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Nonparametric Additive Instrumental Variable
Estimator: A Group Shrinkage Estimation
Perspective
Qingliang FAN and Wei ZHONG

Wang Yanan Institute for Studies in Economics (WISE), Department of Statistics, School of Economics and Fujian
Key Laboratory of Statistical Science, Xiamen University, Fujian, China (michaelqfan@gmail.com;
wzhong@xmu.edu.cn)

In this article, we study a nonparametric approach regarding a general nonlinear reduced form equation
to achieve a better approximation of the optimal instrument. Accordingly, we propose the nonparametric
additive instrumental variable estimator (NAIVE) with the adaptive group Lasso. We theoretically demon-
strate that the proposed estimator is root-n consistent and asymptotically normal. The adaptive group
Lasso helps us select the valid instruments while the dimensionality of potential instrumental variables is
allowed to be greater than the sample size. In practice, the degree and knots of B-spline series are selected
by minimizing the BIC or EBIC criteria for each nonparametric additive component in the reduced form
equation. In Monte Carlo simulations, we show that the NAIVE has the same performance as the linear
instrumental variable (IV) estimator for the truly linear reduced form equation. On the other hand, the
NAIVE performs much better in terms of bias and mean squared errors compared to other alternative
estimators under the high-dimensional nonlinear reduced form equation. We further illustrate our method
in an empirical study of international trade and growth. Our findings provide a stronger evidence that
international trade has a significant positive effect on economic growth.

KEY WORDS: Adaptive group Lasso; Instrumental variables; Nonparametric additive model; Optimal
estimator; Variable selection.

1. INTRODUCTION

The instrumental variable (IV) method is a signature tech-
nique in econometrics. The method has broad applications in
various empirical studies when there are endogeneity issues
in the structural equation. For example, Angrist and Krueger
(1991) used quarter of birth as the instrumental variable for years
of education in the study of returns to education. The validity
of the inference using the IV method was studied by, for ex-
ample, Hahn and Hausman (2002) and Berkowitz et al. (2012).
Bound, Jaeger, and Baker (1995) showed that when instruments
are weak, a mild violation of exogeneity could result in large
inconsistency of the IV estimator. In empirical works, if we en-
forced the exogeneity condition in the searching for instruments,
we would often have instruments that are only weakly corre-
lated with the endogenous variable (Staiger and Stock 1997).
IV inference with many possibly weak instruments is common,
but the inference may have poor properties (Chao and Swanson
2005; Andrews, Moreira, and Stock 2006; Hausman et al. 2012).
Hansen, Hausman, and Newey (2008) proposed corrected stan-
dard errors for estimation using many instruments. In practice,
the first-stage F-statistic “rule of thumb” is suitable only for low-
dimensional linear models (when the number of instruments is
fixed and much smaller than the sample size) and it cannot iden-
tify which instrument is weak. In theory, the inclusion of many
exogenous instruments can improve the efficiency of IV esti-
mator. However, in practice, the IV estimator has higher bias
if there are many weak instruments in the model. Hence, the
choice of the set of instruments is crucial for the finite sample
property of IV estimator (Donald and Newey 2001). The opti-
mality of IV method requires the estimation of the conditional

expectation (Amemiya 1974). It thus motivated us to develop a
method that would allow us to select from a very large set of
candidate instruments that can better estimate the conditional
expectation.

The structural equation, while frequently being studied in ei-
ther parametric or nonparametric framework (Newey and Pow-
ell 2003; Ozabaci, Henderson, and Su 2014), is often based on
economic theory, for example, trade theory (Melitz 2003). The
reduced form model, on the other hand, is more data-driven,
and it is usually not guided by certain economic theory that
suggests covariates to be included. For a given set of instru-
ments, the optimal instrument often involves conditional expec-
tations of nonlinear functions of endogenous variables. It is thus
important to assume general nonlinear reduced form equations
(Newey 1990). A linear reduced form equation is often assumed
in empirical studies due to its simplicity even when the true rela-
tionship is nonlinear. For instance, Behrman et al. (2012) studied
the causal effect of financial literacy on wealth accumulation us-
ing many instruments, including individual education environ-
ment variables, macroeconomic condition variables, and family
background variables, among others. For a better approximation
of the optimal instruments, the nonlinear reduced form might
be more useful here. A good econometric procedure should be
able to explore the unspecified nonlinear form while achieving
the efficiency bound of IV estimator as well as better finite sam-
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ple properties. Our simulation studies showed that the two-stage
least squares (2SLS) estimator is more biased and inefficient if
the nonlinear relationship exists in the reduced form model. This
observation motivated us to study a nonparametric reduced form
IV estimator, which should be widely applicable in practice.

In this article, we study high-dimensional nonparametric ad-
ditive reduced form models with a large number of original
observable instrumental variables, which can be larger than the
sample size. Many researchers have studied additive nonpara-
metric models (Linton et al. 1997). The nonparametric study
of reduced form equation is often troubled by the curse of di-
mensionality (Newey 1990), which has been the focus of a
substantial body of recent literature on high-dimensional prob-
lems. These high-dimensional methods include the Lasso (Tib-
shirani 1996), SCAD (Fan and Li 2001), group Lasso (Yuan
and Lin 2006), adaptive Lasso (Zou 2006), adaptive group
Lasso (Huang, Horowitz, and Wei 2010), and Dantzig selector
(Candes and Tao 2007), among others. Recently, some studies
have addressed high-dimensional endogeneity problem. Belloni
et al. (2012) extended IV estimation to high dimension with
heteroscedastic and non-Gaussian random disturbances using a
modified Lasso method. Related ideas also appeared in Bai and
Ng (2010), Carrasco (2012), Fan and Liao (2014), and Caner and
Fan (2015). Lin et al. (2015) studied high-dimensional endoge-
nous issue with applications in genomics. Our article differs
from the aforementioned studies in two aspects. First, we focus
on the high dimensionality of original economic variable ob-
served by the researcher rather than the functions of those orig-
inal observable variables. Second, we use the adaptive group
Lasso approach to select additive components of instruments,
such that the nonlinear relationship in reduced form equation is
captured.

