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Abstract

In a continuous-time setting where a risk-averse agent controls the drift of an output
process driven by a Brownian motion, optimal contracts are linear in the terminal output;
this result is well-known in a setting with moral hazard and – under stronger assumptions
– adverse selection. We show that this result continues to hold when in addition reser-
vation utilities are type-dependent. This type of problem occurs in the study of optimal
compensation problems involving competing principals.

Keywords: Principal-agent modelling; contract design; stochastic process; stochastic control

1 Introduction

The purpose of this note is to show that linear payoffs arise as optimal contracts offered by
a principal to agents in a setting with moral hazard, private information and competition for
agents. The design of compensation schemes in a principal-agent relationship typically involves
a bonus component to incentivize the agent (e.g. employee, worker) to act in the principal’s
(employer’s) interest. The complicated, often highly non-linear form of contracts suggested by
economic models is seldom met in reality where bonus schemes encountered are simple and
frequently linear in the output generated by the agent. One explanation for this gap between
theory and practice lies in the fact that linear compensation schemes are robust in the richer,
more diffuse real environment, whereas the optimal contract in a highly stylised economic model
fails at the slightest change of model assumptions or parameters.

Against this backdrop, Holmstrom and Milgrom (1987) show that the optimal contract for
an agent controlling the drift of an output process driven by a Brownian motion, when the
principal observes only the output process, is a linear function of the terminal output. The
principal’s inability to directly observe the action of the agent is a moral hazard problem, im-
plying that the agent’s effort cannot be contractually agreed, but instead the agent must be
incentivized to exert effort. Restricting the principal’s observability to the terminal output,
Sung (2005) extends this to a setting where agents have different capabilities that the princi-
pal cannot observe or otherwise directly infer (private information). In this adverse selection
problem, it is optimal to offer a menu of linear contracts designed for the different agent types,
incentivizing each agent to choose the contract designed for their type (screening).

Screening typically provides agent types with different utilities. As a consequence, if there
are several principals competing for agents, reservation utilities for agents will be type-dependent
(as opposed to the case, for example, where the outside option is not to work at all). This setting
is found in the recent literature on competition, e.g. Jullien (2000); Bénabou and Tirole (2016);
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Bannier et al. (2016). We prove that the linearity of contracts in the Holmstrom-Milgrom model
carries over to the case of moral hazard, private information and competition. The proofs use
techniques from stochastic control theory, see e.g. Fleming and Rishel (1975).

2 The model

The setting is similar to Holmstrom and Milgrom (1987), Schaettler and Sung (1993) and Sung
(2005). An agent employed by a principal exerts (costly) effort, which in turn increases her
output. The principal observes only the output, consisting of the agent’s effort level and random
noise (moral hazard). Hence, the effort level cannot be contracted and must be incentivized by
a bonus scheme. With agents of different capabilities that are unobservable by the principal
(private information), the principal may find it optimal to offer different contracts specifically
designed for each type, and must take care that each contract appeals most to the type that
it is designed for. Finally, with several principals competing for agents, reservation utilities are
derived from the outside option of being employed by another principal. Just as the utilities
offered to agents of different capabilities differ, so do their reservation utilities. These must be
taken into account by a principal wishing to employ agents of all types. The principal is hence
faced with an optimization problem taking into account random noise, unobservable agent types
and type-dependent reservation utilities. This type of problem can be solved using martingale
theory to derive a Hamilton-Jacobi-Bellman equation, which in turn leads to constant controls
that do not depend on time. First, we formalize the setting and then give the principal’s
optimization problem in the next section.

A risk-neutral principal employs a risk-averse agent whose preferences are expressed by
CARA utility with parameter ρ, i.e., U(x) = 1 − e−ρx. The agent’s capabilities θ ∈ {θL, θH}
are private information. The probabilities α, resp. 1 − α, of meeting an H-type, resp. L-type,
agent are known to the principal.

