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Abstract

High-dimensional, streaming datasets are ubiquitous in modern applications.
Examples range from finance and e-commerce to the study of biomedical and
neuroimaging data. As a result, many novel algorithms have been proposed to
address challenges posed by such datasets. In this work, we focus on the use of L1-
regularized linear models in the context of (possibly non-stationary) streaming
data. Recently, it has been noted that the choice of the regularization parameter
is fundamental in such models and several methods have been proposed which
iteratively tune such a parameter in a time-varying manner, thereby allowing
the underlying sparsity of estimated models to vary. Moreover, in many appli-
cations, inference on the regularization parameter may itself be of interest, as
such a parameter is related to the underlying sparsity of the model. However, in
this work, we highlight and provide extensive empirical evidence regarding how
various (often unrelated) statistical properties in the data can lead to changes
in the regularization parameter. In particular, through various synthetic exper-
iments, we demonstrate that changes in the regularization parameter may be
driven by changes in the true underlying sparsity, signal-to-noise ratio or even
model misspecification. The purpose of this letter is, therefore, to highlight and
catalog various statistical properties which induce changes in the associated reg-
ularization parameter. We conclude by presenting two applications: one relating
to financial data and another to neuroimaging data, where the aforementioned
discussion is relevant.
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1 Introduction

High-dimensional, streaming datasets pose a unique challenge to modern statisticians.

To date, the challenges associated with high-dimensional and streaming data have been

extensively studied independently. In the case of the former, a popular avenue of re-

search is the use of regularization methods such as the Lasso (Hastie et al., 2015).

Such methods effectively address issues raised by high-dimensional data by assuming

the underlying model is sparse, thereby having only a small number of non-zero coef-

ficients. Sparse models are often easier to both estimate and interpret. Concurrently,

many methods have been developed to handle streaming datasets. Popular examples

include sliding window methods and their generalizations to weighted moving averages

(Haykin, 2008).

Recently, the intersection of these two avenues of research has begun to receive in-

creasing attention as large-scale, streaming datasets become commonplace. Prominent

examples include Bottou (2010) and Duchi et al. (2011) who propose methods through

which to efficiently estimate L1-penalized models in a streaming data context. However,

an important aspect, which has been largely overlooked, corresponds to the optimal

choice of the regularization parameter. While it is possible to employ a fixed regular-

ization parameter, it may be the case that the statistical properties of the data vary

over time, suggesting that the optimal choice of the regularization parameter may itself

also vary over time. Examples of large-scale, non-stationary datasets, where the choice

of the regularization parameter has been reported to be time-varying, include finance

(Yu et al., 2017) and neuroscience (Monti et al., 2017a).

We note that many methods have been proposed for selecting the regularization pa-

rameter in the context of non-streaming data, the standard approach being to employ

some variant of cross-validation or bootstrapping, e.g. in Hastie et al. (2015) or Cher-

nozhukov et al. (2018). However, such methods are infeasible in the domain of stream-

ing datasets due to limited computational resources. More importantly, the statistical

properties of a data stream may vary, further complicating the use of sub-sampling

methods. Recently, methods to handle time-varying regularization parameters have

been proposed. Monti et al. (2018) propose a novel framework through which to iter-

atively infer a time-varying regularization parameter via the use of adaptive filtering.
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The proposed framework is developed for penalized linear regression (i.e., the Lasso)

and subsequently extended to penalized generalized linear models. Zboňáková et al.

(2017) study the dynamics of the regularization parameter, focusing particularly on

quantile regression in the context of financial data. Using sliding windows method,

they demonstrate that the choice of the time-varying regularization parameter based

on the adjusted Bayesian information criterion (BIC) is closely correlated with the

financial volatility. The BIC was employed, as such a choice of parameter is optimal

in terms of model consistency.

While the aforementioned methods correspond to valuable contributions, the purpose

of this paper is to highlight potential shortcomings when interpreting time-varying reg-

ularization parameters. In particular, we enumerate several (often unrelated) statistical

properties of the underlying data which may lead to changes in the optimal choice of

the regularization parameter. This paper, therefore, serves to highlight important is-

sues associated with the interpretation of the time-varying regularization parameters

as well as the respective model parameters.

The remainder of this paper is organized as follows. We formally outline the challenge

of tuning time-varying regularization parameters as well as related work in Section 2.

In Section 3, we present extensive empirical results, highlighting how various aspects

of the underlying data may result in changes in the estimated regularization parame-

ter. Computations included in this work were performed with the help of R software

environment (R Core Team, 2014) and we provide code to reproduce all experiments

at Quantlet platform.

2 Preliminaries and related work

In this work, we focus on streaming linear regression problems. Formally, it is as-

sumed that we observe a sequence of pairs (Xt, Yt), where Xt ∈ Rp corresponds to

a p-dimensional vector of predictor variables and Yt ∈ R is a univariate response.