We assume a nonparametric additive reduced form equation to
approximate the optimal instruments and propose the nonpara-
metric additive instrumental variable estimator (NAIVE) with
the adaptive group Lasso. We theoretically demonstrate that
the proposed estimator is root-n consistent and asymptotically
normal with optimal variance of IV estimator (Amemiya 1974;
Chamberlain 1987; Newey 1990). The adaptive group Lasso
shrinkage method selects the strong instruments consistently
while the dimensionality of potential instruments is allowed to
be greater than the sample size. In simulations, we show that the
proposed estimator has smaller biases and mean squared errors
compared to alternative methods among various model settings.
It is worth noting that we use the BIC or EBIC criteria to choose
the degree and knots of B-spline series for each nonparametric
component. For a truly linear reduced form model, the proposed
NAIVE automatically adopts the linearity form. Thus, our pro-
posed method nests the linear reduced form as a special case,
and its performance is the same as that of 2SLS in this case. Our
method can be widely applicable, especially when the empirical
researchers do not know which specific instruments should be
included or the functional form of reduced models.

The article is organized as follows. In Section 2, we describe
the methodology and present the nonparametric additive in-
strumental variable estimator (NAIVE) with the adaptive group
Lasso. Section 3 presents the theoretical results. Section 4 shows
the finite sample performance of our proposed estimator using
Monte Carlo experiments. In Section 5, we illustrate our method

in an empirical study of international trade and growth. Section
6 concludes the article. All the proofs are relegated to the Ap-
pendix.

2. METHODOLOGY

2.1 Some Preliminaries

We consider the following structural equation,

yi = xT
i β0 + εi, (2.1)

where yi is the ith response variable, xi is d × 1 vector of ex-
planatory variables, and β0 is d × 1 vector of true parameters,
for i = 1, 2, . . . , n, where n is the sample size. The model is a
general linear model if E(εi |xi) = 0. However, the endogeneity
problem in empirical economic studies is common, such that
E(εi |xi�) �= 0 for some 1 ≤ � ≤ d. Without loss of generality,
we assume the first de variables {xi�, � = 1, 2, . . . , de, 1 ≤ de ≤
d} are endogenous, where de is fixed.

To solve the endogeneity problem, instrumental variables are
employed to obtain a consistent estimator of the population re-
gression coefficient β0. In practice, the choice of instruments af-
fects the properties of IV estimators. We model the reduced form
equation by using many potential instruments without knowing
which one is useful. The p × 1 vector of instrumental vari-
ables is denoted by zi = (zi1, . . . , zip) . We consider the stan-
dard assumptions here, E(εi |zi) = 0 for all i = 1, . . . , n, and
E(ξi�|zi) = 0, for all i = 1, . . . , n and � = 1, . . . , de, which
is the exclusion restriction on the instrumental variables. We
are interested in estimating the optimal conditional expecta-
tion Di = D(zi) = E(xi |zi), which minimizes the asymptotic
variance of IV estimator (Amemiya 1974). In many empirical
economic studies, the linear reduced form model is often as-
sumed to predict the endogenous variables xi using zi . In the IV
literature, the so-called k-class estimator is

β̂ = (XT(I − kM)X)−1(XT(I − kM)Y), (2.2)

where M = I − Z(ZTZ)−1ZT, and X is a n× d matrix formed
by stacking the xi , Z is a n× p matrix formed by stacking
the zi , Y is a n× 1 matrix formed by stacking the yi , and k
is specified by the researcher. When k = 0, we have the OLS.
When k = 1, it is the 2SLS. The limited information maximum
likelihood (LIML) estimator and the Fuller’s estimators are also
well-known special cases of this k-class estimator.

In practice, many potential instruments, including their series
terms, may be recruited to approximate the optimal instrument
and improve the precision of IV estimators. On the other hand,
if many irrelevant instruments are contained in the reduced form
equation, the approximation of the optimal instrument is gen-
erally unsatisfactory and the IV estimator is less efficient. In
some cases where the dimensionality of zi is even higher than
the sample size, the linear IV method fails. To address these
issues, the model sparsity is usually assumed and the penalized
approaches can be applied to improve the efficiency of IV esti-
mators. Following the line of Belloni et al. (2012), in this article,
we propose the first-stage parsimonious predictive models and
estimated optimal instruments in IV models with potentially
more instruments than the sample size n.
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2.2 Nonparametric Additive Instrumental Variable
Estimator

The performance of the linear IV estimator in the finite sample
is largely dependent on the validity of linearity assumption. This
phenomenon motivated us to consider a more general nonlinear
reduced form equation to capture as much information of xi as
possible using instruments zi under the high-dimensional model
settings. This nonparametric idea for the reduced form model
is consistent with Newey (1990). In this article, we consider
the following nonparametric additive reduced form model with
a large number of possible instruments. That is, for each � =
1, . . . , de,

xi� = μ� +
p∑
j=1

fj�(zij ) + ξi�, (2.3)

where μ� is the constant term, fj�(·) is the jth unknown smooth
univariate functions, and ξi�’s are iid random errors with mean
0 and finite variance. Here, the dimensionality p is poten-
tially larger than the sample size n. For the model identifica-
tion, we assume that all functions fj�(·)’s are centered, that
is, E[fj�(zj )] = 0, 1 ≤ j ≤ p, where zj denotes the jth instru-
ment. As it is more flexible and generally applicable than the
ordinary linear model, the nonparametric additive reduced form
model (2.3) could achieve a better approximation to the optimal
instruments E(xi |zi). Consequently, the IV estimator based on
(2.3) is expected to be more efficient compared to the linear IV
estimator. This conjecture will be confirmed both theoretically
and numerically in the later sections.

