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In this article, we propose a new class of semiparametric instrumental variable models with partially vary-
ing coefficients, in which the structural function has a partially linear form and the impact of endogenous
structural variables can vary over different levels of some exogenous variables. We propose a three-step
estimation procedure to estimate both functional and constant coefficients. The consistency and asymp-
totic normality of these proposed estimators are established. Moreover, a generalized F-test is developed to
test whether the functional coefficients are of particular parametric forms with some underlying economic
intuitions, and furthermore, the limiting distribution of the proposed generalized F-test statistic under the
null hypothesis is established. Finally, we illustrate the finite sample performance of our approach with
simulations and two real data examples in economics.

KEY WORDS: Endogeneity; Functional coefficients; Generalized F-test; Instrumental variables models;
Nonparametric test; Profile least squares.

1. INTRODUCTION

Instrumental variables (IV) models have been widely used
in empirical studies to correct potential endogeneity between
regressors and structural errors and identify causal relations
among several economic variables. By assuming the coefficients
of all economic variables to be constant, linear IV models are
commonly used but they might be too restrictive for some real
economic applications. For example, in the literature of labor
economics, one main research topic is to estimate the relation-
ship between income and education. A linear IV model is typi-
cally adopted because of the endogeneity of years-of-schooling,
the measurement of education. However, Schultz (1997) real-
ized that marginal returns to education vary with the level of
working experience and Card (2001) found that returns to edu-
cation could be underestimated if a linear IVmodel was adopted
by assuming the additive separation of education and working
experience. In other words, a classical linear IVmodel might not
be suitable for this typical application in the labor economics
literature.
Our motivation comes mainly from studying the above

example and other real applications in economics. Specifically,
inspired by the above example, we propose a new class of
semiparametric functional-coefficient IV models by allowing
the effect of some structural variables to be functions of some
exogenous variables. In such a way, the new model adopts a
partially linear form, in which the coefficients of some vari-
ables are restricted to be constant but the coefficients of other
variables are assumed to be functional, depending on some
exogenous continuous economic variables selected based on

some economic theories. Moreover, we allow for the existence
of endogeneity in the structural equation. In the above example,
the coefficient of education can be an unknown function of
working experience. Apart from introducing model flexibility,
the semiparametric framework and the functional-coefficient
setup are helpful to alleviate the curse of dimensionality in a
multivariate regression framework and to avoid the so-called ill-
posed inverse problem in general nonparametric instrumental
variables models; see Newey and Powell (2003).

The partially linear structure of the functional-coefficient
instrumental variables model leads itself naturally to a three-
stage estimation procedure as described later in detail. The first
stage constitutes a projection of endogenous variables on a set
of instrumental variables, the second stage is to estimate the
constant coefficients by a profile least-squares approach, and
the last stage uses the kernel method to estimate the functional
coefficients. Particularly, we propose a new modified estima-
tor of the constant coefficients and show that it may be more
efficient than the conventional profile least squares estimator in
some empirically relevant cases. We develop the large sample
theory for the proposed three-stage estimators. Moreover, we
propose two tests on testing both the constant parameters and
the functional coefficients, respectively. In particular, a general-
ized F-test statistic is proposed novelly for testing the functional
coefficients in a nonparametric instrumental variables model.
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This article builds on a vast amount of literature on nonpara-
metric estimation of instrumental variables models. Newey and
Powell (2003) pointed out that the identification of a general
nonparametric instrumental variables model depends on a
Fredholm integral equation of the first kind, which leads to
the so-called ill-posed inverse problem. Newey, Powell, and
Vella (1999) proposed a two-step nonparametric estimator
of triangular simultaneous equation models. Ai and Chen
(2003) considered a general model with conditional moment
restrictions containing unknown functions, and a sieve mini-
mum distance estimator was proposed. Both papers developed
estimators using series approximation under regularization by
compactness. Hall and Horowitz (2005) and Darolles et al.
(2011) proposed to solve the ill-posed problem by the Tikhonov
regularization. However, estimation of such general nonpara-
metric instrumental variables models requires some strong
regularizations and sometimes precludes from implementing
practicable inferences.
To avoid the ill-posed inverse problem but at the same time

to retain some model specification flexibility, it is common to
impose some restrictions on a general nonparametric instru-
mental variables model. Das (2005) considered estimation of a
nonparametric model whose endogenous variables are restricted
to be a univariate discrete variable with finite support. Cai
et al. (2006) proposed a two-step estimation of a nonpara-
metric instrumental variables model under a fully functional-
coefficient representation for structural equations. Our model
extends it to a semiparametric (partially linear) framework and
covers the aforementioned two models as special cases.
A functional-coefficient representation allows a regression

model to be linear in some components with their coefficients
given by unknown functions of other variables. Hastie and Tib-
shirani (1993) first introduced the functional-coefficient model
into the literature, whereas Chen and Tsay (1993), Cai, Fan,
and Li (2000a) and Cai, Fan, and Yao (2000b) explored the
functional-coefficient model under a time series framework.
Compared to a fully nonparametric model, in addition to captur-
ing nonlinearity and heterogeneity, see Cai (2010) for details, a
functional-coefficient model can accommodate structural infor-
mation by choosing the smoothing variable and the functional
form as well. Hence, testing on functional coefficients becomes
a vehicle to test structural information and the underlying eco-
nomic theory. To this end, Cai, Fan, and Yao (2000b) and Fan,
Zhang, and Zhang (2001) proposed a generalized likelihood
ratio test on functional coefficients model without endogene-
ity and showed that the well-known Wilks phenomenon holds
for this case. Moreover, Fan and Huang (2005) extended the
generalized likelihood ratio test to a varying-coefficient par-
tially linear model without endogenous regressors. Su,Murtaza-
shvili, and Ullah (2013) considered a nonparametric Wald-type
statistic to test the constancy of the functional coefficients in an
instrumental variables model. The generalized F-test proposed
in this article allows regressors to be endogenous and can be
used to test whether the functional coefficients are of any par-
ticular parametric forms.
Zhou and Liang (2009) is another article related to our

research. Motivated by measurement errors, Zhou and Liang
(2009) considered a semiparametric varying-coefficient par-
tially linear model with endogeneity only in the linear part.

They proposed a semiparametric profile least-squares based
procedure to estimate the constant and varying coefficients, and
applied a generalized likelihood ratio test to test the functional
forms of the varying coefficients. By contrast, this article
considers a general varying-coefficient instrumental variables
model which allows for endogeneity existing in all structural
variables except the smoothing variable, and we develop a new
modified estimator of the constant coefficients and demonstrate
its efficiency gains over the profile least-squares estimator
in some empirically important cases. Moreover, we propose
a novel generalized F-test for testing the varying-coefficient
part and the proposed generalized F-test statistic can have an
interpretation as an extended Wald-type statistic similar to
that in Su, Murtazashvili, and Ullah (2013) with being always
nonnegative in finite sample case, which is different in some
way from the generalized likelihood ratio test statistic proposed
in Zhou and Liang (2009).
The rest of the article is organized as follows. Section 2 intro-

duces the model and three related motivated empirical examples
are provided. Section 3 provides a three-stage estimation proce-
dure and the asymptotic properties of the proposed estimators
are established. Section 4 develops tests on both the constant
coefficients and the functional coefficients. In particular, a gen-
eralizedF-test statistic on the functional coefficients is proposed
and its limiting distribution under the null hypothesis is derived.
A Monte Carlo simulation study is conducted in Section 5 to
demonstrate the finite sample performance of the proposed esti-
mators and test statistics. Section 6 applies our methods to esti-
mate the return to education and the growth effect of foreign
direct investment (FDI), respectively. Finally, Section 7 con-
cludes the article and all mathematical proofs are relegated to
the Appendix in the supplementary material.

