figure 5: This figure depicts centrality score of each group in terms of fundamental set-

tings. Subfigure (a) and (b) report centrality scores according to algorithm and proof type

inferred network respectively, and (c) reports centrality score according to combined funda-

mental information. For the centrality score of combined fundamental information, we first

construct the attribution matrix by aggregating both algorithm inferred adjacency matrix

and proof type inferred adjacency matrix. We then calculate the degree centrality of each

cryptocurrency and normalize the sum of centrality equals to 1. The group centrality is

then defined as the average of centrality score of its group members.
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are the second and third most widely used algorithms. This suggests that new technologies

developed in the cryptocurrencies market are more widely accepted by new start-ups. In

terms of proof types, its distribution delivers a similar message. Although Proof-of-Work is

still leading the other rewarding systems, mFBA rewarding system has become the second

most widely used rewarding system, which is designed to fit Multiple algorithm, indicating

that there is a trend of chasing new technologies in cryptocurrencies market.

In Figure 7, we present the evolution of technologies over the sampling period. Figure

7(a) plots the evolution of algorithm and 7(b) plots the proof types. Both figures indicate

that the mainstream of fundamental technologies in cryptocurrencies market has become

the Multiple algorithm plus mFBA proof type since 2017. Multiple algortihm is still below

18% in terms of total cryptocurrency support in the end of 2016 while it climbs to the first

place with more than 36% of total supports in two years. Similarly, we find new rewarding

mechanisms have been developed to fit the market demand, evidenced by the increase of

mFBA market support. On the contrary, existing proof types, such as PoW and PoS lose

their competitiveness in the recent days. So overall, from the figure, we witness that the

market is growing fast with the support of new products and technologies.

Figure 8 further illustrates the characteristic distribution of different groups. In particu-

lar, Group 2 and Group 3 concentrate their algorithms on Multiple and Scrypt respectively.

Group 3, which has the highest fundamental centrality score, has more than 80% of group

members employ Multiple algorithm, which is also the most popular technology in the

market. Group 2 shows more than 60% of group members adopt Scrypt as their funda-

mental algorithm, which is the second most widely used techonology. Not surprisingly,

these two groups achieve highest centrality score in terms of algorithm commonality in the

market, evidenced by Figure 5(c). Interestingly, Group 1 members also adopts a common

technology, Scrypt, as their main algorithm which explains why the algorithm centrality

score of Group 1 is not the lowest. Neverthless, combining with proof types, Group 1

achieves the lowest fundamental centrality score. As shown in Figure 8(b), Group 1 uses

mixed Proof-of-Work6 and Proof-of-State7 as their rewarding system while other groups

6PoW-based cryptocurrencies, such as bitcoin, uses mining, that is, the solving of computationally

intensive puzzles to validate transactions and create new blocks.
7PoS-based cryptocurrencies, the creator of the next block is chosen via various combinations of random
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(a) Algorithm

(b) Proof Types

1

Figure 6: This figure depicts the distribution of technology, including algorithm and proof

types of cryptocurrencies market. In both figures, the y axis stands for the percentage of

cryptocurrencies. While x axis stands for category of a fundamental technology. Subfigure

(a) stands for the algorithm and (b) stands for the proof types.
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Figure 7: This figure depicts the time variation of fundamental algorithms or proof types

that are widely used in the cryptocurrencies market. In both figures, the y axis stands for

the percentage of total cryptocurrencies. Subfigure (a) stands for the algorithm and (b)

stands for the proof types.
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mainly adopt single proof type as their main rewarding systems. Given PoW and PoS are

two quite different rewarding systems, a mixed use in one Blockchain is preferred only in

the early days while it becomes less common in nowadays as it may generate inconsistent

objective functions among developers and hence discourage developers to do the mining.