To estimate the nonparametric components in (2.3), we
use B-spline basis functions by following the idea of Huang,
Horowitz, and Wei (2010). Let Sn be the space of polyno-
mial splines of degrees L ≥ 1 and let {φk, k = 1, . . . , mn} be
normalized B-spline basis functions for Sn, where mn is the
sum of the polynomial degree L and the number of knots.
Let ψk(zij ) = φk(zij ) − n−1∑n

i=1 φk(zij ) be the centered B-
spline basis functions for the jth instrument. Thus, for each
� = 1, . . . , de, each fnj� ∈ Sn can be represented by the linear
combination of normalized B-spline series

fnj�(zij ) =
mn∑
k=1

γjkψk(zij ), 1 ≤ j ≤ p.

Under suitable smoothness conditions, the function fj�(zij ) in
(2.3) can be well approximated by the function fnj (zij ) in Sn
by carefully choosing the coefficients {γj1, . . . , γjmn} (Stone
1985). The model (2.3) can then be rewritten using an approxi-
mate linear reduced form

xi� ≈ μ� +
p∑
j=1

mn∑
k=1

γjk�ψk(zij ) + ξi�. (2.4)

Instead of directly estimating each nonlinear function fj� in
(2.3), we are now allowed to estimate the parameter vector
{γj1�, . . . , γjmn�} for each � = 1, . . . , de using the OLS method
when p is fixed and small.

To obtain a more precise IV estimator, we generally consider
many potential instruments in practice to estimate the model
(2.4). Under the high-dimensional reduced form models, if
p > n/mn, the OLS method fails to work for the model (2.4) due

to the singularity of the design matrix. In high-dimensionality
problems, the assumption that there exists only a small subset of
valid instruments among many potential ones in the model (2.3)
will be satisfied quite generally. We denote by A� a set of instru-
ments that are able to approximate the conditional expectation
of the �th endogenous variable. That is, fj�(z) �= 0 for some z,
j ∈ A�, but fj�(z) = 0 for any z, j /∈ A�, � = 1, . . . , de.

Let γ j� = (γj1�, . . . , γjmn�)
T be the mn × 1 vector of param-

eters corresponding to the jth instrument in (2.4) and denote
γ � = (γ T

1�, . . . , γ
T
p�)

T by the mnp × 1 vector of parameters.
Let Uij = (ψ1(zij ), . . . , ψmn (zij ))

T and Uj = (U1j , . . . ,Unj )T

be the n×mn design matrix for the jth instrument, and U =
(U1, . . . ,Up) be the corresponding n×mnp design matrix. Let
X� = (x1� − x̄�, . . . , xn� − x̄�)T be the n× 1 vector of �th cen-
tered endogenous variable for each � = 1, . . . , de. To select
the significant instruments and estimate the component func-
tions simultaneously, we consider the following penalized ob-
jective function with an adaptive group Lasso penalty (Huang,
Horowitz, and Wei 2010) for each �th endogenous variable,

Ln(γ �; λn) = ‖X� − Uγ �‖2
2 + λn

p∑
j=1

ωnj�‖γ j�‖2, (2.5)

where ‖ · ‖2 denotes the �2 norm of a vector, λn is a tuning
parameter to control the shrinkage of parameters estimation,
and ωnj� is the positive weight for the jth group. We use the
group Lasso estimator to obtain the weights (Huang, Horowitz,
and Wei 2010) by defining

ωnj� =
{

‖γ̃ j�‖−1
2 , if ‖γ̃ j�‖2 > 0,

∞, if ‖γ̃ j�‖2 = 0,
(2.6)

where γ̃ n� = (γ̃ T
1�, γ̃

T
2�, . . . , γ̃

T
p�)

T is the group Lasso estimator
obtained by minimizing the penalized objective function with a
group Lasso penalty, that is,

γ̃ n� = arg min
γ �
Ln0(γ �; λn)

= arg min
γ �

⎧⎨⎩‖X� − Uγ �‖2
2 + λn0

p∑
j=1

‖γ j�‖2

⎫⎬⎭. (2.7)

The adaptive group Lasso estimator, via minimizing the ob-
jective function (2.5) with the weights in (2.6), is

γ̂ n� = (γ̂ T
1�, γ̂

T
2�, . . . , γ̂

T
p�

)T = arg min
γ �
Ln(γ �; λn). (2.8)

Denoting the selected set of instruments by Â� = {j : ‖γ̂ j�‖2 >

0}, the adaptive group Lasso estimators of μ� and fj� in (2.3)
are

μ̂� = 1

n

n∑
i=1

xi�, f̂nj�(zij ) =
mn∑
k=1

γ̂jk�ψk(zij ), j ∈ Â�.

Then each �th endogenous variable, for � = 1, . . . , de, can be
estimated accordingly by

x̂i� = μ̂� +
∑
j∈Â�

mn∑
k=1

γ̂jk�ψk(zij ). (2.9)
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Denote x̂i = (̂xi1, . . . , x̂ide , xide+1, . . . , xid )T. Then the resulting
IV estimator for β0 in the model (2.1) is

β̂ =
(

1

n

n∑
i=1

x̂ixT
i

)−1 (
1

n

n∑
i=1

x̂iyi

)
. (2.10)

We call β̂ the nonparametric additive instrumental variable esti-
mator (NAIVE) with the adaptive group Lasso. Because of the
better approximation to the optimal instrument, it is shown both
theoretically and numerically that the proposed NAIVE of β0 is
root-n consistent and asymptotically normal.

In addition, we remark that the tuning parameters λn0, λn, and
mn are chosen adaptively in practice by minimizing the Bayesian
information criterion (BIC) (Schwartz 1978; Wang, Li, and Tsai
2007) or extended BIC (EBIC) (Chen and Chen 2008) for (2.7)
and (2.8). The BIC and EBIC are defined, respectively, by

BIC(λn,mn) = log(RSSλn ) + q̂�mn
log n

n
,

EBIC(λn,mn) = log(RSSλn ) + q̂�mn
log n+ ν logp

n
,

where RSSλn is the residual sum of squares for a given λn, q̂� =
|Â�|, the number of nonzero component functions for each � =
1, . . . , de and 0 ≤ ν ≤ 1 is a constant. When the nonparametric
additive reduced form model (2.3) is indeed a linear model, that
is, all component functions are linear, this data-driven approach
can usually select mn = 1. Subsequently, (2.3) degenerates to
an ordinary linear model. In this case, the proposed NAIVE is
the same as the linear 2SLS estimator if the true reduced form
model is linear. Simulations in Section 4 confirm this result. In
this sense, the NAIVE could be substantially useful for empirical
studies to solve the endogeneity problem, especially when the
relationship between the endogenous variables and instruments
are unknown.

