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Abstract 

In this paper we investigate the statistical properties of cryptocurrencies by using alpha-stable 

distributions. We also study the benefits of the Metcalfe's law (the value of a network is 

proportional to the square of the number of connected users of the system) for the evaluation of 

cryptocurrencies. As the results showed a potential for herding behaviour, we used LPPL models 

to capture the behaviour of cryptocurrencies exchange rates during an endogenous bubble and 

to predict the most probable time of the regime switching.  
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1. Introduction 

After 2008, when the pseudonymous Satoshi Nakamoto developed the Bitcoin (Nakamoto, 
2008), an explosion of other cryptocurrencies begun, based on the blockchain technology. 

According to one of the major websites dealing with cryptocurrencies1, at the beginning of 
September 2018 the total market capitalization was around 180 billion USD, making 
cryptocurrencies market one of the most important in the global assets market. 

This new class of assets became interesting not only for traders, but also for market regulators 
and academics. 

For instance, in 2018, the European Supervisory Authorities for securities, banking and 
insurance and pensions, released a statement warning, claiming that the “VCs (virtual currencies) 
such as bitcoin, are subject to extreme price volatility and have shown clear signs of a pricing 
bubble and consumers buying VCs should be aware that there is a high risk that they will lose a 
large amount, or even all, of the money invested”2.  

From the academic side, there are a lot of papers dealing with the subject of cryptocurrencies, 
especially in terms of their statistical properties and the modelling of risk. For the purpose of this 
paper, we will refer only to the most recent papers dealing with three areas regarding the 

                                                             
1 https://coinmarketcap.com/  
2 https://www.esma.europa.eu/sites/default/files/library/esma50-164-

1284_joint_esas_warning_on_virtual_currenciesl.pdf  

mailto:danpele@ase.ro
mailto:miruna@ase.ro
https://coinmarketcap.com/
https://www.esma.europa.eu/sites/default/files/library/esma50-164-1284_joint_esas_warning_on_virtual_currenciesl.pdf
https://www.esma.europa.eu/sites/default/files/library/esma50-164-1284_joint_esas_warning_on_virtual_currenciesl.pdf
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cryptocurrencies market: statistical properties of returns, valuation of cryptocurrencies and log-
periodic power laws applied to cryptocurrencies. 

From the point of view of their statistical properties, Hu et al. (2018) realized a survey dealing 

with some stylized facts about the cryptocurrencies market, showing that the time series of 

returns are characterized by large values of kurtosis and volatility. 

Zhang et al. (2018) highlighted some statistical properties of the cryptocurrencies return: the 

presence of heavy tails, strong volatility clustering and leverage effects and the existence of a 

power-law correlation between price and volume.  

Chen et al. (2017) applied statistical methods (ARIMA, GARCH and EGARCH models) to the 

CRIX indices family, allowing them to observe the volatility clustering phenomenon and the 

presence of fat tails.   

Another analysis of the CRIX index (Chen et al. (2017)) deals with a pricing model of 

derivatives for CRIX index and Bitcoin options, by using an affine jump diffusion model, SVCJ 

(Stochastic Volatility with Correlated Jumps) model. An important conclusion arising from this 

paper is that the jumps presented in the cryptocurrencies prices are an essential component.  

From the point of view of valuation, there are several papers dealing with the Metcalfe’s law, 

who states that a network’s value is proportional to the square of the number of its users. 

Wheatley et al. (2018) are estimating the Metcalfe’s law for BITCOIN, proving the existence of 

a log-linear relationship between the market capitalization and a proxy the number of users (the 

number of unique addresses). 

Peterson (2017) also used the Metcalfe’s law as a Model for Bitcoin’s value, by estimating a 

model of supply (number of bitcoins) and demand (number of bitcoin wallets) and concluding 

that the Metcalfe’s law is a very good fit for Bitcoin’s price. 

If the Metcalfe’s law is valid for cryptocurrencies, then a significant correlation between the 

number of users and the market price should be present. If the correlation is also a causality (in 

one way or another), then there may the room for the occurrence of some herding behaviour: if 

the market is driven by expected future price increases, then more and more players will enter 

the market, causing the price to develop a bubble ending eventually in a crash. 

For example, the Bitcoin market has experienced several crashes during his lifetime, the first 

one being in 2012, due to a Ponzi fraud involving Bitcoin. Another crash occurred in 2014, when 

Mt. Gox, a bitcoin exchange handling over 70% of all Bitcoin transactions worldwide, closed its 

website and exchange service, and filed for bankruptcy protection from creditors; the value of 

Bitcoin then dropped by 50 percent in two days. 