A type-k agent, by exerting effort µ = (µt)t≥0, which is assumed to be bounded, controls
the drift of an output process with dynamics

dZt = µt θk dt+ σ dWt, t ≥ 0,

with σ > 0 and where W = (Wt)t≥0 is a Brownian motion independent of θ. The agent observes
the Brownian motion W , so that µ is adapted to the filtration generated by the Brownian
motion. The agent’s effort is subject to an instantaneous cost c(µt), t ≥ 0, where c(0) = 0, c
is strictly increasing, convex and continuously differentiable. In addition, we require c′′′ ≥ 0
for Proposition 2. We shall assume that θH > θL, expressing that a type-H agent generates a
higher drift at equal effort cost than a type-L agent.

The principal observes the output process Z = (Zt)t≥0, but neither W nor µ, so the compen-
sation, realised at time 1, can be contingent on (Zt)0≤t≤1 only. At time 0, the principal offers
contracts, consisting of sharing rules {S((Zt)t∈[0,1], θk), k ∈ {H,L}}, where S(·, θk) denotes the
sharing rule designed for a type-k agent. An agent choosing contract S(·, θk) at time 0, receives
at time 1

S((Zt)0≤t≤1, θk)−

∫ 1

0
c(µt) dt,

while the principal receives
Z1 − S((Zt)0≤t≤1, θk).
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3 The principal’s problem

Denote by S(·, θm) the contract designed for an m-type agent. An agent of type k ∈ {H,L},

when choosing contract S(·, θm) exerts effort µk,m = (µk,m
t )t≥0 and derives certainty equivalent

wk,m at time 1. Whenever k = m, we write µk and wk. The principal’s problem is as follows:

Problem 1. Choose controls {µH , µL} and a menu of contracts {S(·, θH ), S(·, θL)} maximising

αE
[
ZH
1 − S((ZH

t )0≤t≤1, θH)
]
+ (1− α)E

[
ZL
1 − S((ZL

t )0≤t≤1, θL)
]
,

subject to

(1) dZk
t = µk

t θk dt+ σdWt, k ∈ {H,L},

(2) µ
k,m
t ∈ argmax(µt)0≤t≤1

E

[

U
(

S((Zt)0≤t≤1, θm)−
∫ 1
0 c(µt) dt

)]

, where dZt = µtθk dt+σ dWt,

and k,m ∈ {H,L},

(3) E

[

U
(

S((Zk
t )0≤t≤, θk)−

∫ 1
0 c(µk

t ) dt
)]

≥ E

[

U
(

S((Zk,m
t )0≤t≤1, θm)−

∫ 1
0 c(µm,k

t ) dt
)]

, where

dZk,m
t = µ

k,m
t θk dt+ σ dWt and m,k ∈ {H,L}, (ICC)

(4) E

[

U
(

S((Zk
t )0≤t≤, θk)−

∫ 1
0 c(µk

t ) dt
)]

≥ U(wk), where k ∈ {H,L}, (PC).

The first constraint defines the dynamics of the output processes of each type when choosing
the contract designed for her. The second constraint expresses that agents maximise their
expected utility. The third constraint, the incentive compatibility constraint (ICC), makes
each agent optimally choose the contract designed from her. Finally, the fourth constraint,
the participation constraint (PC), ensures that an agent contracts with the principal instead of
choosing her outside option with certainty equivalent wk (the general results do not change if
it were unprofitable to attract a particular agent type).

4 The agent’s choice of drift

We consider the agent’s problem when faced with a menu of contracts. The following result is
slightly adapted from Holmstrom and Milgrom (1987).

Theorem 1. The adapted stochastic process (µt)0≤t≤1 is implemented with certainty equivalent
w by a type-k agent by a sharing rule S((Zt)0≤t≤1, θk) only if

S((Zt)0≤t≤1, θk) = w+

∫ 1

0
c(µt) dt+

∫ 1

0

c′(µt)

θk
dZt−

∫ 1

0
c′(µt)µt dt+

ρ

2

∫ 1

0

(
c′(µt)

θk

)2

σ dt.

(1)

Proof. See Theorem 6 of Holmstrom and Milgrom (1987) and Corollary 4.1 of Schaettler and Sung
(1993).

The first two terms provide a certainty equivalent of w and a direct compensation of the
effort cost should the agent choose to exert effort (µt)0≤t≤1. The third term incentivizes the
agent to choose effort level µ. The last two terms compensate the agent for the mean and risk
of the output process, i.e., they correspond to the certainty equivalent of the third term.