To briefly summarize, we present the following algorithm to
find the NAIVE.

Algorithm Nonparametric Additive Instrumental Variable Es-
timator

Step 1. Obtain the group Lasso estimator γ̃ n� =
arg minγ � Ln0(γ �; λn) in (2.7) where BIC or EBIC are ap-
plied to choose the tuning parameters λn and mn.
Step 2. Define the weights based on (2.6) using the group
Lasso estimator in Step 1and obtain the adaptive group Lasso
estimator γ̂ n� = arg minγ �

Ln(γ �; λn) in (2.8).
Step 3. Estimate the fitted value of each �th endogenous
variable in (2.9) and denote the new design matrix X̂i =
(̂xi1, . . . , x̂ide , xide+1, . . . , xid )T.
Step 4. Regress the response y against X̂i to obtain the NAIVE
β̂ based on (2.10).

3. THEORETICAL RESULTS

In this section, we present the theoretical results that the
NAIVE with the adaptive group Lasso is root-n consistent and
asymptotically normal. First, we assume some regularity condi-
tions.

(C1) The support of each instrument zj is [a, b], where a and
b are finite real numbers. The density function gj of zj
in (2.3) satisfies 0 < K1 ≤ gj (z) ≤ K2 < ∞ on [a, b] for
j = 1, . . . , p.

(C2) Let F be the class of functions f such that the rth
derivative f (r) exists and satisfies a Lipschitz condition of
order α ∈ (0, 1]. That is,

F = {f (·) : |f (r)(t1) − f (r)(t2)| ≤ C|t1 − t2|α,
for t1, t2 ∈ [a, b] and a constant C > 0} ,

where r is a nonnegative integer and α ∈ (0, 1] such that
s = r + α > 1.5. Suppose fj� ∈ F , j = 1, . . . , p, � =
1, . . . , de, in (2.3).

(C3) ξi� satisfies the subexponential tail probability,
E[exp(c|ξi�|)] < ∞ for a finite positive constant c and
E(x2

i�) < ∞ for i = 1, . . . , n, � = 1, . . . , de. εi satisfies
that E(ε3

i ) is bounded away from zero and the infinity,
i = 1, . . . , n.

(C4) The number of the significant instruments q� = |A�| is
fixed. There exists c� > 0, such that minj∈A�

‖fj�‖2 ≥ c�

for each � = 1, . . . , de, where ‖fj�‖2
2 = ∫ b

a
f 2
j�(x)dx.

All regularity conditions (C1)–(C4) are standard conditions
for nonparametric estimation (Huang, Horowitz, and Wei 2010;
Fan et al. 2011). In particular, in the nonparametric literature,
Lipschitz Condition (C2) is commonly assumed to require that
the function is smooth enough. Condition (C3) requires that the
distribution of the random errors ξi�’s should not be too heavy-
tailed, and it is satisfied for ξi�’s that are bounded uniformly or
normally distributed.

Lemma 3.1. Using the group Lasso estimator γ̃ n� with λn0 	
O(

√
n log(mnp)) andmn 	 O(n1/(2s+1)) to construct the weight

for the adaptive group Lasso estimator. Suppose Conditions
(C1)–(C4) hold, de is fixed, and λn 	 O(

√
n), then

P (Â� = A�) → 1, as n → ∞, for � = 1, . . . , de. (3.1)

max
1≤�≤de

∑
j∈A�

‖γ̂ nj� − γ j�‖2
2 = Op

(
n−(2s−1)/(2s+1)

)
. (3.2)

max
1≤�≤de

∑
j∈A�

‖f̂nj� − fj�‖2
2 = Op

(
n−2s/(2s+1)

)
. (3.3)

This lemma shows the selection consistency of the adaptive
group Lasso for high-dimensional nonparametric additive re-
duced form model. That is, the true set of significant instruments
can be identified for each endogenous variable with probability
tending to 1. It also establishes the estimation consistency of γ̂ nj�
in the nonparametric additive reduced form model. Because the
number of endogenous variables de is fixed, Lemma 3.1 essen-
tially follows the results of theorem 3 in Huang, Horowitz, and
Wei (2010). In addition, the consistency of the group Lasso es-
timator is the necessary condition for the results in Lemma 3.1.
With λn0 	 O(

√
n log(mnp)), theorem 1 of Huang, Horowitz,
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and Wei (2010) has shown that under conditions (C1)–(C4),

‖γ̃ n� − γ �‖2
2 =

p∑
j=1

‖γ̃ nj� − γ j�‖2
2 = Op

(
m2
n log(mnp)

n

)

+Op

(mn
n

)
+O

(
1

m2s−1
n

)
. (3.4)

To ensure the consistency of γ̃ n�, the dimensionality of instru-
ments is allowed to be p = exp(o(n/m2

n)) = O(exp(nκ )) with
0 < κ < 1 − 2/(2s + 1), which can be much larger than the
sample size n.

Denote by Di� = E(xi�|zi) = μ� +∑j∈A�
fj�(zij ) the con-

ditional expectation of �th endogenous variable given
the instrumental variables, for � = 1, . . . , de, so that
the reduced form equation becomes xi� = Di� + ξi�. Let
Di = (Di1, . . . , Dide , xide+1, . . . , xid )T. The following theorem
presents the main result on the proposed NAIVE.