2. MODEL SETUP AND ILLUSTRATIVE EXAMPLES

A semiparametric functional-coefficient instrumental vari-
ables model assumes the following form:

Yk = AT1 (uk )Xk,1 + AT2 (uk )Xk,2 + βT
1Wk,1 + βT

2Wk,2 + εk, (1)

whereYk is an observed scalar random variable, Xk,1 andWk,1 are
endogenous random variables, Xk,2 andWk,2 are exogenous ran-
dom variables, εk is a random error, AT denotes the transpose
of A, the coefficients A(uk ) = (AT1 (uk ),A

T
2 (uk ))

T are unknown
functions of exogenous continuous random variable uk, and β =
(βT

1 , βT
2 )

T are constant coefficients. Without losing the general-
ity, we assume the smoothing variable uk to be a scalar to save
notations.
The above model is general enough to include many pop-

ular models in the literature. For example, if the parametric
part is excluded from model (1), it becomes a nonparamet-
ric functional-coefficient model proposed by Cai et al. (2006).
When Xk,1 is a univariate discrete endogenous variable, model
(1) is reduced to the model in Das (2005). If A(uk ) takes the
form of a threshold function, then model (1) includes the thresh-
old instrumental variables model in Caner and Hansen (2004)
as a special case. Moreover, if terms AT1 (uk )Xk,1 and βT

2Wk,2

are excluded, model (1) reduces to the model with measure-
ment in errors studied in Zhou and Liang (2009). Finally, if we
restrict all variables to be exogenous, our model is reduced to
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a semiparametric functional-coefficient model studied by many
authors in the statistics and econometrics literature, including
but not limited to Hastie and Tibshirani (1993), Chen and Tsay
(1993), Cai, Fan, and Li (2000a), Cai, Fan, and Yao (2000b),
Li et al. (2002), Zhang, Lee, and Song (2002), Fan and Huang
(2005), and Ahmad, Leelahanon, and Li (2005), among others.
Before discussing the model inference procedures, we illus-

trate our motivation on why we need to propose this new class
of semiparametric functional-coefficient instrumental variables
models by the following three real examples in the economics
literature.

Example 2.1: Return to Education
Of interest in labor economics is to estimate the returns to

education. Since education in a wage model is regarded as an
endogenous variable due to unobservable heterogeneity in abil-
ity and schooling choices, a traditional empirical strategy is to
employ a linear instrumental variables regression model. How-
ever, Schultz (1997) argued that marginal returns to education
vary with different levels of working experience. As found in
Card (2001), the returns to education would be underestimated
if one would ignore the nonlinearity and the interacted impact
between education and working experience. The above empiri-
cal findings suggest that it should be appropriate to use a semi-
parametric functional-coefficient instrumental variables model
in which the impact of education allows to vary with the level
of individual working experience.

Example 2.2: FDI and Economic Growth
It is an important issue in macroeconomics and international

economics literature to examine the role of foreign direct invest-
ment (FDI) in the economic growth. Kottaridi and Stengos
(2010) and Cai, Chen, and Fang (2016) found that a benefi-
cial effect of FDI on economic growth exists only for countries
at high level of income. In other words, the coefficient of FDI
inflows in a growth model should be functional over the ini-
tial income level of each country. The nonlinear and heteroge-
neous impacts of FDI inflows motivate the adoption of a par-
tially functional-coefficient model. Interestingly, as argued by
Li and Liu (2004), the ratio of FDI to GDP is an endogenous
variable. Therefore, to model the impact of FDI on the eco-
nomic growth, we need to take care of both nonlinearity and
endogeneity.

Example 2.3: Curse of Resources and Quality of Institutions
One of the core issues in development economics literature is

to identify the impact of natural resources on economic devel-
opment. The curse of resources summarizes the finding that
resource abundant regions tend to grow slower than resource
poor regions (Sachs and Warner 1997, 2001). However, we
cannot neglect the fact that countries rich in natural resources
constitute both growth losers and winners. Mehlum, Moene,
and Torvik (2006) argued that quality of institutions is deci-
sive for the resource curse. The variance of growth perfor-
mance among natural resources abundant regions depends on
how resource rents are distributed via the institutional arrange-
ment, and whether it is grabber friendly or producer friendly.
Therefore, this suggests that the coefficient of resource abun-
dance should depend on the quality of institutions. Moreover,
the resource abundance is often measured by the share of pri-
mary exports in GNP. Stijns (2005) argued that this measure is

an endogenous variable and then we need to employ an instru-
mental variables regression.
In summary, model (1) is suitable for the aforementioned

three real examples in economics and it provides an alternative
to the existing literature to capture both nonlinearity and endo-
geneity as well as heterogeneity. The advantages of using the
newmodel given by (1) to analyze the first two illustrative exam-
ples will be reported in details in Section 6.

3. ESTIMATION PROCEDURES

3.1 Notation

In this article, we consider an instrumental variables model
with partially functional coefficients given in (1), reexpressed
as follows:

Yk = AT (uk )Xk + βTWk + εk, k = 1, . . . , n, (2)

where Xk is a p× 1 random vector, including endogenous ran-
dom variablesXk,1 and exogenous random variablesXk,2, andWk

is a d × 1 random vector, including endogenous random vari-
ablesWk,1 and exogenous random variablesWk,2.
Since Xk,1 and Wk,1 are endogenous, we need to find instru-

mental variables to estimate the structural equation. Let Zk,
including the constant term, the exogenous variables Xk,2,Wk,2

and other instrumental variables, be a q× 1 vector, where q ≥
p+ d, which is the identification condition that the number of
instruments is larger than the number of endogenous variables.
Then, E(εk | uk,Zk ) = 0. By taking a linear projection of Yk on
Zk conditionally on uk, we obtain that

Yk = ProjZk (Yk | uk ) + ε∗
k = A(uk )

TProjZk (Xk | uk )
+βTProjZk (Wk | uk ) + ε∗

k ,

where ProjZk (Vk | uk ) = E(VkZTk | uk )[E(ZkZTk | uk )]−1Zk with
Vk = (Yk,XT

k ,WT
k )T and ε∗

k = Yk − ProjZk (Yk | uk ). Obviously,
E
[
ProjZk (Xk | uk ) ε∗

k | uk
] = 0

and E
[
ProjZk (Wk | uk ) ε∗

k | uk
] = 0.

