
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

  
  
  

  
  

  
  

  
  

  
 

 
 

 
 

 
 

 
  
  

 
 

 
 

  
  

  
  

  
  

  
  
  

 
 

 
 

 
 

 

IRTG 1792 Discussion Paper 2018-038 

 
Tail-Risk Protection 
Trading Strategies 

 
Natalie Packham * 

Jochen Papenbrock *² 
Peter Schwendner *³ 
Fabian Woebbeking *4 

 

* Berlin School of Economics and Law, Germany  
*² Firamis and PPI AG, Germany 

*³ Zurich University of Applied Sciences, Switzerland 
*4 Goethe University Frankfurt, Germany 

 
 

This research was supported by the Deutsche 
Forschungsgemeinschaft through the  

International Research Training Group 1792  
"High Dimensional Nonstationary Time Series". 

 
http://irtg1792.hu-berlin.de 

ISSN 2568-5619 
 

     
     

In
te

rn
at

io
na

l R
es

ea
rc

h 
Tr

ai
ni

ng
 G

ro
up

 1
79

2 



TAIL-RISK PROTECTION TRADING STRATEGIES

N. Packham, J. Papenbrock, P. Schwendner and F. Woebbeking

AUGUST 15, 2016

Starting from well-known empirical stylised facts of financial time series, we develop
dynamic portfolio protection trading strategies based on econometric methods. As a cri-
terion for riskiness we consider the evolution of the value-at-risk spread from a GARCH
model with normal innovations relative to a GARCH model with generalised innova-
tions. These generalised innovations may for example follow a Student t, a generalised
hyperbolic (GH), an alpha-stable or a Generalised Pareto (GPD) distribution. Our
results indicate that the GPD distribution provides the strongest signals for avoiding
tail risks. This is not surprising as the GPD distribution arises as a limit of tail be-
haviour in extreme value theory and therefore is especially suited to deal with tail risks.
Out-of-sample backtests on 11 years of DAX futures data, indicate that the dynamic
tail-risk protection strategy effectively reduces the tail risk while outperforming tradi-
tional portfolio protection strategies. The results are further validated by calculating
the statistical significance of the results obtained using bootstrap methods. A number of
robustness tests including application to other assets further underline the effectiveness
of the strategy. Finally, by empirically testing for second order stochastic dominance,
we find that risk averse investors would be willing to pay a positive premium to move
from a static buy-and-hold investment in the DAX future to the tail-risk protection
strategy.

Keywords: tail-risk protection, portfolio protection, extreme events, tail distribu-
tions.

JEL Classification: C15, G11, G17.

1. INTRODUCTION

Starting from well-known empirical stylised facts of financial time series, we develop dynamic
portfolio protection trading strategies based on econometric methods. The principal idea is to
investigate whether the information present in financial time series can be used to detect risk-
build up and to what extent this can be put to use to protect against large downturns. The
main motivation for such a tail-risk protection trading strategy is that, despite being unable to
guarantee a hedge against arbitrary extreme events, it may still be effective, while avoiding the
high cost associated with traditional portfolio protection.

Especially in times of low equity risk premia, institutional and private investors may be
underinvested in equity due to investment constraints, downside tail risk, value-at-risk limits or
behavioural effects like loss aversion. The literature identifies a particular aversion against tail
risks among investors (Bollerslev and Todorov, 2011). This in turn leads to high prices of put
options as reflected in the downward slope of the equity implied volatility curve as a function of
the strike price (Kozhan et al., 2013), and the upward slope of VIX futures prices as a function of
expiry (Zhang et al., 2010; Luo and Zhang, 2012; Eraker and Wu, 2014). Both market patterns
are more pronounced than would be reasonable by the realised return distributions and may
therefore curtail a successful long-term static hedge position against tail risks.

For banks, an increased focus on tail risk will be enforced by the new “Minimum capital
requirements for market risk” (BIS, 2016) that resulted from the “Fundamental Review of the
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Trading Book” by the Basel Committee on Banking Supervision after the global financial crisis.
A quantitative impact study (BIS, 2015) suggests an increased capital requirement of about
40% averaged across 78 global banks. The stricter requirements will likely lead to a weaker
passive risk absorption capacity for banks and encourage them to actively manage those risks.

More specifically, we develop dynamic trading strategies that aim at protecting against large
downturns by taking into account the time-variation and dynamics of distributional parameters
of financial time series. The principal idea is to exploit the information given by so-called
“empirical stylised facts” of financial time series (Cont, 2001; McNeil et al., 2005; Engle and
Patton, 2001; Thurner et al., 2012; Godin, 2015). First, accounting for the time-dependent
dynamics of distributional parameters via a GARCH process allows to incorporate volatility
clustering and autoregressive behaviour in volatility, both of which are well-documented stylised
facts. Second, by fitting the GARCH innovations to flexible distribution families incorporating
both normal and extreme behaviour allows to determine whether, in a given time period, extreme
events are more likely to occur than suggested by normal innovations.

In our setup, the key input is the spread between value-at-risk (VaR) from a GARCH model
with innovations following a generalised Pareto distribution (GPD), which is a distribution
focussing on extreme risks, and a GARCH model with normally distributed innovations. We
also considered Student t, skewed normal, skewed Student t, generalised hyperbolic (GH) and
α-stable distributions as alternatives for the innovations, but found little explanatory power
for extreme events. Because of the GARCH component, the magnitude of VaR, when viewed
as a process over time, quickly adapts to changes in volatility. The distributional properties
of the innovation process on the other hand provide information on skewness, excess kurtosis
and in particular on the tail risk in the data. The resulting VaR spread can therefore be used
to derive an expectation on the frequency of extreme events; in particular, changes in the VaR
spread point to risk changes in the market and, as such, may be taken as signals anticipating the
presence of tail risks. The principal idea of the VaR spread is similar to the approach followed
by Rachev et al. (2010), who focus on α-stable innovations.

The choice of distributions is motivated as follows: The Student t, GH and α-stable distri-
butions incorporate the normal distribution as a special case. The GH distribution is a flexible
distribution family comprising light- and medium-tailed distributions, and has been successfully
applied for modelling financial time series (e.g. McNeil et al., 2005 and references therein). The
Student t distribution is a special limiting case of a GH distribution, spanning the entire range
of heavy-tailed behaviour. On the other hand, α-stable distributions are very heavy-tailed with
the exception of the normal distribution, which is light-tailed. As such, all distribution families
considered incorporate heavy-tailed behaviour, at least in a limiting sense. The GPD arises as
the limit of considering only (extreme) outcomes beyond a threshold. Fitting innovations to a
GPD therefore provides an entirely different approach by focussing on the extreme behaviour
rather than the whole data.

Aside from examining daily returns, we include overnight returns in our analysis. This allows
to capture a wider array of different signals in the data. We inspected intraday returns, but
they turned out to be less useful for the analysis.

A trading strategy is generated from measuring the risk build-up in terms of the evolution
of the VaR spreads of each data set. As already mentioned, the VaR spread with GPD inno-
vations from daily returns and from overnight returns yields the most reliable results. This is
not surprising, as the GPD arises as the limit distribution of the tail behaviour in extreme
value theory; because of its focus on tail behaviour, it is particularly well suited for a tail-risk
protection strategy.

In an extensive out-of-sample backtest covering more than eleven years of DAX future data
we find that the tail-risk protection strategy outperforms the DAX future in terms of mean
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return, standard deviation, Sharpe ratio, worst drawdown and Calmar ratio. In addition, the
results are compared with the performance of two traditional protection strategies, protective
put (PP) and delta-replicated put (DRP). PP is a strategy that eliminates downside risk for a
specific asset and period of time at the cost of an option premium, whereas DRP replicates the
delta of a hypothetical put with a dynamic trading position in the underlying without actually
buying a physical option.

