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Variable selection and direction estimation for
single-index models via DC-TGDR method

Wei Zhong, Xi Liu, and Shuangge Ma
∗

This paper is concerned with selecting important covari-
ates and estimating the index direction simultaneously for
high dimensional single-index models. We develop an effi-
cient Threshold Gradient Directed Regularization method
via maximizing Distance Covariance (DC-TGDR) between
the single index and response variable. Due to the appeal-
ing property of distance covariance which can measure non-
linear dependence between random variables, the proposed
method avoids estimating the unknown link function of the
single index and dramatically reduces computational com-
plexity compared to other methods that use smoothing tech-
niques. It keeps the model-free advantage from the view of
sufficient dimension reduction and requires neither predic-
tors nor response variable to be continuous. In addition, the
DC-TGDR method encourages a grouping effect. That is,
it is capable of choosing highly correlated covariates in or
out of the model together. We examine finite-sample perfor-
mance of the proposed method by Monte Carlo simulations.
In a real data analysis, we identify important copy number
alterations (CNAs) for gene expression.

Keywords and phrases: Distance covariance, High-
dimensional data, Threshold gradient directed regulariza-
tion, Single-index models, Variable selection.

1. INTRODUCTION

With the development of modern technology for data col-
lection, researchers are able to collect high dimensional data
at relatively low cost in many fields. For example, RNA-seq
technology is capable of profiling human tissues on a genome
wide scale and measuring expression levels of thousands of
genes along with certain clinical outcomes. With high di-
mensional data, nonlinear dependence between predictors
and the response variable is often present. This makes tra-
ditional linear models not adequate. On the other hand, fully
nonparametric models suffer from the “curse of dimension-
ality” problem. As a classic semiparametric method, single-
index models which assume that the response only depends
on the predictors through their single linear combination
provide a balanced solution. They can not only maintain the
flexibility of nonparametric models to deal with the nonlin-
ear dependence but also retain the model interpretability of
parametric models and avoid the “curse of dimensionality”.

∗Corresponding author.

Single-index models have been intensively studied in
the literature, for instance, Powell, Stock and Stoker [16],
Ichimura [7], Härdle, Hall and Ichimura [4], Horowitz and
Härdle [5], Xia and Li [26] and among others. The traditional
methods apply nonparametric smoothing techniques to es-
timate the unknown link function. For example, Ichimura
[7] suggests replacing the unknown function with the leave-
one-out Nadaraya-Watson estimator. To exclude irrelevant
predictors and improve interpretability of high dimensional
single-index models, penalized regression methods based on
nonparametric smoothing techniques have also been devel-
oped, including Zhu and Zhu [31], Liang et al. [12], Rad-
chenko [17], etc. To avoid estimating the unknown link func-
tion and reduce computational complexity, Zhu, Huang and
Li [30] suggests directly using the simple linear quantile
regression to estimate the index parameter vector for het-
eroscedastic single-index models and proves that the result-
ing index estimator is consistent under the linearity con-
dition. Zhong et al. [29] further proposes penalized linear
quantile regression to identify important covariates for high
dimensional single-index models.

We consider a general class of single-index models

(1) Y = g(βTX, ε),

where Y is a response variable, X is a p-dimensional predic-
tor vector, β is an index parameter vector of interest and ε is
a random error. Model (1), which is originally proposed in Li
and Duan [10], implies that the response Y is independent of
predictors X conditional on the index βTX. Many dimen-
sion reduction approaches are able to estimate the single-
index direction in single-index models under the framework
of central subspace. Examples include sliced inverse regres-
sion (SIR) by Li [9], minimum average variance estimation
(MAVE) by Xia et al. [25], direction estimation by mini-
mizing a Kullback-Leibler distance by Yin and Cook [27],
etc. These methods either use inverse regression based on
the linearity condition or involve nonparametric smoothing
techniques. Recently, Sheng and Yin [22] suggests estimating
single-index direction by maximizing distance covariance.
Here, distance covariance proposed by Szekely, Rizzo and
Bakirov [23] measures nonlinear dependence between ran-
dom variables. Under regularity conditions, it is shown that
the resulting estimator of single-index direction is root-n
consistent and asymptotically normal.

In this paper, we develop an efficient Threshold Gradi-
ent Directed Regularization method via maximizing Dis-

http://www.intlpress.com/SII/


tance Covariance (DC-TGDR) between the single index and
response variable for high dimensional data. The TGDR
method proposed by Friedman and Popescu [3] is an incre-
mental stagewise parameter path searching method, which
can keep coefficients of irrelevant variables as zero by im-
posing threshold on the updating direction. In the litera-
ture, the original TGDR method and its modified versions
have shown good performance for variable selection problem
in high-dimensional scenarios. For example, Ma and Huang
[13] proposes a Clustering TGDR method for simultaneous
cluster selection and within cluster gene selection.

Compared to the existing methods for single-index mod-
els, our proposed DC-TGDR method enjoys the following
novel advantages. First, as a variant of the TGDR algo-
rithm, it is capable of identifying important covariates ef-
ficiently and estimating the index direction simultaneously
for high dimensional single-index models. Second, since dis-
tance covariance can measure nonlinear dependence between
random variables, the DC-TGDR method avoids estimating
the unknown link function of the single index, and so dra-
matically reduces computational complexity compared with
other methods that use smoothing techniques. Third, the
proposed method encourages a grouping effect. That is, it
is capable of choosing highly correlated covariates in or out
of the model together.

The rest of the article is organized as follows. In Section 2,
we develop the DC-TGDR procedure to solve the coefficient
paths in single-index models. Section 3 examines the finite
sample performance of our proposed method along with al-
ternative methods by intensive simulation studies. Section
4 implements the new method to analyze how copy number
alternations (CNAs) regulate the expression level of certain
gene in the Cell Development pathway. At last, concluding
remarks are presented in Section 5.