4.3 Cross-sectional Return Predictability

In this section, we test the hypothesis by checking the cross-sectional return predictabil-

ity with a contrarian strategy. In equities market, contrarian strategy is well-designed to

exploit return reversals by providing investors opportunities to achieve monthly abnormal

returns of about 2% (Jegadeesh, 1990; Lehmann, 1990). We plot the cumulative returns

of the whole cryptocurrencies market (all groups), the high centrality group (Group 3),

the low centrality group (Group 1), and the median in Figure 9. Consistent with our hy-

pothesis, Group 1 consistently enjoy the highest cumulative return based on the contrarian

strategy while Group 3 receives the lowest cumulative return. Meanwhile, cumulative re-

turns of contrarian strategy using all cryptocurrencies still exhibit a positive and upward

trend located in between those of Group 1 and Group 3. In particular, the daily differ-

ences between the returns of low centrality group and whole market, whole market and

high centrality group, and low centrality group and high centrality group, are as high as

1.25%, 7.67%, and 3.68%, respectively. In summary, the cross-sectional return predictabil-

ity again provides strong evidence to support our hypothesis and reinforces the economic

interpretation of our grouping results.

5 Conclusions

This paper studies the latent group structure in cryptocurrencies market and develops

dynamic version of covariate-assisted spectral clustering methods to identify the group

membership of each cryptocurrency. To obtain meaningful economic interpretations, we

have proposed a hypothesis based on the investor behavioural bias channel, and we have

the hypothesis tested by conducting asset pricing inference.

selection and wealth or age (i.e., the stake).
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Figure 8: This figure depicts technology distribution of each group. In all figures, the y

axis stands for the percentage of total group members. While x axis stands for category of

a fundamental variable. Subfigure (a) is the algorithm and (b) is the proof types.
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Figure 9: This figure plots cumulative returns of a contrarian strategy for high, median and

low centrality groups. For each group, we conduct a equal weight daily contrarian strategy

by shorting (longing) the group of cryptocurrencies with highest (lowest) return in previous

trading day. We hold portfolio for 1 trading day and rebalance them at the close price of

next trading day. We label group 3(1) as high (low) centrality group and the rest 3 groups

as median centrality groups. The sample period is from 2018-01-01 to 2018-03-31.
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Firstly, our classification results show that combining both return information and

fundamental attributions of cryptocurrencies achieves a more consistent and economically

meaningful classification results for analysis. The fundamental information indeed add on

the return’s information by providing more content for forming within-group connections.

Secondly, based on our clustering method, we show there is a “technology bias” in

cryptocurrencies market, and we provide the explanation based on the fact that the in-

vestors face higher information uncertainty to trade cryptocurrencies with fewer peer fun-

damentals. Specifically, we propose the return reversal hypotheses through the investor

behavioural bias channel. A contrarian strategy by shorting the cryptocurrencies with the

highest return and longing the cryptocurrencies with lowest return in the previous trading

day, achieves a 3.68% higher daily return in the lowest centrality group than that in the

largest centrality group. This result complements the economic meanings of our grouping

results and can be useful for investment applications.
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APPENDICES

The notations that have been frequently used in the proofs are as follows: [n] :=

{1, 2, · · · , n} for any positive integer n, Mm,n be the set of all m× n matrices which have

exactly one 1 and n−1 0’s in each row. Rm×n denotes the set of all m×n real matrices. ‖·‖

is used to denote Euclidean `2-norm for vectors in Rm×1 and the spectral norm for matrices

on Rm×n. ‖ · ‖∞ denotes the largest element of the matrix in absolute value. ‖ · ‖F is the

Frobenius norm on Rm×n, namely ‖M‖F :=
√

tr(M>M). ‖ · ‖φ2 is the sub-gaussian norm

such that for any random variable x, there is ‖x‖φ2 := supκ≥1 κ
−1/2(E|x|κ)1/κ. 1m,n ∈ Rm×n

consists of all 1’s, ιn denotes the column vector with n elements of all 1’s. 1A denotes the

indicator function of the event A.