This allows for analysing three entirely different approaches to tail-risk protection: while the
strategy developed here is a dynamic econometric approach based on historical data, PP and
DRP are both strategies focussing on market data. PP is a semi-static strategy, whereas DRP
is a dynamic strategy and its performance is model-dependent and subject to gap risk. For the
time period under consideration, we find empirical evidence that the tail-risk protection strategy
outperforms PP and DRP, both in terms of performance measures and when taking investors’
risk preferences into account. In fact, empirical tests for second-order stochastic dominance
reveal that all risk averse investors would prefer tail-risk protection over the benchmark, and
there is also a strong indication for preference over PP and DRP. This can also be expressed
as follows: a risk averse investor would be willing to pay a positive premium to move from a
buy-and-hold investment in the DAX future to the tail-risk protection strategy. This premium
is in the range of 40 basis points.

A number of statistical tests reinforce the results. Using bootstrapping techniques, we test
the hypothesis that the tail-risk protection strategy does not outperform the DAX future with
a random permutation of the trading signals, the PP and DRP strategies, respectively. Further
robustness checks are conducted on different markets, asset classes as well as modelling choices.

Our results point to a great potential for tail-risk protection strategies based on time series
data and econometric methods. Despite failing for totally surprising extreme losses, a property
inherent to historical data, the strategy succeeds in detecting tail-risk build-up. This suggests an
alternative to classic risk-protection strategies such as protective put, in particular as these may
be too expensive in times of small risk premia to generate adequate or even positive returns.

It is worth mentioning that the strategy introduced here is quite simple yet effective. To
achieve a high level of generality, we restrict the setup to capturing stylised facts that are
commonly present in financial time series. In a concrete setting, more sophisticated strategies can
be developed accounting for asset-class specific refinements (e.g. asymmetric GARCH variants
for equity data).

The paper is structured as follows: Section 2 provides a brief review of the relevant literature.
The econometric background is given in Section 3, and the tail-risk protection strategy described
in Section 4. The empirical results including extensive out-of-sample backtesting and validation
against the benchmark and the traditional protection strategies are given in Section 5, robustness
checks are presented in Section 6. Section 7 concludes.

2. BACKGROUND AND LITERATURE

The recent period of strong market movements has motivated a line of research focusing on
irregular and rare events that occur away from the central region of the return distribution.
These extreme or tail events come as a major threat to many investment portfolios and the
economy as a whole. The trading year of 2008 alone illustrates the importance of tail-risk pro-
tection with several return events that should, under the assumption of independent, normally
distributed returns, occur statistically only once in 90 years. Table I illustrates the necessity
of incorporating more extreme events in modelling than a normal distribution would suggest.
The table specifies return periods for different distributions. A return period is the time period
in which one would statistically expect to see one occurrence of a particular event. The result
shows that fitting a typical financial time series to a Student t-distribution drastically reduces
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return periods when compared to a normal distribution. A comparison with the number of
actual occurrences in our dataset of DAX future returns (≈ 22.75 years) indicates that even
the Student-t distribution may not be an appropriate model for capturing extremes, advocating
employing distributions from extreme value theory (EVT) instead.

TABLE I

Return periods (in years) for daily losses greater than 3− 8 standard deviations. The Student
t-distribution was fitted to daily DAX future returns in the period 5 Jan 1993 through 26 Oct

2015.

Std. dev. Normal Student t (ν = 10) observed occurrences per year

3 3 1 2
4 126 7 0.5
5 13954 35 0.1
6 4.05438× 106 156 0.04
7 3.12533× 109 585 0
8 6.0048× 1012 1925 0

The literature deals with the phenomenon of extreme events in different ways. First, it has long
been known that observed equity premia are too high to be explained by classical equilibrium
models – this is known as the equity premium puzzle introduced by Mehra and Prescott (1985).
These models suggest that the risk premium is a monotone function of volatility. However, it
has been observed empirically that this relationship may fail to hold. In other words, against the
implications of classical theories, there are less volatile stocks that appear to be more profitable.
(Baker et al., 2011; Lemperiere et al., 2014; Frazzini and Pedersen, 2014). Bollerslev and Todorov
(2011) demonstrate that this failure of classical theories can be explained by extreme events,
where the excess risk premium may be ascribed to jump risk compensation. In particular,
controlling for the part of risk premium that is attributed to tail events brings the observed risk
premium, on average, back in-line with the implications from the classical equilibrium models.
Kelly and Jiang (2014) provide evidence that tail risk has large predictive power for aggregate
stock market returns over time horizons of a month to several years, the rationale being again
that investors are especially averse to tail risk and hence demand higher returns on tail risky
portfolios.

Second, Bhansali and Davis (2010a,b) and Bhansali (2014) show that tail protection has a
utility not only for defensive purposes but also allows for better long term asset allocation. The
special focus on tail events is largely motivated by the breakdown of portfolio diversification in
stress scenarios. This is owed to the empirical observation that asset correlation tends to increase
during market downturns, especially amid stress and crisis scenarios (Longin and Solnik, 2001).

Third, a number of recent papers incorporate methods from extreme value theory (EVT)
and combine them with GARCH volatility modelling in order to analyse the performance of
classical risk measures such as value-at-risk and expected shortfall (McNeil and Frey, 2000;
Loh and Stoyanov, 2014). There is rising evidence that practitioners already use comparable
methods to dynamically hedge against tail risks (Strub, 2013; Madan, 2016).

3. GARCH MODEL WITH GENERALISED INNOVATIONS

The model approach for the underlying financial time series is three-fold: First, a GARCH
process is fitted to filter the time-varying volatility. Second, the remaining GARCH innovations
are fitted to various distributions. Third, value-at-risk (VaR) forecasts are calculated. The spread
between the various VaR’s relative to a VaR from normal innovations is used as input for the
tail-risk protection strategy.
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On a filtered probability space (Ω,F , (Ft)t∈Z,P) we assume an asset return process (Xt)t∈Z
that follows a GARCH(1,1) process (Bollerslev, 1986)

Xt = σtZt

σ2t = α0 + α1X
2
t−1 + βσ2t−1,

where the innovations Zt, t = 1, 2, . . . are independent and identically distributed, and α0 > 0,
α1 ≥ 0 and β ≥ 0. Imposing the condition α1 + β < 1 ensures that the process has an
unconditional finite variance.

Assuming normally distributed innovations is often not justified, and it is not uncommon
to presume t-distributed innovations instead (Bollerslev, 1987). In a general model setup one
would choose various distributions for the innovations capturing different features of the data.
We considered the skewed normal, (skewed) Student t distribution, generalised hyperbolic (GH)
distribution, α-stable distribution and GPD distribution for innovations, of which the former
three are generalisations of the normal distribution. It turned out that only the GPD innova-
tions were useful for the tail-risk strategy, so we focus on this distribution here, but we point
out that the other innovations distributions may be useful when considering strategies with
other purposes. Therefore, a description of the GH and the α-stable distributions is given in
the appendix in Appendix A. Briefly, the GH distribution arises as a special case of a normal
distribution with (independent) stochastic variance. The t-distribution is a special GH distri-
bution. α-stable distributions are characterised by random variables whose linear combinations
remain in the same family.

3.1. Generalised Pareto distribution

The GPD arises as the limit of fitting extreme data exceeding a given threshold (the limit is
taken with respect to the threshold). As such, it is the underlying distribution in the method of
threshold exceedances to describe the tail of the data. Hence, contrary to the other distributions
considered, most of the data is neglected, and only the extreme outcomes are included in the
estimation.