2. METHODS

2.1 Preliminaries

Sheng and Yin [22] suggests estimating the index di-
rection by maximizing distance covariance [23] in general
single-index models. That is,

(2) β̂ = argmax
β

V2(βTX,Y ), subject to βTΣXβ = 1,

where ΣX stands for the nonsingular covariance matrix of
X and V(βTX,Y ) is the distance covariance between the
single-index βTX and response Y . Since the index param-
eter β is not identifiable, the direction of β rather than its
true value is our primary interest to estimate. Note that
βTΣXβ = 1 is the constraint to make the maximization
procedure work. Some other constraints such as βTβ = 1
can be also used. Here, the distance covariance V(βTX,Y )
is a new measure of the dependence between βTX and Y ,
which is the non-negative square root of

V2(βTX,Y )(3)

=

∫
R2

∣∣∣ΦβTX,Y (t, s)− ΦβTX(t)ΦY (s)
∣∣∣2w(t, s)dtds,

where Φ(·) denotes the characteristic function and w(t, s) is
a positive weight function. An appealing property of the dis-
tance covariance is that V(βTX,Y ) = 0 is equivalent to the
independence between βTX and Y . (X,Y) = {(Xi, Yi) : i =
1, . . . , n} denotes an observed random sample from (X,Y ).
The empirical distance covariance between βTX and Y is
defined as the square root of

(4) V2
n(Xβ,Y) = T1 + T2 − 2T3,

where

T1 =
1

n2

n∑
k,l=1

|βTXk − βTXl||Yk − Yl|,

T2 =
1

n2

n∑
k,l=1

|βTXk − βTXl|
1

n2

n∑
k,l=1

|Yk − Yl|,

T3 =
1

n3

n∑
k=1

n∑
l,m=1

|βTXk − βTXl||Yk − Ym|.

At the sample level, the index direction can be estimated by

(5) β̂n = argmax
β

V2
n(Xβ,Y), subject to βTΣXβ = 1.

Sheng and Yin [22] applies the sequential quadratic pro-
gramming procedure (SQP) to solve the above maximization

problem and shows that the resulting direction estimator β̂n

is root-n consistent under some regularity conditions.

2.2 The DC-TGDR algorithm

In high dimensional applications, the SQP algorithm used
in Sheng and Yin [22] can not perform variable selection
and is computationally inefficient. Next, we develop an ef-
ficient Threshold Gradient Directed Regularization method
via maximizing the empirical Distance Covariance between
the single indexXβ and responseY in (4). This algorithm is
computationally fast and able to select important covariates
and estimate the index direction simultaneously for high di-
mensional single-index models.

First, we compute the gradient of the objective function
V2
n(Xβ,Y) in (4) with respect to each coordinate βj as fol-

lows.

(6) gj(β) =
∂V2

n(Xβ,Y)

∂βj
=

∂T1

∂βj
+

∂T2

∂βj
− 2

∂T3

∂βj
,

where

∂T1

∂βj
=

1

n2

n∑
k,l=1

sgn(βTXk − βTXl)(Xkj −Xkl)|Yk − Yl|,

∂T2

∂βj
=

1

n2

n∑
k,l=1

sgn(βTXk − βTXl)(Xkj −Xkl)
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Algorithm 1 The DC-TGDR Method

Step 1. (Initialization) Let m = 1. Set β̂1
i = 1 and β̂1

j = 0

for j �= i, where i = arg max
1≤j≤p

V2
n(xj ,Y). Denote β̂

1
=

(β̂1
1 , β̂

1
2 , . . . , β̂

1
p)

T .
Step 2. (Update). Increase m by 1:

(1) Calculate the gradient of V2
n(Xβ,Y) based on (6) at β̂

m

and denote it as {gj(β̂
m
)}p1;

(2) Compute the scaling factors

fj(β̂
m
) = I[|gj(β̂

m
)| ≥ τ · max

0≤k≤p
|gk(β̂

m
)|], j = 1, . . . , p;

(3) Update β̂ by β̂
m+1

= β̂
m

+�ν · h(β̂m
), where

h(β̂
m
) = {fj(β̂

m
) · gj(β̂

m
)}p1;

(4) Regulate the L2 norm of β̂
m+1

, ‖ β̂
m+1 ‖2, to be 1.

Step 3. (Iteration). Repeat Step 2 until |V2
n(Xβ̂

m
,Y) −

V2
n(Xβ̂

m+1
,Y)| < δ, where δ is a stopping rule. Or, Repeat

Step 2 K times, where K is determined by cross-validation.

× 1

n2

n∑
k,l=1

|Yk − Yl|,

∂T3

∂βj
=

1

n3

n∑
k=1

n∑
l,m=1

sgn(βTXk − βTXl)

× (Xkj −Xkl)|Yk − Ym|.

Next, we present details of the DC-TGDR method in the
following algorithm.

Note that in Step 1, we initiate the solution path by
setting the coefficient corresponding to the predictor that
marginally maximizes the distance covariance with Y to be
1, and others to be 0. This step essentially coincides with
the sure independence screening using distance covariance
in Li, Zhong and Zhu [11]. In Step 2(4), we regulate the

L2 norm of β̂
m+1

due to the following reasons. For any con-
stant c, V2

n(cβ
TX,Y ) = |c|V2

n(β
TX,Y ), thus we have to put

a constraint on the norm of β to make the maximization pro-
cedure work. On the other hand, the index parameter β is
not identifiable in the single-index model. The direction of
β, instead of its true value, is our primary interest. Thus, we
take the L2 constraint βTβ = 1 to obtain the direction of
β. The computational complexity to compute the empirical
distance covariance is O(n2) [6]. Thus, the computational
complexity of the DC-TGDR algorithm is O(n2pK), where
K is the total number of iterations. In the DC-TGDR al-
gorithm, �ν, τ and δ (or K) are tuning parameters which
control diversity and sparsity of the resulting estimated co-
efficients. We will discuss how to select tuning parameters
in the following subsection.

2.3 Selection of tuning parameters

The tuning parameter �ν controls the increment size at
each iteration. Since we regulate the L2 norm of β̂ to be

one at each iteration, the algorithm is not very sensitive to
step size �ν if we fix it at a moderate value. On the other
hand, although smaller step sizes can prevent the proposed
algorithm (and also other stagewise algorithms) from being
too aggressive, step sizes that are too small result in slow
convergence. Therefore, we set �ν as 0.1 in this algorithm,
and all simulation results in Section 3 illustrate that 0.1 is
a proper value.

We update the parameters along with the regularized di-

rection h(β̂
m
) in the mth iteration until the difference of the

objective functions between two iterations is small enough.

That is, |V2
n(Xβ̂

m
,Y)−V2

n(Xβ̂
m+1

,Y)| < δ. Thus, δ is the
stopping rule of the algorithm. The smaller δ is, the more
iterations are needed to ensure convergence, and the more
coefficients will be estimated as nonzero. Thus, it controls
both computation time and sparsity of the estimator. In
our simulations, we use five-fold cross-validation to select
the optimal value of δ from [1, 5, 10, 15, . . . , 100]× 10−6.