The most recent collapse, at the end of 2017, occurred after South Korean regulators threatened 

to shut down cryptocurrency exchanges. 

LPPL (Log-Periodic Power Law) models are widely used to describe the behaviour of stock 

prices during an endogenous bubble and to predict the most probable time of the regime 

switching (see Sornette (2000) and Sornette (2003)), as the aggregated behaviour of the investors 

is reflected in a log-periodic evolution of the trading price before the crash.  

Fry (2015) and MacDonell (2014) both used the LPPL models to test the presence of a bubble in 

Bitcoin prices before the price crash of December 2013 and they concluded that LPPL models are 

a valuable tool for understanding the bubble behaviour in digital currencies. 
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Wheatley et al. (2018) used also a variant of LPPL model to estimate the most probable time of 

the crash for the 2017 Bitcoin bubble. 

For this paper we are focusing on applying three major statistical methods for studying the 

behaviour of cryptocurrencies market. 

First, we are using the alpha-stable distributions to emphasize the heavy-tail property of the 

distribution of cryptocurrencies daily logreturns. 

Second, we employ the generalized Metcalfe’s law for the most important cryptocurrency, the 

Bitcoin, for understanding the relationship between the Bitcoin’s price and the number of 

network users, deriving from there a potential herding behaviour. 

Third, we are using LPPL model to fit the bubble dynamics for one major cryptocurrencies 

index, CRIX, showing the value of log-periodic power laws in anticipating the regime switching. 

The rest of the paper is organized as follows: Section 2 details the methodology; Section 3 

presents the dataset and the empirical results and Section 4 concludes. 

2. Methodology 

The methodology used in this paper has three layers: first, we study the statistical properties 
of the daily logreturns of the selected cryptocurrencies and we estimate the parameters of alpha-
stable distributions, in order to derive their propensity for large scale deviations. 

Second, we investigate the validity of the Metcalfe’s law for the most popular cryptocurrency, 
Bitcoin, showing the existence of a potential for herding behaviour. 

Third, we apply the Log-Periodic Power Law models (Sornette, 2000) to identify the bubble 
regime in Bitcoin prices and in the evolution of the CRyptocurrency IndeX. 

2.1. Stable distributions 

A random variable X follows an alpha-stable distribution3 with parameters ),,,(   

(Nolan, 2011) if exists γ>0,   , such as X and γZ+δ have the same distribution, where Z is a 

random variable with the characteristic function 
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3 Or, simply stated, a stable distribution. 
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In the above notations ]2.0(  is the stability index, controlling for probability in the tails (for 

Gaussian distribution 2 ), ]1,1[  is the skewness parameter, ),0(  is the scale parameter 

and    is the location parameter. 

The behaviour of stable distributions is driven by the values of stability index  : small values 

are associated to higher probabilities in the tails of the distribution. 

There are several methods for estimating the parameters of the stable distributions (see 

Appendix A):  

 - McCulloch method (1986), based on the quintiles of the empirical distribution; 

 - Regression based methods (Kogon and Williams 1998), using an iterative estimation process; 

this algorithm is implemented as a SAS macro in Pele (2014) and can be used to obtain estimates 

for the parameters of stable distributions (see Appendix A). 

2.2.  Metcalfe’s law 

In the 1980s, Robert Metcalfe, the co-inventor of Ethernet, stated what was called later the 
Metcalfe’s law (Gilder 1993): the value of a network is proportional to the square of the size the 
number of connected users. 
Metcalfe’s law was validated in various contexts, by using social network data:  Zhang et al. (2015) 

proved the validity of the law for Facebook and Tencen (Chinese social network). Other 

researchers (Madureira et al., 2013, Van Hove, 2014, 2016, Metcalfe, 2013) have shown the validity 

of the law, mostly regarding internet networks. 
Peterson (2017) showed that the Metcalfe’s law can be used to explain the evolution of 

BITCOIN transaction price, by using factors relating to supply (number of bitcoins) and demand 
(number of wallets). 

In this paper we are using the Metcalfe’s law following Wheatley et al. (2018): 

t tC e u                   (3) 

where: 

- tC  is the market capitalization at time t; 

- tu  is the number of unique addresses at time t; 

- β=2. 

2.3.  Log-periodic power laws (LPPL) 

Sornette (2000) compares seismic activity to the evolution of speculative bubbles, and deduces 

the evolution law for stock prices before and during the crash, which is seen as a critical time.  