Therefore, the above structure suggests a three-stage estima-
tion procedure. The first stage is to estimate ProjZk (Xk | uk ) and
ProjZk (Wk | uk ) by a regression of (Xk,Wk ) on Zk conditional on
uk, and the second stage is to use a profile least-squares approach
to estimate the constant coefficients β, and finally, the functional
coefficients A(u) is estimated by a nonparametric method such
as the local linear fitting method.
We now define some notations which will be used through-

out the article. To this end, we let �X (u) = �(u)−1E(ZkXT
k |

uk = u) and �W (u) = �(u)−1E(ZkWT
k | uk = u) with

�(u) = E(ZkZTk | uk = u). Then, ProjZk (Xk | uk ) = �T
X (uk )Zk

and ProjZk (Wk | uk ) = �T
W (uk )Zk. We further define

vX,k = Xk − �T
X (uk )Zk and vW,k =Wk − �T

W (uk )Zk. By defini-
tion, the reduced form equations become

XT
k = ZTk �X (uk ) + vTX,k and WT

k = ZTk �W (uk ) + vTW,k,

where E(ZkvTX,k | uk ) = 0q×p and E(ZkvTW,k | uk ) = 0q×d. Here,
0 stands for a matrix of zeros. We also use K(u) to denote the
kernel function and let Kh(u) = K(u/h)/h.
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3.2 Three-Stage Estimation

There are some methods available in the literature to esti-
mate a semiparametric functional-coefficient model and a
semiparametric functional-coefficient instrumental variables
model; see, for example, Fan and Huang (2005), Zhou and
Liang (2009), and Cai and Xiong (2012). In this article, we
adopt a three-stage estimation procedure. The first stage is to
estimate the reduced form equation. Zhou and Liang (2009)
and Cai and Xiong (2012) considered nonparametric reduced
form equation. However, when the number of instruments is
large, a fully nonparametric regression might become problem-
atic for a moderate sample size due to the so-called curse of
dimensionality. To overcome this problem, we propose using
linear projection conditional on the smoothing variable, so that
the reduced form equation becomes a functional-coefficient
model as well. Then, we apply a profile least-squares method
to estimate the constant coefficients. Particularly, we develop a
novel modified approach to estimate the constant coefficients
that can remove some effects of residues from the reduced form
equation. When the variation in the reduced form equation is
large or the structural equation and the reduced form equation
have positive correlated variations, the modified estimator can
be more efficient than the conventional profile least squares
estimator, which can be evidenced from our simulation study
(see Section 5). The last stage is to estimate the functional
coefficients by a local linear regression.
Suppose that {Yk,Xk,Wk,Zk, uk, k = 1, . . . , n} is a random

sample observed from model (2). Let Y = (Y1, . . . ,Yn)T , X =
(X1, . . . ,Xn)T , W = (W1, . . . ,Wn)T , Z = (Z1, . . . ,Zn)T , ε =
(ε1, . . . , εn)T , M = (AT (u1)X1, . . . ,AT (un)Xn)T ,

DZ (u) =

⎛⎜⎜⎝
ZT1

u1−u
h ZT1

...
...

ZTn
un−u
h ZTn

⎞⎟⎟⎠ and DX (u) =

⎛⎜⎜⎝
XT
1

u1−u
h XT

1

...
...

XT
n

un−u
h XT

n

⎞⎟⎟⎠ .

Then, model (2) can be written as a matrix form as follows:

Y = M + Wβ + ε.

At the first stage, we estimate the linear projection of
(XT

k ,WT
k ) on Zk conditional on uk by (X̂T

k ,Ŵ T
k ), that is, let

X̂T
k = ZTk �̂X (uk ) = (

ZTk , 01×q
)

× [
DZ (uk )

TH(uk )DZ (uk )
]−1

DZ (uk )
TH(uk )X,

and

Ŵ T
k = ZTk �̂W (uk ) = (

ZTk , 01×q
)

× [
DZ (uk )

TH(uk )DZ (uk )
]−1

DZ (uk )
TH(uk )W,

where H(u) = diag
(
Kh(u1 − u), . . . ,Kh(un − u)

)
. Further-

more, we define

D̂X (u) = DZ (u)
[
DZ (u)

TH(u)DZ (u)
]−1

DZ (u)
TH(u)DX (u),

which is the first stage estimator.
The second stage is to estimate β by minimizing

n∑
k=1

[
Yk − A(uk )

T X̂k − βTŴk
]2

. (3)

For any given value of β, based on the local polynomial fitting
theory, a local linear estimate of A(uk ) and its derivative is given
by(

Â(uk )
hÂ′(uk )

)
=
[
D̂
T
X (uk )H(uk )D̂X (uk )

]−1
D̂
T
X (uk )H(uk )

(
Y − Ŵβ

)
.

(4)

where Ŵ = (Ŵ1, . . . ,Ŵn)T . Substituting Â(uk ) for A(uk ) in (3),
it becomes

n∑
k=1

[
Yk − Â(uk )

T X̂k − βTŴk
]2

(5)

= [
Y − Ŝ

(
Y − Ŵβ

)− Ŵβ
]T [

Y − Ŝ
(
Y − Ŵβ

)− Ŵβ
]

= (
Y − Ŵβ

)T (
In − Ŝ

)T (
In − Ŝ

) (
Y − Ŵβ

)
,

where

Ŝ =

⎛⎜⎜⎝
(
X̂T
1 , 01×p

) [
D̂X (u1)TH(u1)D̂X (u1)

]−1
D̂X (u1)TH(u1)

...(
X̂T
n , 01×p

) [
D̂X (un)TH(un)D̂X (un)

]−1
D̂X (un)TH(un)

⎞⎟⎟⎠ .

and In is the n× n identity matrix. Byminimizing (5), we obtain
the conventional profile least-squares estimator of β given by

β̂ = [Ŵ
T
(In − Ŝ)T (In − Ŝ)Ŵ]−1Ŵ

T
(In − Ŝ)T (In − Ŝ)Y.

(6)

Here, we propose a modified estimator as follows:

β̃ = [Ŵ
T
(In − Ŝ)T (In − S̃)W]−1Ŵ

T
(In − Ŝ)T (In − S̃)Y,

where

S̃ =

⎛⎜⎜⎝
(
XT
1 , 01×p

) [
D̂X (u1)TH(u1)D̂X (u1)

]−1
D̂X (u1)TH(u1)

...(
XT
n , 01×p

) [
D̂X (un)TH(un)D̂X (un)

]−1
D̂X (un)TH(un)

⎞⎟⎟⎠ .

The main reason of doing so is to remove the effects of residues
from the reduced form equation. In practice, to avoid the over-
whelming influence on the estimation of β from the tail behavior
of the smoothing variable uk, we can follow the suggestion from
Cai and Masry (2000) and Fan and Huang (2005) to trim some
observations of uk in its sparse regions.
Finally, after obtaining β̃, the functional coefficients at any

given value u can be estimated by(
Ã(u)
hÃ′(u)

)
=
[
D̂
T
X (u)H(u)D̂X (u)

]−1
D̂
T
X (u)H(u)

(
Y − Wβ̃

)
rather than the estimate given in (4).

3.3 Asymptotic Properties

Before studying the asymptotic properties of the pro-
posed estimators, some technical assumptions are listed
below for deriving the large sample theories for the three-
stage estimators and the generalized F-test statistic proposed
in the next section. To save notations, we define �(u) =
f (u)�T

X (u)�(u)�X (u), �(u) = f (u)�T
X (u)�(u)�W (u) and

�(u) = f (u)�T
X (u)E(Zkε

2
kZ

T
k | uk = u)�X (u), where f (u) is
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the density function of uk. Note that all the assumptions listed
below are not necessary to be the weakest possibly.

Assumptions:

A1: Observations (Yk,Xk,Wk,Zk, uk ), k = 1, . . . , n, are
independent and identically distributed, where Xk is
a p× 1 random vector, Wk is a d × 1 random vec-
tor, the instrument Zk is a q× 1 random vector with
q ≥ p+ d, and uk is an exogenous random variable
such that E(εk | Zk, uk ) = 0.

A2: The random variable uk has a bounded compact support
�, and its density function is Lipschitz continuous and
bounded away from zero.

A3: A(u), �X (u) and �W (u) have continuous second
derivatives in �.

A4: The matrices �(u),�(u),�(u) and�(u) are nonsingu-
lar for any u ∈ �.

A5: The kernel function K(·) is a symmetric density func-
tion with compact support and furthermore satisfies the
Lipschitz condition.