The distribution function of the GPD is given by

Gξ,β(x) =

{
1− (1 + ξx/β)−1/ξ, ξ 6= 0,

1− e−x/β, ξ = 0,

where β > 0, x ≥ 0 when ξ ≥ 0 and 0 ≤ x ≤ −β/ξ when ξ < 0. The parameters ξ and β are
the shape and the scale parameters, respectively. The GPD is generalised in the sense that it
comprises a number of special cases: If ξ > 0, then Gβ,ξ is a Pareto distribution with parameters
1/ξ and β/ξ; if ξ = 0, then Gβ,ξ is an exponential distribution; and if ξ < 0, then Gβ,ξ is a
Pareto type II distribution. These three distribution essentially describe the tail behaviour via
the so-called max-domain or maximum domain of attraction (e.g. McNeil et al., 2005; Embrechts
et al., 2003): the Pareto distribution is heavy-tailed, the exponential distribution is light-tailed
and the Pareto type II distribution is short-tailed.

The key ideas underlying the method of threshold exceedances are as follows: For a random
variable X, resp. distribution function F , the excess distribution Fu(x) over a threshold u is
given by

Fu(x) = P(X − u ≤ x|X > u) =
F (x+ u)− F (u)

1− F (u)
,

where 0 ≤ x ≤ xF − u with xF the right-endpoint of F . The following theorem justifies using
the GPD as a proxy for the excess distribution:
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Theorem 1 (Pickands-Balkema-de Haan). There exists a positive function β(u) such that

lim
u→xF

sup
0≤x<xF−u

|Fu(x)−Gξ,β(u)(x)| = 0,

if and only if F is in the MDA of Hξ, ξ ∈ R, where xF is the right-endpoint of F .

In practice, there are various methods for determining an appropriate threshold to fit the
data. We shall choose the thresholds to be the 95%-quantile of the loss distribution implying
that 5% of the data are included in estimations.1

3.2. Model calibration

In a GARCH model with normally distributed innovations, the observations are conditionally
normally distributed. The likelihood function based on n observations X1, . . . , Xn is thus given
by

L(α0, α1, β;X) =
n∏
t=1

1

σt
n

(
Xt

σt

)
,

where n(x) is the standard normal density and where σt =
√
α0 + α1X2

t−1 + βσ2t−1. Since the

value of σ0 is not observed one typically chooses as starting value the sample variance the
observations.

To calibrate the GARCH models with non-normally distributed innovations, one can directly
specify the likelihood function involving the respective probability density. However, it is custom
to calibrate the GARCH process via quasi-maximum likelihood estimation (QMLE; sometimes
called pseudo maximum likelihood estimation), e.g. McNeil and Frey (2000), which postulates a
normal distribution assumption for the innovations, and to fit the residuals to the GH distribu-
tion via MLE in a second step. This two-step approach ensures that the time-varying volatility
behaviour is fully captured by the GARCH parameters, while the conditional behaviour, in par-
ticular the heaviness of the tails, is captured by the parameters of the innovations’ distribution.2

3.3. Value-at-Risk

Let Xt be a future, unknown asset return. The time-t value-at-risk (VaR) at confidence level
α ∈ (0, 1) is given by

VaRα,t = inf{l ∈ R : P(−Xt > l) ≤ 1− α} = inf{l ∈ R : P(−Xt ≤ l) ≥ α}.

In other words, VaRα,t is just the α-quantile of the distribution of the loss variable −Xt. If Xt

admits a strictly positive density, the value-at-risk is characterised by

P(Xt ≤ −VaRα,t) = 1− α.
1This choice of threshold is somewhat arbitrary, in particular given the fact that the fitted distribution pa-

rameters may vary strongly with the choice of the threshold. However, the main element of the trading strategy
will be to capture the time-variation of the parameters. Keeping the threshold and consequently the number of
samples entering the GPD estimation constant implies that a major factor in the variation of the GPD samples
over times lies in the occurrence of extreme events. This reasoning is backed by empirical tests showing that the
results of the strategy are robust against quantile choices other than the 95%-quantile, see Section 6.3, as well
as an inferior performance when employing data driven dynamic threshold determination such as Desmettre and
Deege (2016).

2To better capture tail risks, one could, for the case of non-normally distributed innovations, consider GARCH
variants that deal with asymmetries of positive and negative shocks such as QGARCH (Sentana, 1995).
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Note that in this setting, VaRα is defined on asset returns rather than asset values, which would
be more appropriate for calculating a capital requirement.

To calculate VaRα,t conditional on the information Ft−1, we use the property that the condi-
tional asset return distribution follows the distribution of the innovations. The volatility forecast
for one time period from the GARCH model is given by

σ̂2t = E(X2
t |Xt−1, σt−1) = α0 + α1X

2
t−1 + βσ2t−1,

The VaR at confidence level α for a one-period time horizon then given by

VaRα,t = −σ̂tF1−α, (1)

where F1−α denotes the 1− α-quantile of the innovations’ distribution. This approach extends
to portfolios via historical simulation.

4. TAIL-RISK PROTECTION STRATEGY: STEEPNESS OF VAR-SPREAD

From an investor’s perspective a tail event could be defined as a return Xt that lies below
value-at-risk (VaR), i.e. Xt ≤ VaRα,t, with VaRα,t the VaR assuming normally distributed
innovations and where the confidence level α may for example be derived from the investor’s
risk preferences. The goal of a tail-risk protection trading strategy is to be invested in some
risky asset or portfolio, but to avoid tail events, for example by hedging the exposure when
a tail event is likely to occur. Of course, ex-ante it is impossible to rule out being invested
when tail events occur, so a strategy needs to focus on patterns that signal a high likelihood
of a tail event occurring. As the approach is based on historical data, one would hope for such
a strategy to perform well when there is a build-up of risk in the market. Evidently, such a
strategy cannot avoid tail events that occur “totally out of the blue” (“type I error”). Also,
given the empirical stylised fact that return data feature little or no autocorrelation implies that
such a strategy may signal de-investment when ex-post an investment would have been optimal
(“type II error”).

Given are time series consisting of financial returns, the corresponding volatility forecasts from
GARCH models and the VaR figures from the GARCH-fitted models with different distribution
assumptions on the innovations (normal and e.g. Student t, GH, alpha-stable and GPD). In the
empirical examples below, there are two data sets: first, one-day VaR’s based on the returns of
closing prices of the previous 300 trading days are calculated, and second, overnight VaR’s from
the returns between daily opening and closing prices, again based on a history of 300 trading
days, are calculated. The choice of 300 trading days is motivated by the trade-off of a long data
set for statistical purposes versus a short data set to pick up extreme events related to the near
past. Choosing a longer data horizon could lead to an accumulation of “old” extreme events in
the tail and hence a failure to reflect current market conditions.

The steepness-of-VaR-spread strategy takes as input VaR spreads calculated from GARCH
models with different innovations processes (e.g. normal distribution and GPD distribution),

sFt = VaRF
α,t −VaRN

α,t,

where VaRF
α,t denotes the value-at-risk from F -distributed innovations. If the VaR spread is

small, then the GARCH model with normal innovations is an appropriate model for current
market conditions, whereas for a large VaR spread the normal innovations are inappropriate.

Based on a rolling window of a given number of days, a steep VaR spread indicates a build-up
of risk over the past trading days, whereas a flat VaR spread implies a constant risk setting.

7



The slope of the VaR spread therefore aims at detecting risk build-up. More specifically, define
a linear model for the VaR spread over p days t1, . . . , tp by

sFt = α+ βtp(t− t0) + εFt,t0 , t = t1, . . . , tp.

Given time series data, β̂tp can be estimated by a least squares approach by regressing the VaR
spread on the range 1, 2, . . . , p.