According to the field theory (Goldenfeld, 1992), an imitative process can be described through 

its hazard rate h(t):   
dh

Ch
dt

 , where C>0,  and δ+1>1 is the average number of interactions.  

Then ℎ(𝑡) = (
ℎ0

𝑡𝑐−𝑡
)
𝛼

, with 𝛼 =
1

𝛿−1
 and 𝑡𝑐 being the critical time, so the price dynamics prior to 

the crash should be ln
𝑝(𝑡)

𝑝(0)
= 𝑘 ∫ ℎ(𝑢)𝑑𝑢

𝑡

𝑡0
. 
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As the crash probability should be compensated by larger price changes, prior to the stock market 

crash (Blanchard, 1979), the hazard rate could be expressed via the Ising model:

 '10 )ln(cos)()(B)(    ttttBttth ccc . 

Thus, the trading price before the crash follows a log-periodic power law: 

     log {1 [ ln ]}c cE p t A B t t Ccos t t
 

          ,      (4) 

where p(t) is the price at moment t, 𝑡𝑐 is the critical time (the most probable moment of the crash), 

and  ,,,, 10 BB are the parameters of the model which give its log-periodic feature. 

In order to have a proper specification of the model, there are several constrains applied to 

the parameters: 

 A>0  -  usually this the price at the critical time 𝑡𝑐; 

 B<0  ; 

 𝐶 ≠ 0, |𝐶| < 1 – this parameter controls the magnitude of oscillations around the 

exponential trend; 

 0 < 𝛽 < 1 – controls the growth rate of the magnitude and is the most important feature 

capturing the imminence of a regime switching, as his value is close to zero; 

 𝜔 ∈ (0,∞) - controls for the amplitude of oscillations; 

 𝜙 ∈ [0,2𝜋] – a phase parameter. 

Johansen, Ledoit and Sornette (2000) have applied these models to successfully predict 

famous crashes like the one in October 1987 and for the Brazilian market, Cajueiro, Tabak and 

Werneck (2009) have applied these models to predict the catastrophic behaviour of the price series 

of 21 stocks. The Financial Crisis Observatory (ETH – Zurich) has released during the past few 

years predictions about the bubble behaviour of different assets and they have succeeded to 

predict two famous events of this type: Oil Bubble – 2008 and Chinese Index Bubble – 2009. 

Fantazzini and Geraskin (2013) provide an extensive review of theoretical background behind 

the LPPL models, estimation methods and various applications, pointing out that although the 

literature on this subject is heterogeneous, LPPL fit for asset bubbles could be a useful tool in 

predicting the catastrophic behaviour of capital markets as a whole. 

Moreover, even using such a model, the prediction of critical time is not very accurate, Kurz-

Kim (2012) shows that LPPL models could be used as an early warning mechanism of regime 

switching in case of a stock market.  

As the industry of cryptocurrencies has grown exponentially over the past several years, 

there are many applications of financial models to the study of this new markets.  

MacDonell (2014) used the LPPL model to forecast the Bitcoin price crash that took place on 

December 4, 2013, showing how the model can be a valuable tool for detecting bubble behaviour 

in digital currencies.  

Malhotra et al. (2013) investigated the evolution of Bitcoin exchange rates in 2013-2014, 

showing evidence of super-exponential growth in Bitcoin exchange rates. 

Fantazzini et al. (2016) also applied the LPPL modelling to Bitcoin exchange rates, finding 

evidence of explosive behaviour in the bitcoin-USD exchange rates during August – October 2012 

and November, 2013 – February, 2014. 
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3. Empirical results 

3.1. Dataset 

The dataset consists of daily cryptocurrency data (transaction count, on-chain transaction 

volume, value of created coins, price, market capitalization and exchange volume)4. One market 

index was also used for the analysis: Cryptocurrency Index5 as a reference for the 

cryptocurrencies market (Trimborn and Härdle, 2018). 