3



Proposition 1. A type-k agent, when choosing the contract designed for the m-type agent,
derives expected utility

E

[

U

(

wm +

∫ 1

0
c′(µk,m

t )µk,m
t − c(µk,m

t )−
(
c′(µm

t )µm
t − c(µm

t )
)
dt

)]

, (2)

where µk,m denotes the k-type agent’s optimal control, which solves

c′(µk,m
t ) =

θk

θm
c′(µm

t ). (3)

Furthermore, the H-type agent exerts greater effort and derives greater utility from a given
contract than the L-type agent.

Proof. Let S((Zt)0≤t≤1, θm) be the contract designed for an m-type agent offering wm and
implementing µm. A type-k agent implementing µ, that is, dZt = µtθk dt + σ dWt, t ≥ 0,
derives expected utility

E

[

U

(

wm +

∫ 1

0
c(µm

t )− c(µt) dt+

∫ 1

0

c′(µm
t )

θm
dZt −

∫ 1

0
c′(µm

t )µm
t −

ρ

2

(
c′(µm

t )

θm

)2

σ2 dt

)]

,

which can be written as E [U(Xµ
1 )] with state process

Xµ
u := wm u+

∫ u

0
c(µm

t )− c(µt) dt+

∫ u

0

c′(µm
t )

θm
σ dWt

+

∫ u

0
c′(µm

t )µt
θk

θm
− c′(µm

t )µm
t +

ρ

2

(
c′(µm

t )

θm

)2

σ2 dt.

By the Itô formula,

dXµ
t =

[

wm + c(µm
t )− c(µt) + c′(µm

t )

(

µt
θk

θm
− µm

t

)

+
ρ

2

(
c′(µm

t )

θm

)2

σ2

]

dt+
c′(µm

t )

θm
σ dWt.

Define J(t, x;µ) = E [U(Xµ
1 )|X

µ
t = x], which is once (twice) continuously differentiable in

t (x) (applying Dominated Convergence for differentiating inside the expectation operator), so
that J(0, x;µ) = E[U(Xµ

1 )] corresponds to the objective function. Because J is a martingale,
the following PDE holds:

Jt+
1

2

(
c′(µm

t )

θm

)2

σ2Jxx+

[

wm + c(µm
t )− c(µt) + c′(µm

t )

(

µt
θk

θm
− µm

t

)

+
ρ

2

(
c′(µm

t )

θm

)2

σ2

]

Jx = 0,

where Jt, Jx, Jxx denote the respective partial first- and second-order derivatives. Setting
V (t, x) = supµ J(t, x;µ), the Hamilton-Jacobi-Bellman PDE is

Vt +
1

2
σ2Vxx + sup

µ

[

c′(µm
t )

θk

θm
µt − c(µt)

]

Vx +

[

c(µm
t )− c′(µm

t )µm
t +

ρ

2

(
c′(µm

t )

θm

)2

σ2

]

Vx = 0,

with boundary condition V (1, x) = U(x). The agent’s Hamiltonian is given by

H = −c(µt) + c′(µm
t )µt

θk

θm
,
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leading to the optimal effort choice µ
k,m
t fulfilling the FOC (3).

If k = H and m = L, the FOC expresses that the H-type agent exerts greater marginal
effort on the L-type’s contract than the L-type. Moreover, because of the convexity of c, it
follows that µH,L

t > µL
t . Conversely, if k = L and m = H, then µ

L,H
t < µH

t .
The k-type agent’s expected utility is given by (2). Because c is strictly increasing and

convex, the mean value theorem implies c′(x)x > c(x), and

d

dx

[
c′(x)x− c(x)

]
= c′′(x)x > 0, x > 0.

Therefore, when m = H and k = L, the integral is strictly positive, and the H-type agent
derives a greater utility from the L-type’s contract than the L-type. Conversely, if m = L and
k = H, the L-type derives a smaller utility from the H-type’s contract than the H-type.

The classical result is obtained that if both types’ reservation utilities are equal, then the H-
type has an incentive to imitate if second-best contracts were offered (i.e., contracts with moral
hazard only), in which case the contract designed for the L-type needs to be distorted to prevent
the H-type from imitating (e.g. Salanié (2005)). If reservation utilities are type-dependent, then
the situation may be reversed, and the H-type’s contract may need to be distorted to prevent
the L-type from imitating.