A Preliminary Lemmas

Lemma 1. Suppose At and X are the adjacency matrix and the node covariate matri-

ces sampled from the SC-DCBM. Recall Wt and Wt are empirical and population weight

matrices. Then, we have

sup
t
‖Wt −Wt‖∞ = Op(ξ),

where ξ = max(σ2‖Lτ‖F
√

ln(TR), σ2‖Lτ‖ ln(TR), NRJ2/δ) and δ = inft{miniDτ,t(i, i)}.

Proof. Define It = XLτ,tX . Then we have

sup
t
‖Wt −Wt‖∞ ≤ sup

t
‖Wt − It‖∞ + sup

t
‖It −Wt‖∞.

For the first part, define Lτ = supt Lτ,t and ζ = max(σ2‖Lτ‖F
√

ln(TR), σ2‖Lτ‖ ln(TR)),

then by Hansen-Wright inequality (c.f., Theorem 1.1 of Rudelson and Vershynin (2013)),

we have

Pr(sup
t
‖X>Lτ,tX −X>Lτ,tX‖ > ζ) ≤

T∑
t=1

Pr(‖X>LτX −X>LτX‖ > ζ)

≤ 2T exp

{
−cmin

(
ζ2

σ4‖Lτ‖2F
,

ζ

σ2‖Lτ‖

)}
= O(1/R).
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Next, denote Ct = D−1/2τ,t AtD−1/2τ,t , then we can decompose the second part into two

parts:

sup
t
‖It−Wt‖∞ = sup

t
‖X (Lτ,t−Lτ,t)X‖∞ ≤ sup

t
‖X (Lτ,t−Ct)X‖∞+sup

t
‖X (Ct−Lτ,t)X‖∞.

Then, for part one, we have

sup
t
‖X (Lτ,t − Ct)X‖∞ = sup

t
max
s,r

∣∣∣∣∣∑
i,j

XisXjr
At(i, j)√

Dτ,t(i, i)Dτ,t(j, j)

(√
Dτ,t(i, i)Dτ,t(j, j)√
Dτ,t(i, i)Dτ,t(j, j)

− 1

)∣∣∣∣∣
≤ 1

δ
max
s,r

∑
i,j

|XisXjr| sup
t

{
max

(∣∣∣∣Dτ,t(i, i)Dτ,t(i, i)
− 1

∣∣∣∣ , ∣∣∣∣Dτ,t(j, j)Dτ,t(j, j)
− 1

∣∣∣∣)}
= max

s,r

∑
i,j

|XisXjr|Op(δ
−3/2 ln(TR))

= Op

(
NRJ2

δ3/2
ln(TR)

)
,

where the second to the last equality comes from the following proof. For any i ∈

{1, · · · , N} and ς = δ−1/2 ln(TR), from Bernstein inequality,

Pr

(
sup
t

∣∣∣∣Dτ,t(i, i)

Dτ,t(i, i)
− 1

∣∣∣∣ > ς

)
≤

T∑
t=1

Pr

(∣∣∣∣Dτ,t(i, i)

Dτ,t(i, i)
− 1

∣∣∣∣ > ς

)
≤ 2T exp

{
−ς

2Dτ,t(i, i)
2 + 2

3
ς

}
≤ 2T exp

{
− ς2δ

2 + 2
3
ς

}
= O(1/R).

For part two, similarly, we have

sup
t
‖X (Ct − Lτ,t)X‖∞ = sup

t
max
s,r

∣∣∣∣∣∑
i,j

XisXjr
At(i, j)−At(i, j)√
Dτ,t(i, i)Dτ,t(j, j)

∣∣∣∣∣
≤ max

s,r

∣∣∣∣∣∑
i,j

XisXjr

∣∣∣∣∣ sup
t

max
i,j

∣∣∣∣∣ At(i, j)−At(i, j)√
Dτ,t(i, i)Dτ,t(j, j)

∣∣∣∣∣
= Op

(
NRJ2

δ

)
.

Note that ς → 0 as δ, R→∞, we then know

sup
t
‖It −Wt‖∞ = Op

(
NRJ2

δ

)
.
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Thus, by union bounds, we obtain

sup
t
‖Wt −Wt‖∞ = Op

(
ζ +

NRJ2

δ

)
= Op(ξ).