Table 1. Description of the dataset 

No. Symbol Cryptocurrency/ Index 
Number of daily 

observations 
Start date End date 

1 ANT Aragon 502 5/19/2017  10/2/2018  

2 BTC Bitcoin 1983 4/29/2013  10/2/2018  

3 DASH Dash 1691 2/15/2014  10/2/2018  

4 DCR Decred 965 2/11/2016  10/2/2018  

5 DGB Digibyte 1699 2/7/2014  10/2/2018  

6 DOGE Dogecoin 1752 12/16/2013  10/2/2018  

7 ETC Ethereum Classic 800 7/25/2016  10/2/2018  

8 ETH Ethereum 1152 8/8/2015  10/2/2018  

9 GNO Gnosis 519 5/2/2017  10/2/2018  

10 GNT Golem 683 11/19/2016  10/2/2018  

11 GOLD GoldCoin 2122 12/11/2012  10/2/2018  

12 ICN Iconomi 732 10/1/2016  10/2/2018  

13 LSK Lisk 909 4/7/2016  10/2/2018  

14 LTC Litecoin 1983 4/29/2013  10/2/2018  

15 MAID MaidSafeCoin 1618 4/29/2014  10/2/2018  

16 NEO NEO 753 9/10/2016  10/2/2018  

17 PIVX PIVX 962 2/14/2016  10/2/2018  

18 REP Augur 1071 10/28/2015  10/2/2018  

19 USDT Theter 590 2/20/2017  10/2/2018  

20 VTC Vertcoin 1716 1/21/2014  10/2/2018  

21 WAVES Waves 846 6/3/2016  9/26/2018  

22 XEM NEM 1280 4/2/2015  10/2/2018  

23 XLM Stellar 1519 8/6/2014  10/2/2018  

24 XMR Monero 1595 5/22/2014  10/2/2018  

25 XRP Ripple 1835 8/5/2013  8/13/2018  

26 XVG Verge 1438 10/26/2014  10/2/2018  

27 ZEC ZCash 703 10/30/2016  10/2/2018  

28 CRIX CRyptocurrency IndeX 1524 8/1/2014  10/2/2018  

                                                             
4 The source for these data is https://coinmarketcap.com . 
5 The CRyptocurrency IndeX is a benchmark for the crypto market. The CRIX is realtime computed by the 

Ladislaus von Bortkiewicz Chair of Statistics at Humboldt University Berlin, Germany. 

https://coinmarketcap.com/
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The dataset used in this paper deals only with cryptocurrencies for which at least 2 years of daily 
transaction data (at least 500 daily observations) were available at the moment of the data 
collection (October 2nd, 2018). For the purpose of data analysis, the statistical software SAS 9.3 
was used. 

3.2. Estimating the parameters of an alpha - stable distribution for cryptocurrencies daily logreturns 

In order to fit the stable-distribution to the selected time series of daily logreturns

1log( ) log( )t t tr P P   , a SAS macro (Pele 2014) was applied, the results being presented below. 