A6: There exists an s > 2 such that supu∈�{E[‖Zk‖2s |
uk = u]} < ∞, supu∈� {E[‖Xk‖2s | uk = u]} < ∞,
supu∈�{E[‖Wk‖2s | uk = u]} < ∞ and n2ε−1h → ∞
for some ε < 1 − s−1.

A7: n → ∞, h → 0 and nh2+κ → ∞ for some κ > 0.

All the above assumptions are fairly standard in the litera-
ture of instrumental variables models and functional-coefficient
models, such as in Fan and Huang (2005), Cai et al. (2006),
and Zhou and Liang (2009). Assumption 1 requires that q ≥
p+ d and Assumption 4 requires that the conditional covari-
ance matrices are nonsingular. These conditions are sufficient
for the model identification. Assumptions 2, 3, and 5 are quite
common in the literature of local linear estimation. Assumptions
2, 5, and 6 suffice to employ a lemma in Mack and Silverman
(1982) (see Lemma 1 in the Supplementary Appendix) to obtain
the uniform convergence of a kernel estimator.
We now present the consistency and asymptotic normality

of the estimators proposed in Section 3.2. The following the-
orem states the asymptotic distribution of

√
n(β̃ − β ) with the

detailed proof given in the supplementary Appendix.

Theorem 1. Suppose that Assumptions A1–A7 hold. When
nh4 → 0, we have

√
n
(
β̃ − β

) d−→ N
(
0, �−1

1 �∗
1�

−1
1

)
,

where �1 = E(ϒkϒ
T
k ) and �∗

1 = E(ϒkε
2
kϒ

T
k ) with

ϒk = �T
W (uk )Zk − �T (uk )�

−1(uk )�
T
X (uk )Zk.

Furthermore, if εk is conditionally homoscedastic; that is, E(ε2k |
uk,Zk ) = σ 2

ε , then, we have

√
n
(
β̃ − β

) d−→ N
(
0, σ 2

ε �−1
1

)
since �∗

1 = �1σ
2
ε .

The above theorem includes the conclusion in Fan and Huang
(2005) as a special case. When both Xk andWk are exogenous,
they are included in Zk. Therefore, Xk = �T

X (uk )Zk and Wk =
�T
W (uk )Zk. Furthermore, if εk is conditionally homoscedas-

tic, then �1 becomes E(WkWT
k ) − E[E(WkXT

k | uk )E(XkXT
k |

uk )E(XkWT
k | uk )] , which is exactly the result of Theorem 4.1

in Fan and Huang (2005).
To present the asymptotic property of the local linear estima-

tor of the functional coefficients, we define(
Ã(u)
hÃ′(u)

)
=
[
D̂
T
X (u)H(u)D̂X (u)

]−1
D̂
T
X (u)H(u)

(
Y − Wβ

)
,

(7)

where β is an estimate of β. Now, we have the next theorem.

Theorem 2. Suppose that β is a
√
n-consistent estimate of β

and under Assumptions A1–A7, we have

√
nh

[
Ã(u) − A(u) − 1

2
h2μ2A

′′(u)
(
1 + op(1)

)] d−→ N (0, �2) ,

where μ2 = ∫
t2K(t )dt and �2 = ν0�

−1(u)�(u)�−1(u) with
ν0 = ∫

K2(t )dt. If εk is conditionally homoscedastic, then, the
asymptotic variance reduces to�2 = ν0σ

2
ε �−1(u) since�(u) =

σ 2
ε �(u). Furthermore, if nh5 → 0, we have

√
nh
[
Ã(u) − A(u)

] d−→ N (0, �2) . (8)

Clearly, the bias term in the above theorem is of order h2 and
is the same as the bias in a semiparametric functional-coefficient
model (Fan andHuang 2005) and in a nonparametric functional-
coefficient instrumental variables model (Cai et al. 2006). The
estimator of the functional coefficients is oracle in the sense that
the estimator performs as well as the constant coefficients β and
the reduced form coefficients �X (u), �W (u) would be known.
Bandwidth selection is a challenging issue in semiparamet-

ric models because of the nature of the multi-stage estimation.
There are two bandwidths involved in the proposed three-stage
estimation procedure. We use the same bandwidth in the first
stage and the second stage to remove some effects of residues
in the reduced form equation on the estimation of β. The opti-
mal bandwidth h = Cn−1/5 for a fully nonparametric functional
coefficient model cannot be applied since we require that nh4

tends to 0 (under-smoothing). Following Cai et al. (2006), we
suggest employing a small bandwidth in the first two stages
to eliminate the bias as much as possible. Specifically, we use
cross-validation to select a bandwidth h1 for the first-stage fit-
ting, then the bandwidth used in the first two stages is h = n−ah1
with a > 1

4 . When β is estimated, the estimation of A(u) in the
third stage becomes a conventional functional-coefficient model
and some bandwidth selection methods available in literature
are applicable; see, for example, Li and Racine (2007).

4. INFERENCES

4.1 Inferences on Constant Coefficients

It is clear from Theorem 1 that to establish a confidence inter-
val of β, we need to construct consistent estimators of �1 and
�∗

1 , described as follows. First, Lemma 4 in the supplementary
Appendix shows that

�̂1 = 1

n
Ŵ

T (
In − Ŝ

)T (
In − Ŝ

)
Ŵ

p−→ �1.
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Second, let ε̂k = Yk − ÂT (uk )Xk −Wkβ̃. By the similar argu-
ment in proving Lemma 4, it can be shown that

�̂∗
1 = 1

n
Ŵ

T (
In − Ŝ

)T ⎛⎜⎝ ε̂21 0 0

0
. . . 0

0 0 ε̂2n

⎞⎟⎠(
In − Ŝ

)
Ŵ

p−→ �∗
1 .

Now, we consider the following hypothesis testing problem
for β :

H0 : Fβ = C versus H1 : Fβ 
= C,

where F is a b× d full rank matrix with b ≤ d andC is a b× 1
vector. Clearly, a Wald-type test statistic based on Theorem 1 is
given by

Wn(F,C) = (
Fβ̃ −C

)T [
F�̂−1

1 �̂∗
1 �̂

−1
1 FT

]−1 (
Fβ̃ −C

)
.

The following corollary presents the limiting distribution of the
proposed Wald-type test statistic.

Corollary 1. Suppose that Assumptions A1–A7 hold. When
nh4 → 0, under the null hypothesis, we have

Wn(F,C)
d−→ χ2

b

where χ2
b denotes a chi-square distribution with degrees of free-

dom b.

The consequence of Corollary 1 is to perform test at the
significance level α as follows. We reject H0 : Fβ = C if
Wn(F,C) > χ2

b (α), where χ2
b (α) is the α critical value of χ2

b .

4.2 Inferences on Functional Coefficients

First, based on Theorem 2, we can construct a pointwise con-
fidence interval forA(u) for each given point uwith higher-order
bias ignored. To do so, we need to develop a consistent estimator
of �2. To this end, we define X̂ = (X̂1, . . . , X̂n)T and

�̂2 = ν0

[
1

n
X̂
T
H(u)X̂

]−1

×

⎡⎢⎣1

n
X̂
T

⎛⎜⎝ ε̂21Kh(u1 − u) 0 0

0
. . . 0

0 0 ε̂2nKh(un − u)

⎞⎟⎠X̂

⎤⎥⎦
×
[
1

n
X̂
T
H(u)X̂

]−1

.