The implementation of the strategy depends on two parameters: Aside from p, the number of
days determining the steepness of the VaR spread, one needs to define an investment threshold,
so that an investor is invested whenever the steepness lies below the threshold and is hedged
otherwise. The threshold may for example depend on the historical average steepness or on the
historically determined percentage of investment days had the strategy been followed. In our
setting, we define the threshold via a multiple q of the average of the positive part of the slope,
that is, a risk build-up for the time period (t− 1, t] is signalled, if

β̂t−1 ≥ q
t−1∑
i=1

max(β̂i, 0)/(t− 1) =: q β
+
t−1

Restricting attention to positive coefficients reflects that we are looking for indicators of in-
creased risk. When VaR spreads are calculated on several data sets, such as daily returns on
closing prices, overnight returns and intraday data, de-investment takes place if any of the
signals is positive. In practice, de-investment could be realised through some hedge or overlay.

The two parameters of the strategy, the length of the look-back period p and the threshold
multiplier q, are determined as the parameters that optimise the past cumulative alpha of the
steepness-of-VaR-spread strategy, where cumulative alpha is defined as the difference between
the to-day accumulated return of the tail-risk protection strategy and the to-day accumulated
return of the static buy-and-hold strategy. Formally, letting (rt)t≥0 denote the daily log-returns
of the underlying security, cumulative alpha at time T is defined as

αT (p, q) =
T∑
t=1

(
rt · 1{β̂t−1<q β

+
t−1}
− rt

)
,

and the optimisation problem at each point in time is maxp,q αT (q, p). Optimising cumulative
alpha expresses that positive returns are to be generated from being de-invested when tail events
occur, while avoiding de-investment when positive returns occur (preventing “type II errors”).

In order to do out-of-sample testing of the strategy, we split the data set into a “learning
set”, initially comprising the older 50% of the time series and a “test set” consisting of the more
recent 50% of the time series. The parameters are initially determined from the learning set,
and then successively recalibrated as the data set grows through time. In the examples below,
the parameters will be calibrated every ten trading days.

5. EMPIRICAL RESULTS

5.1. Data

For the value-at-risk calculations we use daily DAX future prices (Bloomberg ticker: GX1
Index) from 21 October 1991 until 26 October 2015. Daily VaR’s are calculated based on daily
returns and based on overnight returns. Additionally incorporating an intraday VaR based on
DAX minute data had no effect on the performance of the trading strategy.

Calculations are performed on a rolling window of 300 trading days, implying that the first
VaR is calculated for 5 January 1993. Fixing a time window, the respective DAX future returns
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Figure 1.— QQ plots of GARCH residuals from 21 January 2014. Left: normal distribution
(red), Student-t distribution (green), GH distribution (blue); right: GPD distribution (samples
beyond 5%-threshold u = 1.417).

Figure 2.— Densities of GARCH residuals from 21 January 2014 together with relative
frequencies of innovations. Left: normal scale; right: logarithmic scale.

(rt)0≤t≤300 are fitted to a GARCH model via QMLE, yielding the volatility process (σt)0≤t≤300
and residuals (εt)0≤t≤300 with εt = rt/σt. The residuals are then fitted to the following distribu-
tions: (skewed) normal, (skewed) Student-t, GH, α-stable and GPD.3 Calibration of the GPD is
based on the worst 5% of the outcomes. VaR’s at α = 0.99 are calculated using Equation (1). As
an example, residual QQ-plots of one day are given in Figure 1 and the corresponding densities
are given in Figure 2. The daily and overnight VaR’s and VaR spreads are shown in Figure 9
in the appendix together with the daily volatility forecast.

5.2. Trading strategies

Aside from the application of the tail-risk protection strategy, we briefly describe two “tra-
ditional” strategies, protective put and delta-replicated put, in Sections 5.2.2 and 5.2.3, respec-
tively. These will be applied in the subsequent sections to benchmark the results of the tail-risk
protection strategy.

5.2.1. Tail-risk protection strategy

In our results it turns out that only the VaR spread based on GPD innovations produces
a satisfactory tail-risk protection strategy. This is plausible, as the GPD focusses on the tail
behaviour whereas the other distributions take into account the whole range of the innovations’
outcomes. As a consequence, only the GPD spreads from the daily and overnight VaR are

3Alpha-stable innovations were calibrated using the GNU R STABLE package, see www.RobustAnalysis.com.
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considered. The VaR spreads and a trading signal are determined on a daily basis as outlined
in Section 4.

The earlier 50% of the data until 24 June 2004 are used as the initial “learning set” for the
parameters p and q, determining the regression length and the threshold factor, respectively.
These parameters are re-calibrated every ten trading days using a successively growing learning
set. The parameters are chosen to optimise the cumulative alpha from the beginning of the
time series to the current calibration date. The regression length p is subject to the constraint
that p ∈ [8, 15], where the lower bound is justified by information criteria such as the AIC,
which point to an optimal lag length of 10, resp. 14, for the daily, resp. overnight, GPD VaR
spreads in an autoregressive model. Likewise, the autocorrelation functions are significant for
lags greater than 8. In our results, the regression length varies around 14 for most of the time,
but hits the lower bound of 8 for some time periods. The threshold factor q can vary between 0
and 15, and varies between 1.25 and 2.65 for most of the time, but can take values of around 14
in time periods where the regression length is small. This indicates that a shorter risk build-up
time horizon corresponds to a higher threshold criterion. The annual fraction of days that the
tail-risk protection strategy is invested varies between 65% and 97%.

5.2.2. Protective put

The protective put strategy (PP) uses put options to insure a risky position against adverse
market movements. If the put expires out of the money, the investor loses the option premium.
However, if the option expires in the money, the gains offset losses from the underlying asset.
In practice, the protective put strategy typically involves a sequence of options with different
maturities that must be rolled over once their maturity is reached. Figlewski et al. (1993) analyse
different trading trajectories for the option portfolio through time. Intuitively, the amount
and level of protection determine the strategy’s price. Counterparty risk aside, PP provides a
guaranteed and model-independent protection mechanism (hedge).

The out-of-sample backtest consists of a strategy where an investor buys a three-month Euro-
pean put option on the DAX future with a strike price of 90% of the current futures price. Every
three months at expiry of the put option, a new put option is bought. The volatility parameter
for pricing the put option is approximated by using the VDAX-NEW implied volatility index.
This underestimates the price of the put due to the volatility skew. Purchase prices and any
option values are calculated using the Black formula for options on futures.

5.2.3. Delta-replicated put

The delta-replicated put strategy (DRP) is similar to PP, but with a dynamic delta replication
instead of purchasing physical puts. We calculate the Black-Scholes delta of a hypothetical put
option with a strike price of 90% of the current DAX future price each day. The delta of this
put option is added to the existing DAX future; according to put-call parity, this results in
holding the delta of a 90% call option. The maturity of the hypothetical option is always set to
three months. We use the same model and parameters as for the protective put. An advantage
of the DRP compared to the protective put is be that it does not suffer from high prices for put
options as mentioned in the introduction. However, it is subject to model risk and to gap risk.

The strategy is comparable to the well-known Constant Proportion Portfolio Insurance (CPPI)
(Black and Jones, 1987; Perold and Sharpe, 1988; Black and Perold, 1992), which aims at creat-
ing the asymmetric payout profile of a hypothetical perpetual call option. In contrast to CPPI,
which relies on a fixed protection level, the strike of the hypothetical put option in the DRP
strategy is always 90% of the current DAX futures price. This is necessary for our type of analy-
sis, as we want to compare strategies that keep similar characteristics in time. A CPPI strategy
would change its characteristics once the market increases substantially above the protection
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Figure 3.— Cumulative log returns of the DAX future (GX1), the tail-risk protection strat-
egy, as well as DRP and protective put strategies; green line: cumulative alpha of the tail-risk
protection strategy against the DAX future. Time horizon: out-of-sample test period 25 June
2004 through 21 October 2015. Vertical lines indicate prominent market events: 1 – Chinese
stock market correction; 2 – Northern Rock bank run; 3 – Bear Stearns resolution; 4 – Lehman
default; 5 – global contagion and interventions; 6 – EU debt crisis; 7 – Flash Crash; 8 – U.S.
rating downgrade; 9 – Greek bailout; 10 – Bankia bailout; 11 – Spain,Cyprus support request,
12 – Cyprus bailout; 13 – EURCHF unpegged; 14 – global stock selloff.

level or decreases towards the protection level, essentially resulting in a complete unwind of the
risk position.