Lemma 2. Under Assumption 4, for any ε > 0, we have

sup
t
‖St − St‖ ≤ (4 + cw)

{
3 ln(8NT/ε)

δ

}1/2

, (17)

with probability at least 1− ε.

Proof. Note by triangular inequality, we have

sup
t
‖St − St‖ ≤ sup

t

∥∥αtXWtX
> − αtXWtX>

∥∥ (18)

+ sup
t

∥∥∥D−1/2τ,t AtD−1/2τ,t −D
−1/2
τ,t AtD

−1/2
τ,t

∥∥∥ (19)

+ sup
t

∥∥∥D−1/2τ,t AtD
−1/2
τ,t −D

−1/2
τ,t AtD−1/2τ,t

∥∥∥ . (20)

For equation (18), we have,

sup
t

∥∥αtXWtX
> − αtXWtX>

∥∥ = sup
t

∥∥αtX(Wt −Wt)X
>∥∥+ sup

t

∥∥αtXWtX
> − αtXWtX>

∥∥
≤ αmaxNRJ

2 sup
t
‖Wt −Wt‖+ 2αmaxNRJ

2 sup
t
‖Wt‖

= Op(αmaxNRJ
2ξ).

So, by Assumption 4 we know, for large enough N , with probability at least 1− ε/2,

sup
t

∥∥αtXWtX
> − αtXWtX>

∥∥ ≤ cwa

For equation (19), let Yt(i, j) = D−1/2τ,t [(At(i, j)− pt(i, j))Eij]D−1/2τ,t with Eij ∈ RN×N being

the matrix with 1 in ij and ji’th positions and 0 everywhere else. Then we know

sup
t
‖Yt(i, j)‖ ≤ sup

t

√
Dτ,t(i, i)Dτ,t(j, j) ≤

1

δ
, v2 = sup

t
‖
∑

E(Y 2
t (i, j))‖ ≤ 1

δ
.

So, denote a =

{
3 ln(8NT/ε)

δ

}1/2

, which is smaller than 1 by assumption, and by matrix
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Bernstein inequality, we have

Pr(sup
t
‖D−1/2τ,t [At(i, j)−At(i, j)]D−1/2τ,t ‖ > a) ≤

T∑
t=1

Pr(‖D−1/2τ,t [At(i, j)−At(i, j)]D−1/2τ,t ‖ > a)

≤ 2NT exp

(
− a2

2/δ + 2a/3δ

)
≤ 2NT exp

(
−3 ln(8NT/ε)

3

)
= ε/4.

Hence, with probability at least 1− ε/4,

sup
t
‖D−1/2τ,t AtD−1/2τ,t −D

−1/2
τ,t AtD

−1/2
τ,t ‖ ≤ a (21)

Lastly, for equation (20), by Qin and Rohe (2013) and setting λ = aDτ,t(i, i) we have

Pr(|Dτ,t(i, i)−Dτ,t(i, i)| ≥ λ) ≤
(

exp

{
− λ2

2Dτ,t(i, i)

}
+ exp

{
− λ2

2Dτ,t(i, i) + 2
3
λ

})
≤ 2 exp

{
− λ2

2Dτ,t(i, i) + 2
3
λ

}
= 2 exp

{
−a

2Dτ,t(i, i)
2 + 2

3
a

}
≤ 2 exp

{
− ln(8NT/ε)× Dτ,t(i, i)

δ

}
≤ ε

4NT
.