Similar to the proof of Lemma 3 in the Supplementary

Appendix, we can show that �̂2
p−→ �2. Therefore, one can

easily construct a pointwise confidence interval ofA(u) by using
the formulation given in (8).
Now, we consider constructing a test statistic on the func-

tional coefficients A(u). Testing on A(u) is of particular inter-
est in our model because we may want to impose some struc-
tural restrictions on the functional coefficients, which actually
reflects some economic intuitions. Hence, testing on functional
coefficients sometimes is equivalent to testing on underlying
economic theories. Consider the following general hypothesis
testing problem:

H0 : A(u) = A0(u; θ ) versus H1 : A(u) 
= A0(u; θ ),

where A0(u, θ ) is a known parametric function of u. The above
hypothesis testing problem is a nonparametric test against a
parametric form. It is general enough to include many inter-
esting cases. For example, when A0(u, θ ) = θ , it becomes test-
ing linearity. When θ is zero, it reduces to a significance test.
If A0(u, θ ) is taken to be a given parametric function of u with
some economic stories, then our interest is to test whether or not
some economic theories hold.
Following the idea in Cai and Tiwari (2000), we construct a

generalized F-test statistic based on the ratio of residual sum of
squares (RSS) of the partially varying coefficient model to that
for the parametric model. Note that we allow the parameter θ in
the functional coefficients to be unknown, but to be consistently
estimated with the rate of square-root-n under the null hypothe-
sis. Let θ and β be

√
n-consistent estimates of θ and β under the

null hypothesis, respectively. The generalized F-test statistic is

λn(A0) = RSS0 − RSS1
RSS1/n

,

where RSS0 = 1
n

∑n
k=1 S0(uk ) is the RSS under the null hypoth-

esis and RSS1 = 1
n

∑n
k=1 S1(uk ) is the RSS under the alternative

hypothesis with

S0(u) =
[
Y − D̂X (u)

(
A0(u; θ )

hA′
0(u; θ )

)
− Wβ

]T
H(u)

×
[
Y − D̂X (u)

(
A0(u; θ )

hA′
0(u; θ )

)
− Wβ

]
,

and

S1(u) =
[
Y − D̂X (u)

(
Ã(u)

hÃ′(u)

)
− Wβ

]T
H(u)

×
[
Y − D̂X (u)

(
Ã(u)

hÃ′(u)

)
− Wβ

]
.

Here, (Ã(uk ), hÃ′(uk )) are the nonparametric estimates of the
functional coefficients and the first derivatives obtained by (7).
From the proof of Lemma 6 in the Supplementary Appendix, it
follows that

RSS0 − RSS1 = 1

n

n∑
k=1

[(
Ã(uk )

hÃ′(uk )

)
−
(
A0(uk; θ )

hA′
0(uk; θ )

)]T

D̂
T
X (uk )H(uk )D̂X (uk )

[(
Ã(uk )

hÃ′(uk )

)
−
(
A0(uk; θ )

hA′
0(uk; θ )

)]
.

Therefore, the generalized F-test statistic can have an interpre-
tation as an extended Wald-type statistic similar to that in Su,
Murtazashvili, and Ullah (2013) with being always nonnegative
in finite sample case, which is different in some way from the
generalized likelihood ratio test statistic proposed by Zhou and
Liang (2009). The following theorem presents the limiting dis-
tribution of the generalized F-test statistic, λn, under the null
hypothesis.
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Theorem 3. Suppose that Assumptions A1–A7 hold, when
nh4 → 0, under the null hypothesis, we have

σ−1
n {λn − μn} d−→ N(0, 1),

where

μn =
(ν0 + μ−1

2 ν2)E
{
Trace

{
�−1(uk )�(uk )

} }
hE

{[
εk + vTX,kA0(uk; θ )

]2
f (uk )

}
and

σ 2
n =

2
∫
g2(t ) dt E

{
Trace

{
�−1(uk )�(uk )�−1(uk )�(uk ) f (uk )

} }
hE2

{[
εk + vTX,kA0(uk; θ )

]2
f (uk )

}
with ν0 = ∫

K2(t ) dt, ν2 = ∫
t2K2(t ) dt, μ2 = ∫

t2K(t ) dt and
g(t ) = ∫

K(s)K(t + s) ds + μ−1
2

∫
s(t + s)K(s)K(t + s) ds.

Furthermore, if εk is conditionally homoscedastic, then,
�−1(uk )�(uk ) = σ 2

ε Ip so that

μn = (ν0 + μ−1
2 ν2) pσ 2

ε

hE
{[

εk + vTX,kA0(uk; θ )
]2
f (uk )

}
and

σ 2
n = 2

∫
g2(t ) dt pσ 4

ε E [ f (uk )]

hE2
{[

εk + vTX,kA0(uk; θ )
]2
f (uk )

} .

Although we obtain the asymptotic distribution of λn, the test
might be sensitive to the bandwidth h in finite sample case. To
gain a better performance of the proposed test for the small-
sample case in practice, we suggest using a bootstrap method to
calculate the p-value for λn.We adopt the wild bootstrapmethod
proposed byDavidson andMacKinnon (2010) for heteroscedas-
tic noises. Specifically, let ε̂k = Yk − ÂT (uk )Xk −Wkβ, v̂X,k =
Xk − �̂T

X (uk )Zk and v̂W,k =Wk − �̂T
W (uk )Zk. Then, the boot-

strap sample is generated as follows:

Y ∗
k = AT0 (uk, θ )X

∗
k + β

T
W ∗
k + ε∗

k ,

X∗T
k = ZTk �̂X,k(uk ) + v∗T

X,k,

and

W ∗T
k = ZTk �̂W,k(uk ) + v∗T

W,k

for k = 1, . . . , n, where (ε∗
k , v

∗T
X,k, v

∗T
W,k ) = (ε̂k, v̂TX,k, v̂

T
W,k )e

∗
k ,

and

e∗k =
⎧⎨⎩−

√
5−1
2 , with probability

√
5+1
2
√
5
;

√
5+1
2 , with probability

√
5−1
2
√
5
.

We generate B datasets using the above bootstrap sampling
scheme and let λ∗

n,1, . . . , λ
∗
n,B be the corresponding bootstrap

test statistics. The bootstrap p-value is
∑B

i=1 I(λ
∗
n,i ≥ λn)/B,

where I(·) is the indicator function.

5. A MONTE CARLO SIMULATION STUDY

In this section, we present a simulated example to examine
the finite sample performance of the proposed three-stage esti-
mators and the generalized F-test on the functional coefficients

as well as the proposed Wald-type test on the constant coeffi-
cients. For this purpose, we consider the following semipara-
metric functional-coefficient instrumental variables model:

Yk = A(uk )Xk + β1Wk,1 + β2Wk,2 + εk,

where the coefficients A(u) = (1.6 + 0.6u) exp{−0.4(u− 3)2},
β1 = −1 and β2 = 1. The smoothing variable uk follows
a uniform[2, 6] distribution, Wk,2 is exogenous following a
N(0, 1) distribution, and Xk andWk,1 are endogenous following
the reduced form equations:

Xk = [
0.5 + sin2(uk )

]
Zk,1 + vk,1,

and

Wk,1 = [
0.5 + cos2(uk )

]
Zk,2 + vk,2,

where instrumental variable Zk,1 and Zk,2 are independently gen-
erated from a uniform[0, 4] distribution and the noises⎛⎝ εk

vk,1
vk,2

⎞⎠ ∼ N

⎛⎝⎛⎝0
0
0

⎞⎠ ,

⎛⎝ 1 ρσv ρσv

ρσv σ 2
v 0

ρσv 0 σ 2
v

⎞⎠⎞⎠ ,

where σv controls the variation of residues in the reduced form
equation, and ρ controls the correlation between the residues in
the structural equation and in the reduced form equation.
First, we examine the effect of bandwidth selection on the per-

formance of the proposed estimator β̃. We set σ 2
v = 1, ρ = 0.7

and conduct simulations by considering three sample sizes as
n = 250, 500, and 1000. For each sample size, we replicate
the experiment 1000 times. The Epanechnikov kernel function
K(u) = 0.75(1 − u2)I(|u| ≤ 1) is used. The cross-validation
criterion suggests using h1 = 2.5n−1/5 for the first-stage fitting.
To meet the requirement that nh4 tends to 0, we fix the band-
width for estimating β at three values h = 1.25n−1/3, 2.5n−1/3

and 5n−1/3. The means and standard deviations of the estimated
1000 values for β̃ under different settings are reported in Table 1.
It shows that the performance of β̃ is not sensitive to the choice
of bandwidth. The estimator β̃ is consistent and its simulated
standard deviations are close to SDa(β ), the asymptotic stan-
dard deviations provided by Theorem 1.