The tuning parameter τ sets a threshold for each coordi-
nate of the gradient vector such that some coefficients with
relatively small gradients are estimated to be zero. Thus,
it is important to investigate the effect of τ in the DC-
TGDR algorithm. How τ controls the diversity and spar-
sity of coefficients has been studied in the TGDR method
for linear models by Friedman and Popescu [3]. Next, we
illustrate how τ affects the single-index direction estimator
in a simple simulation. We consider a single-index model

Y = sin
(
βTX/‖ β ‖

)
+0.1ε, which has been studied by Zhu

and Zhu [31], Peng and Huang [14] and Radchenko [17]. Set
β = (3, 1.5, 0, 0, 0, 0, 2, 0, · · · , 0)T20 and ε ∼ N(0, 1). X is gen-
erated fromN(0,Σ), where Σ = (σij)p×p with σij = 0.5|i−j|.
The sample size n is 100. We apply the DC-TDGR method
with three different threshold values τ = 0.2, 0.5 and 0.9.
The coefficient paths in each case are plotted in Figure 1.

When τ = 0, the scaling factors fj(β̂
m
) = 1 for all

j = 1, . . . , p which makes each coordinate of the estima-
tor updated. The coefficient paths solved with τ = 0 are
similar to those derived by imposing an L2 penalty to the
objective function. On the other hand, when τ = 1, only

one scaling factor fj(β̂
m
) = 1, where gradient of β̂m

j has
the largest absolute value. This makes most of coordinates
of the estimator remain the current values or zeros. In this
case, the coefficient paths are like those in the L1 penalized
regression, and the resulting estimator is generally sparse.

We also plot the solution paths of the single-index direc-
tion estimates when τ is varying from 0 to 1 in Figure 2.

According to Figures 1 and 2, we can see that all impor-
tant predictors can be selected in three cases but a larger
value of τ produces the sparser model. Thus, it is natural
to choose the value of τ close to 1 when one has some prior
information that the model is sparse or the dimension of
single-index direction is very high. Conversely, if the origi-
nal dimension of single-index direction is not high, and hence
there is no need to select important variables, setting the
value τ close to 0 may produce a more desirable result. With-
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Figure 1. Solution paths with τ = 0.2, 0.5 and 0.9.

Figure 2. Solution paths as a function of τ .

out any prior information about the single-index direction,
one can apply the cross-validation technique to choose the
optimal value of τ . In our simulations, we use five-fold cross-
validation to determine τ from the set [0.5, 0.55, . . . , 0.95, 1].

2.4 Grouping effect

In high dimensional data problems, it is of importance
to study the “grouped variables” situation. For example,

highly correlated CNAs, which can be regarded as a cluster
structure, are likely to have similar impact on the expression
level of a gene. It is meaningful to select grouped variables in
or out of the model together. Many penalization methods in
the literature, such as Group Lasso [28] and Elastic Net [32],
encourage the grouping effect. Segal, Dahlquist and Con-
klin [21] suggests using a regularized regression procedure
to identify grouped genes. The proposed DC-TGDR method
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Figure 3. Grouping effect of the DC-TGDR algorithm.

also exhibits the grouping effect and encourages the coeffi-
cients of highly correlated predictors to have similar sizes.

When predictors are highly correlated, they are likely to
have similar gradient values. Thus, they have the similar
chances of being updated in Step 2(2)-(3) of the DC-TGDR
algorithm when τ < 1. In other words, they as a group can
be selected together with a high probability. In the most
extreme case, when xi = xj , i, j ∈ {1, . . . , p}, β̂i = β̂j and

when xi = −xj , β̂i = −β̂j are guaranteed by the DC-TGDR
method, which is the same with the elastic net.

To demonstrate the grouping effect of the DC-TGDR
method, the coefficient paths of another simulated exam-
ple are displayed in Figure 3. The simulated model is Y =
(βTX)2 + ε with β = (3, 2, 0.3, 0, · · · , 0︸ ︷︷ ︸

10

, 3, 2, 0.3, 0, · · · , 0︸ ︷︷ ︸
10

)T

and ε ∼ N(0, 1). The first three predictors are generated
from a multivariate normal distribution with correlation
ρij = 0.9|i−j| for i, j ∈ {1, 2, 3} but all other predictors
are generated independently from N(0, 1). The sample size
n is 200.

In Figure 3, when τ = 0.5, the proposed method shows
shrinkage effect as well as grouping effect. For the shrinkage
effect, since β13 = 0.3 is relatively small compared with
other nonzero coefficients and X13 is independent of other
predictors, the estimated coefficient of X13 shrinks to zero
and X13 is deleted from the model. On the other hand, the
grouping effect can be illustrated by β̂3. Although the value
of β3 is also 0.3, its estimate β̂3 is close to β̂2 because of
the high correlation among X1, X2 and X3. The difference
between β̂3 and β̂13 stems from the grouping effect of the
DC-TGDR method.

3. SIMULATION

In this section, we compare the finite-sample performance
of the DC-TGDR method with recently developed methods
including HD-SIM in Radchenko [17] and RoSIS-PeQuan in
Zhong et al. [29]. The HD-SIM method is an L1 regulariza-
tion method which recovers the index direction by minimiz-
ing the restricted least squares criterion. It updates the non-
parametric link function by a B-spline method and paramet-
ric single-index direction iteratively. The RoSIS-PeQuan is

a two-step procedure which first utilizes a model-free robust
screening to reduce the dimension and further estimates the
parameter index using a penalized linear quantile regression.

To comprehensively assess their empirical performances,
we consider the following four single-index models,

(A) Y = sin(βTX/ ‖ β ‖) + 0.1ε

(B) Y = (βTX)2 + ε

(C) Y = exp(2−βTX/2)+ (2−βTX/2)2 +exp(βTX/2)ε

(D) Y =

{
1 βTX > 2
0 otherwise.

Models (A) and (B) are classic single-index models where
the conditional mean of Y given X only depends on a single
linear combination of predictors. Model (C) from Zhong et
al. [29] is a heteroscedastic single-index model where both
the conditional mean and conditional variance of Y are
based on a single index. In Model (D) which is examined
in Sheng and Yin [22], the response Y is binary.

We generate covariates using three different kinds of cor-
relation structures as below.