Theorem 3.1. Suppose that the structural disturbance is con-
ditionally homoscedastic, that is, Var(εil|zi) = σ 2. Under the
regularity Conditions (C1)–(C4), the NAIVE with the adaptive
group Lasso in (2.10) is

√
n−consistent and asymptotically nor-

mal. That is,
√
n
(
β̂ − β0

) d→ N
(

0, σ 2
{
E
(
DiDT

i

)}−1
)
. (3.5)

Theorem 3.1 demonstrates that the proposed NAIVE
with the adaptive group Lasso is asymptotically unbiased,√
n−consistent, and asymptotically normal. It also shows

that our estimator achieves the optimal asymptotic variance
σ 2{E(DiDT

i )}−1 as discussed by Amemiya (1974), Chamber-
lain (1987), and Newey (1990). This result will be further man-
ifested in the next simulation sections. Note that for the in-
ference purpose, the asymptotic variance can be estimated by
σ̂ 2(n−1∑n

i=1 x̂i x̂T
i )−1, where σ̂ 2 = n−1∑n

i=1(yi − x̂T
i β̂)2. The

theoretical result here is parallel with theorem 4 in Belloni et al.
(2012) who studied the high-dimensional IV estimator with
Lasso.

4. SIMULATIONS

In this section, we assess the finite sample performance of the
proposed NAIVE method by Monte Carlo simulation studies.
We consider a simple structural equation with one endogenous
variable,

yi = xiβ0 + εi,

where yi is the dependent variable of interest, xi is the en-
dogenous variable, i = 1, 2, . . . , n, and the true coefficient
β0 = 0.75. The endogenous variable is generated based on the
following two reduced form models,

Model 1. xi = 2zi1 + 0.75zi2 + 1.5zi3 + zi4 + ξi ;

Model 2. xi = 2z2
i1 + 0.75zi2 + 1.5z2

i3 + 3 sin(πzi4) + ξi,

where zi = (zi1, zi2, . . . , zip)T is generated from a multivari-
ate normal distribution N (0, �), � = (ρj1j2 )p×p with ρj1j2 =
0.5|j1−j2|, j1, j2 = 1, . . . , p, and for each i = 1, . . . , n. We gen-
erate the error terms in both the structural model and reduced

form models by

(εi, ξi)
iid∼ N (0, �εξ ), with �εξ =

(
1 0.8

0.8 1

)
.

We choose the sample size n = 100, 200 and the number of
potential instruments p = 100. Note that there are only four
valid instruments for the endogenous variable.

To assess the finite sample performance of each estima-
tion method, we run each simulation R = 1000 times and
computed the average of the estimated biases (denoted by
“Bias”), R−1∑R

r=1(β̂r − β0), with its empirical standard devia-
tion and the estimated mean squared errors (denoted by “MSE”),
R−1∑R

r=1(β̂r − β0)2, where β̂r denotes an estimator of β0 in the
rth experiment.

All simulation studies are conducted using the statistical soft-
ware R. In particular, the function bs(z,degree,knots) in the R
package splines is used to obtain the B-splines series for each
z. We vary in degree from 1 to 5 and choose knots = NULL or
a vector of 25%, 50%, and 75% quantiles for each z, and then
determine the optimal degree with/without knots by minimizing
BIC values. It is worth noting that this data-driven procedure
allows us to choose the optimal degree instead of arbitrarily
setting a number in practice. It will be shown that, when the
true reduced form model is indeed linear, the optimal degree is
always chosen as 1 without knots; thus, the NAIVE automati-
cally becomes the 2SLS estimator. Thus, our proposed method
nests the traditional linear IV approach as a special case. We
use the function grpreg(z,x,group,penalty=“grLasso”) in the R
package grpreg (Breheny 2014) to estimate the additive reduced
form model with the adaptive group Lasso.

In the first simulation, we assume it is known as an oracle that
zi1, zi2, zi3, zi4 are the four truly valid instruments. This simula-
tion is designed to check the influence of the nonparametric form
of the instrumental variables on the estimation of the true effect
β0 given the perfect information on the strength of instruments.
We consider three estimators of β0: OLS, 2SLS, and NAIVE
without variable selection procedure. Table 1 summarizes the
averages of biases with the standard deviations in the parenthe-
ses and MSE values. Figure 1 shows the boxplots of biases for
three estimators. It is shown that the OLS estimators are always
biased and have the largest MSE due to the endogeneity issue.
When the reduced form model is linear (Model 1), the 2SLS es-
timator solves the endogeneity problem well with small biases
and MSE. However, when the relationship between the endoge-
nous variable and the instruments is nonlinear (Model 2), its
performance substantially deteriorates. On the other hand, the
NAIVE performs the best in both linear and nonlinear settings.
In particular, for the linear reduced form (Model 1), the NAIVE
automatically chooses the degree to be 1 without knots and thus
has the same performance as the 2SLS estimator.

In the second simulation, we suppose that there are p = 100
potential instruments but the researcher does not know which
one is valid. Three estimators of β0 are obtained: OLS, 2SLS
based on the selected instruments by the Lasso (denoted
by “2SLS-L”), and NAIVE with the adaptive group Lasso
(“NAIVE”). The simulation results are summarized in Table
2 and Figure 2. As we observed in the first simulation, the
NAIVE with the adaptive group Lasso almost agrees with the
2SLS estimator with the Lasso for Model 1. For the nonlinear
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Table 1. The results of the first simulation with known truly valid
instruments

Model 1 Model 2

n Method Bias MSE Bias MSE

100 OLS 0.0527(0.0254) 0.0034 0.0418(0.0245) 0.0024
2SLS 0.0016(0.0271) 0.0007 0.0149(0.1070) 0.0117
NAIVE 0.0016(0.0271) 0.0007 0.0105(0.0244) 0.0007

200 OLS 0.0518(0.0175) 0.0030 0.0422(0.0166) 0.0021
2SLS −0.0001(0.0187) 0.0004 0.0135(0.0818) 0.0069
NAIVE −0.0001(0.0187) 0.0004 0.0059(0.0166) 0.0003

reduced form models, the NAIVE with the adaptive group Lasso
has an excellent performance by achieving smaller biases and
MSE. As n increases from 100 to 200, the bias and MSE of
the NAIVE decrease substantially, which further confirms the
consistency of the NAIVE in Theorem 3.1. Hence, we conclude
that the proposed method is reliable and useful in practice, es-
pecially when the relationship between the endogenous variable
and many instruments is unknown.