Compared to PP, the DRP strategy classifies extreme events slightly differently; this is due
to the rebalancing at a 90% strike level every day, as opposed to PP where the 90% strike is
calculated every three months. Hence by construction (and similar to the tail-risk protection
strategy), DRP will not provide tail-risk protection against slow downturns.

5.3. Out-of-sample backtest

Because the initial 50% of the data set are used solely for calibration purposes, out-of-sample
testing is conducted for the time period 25 June 2004 through 21 October 2015. Here, on each
business day a trading signal is generated using the data so far and applied to the subsequent
return. The current set-up does not account for market frictions, such as bid-ask spreads, trans-
action and other associated costs (for institutional investors on liquid future markets these
factors should have little impact; a detailed review is provided in Section 6.1).

The outcome of the backtest is shown in Figure 3, together with the evolution of the protective
put and delta-replicated put strategies. For a strategy with perfect forecasting capabilities, one
would expect a jump in cumulative alpha (green line) every time a tail event occurs. The
following prominent extreme events are indicated by vertical lines:
1 February 2007: a large correction in Chinese stock markets spilled over to other major finan-

cial markets worldwide.
2 September 2007: Northern Rock Plc. experienced a bank run that forced the bank into public

ownership.
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Figure 4.— Drawdown of the DAX future, tail-risk protection, strategy, DRP and protective
put strategies, in the out-of-sample test time horizon.

3 March 2008: Bear Stearns Inc. received an emergency loan facility by the Federal Reserve
Bank of New York. Subsequently, to mitigate a collapse, the bank was sold to JPMorgan.

4 September 2008: Lehman Brothers Holding Inc. filed for bankruptcy. This is often referred
to as the peak of the 2008 financial crisis and resulted in heavy market movements.

5 October 2008: Massive global interventions and instantaneous rescue efforts to prevent a chain
of defaults. Dominique Strauss-Kahn, the Managing Director of the IMF, said on October
11th: ”Intensifying solvency concerns about a number of the largest US-based and Euro-
pean financial institutions have pushed the global financial system to the brink of systemic
meltdown.”

6 April 2010: the rating agency Standard & Poor’s downgraded the sovereign debt of Greece,
four days after the EU-IMF bail out was put in place.

7 May 2010: a drop of nearly 1,000 points in DJI with subsequent recovery of 900 points
occurred; this is subsumed under the name ”Flash Crash”. A report by the SEC and CFTC
mentions a so-called ‘fat-finger-trade’ and subsequent order execution of automated trading
systems as the cause.

8 August 2011: the equity markets observed large drops in the US, EU and Asia after the
rating downgrade of the U.S.

9 February 2012: Greece received its second financial aid package.
10 May 2012: Bankia, the 4th largest Spanish bank, negotiated bailout funding. The rating

agency Standard & Poors responds with a downgrade to BB+.
11 June 2012: Spain and Cyprus request financial support from the euro area members and the

IMF.
12 March 2013: Cyprus receives bailout funding in return for ageing on several conditions. These

include the closure of Cyprus second largest bank and imposing a one-time bank deposit levy.
13 January 2015: The Swiss National Bank unpegged the Franc from the Euro. This had a large

effect on the EURCHF exchange rate as well as spill over effects to other financial markets
worldwide.

14 August 2015: in the wake of the Chinese stock market crash, many global stock indices
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experienced large aftershocks.
Not all extreme events are identified by the tail-risk protection strategy, in particular as

events that occur entirely “out of the blue” cannot be captured by a strategy based on his-
torical data. Table II provides a comparison of the average performance of different strategies
in a window of 20 trading days around the previously mentioned market events. The columns
show relative performance of the tail-risk protection strategy versus the market, DRP and
protective put. Positive numbers indicate out-performance, whereas negative numbers indicate
miss-identification. In case the strategy failed to produce any signal during the event, the differ-
ence to the DAX futures benchmark (Str. − DAX) is zero. The data shows that, for example,
the Northern Rock incidence and EURCHF peg removal were not captured by the strategy.
This result is expected, as these events occurred “out of the blue”. On average, the strategy
out-performs the DAX future as well as DRP and PP during the sample market events. The
relatively small out-performance over PP shows that the insurance function of protective put
works during downturn scenarios.

TABLE II

Mean performance in a 20 day window around prominent market events.

Event Str. - DAX Str. - DRP Str. - PP

1 -0.001212 -0.001321 -0.001501
2 0.000000 0.000358 0.000502
3 -0.001369 -0.001739 -0.001225
4 0.000912 0.000113 -0.001066
5 0.005787 0.002692 -0.002980
6 -0.000555 -0.000624 -0.000509
7 0.000987 0.000633 0.000043
8 0.005996 0.004441 0.003797
9 0.000000 -0.000071 0.000073
10 0.003034 0.002457 0.002546
11 0.000816 0.001260 0.002180
12 -0.000940 -0.000863 -0.000899
13 -0.002786 -0.002296 -0.003375
14 0.006727 0.006389 0.004405

Mean 0.001243 0.000816 0.000142

Figure 4 shows the drawdown of the DAX future and the three strategies under consideration.
Here, drawdown is the return relative to the peak to-date (high watermark) achieved by each
strategy. Performance measures for the out-of-sample test period are reported in Table III. For
ease of interpretation the daily returns are expressed per annum. The Sharpe ratio is calculated
as the ratio of average return and standard deviation (ignoring the risk-free rate). The Calmar
ratio is the average mean (p.a.) relative to the worst drawdown.

Both, the drawdown in Figure 4 and the performance measures in Table III establish that
overall the tail-risk protection strategy outperforms the other strategies: for most of the time
period the strategy’s drawdown is superior to the DAX future, the overall worst drawdown is
smaller than for all other strategies and the Sharpe and Calmar ratios are greater than the
respective ratios for the other strategies.

In addition, we analyse performance for time horizons shorter than the entire backtest pe-
riod of 11 years. Figure 5 presents box-and-whisker plots associated with the performance of
investments in the DAX future, the tail-risk protection strategy, DRP and protective put over
a time period of 252 trading days. For every possible starting point in the test set, the per-
formance of a subsequent 252 trading day investment are calculated. The tail-risk protection’s
return distribution mostly affects the boundaries. The distributions of standard deviation dis-
play in particular the effectiveness of protective put, but also the reduction in risk from DRP
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TABLE III

DAX future versus performance of tail-risk protection, DRP and protective put strategies

DAX future tail-risk protection DRP Protective Put

mean return (p.a.) 0.0656 0.0821 0.0575 0.0524
standard deviation 0.2169 0.1791 0.1739 0.1550
Sharpe ratio 0.3022 0.4587 0.3306 0.3378
worst drawdown 0.5791 0.4296 0.4910 0.4730
Calmar ratio 0.1132 0.1912 0.1171 0.1107
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Figure 5.— Box-and-whisker plots of performance on a 252-day investment horizon; each
box and each whisker represents 25% of the data; all values are annualised. Left: return; middle:
standard deviation; right: Sharpe ratio.

and the tail-strategy. The risk adjusted out-performance of the tail-strategy is again verified in
the Sharpe ratio analysis.