Table 1. Means and standard deviations of the Estimator β̃

β̃1 β̃2

Sample size Bandwidth Mean Std. dev. Mean Std. dev.

n = 250 1.25 n−1/3 −0.9944 0.0368 0.9979 0.0643
2.5 n−1/3 −0.9965 0.0378 0.9976 0.0639
5.0 n−1/3 −0.9957 0.0388 0.9979 0.0634
SDa — 0.0388 — 0.0632

n = 500 1.25 n−1/3 −0.9978 0.0265 0.9988 0.0450
2.5 n−1/3 −0.9989 0.0270 0.9986 0.0445
5.0 n−1/3 −0.9987 0.0272 0.9984 0.0440
SDa — 0.0275 — 0.0447

n = 1000 1.25 n−1/3 −0.9997 0.0187 0.9998 0.0321
2.5 n−1/3 −1.0003 0.0190 0.9999 0.0321
5.0 n−1/3 −1.0006 0.0191 0.9999 0.0320
SDa — 0.0194 — 0.0316

NOTE: SDa is the asymptotic standard deviation provided by Theorem 1.
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Table 2. RMSE’s of different estimators for β

Sample Size σv β̃1 β̂1 βC
1 β̃2 β̂2 βC

2

n = 250
√
1/2 0.0384 0.0564 0.0551 0.0631 0.0723 0.0687
1 0.0378 0.0632 0.0565 0.0639 0.0777 0.0735√
2 0.0376 0.0780 0.0630 0.0647 0.0875 0.0784
2 0.0367 0.1002 0.0623 0.0639 0.1022 0.0825

n = 500
√
1/2 0.0279 0.0368 0.0365 0.0461 0.0503 0.0486
1 0.0270 0.0413 0.0378 0.0445 0.0509 0.0492√
2 0.0264 0.0493 0.0419 0.0445 0.0549 0.0500
2 0.0267 0.0622 0.0464 0.0459 0.0660 0.0568

n = 1000
√
1/2 0.0188 0.0235 0.0250 0.0315 0.0332 0.0327
1 0.0190 0.0269 0.0267 0.0321 0.0355 0.0342√
2 0.0192 0.0300 0.0272 0.0324 0.0378 0.0358
2 0.0186 0.0400 0.0306 0.0317 0.0405 0.0381

NOTE: ρ is fixed at 0.7.

Then, we compare the performance of different estimators
for β. We simulate the data with ρ = 0.7 and different σv ’s.
The bandwidth is fixed at h = 2.5n−1/3. Table 2 reports the
root mean squared errors (RMSE) of different estimators for
β based on 1000 independent simulations, where β̂ is the pro-
file least squares estimator given in (6), and βC is the estima-
tor proposed in Cai et al. (2006), that is, after obtaining X̂ and
Ŵ, a local constant method is used to compute β̂(uk ) at each
uk, k = 1, . . . , n, then βC is obtained by taking average of all
β̂(uk )’s. It can be seen clearly from Table 2 that β̃ is more effi-
cient than β̂ and βC in this example and its RMSE is not sensi-
tive to σv . Meanwhile, the RMSE’s of β̂ and βC increase as σv

increases.
Now, we estimate the functional coefficient by Ã(·) in (7),

where β̃ is used as a
√
n-consistent estimator of β and the

bandwidth in this stage is determined by the cross-validation
criterion. Figure 1 displays the estimated A(·) (dashed line)
based on a typical sample with sample size n = 500, together
with the true function (solid line). The estimated 90% pointwise
confidence intervals (dash-dotted lines) computed based on
Theorem 2 are also provided. It shows evidently that Ã(·)
estimates the true coefficient function very well. We use the
root mean squared error (RMSE) as the performance measure

Figure 1. The estimated A(u) when the sample size n = 500. The
solid line represents the true A(u), and the dashed line denotes the esti-
mated values. The two dash-dotted lines are the 90% pointewise confi-
dence intervals with bias ignored.

Figure 2. The boxplots of the RMSE values of Ã(·) in 1000 inde-
pendent simulations for three sample sizes n = 250, 500, and 1000.

of estimating A(·), which is defined as

RMSE =
{
1

m

m∑
i=1

[
Ã(ui) − A(ui)

]2}1/2

where ui (i = 1, . . . ,m) are the equally spaced grid points on
the support of uk. Here, we take m as 100. Figure 2 reports the
boxplots of 1000 RMSE values of Ã(·) for three sample sizes.
One can see clearly that as the sample size increases, the RMSE
shrinks toward zero.
Next, we study the size and power performance of testing

β1 with the null hypothesis asH0 : β1 = −1, β2 = 1 against the
alternative hypothesisH1 : β1 = −1 + γ1, β2 = 1. The power is
indexed by γ1. We use the Wald statistic proposed in Corollary
1 for sample size n = 500 and the bandwidth used here is
2.5n−1/3. We conduct 1000 simulations to obtain test sizes and
powers of the proposed test. The power curves for three sig-
nificance levels are plotted in Figure 3. When γ1 = 0, the power
collapses to the test size. The simulated sizes of the proposed test
are 1.0%, 4.7%, and 10.8% corresponding to three significance
levels 1% (dotted line), 5% (dashed line), and 10% (solid line),
respectively. This implies that the simulated sizes are close to
the nominal sizes and it concludes our test can deliver a correct
test size. When γ1 deviates from 0, the power curves tend to 1

Figure 3. The power curves of testing H0 : β1 = −1, β2 = 1
against H1 : β1 = −1 + γ1, β2 = 1 for sample size n = 500. The dot-
ted line is the power curve for 1% significance level, the dashed line
and the solid line are for 5% and 10% significance levels, respectively.
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Figure 4. The power curves of the generalized F-test on the func-
tional coefficient A(u) for sample size n = 500. The dotted line is the
power curve under 1% significance level, the dashed line and the solid
line are for 5% and 10% significance levels, respectively.

quickly. This means that our test is reasonably powerful. Indeed,
one can observe clearly fromFigure 3 that the power is over 90%
for both significance levels 10% and 5% when γ1 ≥ 0.1.