5. APPLICATIONS TO TRADE AND ECONOMIC
GROWTH

Global economic integration and reducing international trade
barriers are often hot topics of various economic summit forums
as well as the focus of related literature (Rodrik 2000; Rose and
van Wincoop 2001). The validity of those debating points and
economic studies rely heavily on the causal relationship between
trade and growth. In economics theory, international trade is
believed to cause growth in countries dwelling at the technolog-
ical frontier by using economies of scale as well as improving
resource allocation efficiency. However, there might be two op-
posite effects (pro-growth and anti-growth) for countries behind
the technological frontier (Grossman and Helpman 1991). On
the one hand, trade may hamper the long run economic devel-
opment of natural resource-abundant countries if that country
specializes in primary products or raw materials such as min-
erals, crude oil, etc. (Matsuyama 1992), which may lead to the
unfortunate “resource curse” (Sachs and Warner 2001). There
are also concerns about the dynamic economies of scale such

Table 2. The results of the second simulation in high-dimensional
setting

Model 1 Model 2

n Method Bias MSE Bias MSE

100 OLS 0.0532(0.0252) 0.0035 0.0429(0.0241) 0.0024
2SLS-L 0.0193(0.0262) 0.0011 0.0406(0.0363) 0.0030
NAIVE 0.0193(0.0262) 0.0011 0.0314(0.0256) 0.0016

200 OLS 0.0526(0.0182) 0.0031 0.0422(0.0172) 0.0021
2SLS-L 0.0123(0.0186) 0.0005 0.0358(0.0346) 0.0025
NAIVE 0.0122(0.0186) 0.0005 0.0175(0.0186) 0.0006

that infant industry protection are common in many develop-
ing countries. On the other hand, trade has positive effect on
growth of the countries that are well behind the technological
frontier and use trade for technology upgrade through spillover
effects. The effect of trade on growth is a very important re-
search topic in both theoretical and empirical economics, which
have strong effect on trade policies. Accompanying the rapid
growth and industrialization of developing countries, such as
Brazil, China, India, Mexico, etc. since the 1980s and the re-
cent surging development of African countries, such as Côte
d’Ivoire, Ghana, Rwanda, etc. in the 2000s, many empirical
studies have analyzed the important role of international trade
in catch-up growth of those countries (Krueger 1990; Edwards
1997; Acemoglu and Ventura 2002; Dollar and Kraay 2004).
Several influential studies have drawn quite different conclu-
sions regarding trade and growth using the data from different
decades (Sala-i-Martin 1997; Frankel and Romer 1999). The
question of the relationship between trade and growth is still
largely open in today’s world.

In this section, we illustrate the use of NAIVE by revisiting
the classic question of trade and growth. We explicitly inves-
tigate for the first time the role of trade in economic growth
of 150 countries using nonparametric reduced form equations
with instruments selection. One important issue in the empirical
study of trade and growth is the endogeneity of trade variable
due to the common driving forces that cause both trade and
growth. Frankel and Romer (1999) (FR99 henceforth) showed
that trade activities correlate positively with growth rate us-
ing cross-sectional data from 150 countries and economies. In
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Figure 1. Boxplots of biases for the first simulation with known truly valid instruments.



394 Journal of Business & Economic Statistics, July 2018

�

�
�
�
�

�
���

�
�
��

�

� �

�
���

�
�
��

�

�

OLS 2SLS−L NAIVE

0.
70

0.
75

0.
80

0.
85

Model 1, n=200

��
��

��

�

�

�

�

�

��

�

�

�

OLS 2SLS−L NAIVE

0.
70

0.
75

0.
80

0.
85

0.
90

Model 2, n=200

Figure 2. Boxplots of biases for the second simulation in high-dimensional setting.

FR99, the gravity model of trade (Tinbergen 1962; Anderson
1979) was applied to circumvent the endogeneity problem of
trade using instrumental variable method. The gravity theory of
trade states that the size of the countries (population, area, etc.)
and the distance between them (up to a gravity parameter) deter-
mine the trade volume between two countries. Specifically, the
instrument is the proxy variable for trade, which is constructed
using geographical variables such as the country size, com-
mon border, and bilateral distance of two countries. The econo-
metric model based on the gravity theory of trade is strongly
supported by the data in empirical analysis (Disdier and Head
2008).

Following FR99, the structural equation we consider here is

lnYi = α + βTi + γSi + εi

where Yi is GDP per worker in country i, Ti is the share of
international trade to GDP, Si is the size of a country, and εi is
the unobserved random disturbances, for i = 1, 2, . . . , 150.

To find a valid instrumental variable for trade, we need to
search for the variables that satisfy the two conditions. First,
instruments have to be strictly exogenous to the structural equa-
tion of economic growth, and second, they have to be deter-
minants of trade. In other words, to fit the empirical study, the
instruments should affect growth only indirectly through trade.
Under this logic and the gravity model of Tinbergen (1962),
FR99 constructed the instruments using the distance between
two countries. The validity of using geographical variables as
instruments is justified by the following reasons. First, the ge-
ographical variables, such as distance between two countries,
affect the convenience of trade through the channel of trans-
portation costs among others. Second, the size and distance
variables are fixed in the dataset for each country; thus, they are
exogenous to the structural equation.

The bilateral trade reduced form equation, which FR99 em-
ployed to construct the instrumental variable, is a linear equation

Tik = θXik + ηik,

where the Tik is the log of bilateral trade share of country i with
country k (k = 1, . . . n, k �= i) andXik is a vector of instruments,
which includes the distance between two countries, dummy
variables for landlocked countries, common border between two
countries and the interaction terms, and two included exogenous

variables representing country size: population and area (Land).
The instrumental variable (called proxy for trade in FR99) is the
sum (over k) of predicted trade shares for country i.