5.4. Validation

The outcome of the out-of-sample backtest of the previous section is very promising. In this
section, we provide further evidence that this may not be due to sheer luck in the time period
under consideration. To this end, we test the hypotheses that the tail-risk protection strategy
has no predictive power over various benchmarks. Some of these tests require application of
bootstrapping (Efron, 1979), which is widespread in the evaluation of trading strategies, see
e.g. Brock et al. (1992); West (1996); White (2000); Sullivan et al. (1999). To acknowledge
dependence in the underlying time series, we use the stationary bootstrap technique developed
by Politis and Romano (1994). In the following, we largely adopt the notation of White (2000).

The observed returns of the benchmark are generated by an adapted process (Xt)t∈Z. It
is assumed that (Xt)t∈Z is a stationary strong α-mixing sequence with marginal distributions
identical to a random variable X.4 Trading signals are generated for times R, . . . , T where
T = R + n − 1. The signals are estimators p̂R+1, . . . , p̂T+1, with p̂R+k+1 ∈ {0, 1} based on
(X1, . . . , XR+k).

We wish to test the hypothesis that the strategy has no predictive power over a benchmark
asset or benchmark strategy. Formally, the hypothesis is expressed as

E[f?] ≤ 0, with f? = Xp? − Y,

where p? = plim p̂T and where Y is the benchmark strategy. In the simplest case, Y = X. The

4A strong α-mixing sequence is a stochastic process consisting of dependent random variables that behave
more like independent random variables the farther they are separated. Formally, for a stochastic process (Xt)t∈Z,
let Bt be the Borel field generated by (Xs)s≤t and Ft be the Borel field generated by (Xs)s≥t. Define α(s) :=
sup{|P(A ∩ B) −P(A)P(B)| : A ∈ Bt, B ∈ Ft+s, t ∈ Z}. The process (Xt)t∈Z is strong α-mixing if α(s) → 0 as
s→∞ (Rosenblatt, 1956, 1971).
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TABLE IV

p-values corresponding to the hypothesis that the tail-risk protection strategy has no
predictive power over the benchmark. The bottom three strategies are simulated using

stationary bootstrapping with parameter 0.1. The sample length is n = 2883, and the number of
simulations is 500.

Benchmark benchmark strategy Yt+1 p-value

Permutation pR+πtXt+1 0.14
DAX future Xt+1 0.26
DRP XDRP

t+1 0.15
Protective Put XPP

t+1 0.14

test statistic is

f =
1

n

T∑
t=R

f̂t+1,

with f̂t+1 = Xt+1pt+1 − Yt+1.

Any tests are based on the assumption that the following central limit theorem holds (con-
ditions are given in West (1996), see also White (2000)):

√
n(f − E(f?))

L→ N(0, σ2),

expressing that the scaled and normalised estimator converges in distribution to a normal dis-
tribution.

First, we test the hypotheses that the strategy’s return is not superior to various benchmark
returns. One benchmark is a random permutation of the same number of long and neutral
trading positions as the strategy itself. In other words, letting π = {1, . . . , n} be a random
permutation drawn from the distribution that assigns equal probability to all permutations, set

Yt+1 = pR+πt Xt+1.

The permutation test gives an indication of whether a simple random strategy could have
achieved a similar average return.

Other benchmarks are the DAX future return, the return of the DRP strategy and the return
of the protective put strategy. Here, we use the stationary bootstrap by Politis and Romano
(1994) to account for dependence in the time series. In a conventional bootstrap sample of
length n, the samples are drawn independently from the return distribution. In the stationary
bootstrap, the sample is made up of sequences of returns of random length, determined by a
geometric distribution. In our case, the parameter chosen for the geometric distribution is 0.1
implying an expected sequence length of 10, which is consistent with the autocorrelation present
in the data, cf. Section 5.2. The resulting p-values are given in Table IV.

The results can be interpreted as follows: the null hypothesis cannot be rejected for the DAX
futures benchmark. For the random permutation, PP and DRP, the result is inconclusive, but
gives some evidence that the average return achieved by the tail-risk protection strategy is not
purely random. The result regarding the DAX futures benchmark is inline with the fact that
the strategy’s objective is not formulated as “beating the benchmark’s return”.

Rather, the strategy’s objective is to reduce risk by avoiding tail events. Therefore, we test
the hypothesis that the strategy’s Sharpe ratio, resp. worst drawdown, does not outperform the
DAX future’s Sharpe ratio, resp. worst drawdown. For comparison purposes, we also give the
p-values when performing the same tests, but replacing the tail-risk strategy with the DRP,
resp. the protective put strategies. The results are given in Table V.
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TABLE V

p-values corresponding to the hypothesis that the various strategies do not outperform the
DAX future in terms of Sharpe ratio and in terms of worst drawdown. All results are obtained

using stationary bootstrapping with parameter 0.1. The sample length is n = 2883, and the
number of simulations is 500.

p-values

Strategy Sharpe ratio worst drawdown

Tail-risk protection 0.16 0.03
DRP 0.19 0.00
Protective Put 0.32 0.04

Here we find clear evidence that the tail-risk protection strategy reduces the worst drawdown,
whereas the results about the Sharpe ratio are more inconclusive. The results only change
marginally when including transaction costs.

Summing up, the tests indicate that the tail-risk protection strategy outperforms the DAX
future in terms of worst drawdown. There is also some slightly weaker evidence that the return
performance is not purely random and that the strategy’s Sharpe ratio is better than the DAX
futures’ Sharpe ratio.

5.5. Investor’s utility

A systematic approach for capital investment calls for taking into consideration investors’
risk preferences. First, what kind of utility function is required to prefer the tail-risk protec-
tion strategy over alternative strategies? Second, how can the tail-risk protection strategy be
extended to capture individual risk and return preferences?

Before going into the details regarding the first question, we briefly consider the second
question. In the spirit of classical portfolio theory, the tail-risk protection strategy maximises
returns while restricting the set of investment strategies according to some risk criterion, in this
case by seeking to avoid tail events. To incorporate individual risk preferences, the restrictions
would need to be formulated in an investor-specific way. For example, risk preferences could
differ with respect to the degree of tolerance of accepting loss events, taking into account that a
stronger dislike of losses trades off with a higher number of false de-investments. A full treatment
is beyond the scope of the paper, in particular taking into account the path dependency of the
strategy, cf. (Cox and Leland, 2000).

Turning to the first question raised above, one could ask to what extent do investors prefer this
strategy over the given traditional alternatives. Preferences are captured by utility functions
that are twice continuously differentiable monotone and concave, that is, utility functions u
with u ∈ C2 with u′ > 0 and u′′ < 0. A strong criterion is uniform preference, capturing that
a payoff or strategy is preferred over another by all investors. This is identical to the notion of
second order stochastic dominance (SSD). More specifically, SSD is a partial order on the set
of integrable random variables; for two random variables X and Y with distribution functions
F and G, respectively, X second order stochastically dominates Y if and only if (e.g. Föllmer
and Schied, 2002), ∫ k

−∞
F (x)dx ≤

∫ k

−∞
G(x)dx for all k.

Kaur et al. (1994) designed a test to empirically establish if an SSD-relationship holds between
two distributions. We apply this test to the outcomes of investments into the DAX future, the
tail-risk protection strategy, DRP and PP. The investment horizon under consideration is fixed
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to 252 trading days.5 The following hypotheses are tested:

H0 :

∫ k

−∞
F (x)dx ≤

∫ k

−∞
G(x)dx for some k ∈ [a, b],

versus

H1 :

∫ k

−∞
F (x)dx >

∫ k

−∞
G(x)dx for all k ∈ [a, b].