 
Table 2. Parameters of the estimated alpha - stable distributions 

No. Symbol α 
95% half-

width  
β 

95% half-

width   
δ 

95% half-

width  
ϒ 

95% half-

width  

1 ANT 1.825 0.063 -0.066 0.015 0.081 0.029 0.047 0.037 

2 BTC 1.468 0.100 0.169 0.033 0.211 0.025 0.017 0.074 

3 DASH 1.494 0.073 -0.391 0.023 -0.195 0.142 0.030 0.053 

4 DCR 1.645 0.084 -0.528 0.158 -0.107 0.397 0.038 0.055 

5 DGB 1.620 0.056 -0.245 0.040 0.064 0.103 0.046 0.037 

6 DOGE 1.306 0.087 -0.338 0.050 -0.714 0.462 0.024 0.073 

7 ETC 1.501 0.089 -0.459 0.054 -0.164 0.255 0.031 0.064 

8 ETH 1.589 0.099 -0.457 0.077 0.081 0.273 0.030 0.067 

9 GNO 1.733 0.060 -0.030 0.065 -0.077 0.105 0.045 0.037 

10 GNT 1.772 0.061 -0.167 0.074 0.439 0.133 0.049 0.037 

11 GOLD 1.543 0.089 0.080 0.054 -0.048 0.100 0.003 0.063 

12 ICN 1.669 0.060 -0.167 0.085 0.204 0.164 0.052 0.039 

13 LSK 1.361 0.025 -0.302 0.068 -0.099 0.220 0.042 0.020 

14 LTC 1.336 0.081 -0.202 0.039 -0.384 0.252 0.020 0.066 

15 MAID 1.789 0.048 0.028 0.031 -0.079 0.043 0.038 0.029 

16 NEO 1.525 0.050 -0.417 0.045 0.058 0.146 0.045 0.035 

17 PIVX 1.630 0.076 -0.242 0.038 0.062 0.109 0.054 0.050 

18 REP 1.573 0.055 -0.125 0.045 0.076 0.109 0.037 0.037 

19 USDT 0.509 0.306 0.111 0.126 -0.003 0.034 0.001 0.680 

20 VTC 1.549 0.043 -0.325 0.030 -0.078 0.097 0.045 0.030 

21 WAVES 1.716 0.053 -0.015 0.027 0.128 0.046 0.042 0.033 

22 XEM 1.631 0.048 -0.208 0.053 0.053 0.117 0.040 0.032 

23 XLM 1.515 0.072 -0.279 0.055 -0.072 0.180 0.032 0.052 

24 XMR 1.701 0.068 -0.169 0.007 0.167 0.034 0.036 0.043 

25 XRP 1.323 0.072 -0.306 0.023 -0.534 0.243 0.023 0.059 

26 XVG 1.551 0.105 -0.177 0.076 -0.082 0.226 0.073 0.074 

27 ZEC 1.575 0.037 -0.082 0.037 0.107 0.077 0.039 0.025 

28 CRIX 1.490 0.109 0.254 0.103 0.427 0.169 0.015 0.080 
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Figure 1.  Distribution of the stability index α for logreturns distribution of selected assets 

As depicted in Table 2 and Figure 1, in most of the cases, all the analysed the cryptocurrencies 

exhibits large departures from normality, the values of the stability index α being significantly 

lower than 2, the value corresponding to the Gaussian distribution.  

 

Figure 2.  Heatmap of scale parameter ϒ versus stability index α for selected assets 
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The Figure 2 shows the correlation between the scale parameters γ (the equivalent of the volatility 

in the classical approach) and the stability index α, controlling for the tail probability. Based on 

this correspondence, we are able to cluster the selected cryptocurrencies based on their 

propensity to heavy-tailness and the likelihood of high volatility. For example, the 

cryptocurrency Theter (USDT) has the lowest stability index α (large departure from normality), 

but the scale parameter is low, so USDT is placed in the orange zone. The closest to the normal 

distribution is Aragon (ANT), yet his scale parameter is around the sample average, so it is placed 

in the yellow zone. 

3.3. Metcalfe's law  

In order to evaluate the applicability of the Metcalfe’s law for cryptocurrencies, we limit 
ourselves to the most known and traded cryptocurrency, the BITCOIN, also due to the availability 
of transaction and network data6. 

 

 
(a) 

                                                             
6 https://www.blockchain.com  
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(b) 

Figure 3.  (a) Bitcoin average price (USD) vs. Number of unique addresses. (b) Bitcoin market 

capitalization (USD) vs. Number of unique addresses. 

 

As stated in the original formulation of the Metcalfe’s law, the value of the network should be 

proportional to the squared number of network users; however, in the case of cryptocurrencies, 

the actual number of user is unknown and we need to use a proxy, the number of unique 

addresses. 

Unique addresses in the Bitcoin ecosystem are payment addresses that have a non-zero balance; 

this metric can be used as a proxy for the number of network users, although we cannot state that 

the number of users is equal to the number of unique addresses.  The number of unique addresses 

is not constant over time: when fees are high, investors leave their cryptocurrencies in multiple 

addresses, because a consolidation into a single address will require a high cost. When fees are 

low, investors can consolidate their funds into a single address. 

As the Bitcoin network grows, the number of unique addresses will also grow over time, but 

when the market is going down, less unique addresses are in use because also the number of 

transactions reduces. 

 
We are estimating the generalized Metcalfe’s law, which is a log-linearization of the equation (3): 
  

log logt t tC u     .              (5) 

where: 

 

- tC  is the Bitcoin’s market capitalization at time t; 

- tu  is the number of unique Bitcoin addresses at time t. 

 

The estimation results for the equation (5) are reported below, using daily data for the period 
2010/08/24 – 2018/10/05. 
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Table 3. Estimation results for the equation (5) 

Parameter Estimated value Std. Error t-Statistic Prob.   
     

α 1.856 0.146 12.715 0.000 

β 1.696 0.013 134.256 0.000      
R-squared 0.924 

 

Although the slope of the equation (5) is β=1.696, below the theoretical value of 2, the model has 
a high explanatory power ( 2 0.924R  ), supporting the validity of the Metcalfe’s law for Bitcoin. 

 

 
Figure 4. Generalised Metcalfe’s law for Bitcoin’s market capitalization 

 

From the validity of the Metcalfe’s law for Bitcoin one derive the existence of a possible herding 

effect: as an increase of the number of users is reflected in an increase of the market capitalization, 

this may be explained by the fact that there is a mimetic effect among users, making the price to 

have an ascendant trend.  