We echo the two major problems commonly associated with
finding instruments in empirical study using the example of
trade. First, we usually do not know the quality of the instru-
ments since there are many geographic variables; some or all
of them might be irrelevant to the trade. The inclusion of ir-
relevant instruments distorts the nominal confidence interval of
β. Second, finding some candidate instruments, in this example
the geographic variables, does not ensure that the linear reduced
form model would fully comprehend the nonlinearity nature of
some instruments to endogenous variable. These problems will
be addressed by our NAIVE method as discussed in previous
sections.

In the following, we extend the cross-sectional study of FR99
by considering more potential instruments. Since we first want
to include as many exogenous instruments as possible in the
reduced form model, it is very likely that we would end up in-
cluding some instruments that are not the determinants of trade.
Through this real example, we show that our method could
provide a guideline for empirical researchers on how to select
instruments in nonparametric reduced form equation. Besides
the three original instruments, that is, proxy for trade, total pop-
ulation, and total land area (included exogenous variables), we
also include total water area, coastline, the arable land as per-
centage of total land, land boundaries, forest area as percentage
of land area, the number of official and other commonly used
languages in a country, and the interaction terms of constructed
trade proxy with these variables (in total 15 instruments). All
newly considered instruments are geographical variables, which
are fixed in the dataset (hence exogenous), and they can only
affect growth through the channel of trade.

The reduced form model we consider is

Ti = μ+
15∑
j=1

fj (zij ) + ξi,

where fj (·) is the jth unknown smooth univariate functions and
zij is the ith observed value of the aforementioned jth instrument,
j = 1, 2, . . . , 15. Notice that we treat the interaction terms as a
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distinct instrument, and we allow the order of spline functions
to differ for each j.

5.1 Data Description

We present the summary statistics of the main data in
Table 3. For the summary statistics of bilateral distances and
border, landlocked, and other variables used to construct the
proxy for trade, we refer to the excellent presentation in FR99.
To compare with the original study of FR99, we use the
same data in this article and combine it with new geograph-
ical instrumental variables assessed in the same year (1985)
as FR99. We would be able to include the most up-to-date
data and search for new empirical support but here we will
leave the new data analysis as future works that would use our
method.

The aforementioned instruments could be potentially useful
in the reduced form regression. However, it remains unknown
which instrument is truly useful and the true functional form
is unknown. Therefore, we apply the adaptive group Lasso to
select instruments in the nonparametric additive reduced form
model.

Table 3. Summary statistics

Mean sd Median Min Max Sample size

Ln GDP 8.81 1.04 8.87 6.56 10.55 150
Trade 0.73 0.46 0.63 0.13 3.18 150
Ln Population 8.61 1.93 8.78 4.17 13.87 150
Ln Area (Land) 11.71 2.42 12.19 3.93 16.92 150
Area (Water) 3.9E4 2.1E5 2.3E3 0 2.3E6 150
Coastline 4.6E3 1.8E4 654 0 2.0E5 150
Land Boundaries 2.9E3 3.7E3 2.0E3 0 2.2E4 150
% Forest 0.30 0.23 0.29 0 0.90 150
% Arable Land 0.14 0.13 0.10 0.01 0.58 150
Languages 3.79 6.44 2 1 52 150

NOTE: Water area, coastline, and land boundaries are measured in square kilometers and
kilometers, respectively. Source: FR99, the World Bank, and CIA world Factbook.

5.2 Empirical Results

In this study, we focus on investigating the relationship of
trade with growth. For the other results, such as the income
distribution, the readers can refer to the original paper of FR99
and other excellent aforementioned papers.

Using the adaptive group Lasso and the BIC selection, the
selected instruments include the proxy for trade (the original
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Figure 3. Plots of the endogenous variable (real trade share) against the selected four instrumental variables.
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Table 4. Estimation results for the trade and income data. Standard
errors are reported in parentheses. Significance levels 0.1, 0.05, and
0.01 are noted by ∗, ∗∗, and ∗∗∗ respectively. Intercept significance

levels are not reported.

OLS 2SLS 2SLS-L NAIVE

Constant 7.40 4.96 5.29 3.95
(0.66) (2.20) (1.86) (1.58)

Trade Share 0.85∗∗∗ 1.97∗∗ 1.71 2.35∗∗∗

(0.25) (0.99) (0.79) (0.62)
Ln Population 0.12∗∗ 0.19∗∗ 0.21 0.24∗

(0.06) (0.09) (0.09) (0.14)
Ln Area −0.01 0.09 0.04 0.08

(0.06) (0.10) (0.07) (0.08)
Sample Size 150 150 150 150

instrument in FR99), area of land, total population, and the in-
teraction term of proxy for trade and number of languages. For
the constructed trade share, degree 3 is selected. Land area has
knots equal to 0 and hence is a linear fit. Population and the
interaction terms of trade share and languages have degree 3.
All the nonlinear fits use the quantiles as knots sequence. The
fitted functions of selected instruments are plotted in Figure 3.
From Figure 3, we see that proxy for trade and population in-
struments are likely to have nonlinear relationship with real
trade share. Land size is more likely to have a linear functional
form. From Panel (a) of Figure 3, we see that real trade share
is in general increasing with constructed trade. The positive ef-
fect is also shown under the interaction term with languages as
shown in Panel (d), and more languages correlate with higher
openness to trade. The interaction term is selected to support
the effects of language, which positively affects trade, given
all other geographic characteristics of two countries are equal.
Generally speaking, the constructed trade share has a positive
relationship (but shrinking in magnitude) with the constructed
trade share. Hence, we suspect that the proxy variable of trade
is not a perfect proxy especially for international trade-oriented
economies, such as Hong Kong, Luxemburg (with real trade
share being 210%, 212% of total GDP, respectively), among
others. From panel (b), the land area variable is negatively re-
lated with trade share. From panel (c), the log of population
variable has dwindling effects on real trade share. Both repre-
sent a result of large countries that are less active in international
trade (in the perspective of GDP contribution) during the middle
of 1980s. Holding other variables constant, the domestic mar-
ket, instead of global market, is the focus for those economies.
According to those findings, we believe that the NAIVE method
proposed in the article is necessary to analyze the data to get a
more accurate estimation of the trade effects on growth.