Further note that

Pr

(
sup
t
‖D−1/2τ,t D

1/2
τ,t − I‖ ≥ a

)
≤

T∑
t=1

Pr
(
‖D−1/2τ,t D

1/2
τ,t − I‖ ≥ a

)
≤

T∑
t=1

Pr

(
max
i

∣∣∣∣Dτ,t(i, i)

Dτ,t(i, i)
− 1

∣∣∣∣ ≥ a

)

≤
T∑
t=1

N∑
i=1

Pr (|Dτ,t(i, i)−Dτ,t(i, i)| ≥ aDτ,t(i, i))

≤ NT × ε

4NT

= ε/4.
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Therefore, with probability at least 1− ε/4, we have

sup
t
‖D−1/2τ,t AtD

−1/2
τ,t −D

−1/2
τ,t AtD−1/2τ,t ‖ = sup

t
‖Lτ,t −D−1/2τ,t D

1/2
τ,t Lτ,tD

1/2
τ,t D

−1/2
τ,t ‖

= sup
t
‖(I −D−1/2τ,t D

1/2
τ,t )Lτ,tD

1/2
τ,t D

−1/2
τ,t + Lτ,t(I −D1/2

τ,t D
−1/2
τ,t )‖

≤ sup
t
‖D−1/2τ,t D

1/2
τ,t − I‖ sup

t
‖D−1/2τ,t D

1/2
τ,t ‖+ sup

t
‖D−1/2τ,t D

1/2
τ,t − I‖

≤ a2 + 2a

where the second last inequality comes from the fact that supt ‖Lτ,t‖ ≤ 1.

Therefore, joining the results for these three equations, we have, with probability at

least 1− ε,

‖St − St‖ ≤ a2 + 3a+ cwa ≤ (4 + cw)a = (4 + cw)

{
3 ln(8NT/ε)

δ

}1/2

. (22)

Lemma 3. Under the dynamic SC-DCBM with K blocks, define Γτ,t ∈ RN×K with columns

containing the top K eigenvectors of St. Then, under Assumption 4, there exists an orthog-

onal matrix Ut depending on τt for each t = 1, · · · , T , such that for any i, j = 1, · · · , N ,

Γτ,t = Ψ
1/2
τ,t Zt(Z

>
t Ψτ,tZt)

−1/2Ut and Γ ∗τ,t(i, ∗) = Γ ∗τ,t(j, ∗)⇐⇒ Zt(i, ∗) = Zt(j, ∗),

where Γ ∗τ,t(i, ∗) = Γτ,t(i, ∗)/‖Γτ,t(i, ∗)‖.

Proof. Denote DB,t as a diagonal matrix with entries DB,t(i, i) =
∑K

j=1Bt(i, j), and Ψτ,t =

Diag(ψτ,t) with ψτ,t(i) = ψt
Dt(i,i)
Dτ,t(i,i) . Then, Under the dynamic SC-DCBM, we have the

decomposition below

Lτ,t = D−1/2τ,t AtD
−1/2
τ,t = Ψ

1/2
τ,t ZtBL,tZ

>
t Ψ

1/2
τ,t ,

where BL,t = D
−1/2
B,t BtD

−1/2
B,t .

Define Mt such that X = E(X) = Ψ
1/2
τ,t ZtMt, and Ωt = BL,t + αtMtWtM

>
t , then we

know

St = Ψ
1/2
τ,t ZtΩtZ

>
t Ψ

1/2
τ,t . (23)
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Now, denote Yτ,t = Z>t Ψτ,tZt, and let Hτ,t = Y
1/2
τ,t ΩtY

1/2
τ,t . Then, by eigen-decomposition,

we have Hτ,t = UtΛtU
>
t . Define Γτ,t = Ψ

1/2
τ,t ZtY

−1/2
τ,t Ut, then

Γ>τ,tΓτ,t = U>t Y
−1/2
τ,t Z>t Ψ

1/2
τ,t Ψ

1/2
τ,t ZtY

−1/2
τ,t Ut

= U>t Y
−1/2
τ,t Yτ,tY

−1/2
τ,t Ut

= U>t Ut = I,

and we have

StΓτ,t = (Ψ
1/2
τ,t ZtΩtZ

>
t Ψ

1/2
τ,t )Ψ

1/2
τ,t Zt(Z

>
t Ψτ,tZt)

−1/2Ut

= Ψ
1/2
τ,t ZtΩtY

1/2
τ,t Ut

=
{
Ψ

1/2
τ,t ZtY

−1/2
τ,t

(
Y

1/2
τ,t ΩtY

1/2
τ,t

)}
Ut

= Ψ
1/2
τ,t ZtY

−1/2
τ,t (UtΛtU

>
t )Ut

= Γτ,tΛt.