Finally, we apply the proposed generalized F-test to test the
functional coefficient A(·). To examine the power performance,
we consider the following hypothesis testing problem:

H0 : A(u) = A0(u) versus H1 : A(u) = (1 + γ2)A0(u),

where A0(u) = (1.6 + 0.6u) exp{−0.4(u− 3)2}. The power
function is indexed by γ2 and when γ2 = 0, the alternative
hypothesis becomes the null one. We use the unrestricted resid-
ual bootstrap procedure provided in Section 4.2 to determine
the critical value. The number of bootstrap replications is set as
B = 399. Figure 4 plots the power curves of the test obtained
from 1000 simulations. The estimated test sizes (when γ2 = 0)
of the generalized F-test are 0.9%, 4.7%, and 9.8% correspond-
ing to three significance levels 1% (dotted line), 5% (dashed
line), and 10% (solid), respectively. It shows that the test can
provide the correct test sizes and the power curves increase to 1
as γ2 deviates from 0. It can be seen clearly from Figure 4 that
the powers for both significance levels 10% and 5% are above
90%when γ0 ≥ 0.08. This means that the proposed generalized
F-test is practically useful.

6. REAL EXAMPLES

6.1 Return to Education

We first consider an empirical example of return to education
using the data of female youth aged between 16 and 25 years
from the 1985 wave of the Australian longitudinal survey. We

Table 4. Constancy test for other coefficients in Model (9)

Marital Government Union Australian
status employment status born
β1 β2 β3 β4

Generalized F-statistic 0.0982 0.0832 2.0188 0.5451
p-value 0.7043 0.6466 <0.01∗∗∗ 0.0100∗∗

NOTE: Significance codes: 0.01 ‘∗∗∗’, 0.05 ‘∗∗’, 0.10 ‘∗’.

begin with a linear model

Yk = β0 + β1Wk,1 + β2Wk,2 + β3Wk,3 + β4Wk,4

+β5Wk,5 + αXk + εk, (9)

where Yk is the natural logarithm of hourly wages, Xk is years of
schooling, Wk,1 to Wk,5 denotes the marital status, government
employment, union status, a dummy of whether is Australian
born, and working experience, respectively. Since Xk is endoge-
nous due to unobservable heterogeneity in ability and schooling
choices, we follow Das, Newey, and Vella (2003) and Cai et al.
(2006) to employ an index of labormarket attitudes as the instru-
ment. The index of labor market attitudes ranges from 0.6 to 3.0,
which are individual respondence to survey questions related to
work, social roles, and school attitudes. The higher scores indi-
cate positive work attitudes. Table 3 reports the results of the
two-stage least-squares (TSLS) estimators. The impact of edu-
cation on wages is 0.154, which is strongly significant with a
p-value less than 0.01. The coefficient of working experience is
also positive and significant, with an estimated value of 0.093
and a p-value less than 0.01. All other coefficients are also sig-
nificant. Union status and government employment have pos-
itive effects on wages, while marital status and whether Aus-
tralian born have negative effects.
However, Schultz (1997) argued that return to education

depends on different levels of working experience. Furthermore,
Card (2001) found that ignoring the nonlinearity between years
of schooling and working experience would underestimate the
impact of education on wages. These features lead to a semi-
parametric model allowing the coefficient of years of schooling
to depend on working experience. We use the working experi-
ence as the smoothing variable in our model; that is, uk =Wk,5.
Assuming the coefficient of Xk is a function of uk, we apply
the proposed generalized F-test to test whether or not other
coefficients vary with the level of working experience. Since
Xk is nearly constant conditional on some values of uk in the
dataset, we assume β0 to a constant to avoid this local multi-
collinearity. Table 4 reports the bootstrap constancy test results

Table 3. Estimation results of linear instrument variables model in (9)

Marital Government Union Australian Working
Variables Constant status employment status born experience Education

Coefficient −0.7045 −0.0599 0.0263 0.0479 −0.0558 0.0930 0.1542
p-value 0.0283∗∗ 0.0282∗∗ 0.0819∗ 0.0892∗ 0.0190∗∗ <0.01∗∗∗ <0.01∗∗∗

NOTE: Significance codes: 0.01 ‘∗∗∗’, 0.05 ‘∗∗’, 0.10 ‘∗’.



10 Journal of Business & Economic Statistics, XXXX 2017

Table 5. Estimations of constant coefficients in Model (10)

Marital Government
Constant status employment

β0 β1 β2

Estimates 0.1554 −0.0462 0.0236
Wald Statistic 0.6151 3.7411 3.3314
p-value 0.4329 0.0531∗ 0.0680∗

NOTE: Significance codes: 0.01 ‘∗∗∗’, 0.05 ‘∗∗’, 0.10 ‘∗’.

of other coefficients. It shows that the coefficients of marital sta-
tus and government employment can be treated as constant coef-
ficients. Therefore, we consider the semiparametric functional-
coefficient instrumental variable model as follows:

Yk = β0 + β1Wk,1 + β2Wk,2 + β3(uk )Wk,3

+β4(uk )Wk,4 + α(uk )Xk + εk, (10)

where β3(u), β4(u), and α(u) are the functional coefficients.
We perform our three-stage estimation to model (10). Table 5

reports the estimation results of all the constant coefficients and
the associated p-values of the Wald statistics for significance
test. The coefficients of marital status and government employ-
ment are significant. The signs of these coefficients are the same
as those in the linear instrument variables model (9).

Figure 5 plots the local linear estimate of the functional coef-
ficient α(u) of years of schooling together with its 90% point-
wise confidence interval with higher order bias ignored. We find
that the values of A(u) are significantly positive and increase
with working experience. However, the estimated line is almost
a straight line with positive slope which confirms the argument
proposed by Schultz (1997) and Card (2001). Figures 6 and 7
plot the estimated functional coefficients of union status and
Australian born, respectively. For individuals with long work-
ing experience, the effect of union status becomes less impor-
tant and less significant. The estimated coefficient of the dummy
variable of whether is Australian born varies with the level of
working experience but is insignificant in almost the whole data
range.

Figure 5. The estimated functional coefficient of years of schooling
and its 90% pointwise confidence interval with bias ignored.

Figure 6. The estimated functional coefficient of union status and
its 90% pointwise confidence interval with bias ignored.

6.2 FDI and Economic Growth

Now, we consider an empirical example of investigating how
FDI has impact on economic growth in FDI host countries. To
this end, we begin with a common linear model in the growth
literature

yit = β0 + β1I
d
it + β2nit + β3hit + β4I

f
it + β5uit + εit, (11)

where yit is the growth rate of income per capita in country or
region i during period t, Idit is the domestic investment rate, nit is
the population growth rate, hit is the human capital, I fit is the ratio
of net FDI to GDP, and uit is the logarithm of initial GDP per
capita. The main interest here is to test whether the coefficient
β4 is significantly positive.
However, since there may exist unobserved factors or omitted

variables correlated with FDI and affecting economic growth
not only through the channel of FDI, the FDI rate is usually
regarded as an endogenous variable in the above empirical
growth model. A natural choice of the instrumental variable
is the lagged variable of the FDI rate. Recent studies include
Alfaro et al. (2004), Durham (2004), and Kottaridi and Stengos
(2010).