Table 4 shows the regression results. The first two columns
are originally from FR99. The OLS estimator has severe bias
and is inconsistent because of the endogeneity issue. The second
column is the 2SLS estimator using constructed trade proxy as
instrument. The third column (“2SLS-L”) represents the result
of using the Lasso to select all available instruments. Subse-
quently, only the selected instruments are used to obtain the
2SLS estimator. The fourth column (“NAIVE”) shows the pro-
posed method with the adaptive group Lasso. The t statistics

value for the NAIVE on trade is 3.79, compared to 2.16 for
the linear IV regression with the Lasso and 1.98 for FR99,
where only the constructed trade proxy as instrument was used.
The NAIVE method provides more significant results regarding
trade on growth. Therefore, we provide the stronger evidence to
show that trade is positively correlated with economic growth
in the middle of 1980s.

6. CONCLUSION

In this article, we consider the general nonlinear reduced
form equation of IV regression using many instrumental vari-
ables, the dimensionality of which could be larger than the
sample size. The proposed NAIVE with the adaptive group
Lasso is root-n consistent, asymptotically normal, and efficient.
Numerical studies have shown that the NAIVE has less bias
and is more efficient compared to the 2SLS estimator in the
nonlinear reduced form. If the reduced form is indeed linear,
the proposed NAIVE adaptively becomes the 2SLS estima-
tor. Thus, our proposed method nests the traditional linear IV
approach as a special case. Furthermore, the implementation
of our method is computationally efficient and easy to apply
in practice using R packages. The STATA package naivereg
is also available upon request. In the empirical study where
we revisit the trade and growth question, our findings support
the stronger positive effects of international trade on economic
growth. Therefore, we suggest our NAIVE method with the
adaptive group Lasso in empirical studies, which encounter
many instruments without knowing their strength and their func-
tional forms in the reduced form equation. Certain research top-
ics along with this work remain open for future study. First,
we may consider a nonparametric study of both the reduced
form and structural form equations and nonseparable models.
Second, the systematic study of the high-dimensional reduced
form equation with instruments interactions could be another
topic.

APPENDIX

Proof of Theorem 3.1. The NAIVE with the adaptive group Lasso
is

β̂ =
(

1
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. (A.1)

Note that Di� = E(xi�|zi) = μ� +∑j∈A� fj�(zij ) is the con-
ditional expectation of �th endogenous variable given by
the instrumental variables, and x̂i� = μ̂� +∑j∈Â� f̂nj�(zij ).
We denote that Di = (Di1, . . . , Dide , xide+1, . . . , xid )T, and
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x̂i = (̂xi1, . . . , x̂ide , xide+1, . . . , xid )T. Thus,
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By the central limit theorem, S1� = Op(1/
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n) = op(1). For any δ > 0,

we have
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where the first term → 0 because
∑

j∈A� |f̂nj�(zij ) − fj�(zij )|2 =
O(n−2s/(2s+1)) = op(1) and the last two terms → 0 because of the selec-
tion consistency of the adaptive group Lasso, that is,P (Â� = A�) → 1.
Thus, S2� = op(1). Since de is fixed, we have n−1

∑n

i=1 ‖Di − x̂i‖ =
op(1).

Since E(x2
i�) is bounded, n−1
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since d is a finite number. It implies that∥∥∥∥∥ 1
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Next, we consider
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where fnj�(zij ) =∑mn
k=1 γjkψk(zij ) is the linear combination

of normalized B-spline series for fj�(zij ). We first note
that T1� = 1√
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n

∑n

i=1 εi =
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n)Op(1) = op(1) due to the central limit theorem. Then, we

deal with T3�. Note that zij as the instrumental variable is uncorrelated
with εi , so are fnj�(zij ) and fj�(zij ). Thus, we have
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because q� is fixed and [fnj�(zij ) − fj�(zij )]2 = Op(m−2s
n ) = op(1),

which was proved in lemma 1 of Huang, Horowitz, and Wei (2010).
Thus, by the Chebyshev’s inequality, we have T3� = op(1).

Then, to deal with T2�, we follow the idea of the proof of theorem
4 in Belloni et al. (2012) using moderate deviation inequality for self-
normalized sums. We first present the following lemma—lemma 5 in
Belloni et al. (2012), which was also based on theorem 7.4 in de la
Pena, Lai, and Shao (2009). �

Lemma A.1. LetX1, . . . , Xn be the triangular array of iid zero-mean
random variables. Suppose that Mn = (EX2

1)1/2/(E|X1|3)1/3 > 0 and
that for some bn → ∞ slowly, n1/6Mn/bn ≥ 1. Then uniformly on
0 ≤ x ≤ n1/6Mn/bn − 1, we have∣∣∣∣P (|Sn/Vn| ≥ x)
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2
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2
i , �(·) is the cumulative distribu-

tion function of the standard normal distribution and A is a positive
constant.

Now, we consider the term T2�,
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uniformly for all 0 < a ≤ 1, where the second inequality follows the
above lemma on moderate deviation inequality for self-normalized
sums and the last inequality follows the fact that P (Z > z) ≤
exp(−z2/2)/(z

√
2π ) for a standard normal random variable Z. Thus,
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(A.3)

Since the centered B-splines |ψk(zij )| ≤ 2 and E(ε2
i ) is bounded,
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j∈Â�∪A�,1≤k≤mn

√√√√ 1

n

n∑
i=1

ψ2
k (zij )ε2

i

≤ max
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Because of the selection consistency and estimation consistency in
Lemma 3.1,
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Thus, (A.3), (A.4), and (A.5) together imply that
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provided that s > 1.5. Therefore, we have |Tt�| = op(1), t = 1, 2, 3,
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Therefore, (A.1) together with (A.2) and (A.7) imply that
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which completes the proof of Theorem 3.1. �
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