(i) X is from N(0,Σ), where Σ = (σij)p×p with
σij = 0.5|i−j| and the true coefficient vector β =
(3, 1.5, 0, 0, 0, 0, 2, 0, · · · , 0)Tp , where only three predic-
tors are important.

(ii) X is generated in the following way:

Xi = Z1 + εxi , Z1 ∼ N(0, 1), i = 1, . . . , 5,

Xi = Z2 + εxi , Z2 ∼ N(0, 1), i = 6, . . . , 10,

Xi = Z3 + εxi , Z3 ∼ N(0, 1), i = 11, . . . , 15,

Xi
i.i.d∼ N(0, 1), i = 16, . . . , p.

εxi
i.i.d∼ N(0, 0.01), i = 1, . . . , 15.

Set β = (1, . . . , 1, 0.6, . . . , 0.6, 0.4, . . . , 0.4︸ ︷︷ ︸
15

, 0, · · · , 0)Tp .

There are three groups of strongly correlated impor-
tant predictors.

(iii) X is from N(0,Σ), where σij = 0.6 for i, j = 1, . . . , 5
but i �= j, all other σij = 0 for i �= j and all diago-
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nal elements σjj = 1 for j = 1, . . . , p. This structure
indicates that the first five predictors are correlated as
a group and equally important for the response. Set
β = (1, 1, 1, 1, 1︸ ︷︷ ︸

5

, 2, 1, 0, 0, 0, 0, 1.5, 0, · · · , 0)Tp . There are

8 important predictors.

Two types of random error term are considered, ε ∼ N(0, 1)
or ε ∼ t(2). We set the sample size n = 100 or 200 and
the dimension of predictors p = 400. We consider the mean
and standard variation of the following four criteria based
on 100 replicates to compare empirical performances.
Size: The number of non-zero estimated regression coeffi-
cients β̂j �= 0 for 1 ≤ j ≤ p;
C: The number of truly non-zero coefficients correctly
estimated to be non-zero;
IC: The number of truly zero coefficients incorrectly
estimated to be non-zero;
AE: The absolute estimation error of β̂,∑p

j=1

∣∣∣β̂jsign(β̂j,1)/ ‖ β̂ ‖ −βjsign(βj,1)/ ‖ β ‖
∣∣∣.

Tables 1-3 summarize the simulation results measured by
the aforementioned four criteria. Note that, according to as-
sumptions in Radchenko [17], the HD-SIM method can be
only applied to the simulated Models (A) and (B) which
are homoscedastic models. Thus, it is unfair to evaluate the
performance of HD-SIM in Models (C) and (D). The Pe-
Quan method is based on quantile regression and cannot be
used for binary data in Model (D). Overall, the DC-TGDR
method performs better than the two alternative methods
in most simulation scenarios, especially when the sample
size is large, the error is heavy-tailed or the grouping ef-
fect exists in the model. Specially, the PeQuan method has
difficulty in identifying important variables in Model (B)
because the link function of the single index is quadratic.
Thus, the empirical performance of the PeQuan method is
generally worse for Model (B) under all three different cor-
relation structures. For correlation structures (ii) and (iii)
where the grouping effects are present, neither HD-SIM nor
PeQuan can satisfactorily detect the grouped variables, but
our method works well in identifying the groups. Moreover,
the DC-TGDR method has an outstanding performance in
variable/group selection and direction estimation when the
response is binary in Model (D).

In addition, we evaluate finite-sample performance of the
DC-TGDR algorithm in higher dimensional situations by
setting p = 1000 when n = 200. We consider the same four
models with three different correlation structures as in the
previous simulations. The results are summarized in Table
4. We can see that our DC-TGDR method can still work
satisfactorily and outperform the existing methods for the
higher dimensional cases.

In summary, the DC-TGDR method is capable of select-
ing important predictors accurately and estimating the in-
dex direction simultaneously for general single-index mod-
els. Meanwhile, it also encourages the grouping effects to

automatically identify groups of highly correlated variables.
All these simulations results support the applicability of the
proposed DC-TGDR for various single-index models.

4. DATA ANALYSIS

With the development of profiling technology, researchers
are now able to collect measurements on multiple layers of
cellular molecules, such as DNA copy number alternations
(CNAs), gene expressions (GEs), protein expressions and so
on. Various diseases are caused by abnormality in gene ex-
pressions which are partly regulated by CNAs. Therefore,
it is of significant importance to investigate how CNAs in-
fluence the expression level of genes. Various studies have
been performed to examine the relationship between CNAs
and gene expression. For example, Schäfer et al. [19] pro-
poses an approach based on a modified correlation coefficient
and an explorative Wilcoxon test to search genetic regions
where CNAs and GEs display strong equally directed devi-
ations from the reference levels. Peng et al. [15] developes a
remMap method for multivariate linear regression analysis
between CNAs and GEs to identify master predictors.

In this section, we analyze the TCGA data1 and exam-
ine the Cell Development pathway, in which genes control
cellular differentiation, growth as well as apoptosis. The ab-
normal and unregulated cell growth is an underlying reason
of forming neoplasms. With the lump invading or spreading
to parts of the body diffusely, cancer develops into a fatal
disease. Therefore, the Cell Development pathway is closely
related with the occurrence of cancer. In our data set, GE
and CNA measurements are available on 275 patients. There
are 563 gene expressions and 341 CNAs in the pathway. Non-
linear relationships between GEs and CNAs often exhibit as
shown in later figures. Thus, the commonly used linear re-
gression is not adequate to model the data and may suffer
from model misspecification. As an illustrative example, we
study how CNAs regulate the expression level of gene FAS
which controls the production of FAS receptor. As one of
the most important members of the death receptor family,
FAS receptor can trigger apoptosis. Since apoptosis plays an
instrumental role in regulation of the immune system, the
aberrant expression of FAS gene may result in oncogenesis
and drug resistance of malignant tumours [18, 1]. Thus, it
is critical to model the relationship between the expression
of FAS gene and CNAs.