One insight into this direction can be found by estimating the generalized Metcalfe’s law for 

Bitcoin’s price: 

log logt t tP u     .                          (6) 

 
Table 4. Estimation results for the equation (6), using daily data for the period 2010/08/24 – 2018/10/05. 

Parameter Estimated value Std. Error t-Statistic Prob. 
     

α -12.040 0.143 -83.915 0.000 

β 1.489 0.012 119.921 0.000      
2 0.906R    

 

The results of the estimation shown that there is strong log-linear relationship between the 

Bitcoin’s market price and the number of unique addresses, as a proxy for the number of Bitcoin’s 
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network users; moreover, what the estimated results tells us is that price increase may be a direct 

effect of the increasing network size, through a possible mimetic behaviour. 
 

 
Figure 5. Generalised Metcalfe’s law for Bitcoin’s price 

 

Going deeper with the analysis, we also performed a Granger causality test in order to detect 

the existence of the causal links between the Bitcoin’s price and the number of unique addresses. 

As the two time series are not stationary and not of them are integrated I(1), in order to test for 

Granger causality, the Toda-Yamamoto (1995) procedure was applied, following the steps below: 

 Test the two time-series to determine their order of integration. 

 Let the m=1 the maximum order of integration for the group of the two time-series. 

 Estimate a VAR model in level. 

 Determine the appropriate maximum lag length (p) for the variables in the VAR, using 

the AIC, criterion. 

 Check and correct for serial correlation in the residuals. 

 Test for cointegration of the two time series. 

 Estimate the VAR(p+m) model and test the Granger causality using the Block Exogeneity 

Wald Test. 

 
Table 5. VAR Granger Causality/Block Exogeneity Wald Tests 

Included observations: 1468  

Dependent variable: LOG_P  

Excluded Chi-sq df Prob. 

LOG_U  22.06608 15  0.1061 

All  22.06608 15  0.1061 

Dependent variable: LOG_U  

Excluded Chi-sq df Prob. 

LOG_P  121.1914 15  0.0000 

All  121.1914 15  0.0000 

Note: the optimum number of lags (15) was chosen based on the lag length criteria from VAR specification. 
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Based on the Granger causality tests, one can deduce the existence of a unidirectional causal 

relationship from the Bitcoin’s prices to the size of the network, expressed as the number of 

unique addresses. 

The temporal dependency can be captured via a Vector Autoregressive (VAR (p)) model, of the 

following form: 
1 1 ...t t p t p tY AY A Y      , where '(ln , ln )t t tY P u . 

 
Table 6. VAR (5) estimates 

 LOG_U LOG_P 

LOG_U(-1) 0.3490*** 0.0133 

 (-0.0261) (-0.0147) 

LOG_U(-2) 0.1560*** -0.0397*** 

 (-0.0272) (-0.0153) 

LOG_U(-3) 0.2442*** 0.0113 

 (-0.0267) (-0.0151) 

LOG_U(-4) 0.1651*** -0.0095 

 -0.0272 -0.0153 

LOG_U(-5) 0.0645*** 0.0237 

 (-0.0260) (-0.0147) 

LOG_P(-1) 0.1849*** 0.9258*** 

 (-0.0468) (-0.0264) 

LOG_P(-2) -0.1326*** 0.0847*** 

 (-0.0632) (-0.0356) 

LOG_P(-3) -0.0542 0.0657 

 (-0.0634) (-0.0357) 

LOG_P(-4) 0.2577*** -0.1004*** 

 (-0.0632) (-0.0356) 

LOG_P(-5) -0.2461*** 0.0223 

 (-0.0467) (-0.0263) 

C 0.2024*** 0.0265 

 (-0.0643) (-0.0362) 

 Adj. R-squared 0.9924 0.9990 

 Sum sq. resids 37.5591 11.9292 

 S.E. equation 0.1600 0.0902 

 F-statistic 19224.4400 149859.1000 
Note: Standard errors in ( ); *** denotes significance at 99% confidence level. 

 

One can note from the above table with the VAR estimation results that the past realizations of 

the Bitcoin’s price can be used to forecast the future realizations of the network size. For example, 

if at time t-1 the Bitcoin’s price increase by 1%, at time t one can expect a 0.189% increase of the 

number of unique addresses. 
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Figure 6. Impulse Response Function for the estimated VAR model 

 

Moreover, the behaviour of the impulse response function offers an indication that a shock from 

the Bitcoin’s price have a positive effect on the network size, and the effect is permanent and 

significantly different from zero 

One can infer from this analysis that the expected price increase is a driver for more investors to 

join the Bitcoin network, which may lead in the end to a super-exponential price growth, due to 

a herding behaviour of investors. 