Following Qin and Rohe (2013), it is obvious that

Γ ∗τ,t(i, ∗) =
Γτ,t(i, ∗)
‖Γτ,t(i, ∗)‖

= Zi,tUt.

Then, by directly applying the Lemma 1 in Binkiewicz et al. (2017), we complete the

proof.

B Main Proof

Proof. By Tao (2018), we can easily extends its result to

sup
t

|Mt|
N
≤ c1(ε)K

m2
zNλ

2
K,max

sup
t

∥∥∥Ŝt,r − St∥∥∥2 . (24)

Then, for St, we have the following representation:

St = D−1/2τ,t ΨZtBtZ
>
t ΨD

−1/2
τ,t + αtXWtX>, (25)

To figure out the upper bound of the estimation error, we have to evaluate the error

bound supt

∥∥∥Ŝt,r − St∥∥∥. Define

St,r =
1

|Fr|
∑
i∈Fr

Wr,l(i)St+i, (26)
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then by triangle inequality, we have

∆(r) = sup
t

∥∥∥Ŝt,r − St∥∥∥ ≤ sup
t

∥∥∥Ŝt,r − St,r∥∥∥+ sup
t
‖St,r − St‖ = ∆1(r) + ∆2(r). (27)

For ∆1(r), by Lemma 2, we have

∆1(r) =
1

|Fr|
∑
i∈Fr

Wr,l(i) sup
t
‖St+i − St+i‖

≤ 1

|Fr|
∑
i∈Fr

Wr,l(i)

{
(4 + cw)

[
3 ln(8NT/ε)

δ

]1/2}

≤ Wmax(4 + cw)

{
3 ln(8NT/ε)

δ

}1/2

. (28)

For ∆2, we have the following decomposition

∆2(r) = sup
t
‖St,r − St‖ ≤ sup

t

∥∥∥St,r − S̃t,r∥∥∥+ sup
t

∥∥∥S̃t,r − St∥∥∥ = ∆21 + ∆22, (29)

where

S̃t,r =
1

|Fr|
∑
i∈Fr

Wr,l(i)
(
D−1/2τ,t ZtBt+iZ

>
t D

−1/2
τ,t + αt+iXWtX>

)
. (30)

Then for ∆21, we have

∆21,t ≤ Wmax
1

|Fr|
∑
i∈Fr

sup
t

∥∥∥D−1/2τ,t+iΨZt+iBt+iZ
>
t+iΨD

−1/2
τ,t+i −D

−1/2
τ,t ΨZtBt+iZ

>
t ΨD

−1/2
τ,t

∥∥∥
≤ Wmax

1

|Fr|
∑
i∈Fr

sup
t

{(∥∥∥D−1/2τ,t+iΨZt+i

∥∥∥+
∥∥∥D−1/2τ,t ΨZt

∥∥∥) ‖Bt+i‖
∥∥∥D−1/2τ,t+iΨZt+i −D

−1/2
τ,t ΨZt

∥∥∥}
≤ Wmax

1

|Fr|
∑
i∈Fr

sup
t

{(∥∥∥D−1/2τ,t

∥∥∥ ‖Zt+i‖+
∥∥∥D−1/2τ,t

∥∥∥ ‖Zt‖) ‖Bt+i‖
∥∥∥D−1/2τ,t+iΨZt+i −D

−1/2
τ,t ΨZt

∥∥∥} ,
where the last inequality comes from the fact that ‖Ψ‖ = maxi

∣∣√ψi∣∣ ≤ 1.