First, we conduct exploratory analysis. We plot the
marginal relationships between the expression level of gene
FAS and four CNAs, UBB, RRAGA, BCL10 and CDK5R1,
which are selected as the most influential predictors by the
DC-TGDR method. Nonlinear relationships clearly exist in
Figure 4. In addition, the correlation heatmap of all CNAs
after reordering via the hierarchical clustering is plotted in
the left panel of Figure 5. We can see that there are groups
of highly correlated CNAs. Therefore, it is necessary to ac-

1http://cancergenome.nih.gov
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Table 1. Simulation Results for Correlation Structure (i)

Model Method Size C IC AE

n=100, p=400, ε ∼ N(0, 1)
HD-SIM 16.62(6.75) 3(0) 13.62(6.75) 0.29(0.07)

(A) PeQuan 3.84(1.87) 2.94(0.24) 0.9(1.83) 0.19(0.18)
DC-TGDR 4.74(1.79) 3(0) 1.74(1.79) 0.22(0.14)
HD-SIM 11.18(6.43) 2.84(0.47) 8.34(6.3) 0.32(0.42)

(B) PeQuan 27.02(10.45) 1.08(0.83) 25.94(9.98) 3.57(2.04)
DC-TGDR 10.46(14.32) 2.72(0.78) 7.74(14.78) 0.61(1.36)
PeQuan 4.44(3.98) 2.54(0.65) 1.9(3.79) 0.82(0.81)(C)
DC-TGDR 4.32(1.63) 3(0) 1.32(1.63) 0.26(0.17)

(D) DC-TGDR 8.12(4.34) 2.96(0.2) 5.16(4.29) 0.51(0.24)

n=100, p=400, ε ∼ t(2)
HD-SIM 10.36(5.62) 2.84(0.55) 7.52(5.47) 0.67(0.44)

(A) PeQuan 6.12(5.19) 2.92(0.34) 3.2(5.19) 0.5(0.67)
DC-TGDR 4.82(1.98) 3(0) 1.82(1.98) 0.24(0.16)
HD-SIM 12.82(8.73) 2.68(0.77) 10.14(8.77) 0.54(0.52)

(B) PeQuan 26.2(9.58) 1.02(0.77) 25.18(9.23) 3.23(1.96)
DC-TGDR 12.76(18.47) 2.7(0.84) 10.06(19.12) 0.36(0.49)
PeQuan 4.88(4.2) 2.68(0.62) 2.2(4.05) 0.66(0.79)(C)
DC-TGDR 4.58(2.78) 2.96(0.2) 1.62(2.76) 0.26(0.18)

(D) DC-TGDR 8.26(3.74) 3(0) 5.26(3.74) 0.57(0.29)

n=200, p=400, ε ∼ N(0, 1)
HD-SIM 19(5.54) 3(0) 16(5.54) 0.2(0.04)

(A) PeQuan 4.62(4.69) 3(0) 1.62(4.69) 0.12(0.16)
DC-TGDR 3.6(0.78) 3(0) 0.6(0.78) 0.13(0.06)
HD-SIM 10.38(4.13) 3(0) 7.38(4.13) 0.06(0.11)

(B) PeQuan 44.1(25.19) 1.16(1.08) 42.94(24.4) 4.1(2.88)
DC-TGDR 3.6(1.01) 3(0) 0.6(1.01) 0.09(0.05)
PeQuan 7.78(10.46) 2.86(0.45) 4.92(10.39) 0.63(0.76)(C)
DC-TGDR 3.48(0.68) 3(0) 0.48(0.68) 0.19(0.13

(D) DC-TGDR 4.62(1.56) 3(0) 1.62(1.56) 0.19(0.09)

n=200, p=400, ε ∼ t(2)
HD-SIM 15.46(7.64) 2.94(0.42) 12.52(7.58) 0.47(0.25)

(A) PeQuan 3.88(2.67) 2.96(0.2) 0.92(2.65) 0.15(0.18)
DC-TGDR 3.76(0.92) 3(0) 0.76(0.92) 0.16(0.08)
HD-SIM 16.88(5.45) 2.96(0.28) 13.92(5.48) 0.15(0.23)

(B) PeQuan 42.88(22.08) 1.08(0.9) 41.8(21.45) 3.61(2.8)
DC-TGDR 4.18(1.65) 3(0) 1.18(1.65) 0.09(0.05)
PeQuan 5.48(7.17) 2.82(0.56) 2.66(7.08) 0.41(0.56)(C)
DC-TGDR 3.76(0.85) 3(0) 0.76(0.85) 0.16(0.06)

(D) DC-TGDR 4.54(1.73) 3(0) 1.54(1.73) 0.23(0.13)
1 The true coefficients β0 = (3, 1.5, 0, 0, 0, 0, 2, 0, · · · , 0)Tp .
2 When the estimate of βi is less than 0.001, we regard the corresponding predictor as
unimportant.

3 The means of four criteria based on 100 data replicates with the standard deviations
in parentheses.

4 Tuning parameters τ and δ in DC-TGDR are selected by five-fold cross validation.

commodate nonlinear relationships and grouping structures
in this data analysis.

Next, we consider the framework of robust single-index
models and use the DC-TGDR method to identify impor-
tant CNAs and estimate the index direction for gene FAS.
For a comparison purpose, we also apply the RoSIS-PeQuan
method and the HD-SIM method. The estimates of single-
index direction by the three methods are listed in Table
5. The DC-TGDR method selects 25 important CNAs for

gene FAS. The PeQuan method chooses 12 CNAs as im-
portant ones but it misses gene UBB which is selected as
the most important CNA by the other two methods. On
the other hand, the HD-SIM method detects only one im-
portant CNA. Studies on the functions and interactions of
genes in the Cell Development pathway have partially sup-
ported the validity of the DC-TGDR method. Among the
selected CNAs, UBB, RRAGA and BCL10 are the top three
which make the largest impact on the expression level of
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Table 2. Simulation Results for Correlation Structure (ii)

Model Method Size C IC AE

n=100, p=400, ε ∼ N(0, 1)
HD-SIM 9.06(9.3) 3.86(3.1) 5.2(8.38) 3.59(0.13)

(A) PeQuan 31.38(9.79) 2.72(1.91) 28.66(8.8) 4.68(1.65)
DC-TGDR 70.26(64.62) 9.8(5.24) 60.46(64.62) 4.4(3.44)
HD-SIM 16.98(8.58) 5.88(2.24) 11.1(8) 3.67(0.3)

(B) PeQuan 29.32(8.88) 1.64(1.4) 27.68(8.18) 4.12(1.11)
DC-TGDR 40.5(46.59) 12.18(4.9) 28.32(48.96) 1.99(2.36)
PeQuan 13.26(9.01) 4.12(1.83) 9.14(7.8) 3.78(0.43)(C)
DC-TGDR 27.8(21.96) 12.7(3.54) 15.1(20.99) 2.26(1.77)