5 Optimal contracts

Turning to Problem 1, we restrict the analysis to the case where the H-type has an imitation
incentive; the case when the difference of the types’ reservation utilities is sufficiently large
for the L-type to have an imitation incentive is treated in a similar way. We omit the proof
of the following well-known results when the H-type has an imitation incentive (e.g. Salanié
(2005)): The L-type’s (PC) is binding (constraint (4) in Problem 1; to attract the L-type)
and the H-type’s (ICC) is binding (constraint (3) in Problem 1; to prevent the high type from
imitating), while the L-type’s (ICC) is non-binding. The H-type’s contract features the second-
best (constant) drift rate µH,⋆ (there is no reason to deviate from the optimum), while the effort
level µL,⋆ in the contract for the L-type is distorted to prevent the H-type from imitating.

The principal thus solves

sup
µH ,µL,S(·,θH),S(·,θL)

E
[
α(ZH

1 − S((ZH
t )0≤t≤1, θ

H)) + (1− α)(ZL
1 − S((ZL

t )0≤t≤1, θ
L))
]
,

subject to

(1) E

[

U
(

S((ZL
t )0≤t≤1, θL)−

∫ 1
0 c(µL

t ) dt
)]

= U(wL); (PCL)

(2)
E

[

U

(

S((ZH,L
t )0≤t≤1, θ

L)−

∫ t

0
c(µH,L

t ) dt

)]

= E
[
U
(
S((ZH

t )0≤t≤1, θ
H)− c(µH,⋆)

)]

= E

[

1− exp
(

− ρ
(

wL +

∫ 1

0
c′(µH,L

t )µH,L
t − c(µH,L

t )−
[
c′(µL

t )µ
L
t − c(µL

t )
]
dt

︸ ︷︷ ︸

=:u1(µL)

))]

,

with µ
H,L
t given by Equation (3); (ICCH)

(3) E
[
U
(
S((ZH

t )0≤t≤1, θ
H)− c(µH,⋆)

)]
≥ E[U(wH)]; (PCH)
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Proposition 2. Under adverse selection, moral hazard and when reservation utilities are type-
dependent, the optimal effort levels µH,⋆, µL,⋆ in the contracts designed for the H-type, resp.
L-type agent are constant, and optimal contracts are linear in the terminal outputs ZH

1 and ZL
1 .

In the proof it is shown that if (PCH) is non-binding, then µL,⋆ satisfies

c′(µL,⋆) =

(

θL −
α

1− α

{

c′′(µH,L,⋆)µH,L,⋆ ∂

∂µL,⋆
µH,L,⋆ − c′′(µL,⋆)µL,⋆

}) (

1 +
ρ σ2

θ2L
c′′(µL,⋆)

)−1

,

(4)
By the assumption that c′′′ ≥ 0 it follows directly that the optimal control is smaller than the
second best optimal control without adverse selection (which is obtained when α = 0). If (PCH)
is binding, then µL,⋆ satisfies

wH − wL = c′(µH,L,⋆)µH,L,⋆ − c(µH,L,⋆)− [c′(µL,⋆)µL,⋆ − c(µL,⋆)]. (5)

Proof. First, assume that (PCH) is non-binding (this case arises when the difference between
reservation utilities is small or zero). From (ICCH), where the right-hand side depends only on
the effort level incentivized by the principal, it follows that the H-type’s certainty equivalent is

−
lnE[e−ρu1(µL)]

ρ
.