Then, observe that supt

∥∥∥D−1/2τ,t

∥∥∥ ≤ δ−1/2, supt ‖Zt‖ ≤ P
1/2
max, supt ‖Bt‖ ≤ K, we then

have

sup
t

{∥∥∥D−1/2τ,t

∥∥∥ ‖Zt+i‖+
∥∥∥D−1/2τ,t

∥∥∥ ‖Zt‖} ≤ 2δ−1/2P 1/2
max. (31)

Further, note that

sup
t

∥∥∥D−1/2τ,t+iΨZt+i −D
−1/2
τ,t ΨZt

∥∥∥ ≤ sup
t

{∥∥∥D−1/2τ,t+iΨZt+i −D
−1/2
τ,t+iΨZt

∥∥∥+
∥∥∥D−1/2τ,t+iΨZt −D

−1/2
τ,t ΨZt

∥∥∥}
≤ sup

t

{∥∥∥D−1/2τ,t+i

∥∥∥ ‖Ψ‖ ‖Zt+i − Zt‖+
(∥∥∥D−1/2τ,t+i

∥∥∥ ‖Ψ‖+
∥∥∥D−1/2τ,t

∥∥∥ ‖Ψ‖) ‖Zt‖}
≤

√
2|r|s
δ

+

√
4Pmax

δ
.
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Then, combine the results above with the assumption δ > 3 ln(8NT/ε) in Lemma 2, we

have

∆21 ≤
2WmaxK√
3 ln(8NT/ε)

(
√

2Pmaxrs+ 2Pmax). (32)

Lastly, for ∆22, similarly, we define

S̃t,r =
1

|Fr|
∑
i∈Fr

Wr,l(i)
(
Yτ,tBt+iY

>
τ,t + αt+iXWtX>

)
. (33)

and Yτ,t := D−1/2τ,t ΨZt.

Then, apply the results in Pensky and Zhang (2017) and proof of Lemma 2, we obtain

∆22 = sup
t

∥∥∥S̃t,r − St∥∥∥
=

1

|Fr|
∑
i∈Fr

Wr,l(i) sup
t

(
Yτ,t ‖Bt+i −Bt‖Y >τ,t + ‖αt+i − αt‖

∥∥XWtX>
∥∥)

≤ sup
t

{
max

1≤j′≤N

N∑
j=1

∣∣(Yτ,tQr,tY
>
τ,t)(j, j

′)
∣∣}+ 2αmaxWmaxNRJ

2 sup
t
‖Wt‖

≤ sup
t

max
k,k′
|Qr,t| max

1≤j′≤N

K∑
k=1

K∑
k′=1

∑
j∈Gt,k

Yτ,t(j, k)

Yτ,t(j′, k′)
+ cw

{
3 ln(8NT/ε)

δ

}1/2

≤ NLWmax

δ · l!

( r
T

)β
+ cw

{
3 ln(8NT/ε)

δ

}1/2

≤ NLWmax

3 ln(8NT/ε) · l!

( r
T

)β
+ cw

{
3 ln(8NT/ε)

δ

}1/2

(34)

where the last two inequalities come from the fact that maxi ψi ≤ 1 and δ > b2.

Now, combine the results provided by equation (24), (28), (32), and (34), we derive the

upper bound for misclustering rate of dynamic DCBM: with probability at least 1− ε,

sup
t

|Mt|
N
≤ c(ε)KW 2

max

m2
zNλ

2
K,max

{
(4 + 2cw)

b

δ1/2
+

2K

b
(
√

2Pmaxrs+ 2Pmax) +
NL

b2 · l!

( r
T

)β}2

.

where b =
√

3 ln(8NT/ε), λK,max = maxt{λK,t} and c(ε) = 29(2 + ε)2.
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Chen, C., W. Härdle, H. AJ, and W. W (2018): “Pricing Crypto Currency Options,

the case of CRIX,” Journal of Financial Econometrics.

Chen, K. and J. Lei (2017): “Network cross-validation for determining the number of

communities in network data,” Journal of the American Statistical Association, 1–11.
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