(D) DC-TGDR 23.9(11.46) 12.5(3.05) 11.4(9.77) 2.16(0.8)

n=100, p=400, ε ∼ t(2)
HD-SIM 6.48(6.15) 2.46(2.48) 4.02(5.34) 3.61(0.08)

(A) PeQuan 31.18(9.26) 2.14(1.85) 29.04(8.54) 5.18(1.96)
DC-TGDR 86.8(69.4) 8.96(5.86) 77.84(68.34) 5.55(4.13)
HD-SIM 13.48(9.45) 5.42(2.46) 8.06(8.38) 3.62(0.07)

(B) PeQuan 27.62(11.18) 1.72(1.63) 25.9(10.21) 4.44(1.51)
DC-TGDR 27.9(24.17) 13.2(3.93) 14.7(26.18) 1.41(0.96)
PeQuan 12.48(9.66) 4.32(2.22) 8.16(8.16) 3.81(0.41)(C)
DC-TGDR 27.54(23.7) 12.48(3.6) 15.06(22.43) 2.35(1.58)

(D) DC-TGDR 24.82(11.94) 12.92(2.59) 11.9(10.69) 2.15(0.85)

n=200, p=400, ε ∼ N(0, 1)
HD-SIM 19.02(7.21) 7.24(2) 11.78(6.98) 3.57(0.16)

(A) PeQuan 53.56(22.79) 4.4(3.04) 49.16(21.15) 5.24(1.93)
DC-TGDR 34.88(42.15) 13.56(3.23) 21.32(43.99) 1.75(2.37)
HD-SIM 23.54(4.99) 8.94(0.98) 14.6(4.86) 3.51(0.22)

(B) PeQuan 44.92(27) 2.8(3.03) 42.12(24.96) 5.15(2.04)
DC-TGDR 18.52(3.13) 14.92(0.27) 3.6(3.06) 0.62(0.24)
PeQuan 22.04(17.79) 5.34(2.08) 16.7(16.32) 3.68(0.24)(C)
DC-TGDR 18.74(6) 14.32(1.94) 4.42(6.11) 1.19(0.92)

(D) DC-TGDR 18.38(4.14) 14.24(1.88) 4.14(3.31) 0.83(0.59)

n=200, p=400, ε ∼ t(2)
HD-SIM 16.2(8.96) 5.64(2.67) 10.56(7.74) 3.6(0.1)

(A) PeQuan 49.2(24.56) 3.82(3.52) 45.38(22.67) 4.88(1.91)
DC-TGDR 31.24(32.87) 13.56(2.79) 17.68(33.82) 1.96(2.63)
HD-SIM 23.2(5.45) 8.76(1.13) 14.44(5.08) 3.58(0.14)

(B) PeQuan 47.36(23.37) 2.24(2.26) 45.12(22.06) 4.38(1.59)
DC-TGDR 17.76(3.04) 14.84(0.47) 2.92(2.93) 0.59(0.24)
PeQuan 21.08(18.42) 5.4(1.86) 15.68(17.25) 3.65(0.34)(C)
DC-TGDR 19.88(6.14) 14.7(1.04) 5.18(6.33) 1.21(0.87)

(D) DC-TGDR 19.46(4.51) 14.54(1.63) 4.92(4.03) 0.83(0.46)
1 The true coefficients

β = (1, 1, 1, 1, 1, 0.6, 0.6, 0.6, 0.6, 0.6, 0.4, 0.4, 0.4, 0.4, 0.4︸ ︷︷ ︸
15

, 0, · · · , 0)Tp

.
2 When the estimate of βi is less than 0.001, we regard the corresponding predictor as
unimportant.

3 The means of four criteria based on 100 data replicates with the standard deviations in
parentheses.

4 Tuning parameters τ and δ in DC-TGDR are selected by five-fold cross validation.

gene FAS. In the literature, studies have revealed that the
ubiquitin encoded by UBB is closely related to the degra-
dation of abnormal proteins, which is consequently involved
in the regulation of gene expression [2]. Also, the proteins
encoded by RRAGA belong to the ubiquitously expressed
Ras family, which controls processes such as cell adhesion,

apoptosis, and cell migration [20]. BCL10 has clinical sig-
nificance in lymphoma, a type of cancer developed in the
immune system [24]. In summary, previous studies have il-
lustrated that the expression level of gene FAS is potentially
regulated by UBB; and FAS, RRAGA and BCL10 are func-
tionally and jointly associated with the abnormality of cell
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Table 3. Simulation Results for Correlation Structure (iii)

Model Method Size C IC AE

n=100, p=400, ε ∼ N(0, 1)
HD-SIM 5.46(4.06) 2.88(1.3) 2.58(3.65) 2.77(0.13)

(A) PeQuan 20.94(9.62) 5.34(1.64) 15.6(9.13) 3.2(1.38)
DC-TGDR 13.5(4.22) 7.54(0.58) 5.96(4.03) 1.32(0.37)
HD-SIM 4.92(4.85) 1.28(0.78) 3.64(4.76) 2.83(0.29)

(B) PeQuan 27.16(9.85) 1.78(1.43) 25.38(9.07) 4.67(1.96)
DC-TGDR 44.24(42.78) 5.24(3.17) 39(44.26) 2.6(2.53)
PeQuan 12.58(10.53) 4.86(2.06) 7.72(9.34) 3.14(1.26)(C)
DC-TGDR 12.06(5.28) 6.82(1.06) 5.24(4.83) 1.72(0.64)

(D) DC-TGDR 17.92(7.63) 7.08(0.88) 10.84(7.12) 2.03(0.46)

n=100, p=400, ε ∼ t(2)
HD-SIM 5.22(3.18) 2.5(1.36) 2.72(2.63) 2.79(0.21)

(A) PeQuan 23.12(9.91) 5.38(1.43) 17.74(9.14) 3.9(1.61)
DC-TGDR 12.06(3.56) 6.02(0.47) 6.04(3.53) 2.31(0.26)
HD-SIM 5.72(6.75) 1.26(0.8) 4.46(6.72) 2.84(0.21)

(B) PeQuan 27.24(11.01) 2.14(1.47) 25.1(10.01) 4.36(1.92)
DC-TGDR 42.82(41.76) 5.3(3.15) 37.52(43.12) 2.86(2.92)
PeQuan 12.5(10.2) 4.14(2.09) 8.36(8.71) 3.08(1.35)(C)
DC-TGDR 12.82(6.15) 6.88(1.14) 5.94(5.81) 1.77(0.78)