3.4. LPPL models 

In order to estimate capture the bubble regime and to estimate the most probable time of 

the crash, the algorithm from Pele (2012), using price gyrations and peak detection was applied. 

3.4.1. Numerical results for Bitcoin 
 

In case of Bitcoin, the regime swithcing was recorded in December 2017, the exchange rate hitting 

a local maxima on December 19th, 2017. The initial sample for fitting LPPL model in the case of 

Bitcoin for predicting the phase transition from December 2017 was 1 Jan 2016 – 30 Nov 2017 (700 

daily observations). 

Starting from the last observation in the initial sample, we extended the sample using a rolling 

window with fixed lower limit, so we estimated at every step the LPPL model for 𝑡 ∈[1,T+k], 

k=1…17: 
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; ;
[ln ( )] ( ) {1 cos[ ln( ) ]}k

k k k k kc k c k
E p t A B t t C t t         .                           (7) 

 

Table 6. The best fit for Bitcoin’s LPPL model 

Obs 

Start 

date 

End 

date 
A B C β ω ϕ RMSE AdjRSq tc 

Date of 

crash 

711 
01 Jan 

2016 

11 

Dec 

2017 

9.768 -0.161 -0.062 0.494 3.863 6.280 0.148 0.975 

712 
12 Dec 

2017 

701 
01 Jan 

2016 

01 

Dec 

2017 

9.328 -0.080 0.085 0.588 3.472 5.585 0.152 0.971 702 
02 Dec 

2017 

706 
01 Jan 

2016 

06 

Dec 

2017 

9.489 -0.104 0.076 0.552 3.588 4.830 0.157 0.970 707 
07 Dec 

2017 

 

As a result of the estimation, three models were kept, with the best Root Minimum Squared Error 

(RMSE).  The model with the minimum RMSE anticipated on December 11th 2017 an imminent 

crash for the next day. 

The other two selected models offers close predictions, for December 2nd 2017 and December 7th 

2017. 

 

Figure 7. LPPL fit for BTC (model with the minimum RMSE) 
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3.2. Numerical results for CRIX Index  

The local maxima for the CRIX index was recorded on January 7th 2018, this being the moment 
of the regime switching. 
The initial sample for fitting LPPL model in the case of CRIX index for predicting the phase 

transition from January 2018 was 1 Jan 2016 – 15 Dec 2017 (716 daily observations). 

Starting from the last observation in the initial sample, we extended the sample by using a rolling 

window with fixed lower limit, so we estimated at every step the LPPL model for 𝑡 ∈[1,T+k], 

k=1…20: 

; ;
[ln ( )] ( ) {1 cos[ ln( ) ]}k

k k k k kc k c k
E p t A B t t C t t         .                        (8) 

 

 
Figure 8. CRIX Index 
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Table 7. The best fit for CRIX’s LPPL model 

Obs A B C tc β ω ϕ 
Start 

date 

End 

date 
RMSE AdjRSq 

Date 

of 

crash 

729 12.393 -0.627 -0.007 737 0.344 -10361.290 67211.290 

01 

Jan 

2016 

30 

Dec 

2017 

0.2406 0.9578 
07 

Jan 

2018 

732 12.373 -0.603 -0.008 739 0.349 -9103.550 58656.450 

01 

Jan 

2016 

02 

Jan 

2018 

0.2407 0.9587 
10 

Jan 

2018 

727 12.383 -0.631 0.006 736 0.342 -5960.180 38870.710 

01 

Jan 

2016 

28 

Dec 

2017 

0.2408 0.9571 
06 

Jan 

2018 

  

The best fit for the CRIX index was given by the model estimated for the period January 1st 

2016 – December 30th 2017, for which the estimated critical time was exactly the date of local 

maximum, January 7th 2018. 

 

 
 

Figure 9. LPPL fit for CRIX Index (the model with the minimum RMSE) 
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  Conclusions 

 

Our paper deals with a new class of assets, digital currencies or cryptocurrencies, from the 

point of view of their statistical properties. One of the main findings is that daily cryptocurrencies 

logreturns exhibits large departures from normality, leaving room for high uncertainty levels, as 

shown the estimated stability indexes of stable distributions. 