Figure 7. The estimated functional coefficient of Australian born
and its 90% pointwise confidence interval with bias ignored.
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Table 6. Summary statistics of economic variables

Variables yit Idit nit hit I fit uit

Minimum −0.0606 0.0623 −0.0072 0.3660 −0.0538 4.9407
Maximum 0.0928 0.5812 0.0784 12.2470 0.5115 10.5001
Mean Value 0.0167 0.2176 0.0179 5.4112 0.0301 7.7056
Median 0.0170 0.2141 0.0193 5.1585 0.0092 7.6179

The sample used in this section includes 88 countries or
regions from 1970 to 1999. We follow the literature; see,
for example, Maasoumi, Racine, and Stengos (2007), Durlurf,
Kourtellos, and Tan (2008), and Kottaridi and Stengos (2010),
taking 5-year averages to smooth yearly fluctuations in macroe-
conomic variables. More specifically, we use the average data in
1975–1979, 1985–1989, and 1995–1999 as cross-sectional data
to estimate the impact of FDI on economic growth. The average
FDI rates in 1970–1974, 1980–1984, and 1990–1994 are used
as instrument variables for the three periods, respectively. The
domestic investment is computed by the average of the domes-
tic gross fixed capital formation measured by the U.S. dollars
in 2000 constant values. The population growth is computed by
the average annual growth rate in each period, and the human
capital is measured by mean years of schooling in each period.
All these data are available to be downloaded fromWorldDevel-
opment Indicators. Finally, the data of FDI flows are available
from United Nations Conference on Trade and Development,
which are computed based on U.S. dollars in 2000 constant val-
ues. Table 6 summarizes the basic statistics of these economic
variables.
Table 7 reports the estimation results of the linear instru-

mental variables models in (11). Models 1–3 in Columns 2–4
consider subsamples based on the level of the initial GDP per
capita, which represent low, median and high income groups,
respectively. Each group contains 88 observations. Themarginal
effect of domestic investment on economic growth is all

positive but decreases from the low income to high income
groups. The effect of FDI looks very different in three groups.
In the low income group, the effect of FDI is negative with a p-
value of 0.801. However, in themedian and high-income groups,
the effect turns to be positive with the estimated values 0.089
and 0.035, respectively. The median group estimate is not sta-
tistically significant with a p-value of 0.562, but the high group
estimate is significant with a p-value of 0.057. The estimated
coefficients of population growth and human capitals are neither
significant. Models 4–6 move to the complete sample with dif-
ferent model specifications. In all these specifications, the effect
of domestic investment is significantly positive and the esti-
mates looks quite stable. The effects of FDI are neither signifi-
cant in Models 4 and 5, yet the coefficient of FDI and its inter-
acted terms with the initial condition and the squared term of the
initial condition are all strongly significant in Model 6. The esti-
mated coefficient of FDI is −6.21 with a p-value of 0.035, and
the estimated coefficients of interacted terms are 1.39 with a p-
value of 0.026 and−0.076 with a p-value of 0.021, respectively.
The nonlinear relationship between economic growth and

FDI demonstrated in Table 7 is consistent to some arguments in
the growth literature on the FDI effect on economic growth. The
nonlinearity in FDI effect is mainly coming from the absorp-
tive capacity in FDI host countries, which means that host coun-
tries need someminimum conditions to absorb the positive spill-
over effects from FDI. Nunnenkamp (2004) emphasized on the
importance of the initial condition for host countries to absorb

Table 7. Estimation results of linear instrument variables models

Models Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Constant −0.8075 −0.0044 0.0771 −0.0154 −0.0147 0.0014
(0.7977) (0.9342) (0.0673) (0.1867) (0.2167) (0.9260)

Idit 0.6565 0.1705 0.1635 0.1427 0.1442 0.1554
(0.7491) (0.0003) (0.0000) (0.0000) (0.0000) (0.0000)

nit 3.5230 −0.5139 −0.3492 −0.1635 −0.1509 −0.1245
(0.7951) (0.2246) (0.1648) (0.3020) (0.3680) (0.4787)

hit −0.0165 0.0013 0.0007 0.0008 0.0009 0.0012
(0.8124) (0.5269) (0.5612) (0.3546) (0.3512) (0.2338)

I fit −10.1055 0.0899 0.0350 0.0158 −0.1317 −6.2156
(0.8012) (0.5617) (0.0570) (0.4693) (0.8156) (0.0353)

uit 0.1296 −0.0022 −0.0101 −0.0002 −0.0003 −0.0027
(0.8034) (0.7305) (0.0446) (0.9266) (0.8774) (0.2122)

uit × I fit 0.0148 1.3899
(0.7921) (0.0262)

u2it × I fit −0.0765
(0.0211)

Sample 88 88 88 264 264 264

NOTE: The values in the parentheses are p-values.
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Table 8. Constancy test for other coefficients in Model (12)

Coefficients β0 β1 β2 β3

Generalized F-Statistic 5.8122 1.4380 10.4241 1.5842
p-Value 0.3960 0.9398 0.1930 0.8321

NOTE: Significance codes: 0.01 ‘∗∗∗’, 0.05 ‘∗∗’, 0.10 ‘∗’.

Table 9. Estimation results of constant coefficients in Model (12)

β0 β1 β2 β3

Estimates −0.0159 0.1463 −0.1224 0.0005
Wald Statistic 4.1191 30.6234 0.4194 0.5962
p-Value 0.0424∗∗ <0.01∗∗∗ 0.5172 0.4400

NOTE: Significance codes: 0.01 ‘∗∗∗’, 0.05 ‘∗∗’, 0.10 ‘∗’.

the positive effects from the adoption of FDI. To deal with this
nonlinear relation, we propose a partially linear instrumental
variables model. We allow the coefficient of FDI to depend
on the initial condition in the host country. The initial condi-
tion is measured by the logarithm of initial GDP per capita in
each period for the host country. Hence, we obtain the following
empirical equation:

yit = β0 + β1I
d
it + β2nit + β3hit + β4(uit ) I

f
it + εit, (12)

where uit is the logarithm of the initial GDP per capita in the
period t in country i.
Before estimating the above partially functional coefficient

instrumental variable model in (12), we first examine whether
the other coefficients also depend on the initial condition uit as
well. Table 8 reports the testing results based on the general-
ized F-test using the bootstrapping method. The p-values are
0.378, 0.944, 0.185, and 0.787 for the coefficients from β0 to
β3, respectively. In other words, the generalized F-test cannot
reject the null hypothesis of constancy for the intercept term,
the coefficients of domestic investment, population growth and
human capita. The testing results support the use of a partially
functional coefficient model given in (12).
Table 9 reports the estimation results of the constant coeffi-

cients in the partially functional coefficient instrumental vari-
ables model in (12). The intercept term and the coefficient of
domestic investment are significant. The estimate of the coef-
ficient of domestic investment is 0.148 with a p-value close to
zero. The coefficients of population growth and human capita
are not statistically significant. All these results have a similar
pattern and magnitude compared to estimation results of these
four coefficients in the linear model. Figure 8 presents the plot of
the estimated functional coefficient of FDI rate. The estimated
line has a clear pattern increasing with the level of initial GDP
per capita. The effect of FDI is negative (not significant) for low
initial GDP per capita, and then increases to significantly posi-
tive. The threshold value occurs around 7.5 of the logarithm of
the GDP per capita. This empirical finding is in line with the
hypothesis of absorptive capacity. The host countries with suffi-
ciently high level of economic development can benefit from the
positive spill-over effect of FDI on economic growth, but poor
countries failed to do so.

Figure 8. The estimated functional coefficient of FDI rate and its
90% pointwise confidence interval with bias ignored.

7. CONCLUSION

In this article, we study a new class of semiparametric
functional-coefficient instrumental variables models. We pro-
pose a three-stage estimator of the constant and functional coef-
ficients. A novel generalized F-test is developed to allow for
endogeneity in structural regressors in a partially functional
coefficient framework. Moreover, we illustrate our estimation
and testing approach with a simulated example. Our method
works reasonably well in small samples. We then apply our
method to the estimation of return to education and the growth
effect of FDI, respectively. In the example of return to educa-
tion, we find a strong evidence to reconfirm the argument as in
Schultz (1997). In the example of FDI and economic growth,
our results strongly support the hypothesis of the economic the-
ory of the so-called absorptive capacity.

SUPPLEMENTARY MATERIALS

The supplementary PDF files contains additional proofs.
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