(D) DC-TGDR 18.02(7.16) 7.16(0.82) 10.86(6.67) 1.97(0.43)

n=200, p=400, ε ∼ N(0, 1)
HD-SIM 13.04(4.45) 7.56(0.67) 5.48(4.09) 1.98(0.34)

(A) PeQuan 16.86(8.78) 6.8(1.4) 10.06(8.16) 1.76(0.84)
DC-TGDR 8.78(1.3) 7.86(0.35) 0.92(1.14) 0.79(0.19)
HD-SIM 9.38(5.24) 4.52(1.82) 4.86(4.51) 2.62(0.2)

(B) PeQuan 49.44(26.26) 3.12(2.29) 46.32(24.33) 5.8(2.92)
DC-TGDR 16.82(31.6) 7.52(1.63) 9.3(32.8) 0.84(1.41)
PeQuan 14.16(12.35) 6.76(1.8) 7.4(11.64) 1.91(1.28)(C)
DC-TGDR 8.02(1.13) 7.54(0.65) 0.48(0.74) 1.06(0.26)

(D) DC-TGDR 11.06(3.13) 7.7(0.46) 3.36(2.92) 1.1(0.29)

n=200, p=400, ε ∼ t(2)
HD-SIM 12.06(4.85) 6.56(1.86) 5.5(4.11) 2.31(0.3)

(A) PeQuan 16.78(9.78) 6.24(1.12) 10.54(9.41) 1.99(0.67)
DC-TGDR 9.98(2.14) 7.94(0.24) 2.04(2.07) 0.8(0.21)
HD-SIM 9.12(6.54) 3.92(1.99) 5.2(5.86) 2.71(0.22)

(B) PeQuan 43.08(27.31) 2.68(2.22) 40.4(25.37) 5.95(2.9)
DC-TGDR 10.3(3.87) 7.58(1.68) 2.72(5.41) 0.63(0.55)
PeQuan 14.18(14.56) 6.6(1.81) 7.58(14.19) 1.82(1.43)(C)
DC-TGDR 8.24(1.32) 7.52(0.58) 0.72(1.09) 1.04(0.32)

(D) DC-TGDR 11.7(3.41) 7.64(0.56) 4.06(3.18) 1.15(0.31)
1 The true coefficients

β = (1, 1, 1, 1, 1︸ ︷︷ ︸
5

, 2, 1, 0, 0, 0, 0, 1.5, 0, · · · , 0)Tp

.
2 When the estimate of βi is less than 0.001, we regard the corresponding predictor as
unimportant.

3 The means of four criteria based on 100 data replicates with the standard deviations
in parentheses.

4 Tuning parameters τ and δ in DC-TGDR are selected by five-fold cross validation.

development. In other words, the important CNAs identi-
fied by the proposed DC-TGDR method are consistent with
the existing discoveries.

Besides, we plot the correlation heatmap of the 25 se-
lected CNAs by the DC-TGDR method in the right panel
of Figure 5. It illustrates that the DC-TGDR method se-

lects a group of strongly correlated CNAs, which includes
PRL, DUSP22, TXNDC5, IL17A, VEGFA, CDKN1A and
MDGA1. The average pairwise Pearson correlation values
among these seven CNAs is 0.79. Hence, they form a bight
yellow square in the lower right corner. However, with Pe-
Quan, only PRL and CDKN1A are selected out among these
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Table 4. Simulation Results When p = 1000, n = 200

Model Method Size C IC AE
Correlation(i), ε ∼ N(0, 1)

HD-SIM 17.54(6.46) 3(0) 14.54(6.46) 0.22(0.05)
Model A PeQuan 4.34(1.81) 2.84(0.42) 1.5(2.01) 0.42(0.44)

DC-TGDR 3.52(0.79) 3(0) 0.52(0.79) 0.14(0.07
HD-SIM 11.16(5.21) 2.94(0.42) 8.22(5.33) 0.14(0.38)

Model B PeQuan 19.5(17.65) 0.54(0.76) 18.96(17.19) 2.52(1.87)
DC-TGDR 4.12(2) 3(0) 1.12(2) 0.09(0.04)
PeQuan 7.58(6.89) 2.4(0.81) 5.18(6.62) 0.92(0.75)Model C
DC-TGDR 3.44(0.88) 3(0) 0.44(0.88) 0.14(0.09)

Model D DC-TGDR 5.12(1.83) 3(0) 2.12(1.83) 0.22(0.14)
Correlation(i), ε ∼ t(2)

HD-SIM 14.96(5.7) 3(0) 11.96(5.7) 0.49(0.19)
Model A PeQuan 5(5.54) 3(0) 2(5.54) 0.19(0.25)

DC-TGDR 3.76(1.06) 3(0) 0.76(1.06) 0.17(0.08)
HD-SIM 16.64(7.38) 3(0) 13.64(7.38) 0.12(0.1)

Model B PeQuan 44.72(24.97) 1.02(0.94) 43.7(24.26) 4.36(3)
DC-TGDR 4.6(2.03) 3(0) 1.6(2.03) 0.1(0.05)
PeQuan 6.5(11.17) 2.66(0.66) 3.84(11.03) 0.64(0.8)Model C
DC-TGDR 3.5(0.71) 2.98(0.14) 0.52(0.68) 0.19(0.16)

Model D DC-TGDR 5.28(1.75) 3(0) 2.28(1.75) 0.25(0.11)
Correlation(ii), ε ∼ N(0, 1)

HD-SIM 18.3(7.62) 7.16(2.23) 11.14(6.51) 3.56(0.18)
Model A PeQuan 65.18(9.12) 4.88(2.38) 60.3(8.15) 5.98(2.1)

DC-TGDR 47.08(64.96) 11.96(4.62) 35.12(67.67) 2.29(2.95)
HD-SIM 22.34(4.87) 8.68(1.19) 13.66(4.34) 3.57(0.17)

Model B PeQuan 46.44(23.29) 1.5(1.59) 44.94(22.28) 4.64(1.86)
DC-TGDR 20.76(6.85) 14.92(0.27) 5.84(6.8) 0.61(0.23)
PeQuan 19.42(16.91) 4.82(1.97) 14.6(15.58) 4(0.84)Model C
DC-TGDR 24.06(16.88) 14.48(1.78) 9.58(16.55) 1.46(1.03)