Moreover, by analysing Bitcoin related data, we prove the validity of the Metcalfe’s law, 

linking both the market capitalization and the exchange rates to the network size. As there is a 

strong correlation between the size of the network and the market price of cryptocurrencies, this 

may be a sign for a mimetic behaviour of investors, who enter the market driven by high expected 

currency rates, which may lead the market into a super-exponential bubble regime. 

LPPL models could be useful in estimating the most probable time of the regime switching for 

an endogenous cryptocurrency bubble. 

Analysing the behaviour of the Bitcoin’s price and the CRIX index, we have proven that LPPL 

models can be a useful tool in recognizing and mapping out the behaviour of a developing 

bubble.  

This is a validation of the predictive power of LPPL models in detecting the imitative behaviour 

of investors in the cryptocurrencies market, our results being useful both from a theoretical point 

of view and from a business perspective. 

From a theoretical point of view, the analysis provided strong evidence that the herding 

behaviour could be detected also in cryptocurrencies markets, this being a sign that LPPL models 

have a great potential for universal applications. From a business perspective, such an instrument 

could be used as a risk management tool, supporting the investment decisions in order to 

minimize risk and to benefit from market evolutions. The LPPL models could be used as an early 

warning tool for detecting the development of a bubble regime and also to predict the critical 

time of the regime switching. 

A recommendation for risk management arising from these results is to implement an iterative 

estimation method for LPPL models, allowing to periodically asses the likelihood of a phase 

transition in the cryptocurrency market. 

Yet, the research in this direction needs to be furtherly honed, as this type of models have also 

some weaknesses, like the over-parameterization or the serious constraint of the LPPL model that 

during a bubble the trading price cannot decrease, which may be a questionable assumption. 

Also, for LPPL models, a serious risk may be overfitting and the evidence that such models 

cannot always predict but often can only retrodict. 
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Appendix A – Estimating the parameters of an alpha-stable distribution 
 

A.1. Estimating the parameters of an alpha-stable distribution using McCulloch method 

McCulloch method (1986) involves the following steps for estimating the parameters of a 

)0;,,,( S random variable: 

- estimate   and  , using the quintiles of the empirical distribution (for more details, see   

Racheva-Iotova, 2010); 

 - define 
25.075.0

05.095.0

xx

xx
v




  and 

05.095.0

25.005.095.0 2

xx

xxx
v




 , where px  is the p-quintile of the empirical 

distribution, having thus ),(1    and ),(2    or, by inversion, ),(1  vva  and 

),(2  vva . 

More, ),(),( 11   vvvv aa   and ),(),( 22   vvvv aa  . 

The functions )(1   and )(2   are tabulated for different values of  a  and b , so the estimates of 

 and   can be obtained using a bi-linear interpolation.  

In a quite similar manner, the location parameter δ and the scale parameter γ can be estimated 

using the corresponding tabulated functions and the previous estimations for  and  . 

The code used in this paper for estimating the parameters of an alpha-stable distribution using 

McCulloch method can be found as the quantlet mc_culloch on the website www.quantlet.de.  

  

A.2. Estimating parameters of an alpha-stable distribution using the Kogon-Williams method 

In order to estimate the parameters of a stable distribution in parameterisation S1, the following 

algorithm can be applied (following Kogon and Williams, 1998 and Pele, 2014): 

Step 1. Use the initial estimates 0000 ,,,   from McCulloch method and normalize the 

sample: 
0

0






j

j

x
x ; 

Step 2. Estimate the regression model kkk wby   1 , with 9,..,0k , )]](ˆRe[ln(ln[ kk uy  ,

||ln kk uw  , kuk 1.01.0  , 9,..,0k , and )(ˆ   is the empirical characteristic function of the 

normalized sample. If b̂  and 1̂ are the estimates of the regression model, then the estimate of 

the scale parameter is )ˆ/ˆexp(ˆ
1  b . 

Step 3. Estimate the regression model kkk vz   111 , with 9,..,0k , )](ˆIm[ln( kk uz  ,

)2/ˆtan()1|ˆ(|ˆ
1

1ˆ

11
1  




kkk uuw , kuk 1.01.0  , 9,..,0k . 

Step 4. The final estimates are the following: ))2/ˆtan(ˆˆˆ,ˆ,ˆ,ˆ(),,,( 111111111111   . 

 

The code used in this paper for estimating the parameters of an alpha-stable distribution using 

Kogon-Williams method can be found as the quantlet stab_reg_kw on the website 

www.quantlet.de.  

http://www.quantlet.de/
http://www.quantlet.de/
http://quantlet.de/
http://quantlet.de/
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