We set a to be the smallest common value of X and Y and b the largest common value,
respectively.

TABLE VI

Second order stochastic dominance test of the tail-risk protection strategy against
alternative strategies and the DAX future. Shown is the percentage of the interval [a, b] where
the tail-risk protection strategy significantly dominates the respective alternative strategy.

10%* 5%** 1%***

PP 82.93% 81.54% 76.46%
DRP 100.00% 100.00% 96.99%
DAX 100.00% 100.00% 100.00%

Table VI shows the percentage of k ∈ [a, b] where H0 is rejected in favour of H1 with 10%, 5%
and 1% significance. According to this test, the DAX future and DRP are clearly dominated at
all significance levels except the 1% level for DRP. This strongly suggests that any risk-averse
investor would prefer the tail-risk protection strategy over a static buy-and-hold investment or
DRP. In fact, a static buy-and-hold investment in the DAX future is still dominated at the 5%
significance level when deducting an annual fee of 40 basis points.

The result is weaker when considering the tail-risk protection strategy against protective
put. For the upper 82.93% of the interval [a, b], PP is second order stochastically dominated
by an investment in the strategy. That the dominating part spans the right side of the return
distribution is not surprising as a guaranteed protection from negative tail events can only be
achieved via PP.

6. ROBUSTNESS

In this section, we provide further robustness checks by incorporating trading costs, testing
the outcome of the strategy when considering different thresholds for the GPD innovations and
considering other assets.

6.1. Trading costs

To analyse the trading costs of the tail-risk protection strategy we consider realised bid/ask-
prices for the DAX future (GX1). In addition, we analyse trading volume and trading range
at the specific trade dates to infer a more refined view of the market situation, in particular
given that there may be difficulties placing trades at specific points in time. This is a particular
concern because the strategy aims at identifying negative tail events that, by definition, occur
commonly in times of market distress. An extreme market environment could even inhibit a
change of position, even if a valid signal is generated.

5Robustness checks with varying investment horizons did not produce notably different results.
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TABLE VII

Trade date analysis of the tail-risk protection strategy. B/A-spreads are relative to the ask
price, that is, (At −Bt)/At. Trade range describes the relative difference of the intra-day high

and low price (Ht − Lt)/Lt. Standard deviation in parentheses.

Trading days Strategy All

Time horizon (years) 11.29
Number of trades 160
Percentage of days invested 0.79
B/A-spread paid 0.019939

per year average 0.001766

Average B/A-spread 0.000249 0.000238
(0.000218) (0.000215)

Average trade range 0.020598 0.018316
(0.014077) (0.013565)

Average daily volume 140617.48 134201.63
(51873.22) (51491.10)

Table VII shows the analysis on the trade dates of the tail-risk protection strategy. Within
the 11.29 years test set, the strategy produced an average of 14 trades per year, resulting in a
long delta one exposure in 78.93% of all trading days. On every trade, half the bid ask spread is
paid such that opening and closing a position costs the full bid/ask-spread. This creates average
annual trading costs of 17.66 basis points, which is well below the premium of 40 basis points
calculated in Section 5.5 that risk averse investors would be willing to pay.

The lower half of Table VII provides information on the market environment on the average
strategy-trading day compared to the full test set period. More specifically, we consider the
relative spread between the bid price Bt and the ask price At. Similarly, the percentage range
between the highest price Ht and the lowest price Lt is analysed. The average trade volume is
used as an indicator for market depth. On average, all three measures show increased figures
for the tail risk strategy. However, all numbers are within one standard deviation of the overall
average. Hence, we do not find evidence that the strategy structurally demands trading during
unusual or illiquid market times.

6.2. Other markets

To further validate the above results, the tail-risk protection strategy is applied to further
assets. This includes the S&P 500 stock index future (Bloomberg: SP1 Index) as well as the
West Texas Intermediate crude oil future (Bloomberg: CL1 Comdty).

It appears that the strategy performs well for the S&P 500 equity index future, see Figure 6.
Several major market events are captured (e.g. the Lehman default in 2008), whereas “out of
the blue events” remain undetected. WTI, on the other hand, is not only an entirely different
asset class, but also features a market with decline of most of the test period. This is due to the
oil storage costs that are reflected in a futures term structure in contango: the storage costs lead
to a negative drift for a buy-and-hold investor in oil futures (Erb and Campbell (2016)). The
continuous futures time series is generated in Bloomberg using the ratio rollover method (Went
(2010)) and thus significantly deviates from spot oil prices. In addition to the long-term negative
drift, the year 2008 was characterised by a drastic shift in inflation expectations that led to an
oil rally until July 2008 and a long liquidation phase until February 2009. It can be observed
that the strategy is not designed to outperform in extended but stable periods of market decline.
In other words, tail events are defined relative to the current market environment; if this is in
a steady decline, then these negative events will not be classified as tail events.
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Figure 6.— Cumulative log returns of the S&P 500 future (left) and WTI future (right)
against the tail-risk protection strategy, as well as DRP and protective put strategies, respec-
tively. Time horizon: out-of-sample test period 25 June 2004 through 29 March 2016. Vertical
lines indicate prominent market events, see Section 5.3 for a detailed description.

6.3. GPD thresholds
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Figure 7.— Cumulative log returns of the DAX future against the tail-risk protection strat-
egy with a GPD threshold of 92.5% (left) and 97.5% (right), as well as DRP and protective
put strategies, respectively. Time horizon: out-of-sample test period 25 June 2004 through 21
October 2015. Vertical lines indicate prominent market events, see Section 5.3 for a detailed
description.

One possible caveat for the performance of the tail-risk protection strategy is the somewhat
arbitrary threshold choice for fitting the GPD distribution. In the following, we consider the tail-
risk protection strategy from Section 5 while, ceteris paribus, fitting the GPD with thresholds
of 92.5% and 97.5%. Figure 7 indicates that the strategy is robust to such model changes. As
outlined earlier, because the strategy is sensitive to risk build-up, the arrival of extreme events
will affect the tail entering the GPD estimation. It is hence plausible that a constant threshold
is more effective than a dynamic threshold. A lower threshold, that is, including more samples in
the tail, will decrease the weight associated with each sample, and therefore potentially weaken
the risk build-up detection.

6.4. Alternative implementations of the tail-risk protection strategy

The tail-risk protection strategy delivers “long” and “flat” signals with respect to a risk
exposure in a futures market. The actual implementation of a trading strategy could be done
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in several ways. The purest form would be to directly implement the signals using long and
flat positions in the corresponding future. In financial industry product language, this could
be labelled a “rule-based smart beta strategy”. A client could consider such a product as an
alternative to a long-only product to reduce tail risk.
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Figure 8.— Cumulative log returns of the DAX future against the tail-risk protection strat-
egy that was implemented via futures and put options. Time horizon: out-of-sample test period
25 June 2004 through 21 October 2015. Vertical lines indicate prominent market events, see
Section 5.3 for a detailed description.

A different implementation would be to protect an already existing long equity position
consisting e.g. of ETFs or an index-like basket of single stocks with an overlay of futures.
Whenever the tail-risk protection strategy signals to go “flat”, a short position in the future
would be implemented to protect the given equity position. Such an overlay could be part of a
risk management strategy of an institutional investor like a pension fund or a hedge fund. In
such an environment, also other financial instruments beyond short positions in futures could
be considered to implement the tail risk signals. For example, the signals to unwind the market
position could be implemented via long put options. This requires an additional decision in
terms of the maturity and strike price of the puts to be selected. In practice, a listed European
put option offered by an exchange like the EUREX or the purchase of a put warrant from an
issuing bank would be viable instruments. Figure 8 shows a performance comparison of the tail-
risk protection strategy using futures and three-month puts on futures at a strike price of 90%
of the underlying price at the purchase date. The comparison shows a performance difference
for the “hybrid” implementation using the puts relative to the “pure” implementation using
the futures, but no systematic advantage or disadvantage across the whole time window. As
the devised tail-risk strategy does not provide a “target time horizon” for each tail risk signal,
the choice of the put maturity date cannot be directly derived from the signals. In addition to
that, a European put before maturity shows a weaker delta than −100%. Thus, the resulting
delta position immediately after the purchase of the put is lower than 100%, but not zero like
in the base implementation using the futures directly. This explains why the implementation
using the put follows more the underlying market than the implementation using the futures.