Model D DC-TGDR 21.88(7.73) 14.46(0.95) 7.42(7.46) 0.98(0.37)
Correlation(ii), ε ∼ t(2)

HD-SIM 14.22(8.55) 5.16(2.85) 9.06(7.71) 3.61(0.07)
Model A PeQuan 59.52(16.39) 3.32(2.27) 56.2(15.5) 6.07(2.47)

DC-TGDR 49.74(82.67) 13.08(3.3) 36.66(84.34) 2.28(3.09)
HD-SIM 23.04(6.33) 8.68(1.22) 14.36(5.9) 3.55(0.18)

Model B PeQuan 51.94(23.17) 2.26(2.53) 49.68(21.88) 4.96(2.18)
DC-TGDR 19.6(5.23) 14.94(0.24) 4.66(5.2) 0.65(0.26)
PeQuan 15.04(14.28) 4.72(1.77) 10.32(13.28) 3.82(0.56)Model C
DC-TGDR 23.56(10.81) 14.78(0.86) 8.78(10.66) 1.35(0.92)

Model D DC-TGDR 23(10.11) 14.44(1.53) 8.56(9.76) 1.06(0.62)
Correlation(iii), ε ∼ N(0, 1)

HD-SIM 9.28(2.83) 6.46(1.05) 2.82(2.68) 2.4(0.26)
Model A PeQuan 17.78(12.77) 6.02(1.53) 11.76(12.37) 2.25(1.16)

DC-TGDR 12.06(3.96) 7.92(0.27) 4.14(3.9) 0.86(0.26)
HD-SIM 7.22(6.04) 2.88(1.45) 4.34(5.75) 2.77(0.23)

Model B PeQuan 48.88(24.15) 2.42(2.07) 46.46(22.5) 5.2(2.87)
DC-TGDR 34.24(78.57) 7.14(2.33) 27.1(79.72) 1.1(2.23)
PeQuan 9.4(7.03) 6.18(2.21) 3.22(6.25) 2.05(1.57)Model C
DC-TGDR 11.74(4.8) 7.72(0.5) 4.02(4.64) 1.12(0.38)

Model D DC-TGDR 14.58(6.02) 7.56(0.58) 7.02(5.67) 1.24(0.2
Correlation(iii), ε ∼ t(2)

HD-SIM 8.68(4.73) 4.92(1.94) 3.76(4.25) 2.61(0.19)
Model A PeQuan 23.24(14.41) 6.48(1.25) 16.76(13.83) 2.66(1.3)

DC-TGDR 13.52(4.52) 7.86(0.35) 5.66(4.38) 0.99(0.24)
HD-SIM 6.28(5.12) 2.54(1.58) 3.74(4.66) 2.81(0.18)

Model B PeQuan 41.38(25.94) 1.96(1.74) 39.42(24.51) 5.24(2.79)
DC-TGDR 25.44(49.67) 7.5(1.85) 17.94(51.15) 1.08(2.19)
PeQuan 17.48(16.48) 6.24(2.26) 11.24(15.77) 1.94(1.36)Model C
DC-TGDR 10.76(4.05) 7.44(0.7) 3.32(3.75) 1.23(0.44)

Model D DC-TGDR 16.96(6.98) 7.68(0.47) 9.28(6.76) 1.34(0.31)
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Figure 4. Marginal regression of FAS gene expression level
versus four CNAs.

Figure 5. The left panel is the correlation heatmap of all
CNAs and the right one is the correlation heatmap of CNAs
selected by DC-TGDR method. The bright yellow squares

indicate that there exist grouped CNAs.

Table 5. Estimation of Single-index Direction

CNAs β1 β2 β3 CNAs β1 β2 β3

FAS 1.69 EP300 -0.62
IL17A -0.41 CDKN1A -0.45 -1.51
DUSP22 -0.31 DEDD -0.22
BNIPL -1.21 -1.09 UBB 7.38 10
TP53 1.91 4.52 MDGA1 -0.64
GRIK2 0.12 FARP2 0.69
CIB1 -2.06 TXNDC5 -0.40
BCL10 -2.54 VEGFA -0.84
CDK5R1 2.08 PRL -0.71 -1.44
NOTCH2 -1.56 -0.75 DDAH2 1.43
BAG4 0.36 ALOX12 -0.71
TNFRSF10D 1.84 CCL2 0.33
SEMA4D 0.15 VCP -0.08
FOXO3 0.75 TPD52L1 1.09
CASP8AP2 0.63 1.33 RRAGA 3.52 3.09
1 The response variable is the expression level of Gene FAS.
2 β1 is solved by DC-TGDR, β2 is solved by PeQuan and β3 is
solved by HD-SIM.

seven CNAs. This result also demonstrates that the pro-
posed approach encourages the grouping effect.

In addition, we show the scatter plots of the expression
level of gene FAS against the estimated single indices by
the three methods in Figure 6. It is easy to see that the

Figure 6. Scatter plots of the expression level of gene FAS
against the estimated single indices by the three methods

with local linear quantile estimated curves at the 2.5%, 50%
and 97.5% quantiles.

relationship between the response and single index is not
linear and the variance of gene FAS increases as the single
index increases, i.e. the heteroscedasticity is also present.
Then, we use the local linear quantile regression to estimate
the conditional median, 2.5% quantile and 97.5% quantile of
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the response variable conditional on the single index for each
method, where the confidence intervals are shown between
the red(lower) line and blue(upper) line in Figure 6.

5. CONCLUSION

In this article, we have developed a new DC-TGDR
method which can perform variable selection and index di-
rection estimation simultaneously for general single-index
models. This method inherits the advantages of both the
distance covariance and Threshold Gradient Directed Regu-
larization algorithm. Since the distance covariance is able
to measure nonlinear dependence between random vari-
ables, the DC-TGDR method avoids estimating unknown
link function of the single index so it can reduce compu-
tational complexity. As a variant of the original TGDR
method, the DC-TGDR method also encourages a grouping
effect which is important in many high dimensional prob-
lems. Both Monte Carlo simulations and real data analy-
sis demonstrate the favorable empirical performances com-
pared with the existing methods for single-index models. For
future study, we may consider the multiple indices models
where more than two linear combinations of predictors are
considered because the distance covariance can measure the
dependence between two random vectors. Besides, we may
also investigate the relationship between CNAs and multi-
variate gene expressions simultaneously using the distance
covariance in the pathway studies.
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