Using Theorem 1, the conditions imply

S((ZL
t )0≤t≤1, θL)

= wL +

∫ 1

0
c(µL

t ) dt+

∫ 1

0

c′(µL
t )

θL
dZL

t −

∫ 1

0
c′(µL

t )µ
L
t dt+

ρ

2

∫ 1

0

(
c′(µL

t )

θL

)2

σ2 dt (6)

and

S((ZH
t )0≤1≤t, θH)

=
− lnE[e−ρ u1(µL)]

ρ
+ c(µH,⋆) +

c′(µH,⋆)

θH
ZH
1 − c′(µH,⋆)µH,⋆ +

ρ

2

(
c′(µH,⋆)

θH

)2

σ2. (7)

Setting

X
µL

t := α

(

ZH
t −

{

−
lnE[e−ρ ut(µL)]

ρ
+ c(µH,⋆)t+

ρ

2

(
c′(µH,⋆)

θH

)2

σ2 t+
c′(µH,⋆)

θH
σWt

})

+ (1− α)

(

ZL
t −

{

wL t+

∫ t

0
c(µL

u ) du+
ρ

2

∫ t

0

(
c′(µL

u )

θL

)2

σ2 du+

∫ t

0

c′(µL
t )

θL
σ dWt

})

,

with dZL
t = µL

t θL dt+ σ dWt and dZH
t = µH,⋆θH dt+ σ dWt, the principal’s problem is

sup
µL

E[XµL

1 ].

The dynamics of XµL

are

dXµL

t = α

({

µH,⋆θH +
∂

∂t

lnE[e−ρ ut(µL)]

ρ
− c(µH,⋆)−

ρ

2

(
c′(µH,⋆)

θH

)2

σ2

}

dt

+

(

1−
c′(µH,⋆)

θH

)

σ dWt

)

+ (1− α)

({

µL
t θL − wL − c(µL

t )−
ρ

2

(
c′(µL

t )

θL

)2

σ2

}

dt+

(

1−
c′(µL

t )

θL

)

σ dWt

)

,
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and the principal’s Hamiltonian is

H = α
∂

∂t

lnE[e−ρ ut(µL)]

ρ
+ (1− α)

{

µL
t θL − c(µL

t )−
ρ

2

(
c′(µL

t )

θL

)2

σ2

}

,

with

∂

∂t

lnE[e−ρ ut(µL)]

ρ
= −

E

[

e−ρ ut(µL)
{

wL + c′(µH,L
t )µH,L

t − c(µH,L
t )− [c′(µL

t )µ
L
t − c(µL

t )]
}]

E[e−ρ ut(µL)]
.

(8)
Equation (8) describes the change in certainty equivalent offered to the H-type agent, including
the information rent to prevent her from imitating. This is F0-measurable, i.e., fixed at time
0. By the principle of optimality, the optimal change in certainty equivalent does not depend
on any particular time t; likewise the optimal control does not depend on the particular time
t, so that Equation (8) is constant. This is fulfilled for a deterministic and constant control. A
constant optimal control is necessary as well, as the Hamiltonian is optimised by a deterministic
choice of µL

t , which is constant by the principle of optimality. Hence, (8) becomes

∂

∂t

lnE[e−ρ ut(µL)]

ρ
= −

{
wL + c′(µH,L)µH,L − c(µH,L)− [c′(µL)µL − c(µL)]

}
,

and the Hamiltonian simplifies to

H = −α

{

c′(µH,L)
︸ ︷︷ ︸

=c′(µL)θH/θL

µH,L − c(µH,L)− [c′(µL)µL − c(µL)]

}

+ (1− α)

{

µLθL − c(µL)−
ρ

2

(
c′(µL)

θL

)2

σ2

}

.

The optimum is determined via

∂

∂µL
H = −α

{
θH

θL
c′′(µL)µH,L ∂

∂µL
µH,L − c′′(µL)µL

}

+ (1− α)

{

θL − c′(µL)−
ρ σ2

θ2L
c′(µL)c′′(µL)

}

,

which is zero if µL,⋆ fulfills Equation (4), requiring this is nonnegative. It is easily verified that
this is a minimum by c′′′ ≥ 0. The sharing rules (6) and (7) depend only on Z1 instead of
(Zt)0≤t≤1 and are linear in Z1.

If (PCH) is binding, then

E[e−ρ u1(µL)] = e−ρwH ,

and
dE[e−ρut(µL)] = de−ρwH t = −ρwH e−ρwH t dt.

The left-hand side is therefore an expectation of an exponential accruing at a constant rate.
Since u1(µ

L) is comprised of a constant and an integral with respect to time, by the principle
of optimality, the exponent itself must be constant. Hence µL,⋆ is constant. Furthermore, µL,⋆

solves the binding participation constraint, which can be expressed as in Equation (5).
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