Finally, banks that play an active role in market making and risk warehousing run substantial
volatility risk (“vega”) positions (Taleb (1997)). In many cases of “hedged” structured products
desks, the resulting portfolios show negative convexity risk in volatility, Jeffery (2004). Due
to the illiquidity of the structured product positions and the corresponding vega hedges, a
short-term reaction to sudden market movements on the option market is often not possible.
Therefore, tail risk protection using futures could also be relevant for the trading desks of those
banks.
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7. CONCLUSION

We develop a dynamic trading strategy that aims at protecting against large market down-
turns by taking into account the time-variation and dynamics of distributional parameters of
financial time series. First, accounting for the time-dependent dynamics of distributional pa-
rameters via a GARCH process allows to incorporate volatility clustering and autoregressive
behaviour in volatility. Second, by fitting the GARCH residuals (innovations) to flexible distri-
bution families incorporating both normal and extreme behaviour allows to determine whether,
in a given time period, extreme events are more likely to occur than suggested by e.g. normal
innovations.

The key input is the spread between a value-at-risk (VaR) from a GARCH model with
GPD innovations and a VaR from a GARCH model with normally distributed innovations. The
GARCH process filters the time-varying volatility behaviour. Because of the GARCH compo-
nent, the magnitude of VaR, when viewed as a process over time, adapts quickly to changes
in volatility. The distributional properties of the innovation process on the other hand provide,
amongst other things, information on the tail risk in the data. The resulting VaR spread can
therefore be used to derive an expectation on the frequency of extreme events, and as such, may
be taken to produce signals about the presence of tail risks.

We show that the general idea of applying tail risk measures and EVT to identify extreme
events yields promising results in tail-risk protection and risk management. An extensive out-
of-sample backtest of the strategy indicates that the tail-risk protection strategy is able to
protect against those extreme tail-risks that are preceded by a risk build-up. Those risks that
occur “out of the blue” cannot be captured by a strategy that is built on historical data. We
find that risk averse investors would be willing to pay a positive premium in the range of
40 basis points in order to move from a static buy-and-hold investment in the DAX future
to the tail-risk protection strategy. Further statistical tests involving permutation tests and
bootstrapping provide evidence that the out-of-sample performance of the tail-risk protection
strategy is not due to sheer luck. Application to further assets (S&P 500 future and WTI Oil
future) illustrate the strategy’s different behaviour when comparing true tail-risk events and
longer-term liquidation periods.

The model leaves room for several extensions: First, to achieve a high level of generality, the
strategy proposed here focuses only on the most prominent empirical stylised facts that are
observed in most financial time series. One could enhance the strategy by incorporating more
specific knowledge about the asset class at hand. Second, apart from the current cumulative
alpha optimisation, other calibration strategies could be considered. One example is the opti-
misation based on quantiles or conditional tail measures. Alternatively, one could also consider
an economic loss function (e.g. in the spirit of Fleming et al. (2001)) and explicitly take into
account investor risk preferences.
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APPENDIX A: FURTHER GENERALISED INNOVATIONS

A.1. Generalised hyperbolic distribution

The GH distribution arises as a special case of the normal mean-variance mixture (NMVM) distribution.
Random variables following an NMVM distribution can be represented as

X
L
= m(W ) +

√
WσZ, (2)

where Z ∼ N(0, 1), that is, Z is standard normally distributed, W ≥ 0 is a random variable independent of Z, the
so-called mixing variable, σ ∈ R+ and m : [0,∞)→ R is a measurable function, cf. e.g. Section 3.2.2 of (McNeil et
al., 2005). The GH distribution arises as the special case where W follows a generalised inverse Gaussian (GIG)
distribution, and the Student t distribution arises when W is inverse gamma (IG) distributed. Representation
(2) illustrates that both the GH and the t distribution are generalisations of the normal distribution as they
essentially consist of a normal random variable with a stochastic standard deviation.

The GH distribution was introduced by (Barndorff-Nielsen, 1977) and has been shown to achieve an almost
perfect statistical fit to stock market return data, e.g. Eberlein and Prause (2000); Eberlein and Keller (1995).

The GH density is given by, see e.g. (Eberlein, 2010),

f(λ, α, β, δ, µ)(x) = a · (δ2 + (x − µ)2)(λ−
1
2
)/2 · Kλ− 1

2
(α

√
δ2 + (x− µ)2) exp(β(x − µ)),

with

a := a(λ, α, β, δ, µ) =
(α2 − β2)λ/2

√
2παλ−

1
2 δλKλ(δ

√
α2 − β2)

,

and where Kλ denotes the modified Bessel function of the third kind with index λ. The parameters are interpreted
as follows: α > 0 is the shape parameter, β, with 0 ≤ |β| < α is the skewness (β = 0 is the symmetric case), µ ∈ R
is the location parameter, δ > 0 is a scaling parameter and λ ∈ R characterises the subclass, which essentially
determines the weight in the tails.

Special cases of the GH distribution arise when λ = 1, in which case one gets the class of hyperbolic distri-
butions, and when λ = −1/2, which yields the class of normal inverse Gaussian (NIG) distributions. Further,
for λ > 0 and as δ → 0 one obtains a variance-gamma (VG) distribution. In the case λ < 0 and δ2 = −2λ,
one obtains a skewed Student-t distribution with δ2 degrees of freedom, (Eberlein and Hammerstein, 2004). The
special case of the normal distribution thus arises when β = 0 and as δ →∞.

A.2. α-stable distribution

A different generalisation of the normal distribution is the family of α-stable distributions. A (non-degenerate)

random variable X is stable if for each n > 0 there exist constants cn and γn such that X1 + · · ·+Xn
L
= cnX+γn.

It turns out that cn = n1/α with 0 < α ≤ 2. In particular, the normal distribution is the only 2-stable distribution,
that is, a stable distribution with α = 2. The normal distribution is the only α-distribution with a finite variance,
so that other types of α-stable distributions are very heavy tailed. The development of the theory surrounding
α-stable distributions goes back to Paul Lévy’s work in the 1920s and 1930s, see e.g. (Feller, 1971; Cont and
Tankov, 2004). A comprehensive overview of α-stable distributions in finance is given in (Rachev and Mittnik,
2000).

In the non-normal case, that is, when α < 2, there is no closed-form for the α-stable distribution or density.
The characteristic function, however, admits a closed form:∫ ∞

−∞
eitx dF (x) =

{
exp{−cα |t|α(1− iβ sign(t) tan(πα/2)) + iδt}, if α 6= 1,

exp{−c |t|(1 + iβ 2/π sign(t) ln |t|) + iδt}, if α = 1,

where F is the corresponding α-stable distribution function, α ∈ (0, 2] is the index of stability, β ∈ [−1, 1]
determines the skewness, δ ∈ R determines the location and c > 0 is the scale parameter.

APPENDIX B: VAR’S AND VAR SPREADS
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Figure 9.— From top: volatility forecast from GARCH model; daily value-at-risk at a con-
fidence level of α = 0.99; daily value-at-risk spread relative to VaR with normally distributed
residuals; overnight VaR; overnight VaR spread. Right axis corresponds to DAX future returns.
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