The objective of penalized streaming linear regression problems consists in accurately

predicting future responses, Yt+1, from predictors Xt+1 via a linear model. Following

the work of Tibshirani (1996), an L1-penalty, parameterized by λ ∈ R+, is subsequently

3
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introduced in order to encourage sparse solutions as well as ensure the associated op-

timization problem is well-posed. For a pre-specified choice of a fixed regularization

parameter, λ, time-varying regression coefficients can be estimated by minimizing the

following convex objective:

Lt(β, λ) =
n∑

t=1

wt

(
Yt −X>t β

)2
+ λ||β||1, (1)

where wt > 0 are weights indicating the importance given to past observations (Ag-

garwal, 2007) and ‖ · ‖1 denotes the L1-norm of a vector. For example, it is natural to

allow wt to decay monotonically in a manner which is proportional to the chronological

proximity of the ith observation.

In the context of non-stationary data the optimal estimates of regression coefficients,

β̂t, may vary over time and several methods have been proposed in order to address this

issue (Bottou, 2010; Duchi et al., 2011). However, the same argument can be posed in

terms of the associated regularization parameter, λ. The choice of such a parameter dic-

tates the severity of the associated L1-penalty, implying that different choices of λ will

result in vastly different estimated models. While there exists a large range of method-

ologies through which to iteratively update the regression coefficients, the choice of the

regularization parameter has, until recently, been largely overlooked. Lately, Monti

et al. (2018) proposed a framework through which to learn a time-varying regulariza-

tion parameter in a streaming scenario, named real-time adaptive penalization (RAP).

The proposed algorithm is motivated by adaptive filtering theory (Haykin, 2008) and

seeks to iteratively update the regularization parameter via stochastic gradient descent

in the following manner

λt+1 = λt − e
∂‖Yt+1 −X>t+1β̂(λt)‖22

∂λt
, (2)

where e denotes the pre-specified step-size parameter of the gradient method. Note

that in equation (2) and in the following we clearly denote the dependence of the

estimated regression coefficients on λ. In related work, Zboňáková et al. (2017) focus

on the choice of the regularization parameter in the context of a quantile regression

model. They propose the use of sliding windows and information theoretic quantities

to select the associated regularization parameter.

Formally, Osborne et al. (2000) clearly outline the relationship between the Lasso
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parameter, λ, and the data. They note that the regularization parameter may be

interpreted as the Lagrange multiplier associated with a constraint on the L1-norm of

the regression coefficients. As such, considering the dual formulation yields:

λ =
{Y −Xβ̂(λ)}>Xβ̂(λ)

||β̂(λ)||1
, (3)

where we have ignored the weights, wt.

As a result, we observe three main effects driving the optimal choice of the regulariza-

tion parameter.

1. Variance or magnitude of the residuals, Y −Xβ̂(λ). As the variance of residuals

increases so does the associated regularization parameter, leading to an increase

in sparsity of β̂(λ). This is natural as an increase of the variance of residuals is

indicative of a drop in the signal-to-noise ratio of the data.

2. The L1- or L0-norm of the model coefficients, ||β̂(λ)||1. As this term appears in

the denominator of equation (3), it is inversely correlated with the regularization

parameter. This is to be expected as we require a small regularization parameter

in order to accurately recover regression coefficients with large L1-norm.

3. Covariance structure of the design matrix, X. The term related to the covari-

ance structure of the design matrix, X>X, can be extracted from the elements

in the numerator of equation (3). This suggests that the covariance matrix of

the predictors will have a significant impact on the value of the regularization

parameter, λ. We note that this effect will also affect the L1- and L0-norms of

the model coefficients, resulting in a complicated relationship with the regular-

ization parameter. In Section 3.1.3 we demonstrate the non-linear nature of this

relationship.

As such, it follows that multiple aspects of the data may influence the choice of the

associated regularization parameter. Crucially, whilst such a parameter is often inter-

preted as being indicative of the sparsity of the underlying model, equation (3) together

with the aforementioned discussion demonstrates that this is not necessarily the case.

In the remainder of this work, we provide extensive empirical evidence to validate these

claims.
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3 Experimental results

In this section, we provide an extensive simulation study to demonstrate the effects of

the three aforementioned model properties on the choice of the optimal regularization

parameter. Based on the observations from Section 2, we designed a series of exper-

iments where one property of the data was allowed to vary whilst the remaining two

were left unchanged. A further concern is to show that if two or more of the properties

of the data should simultaneously change it can result in cancelling out their effects on

the regularization parameter. Further experiments were designed to study those sce-

narios. The purpose of the experimental results presented in this section is two-fold.

First, we identify the various statistical properties which cause the optimal choice of

the regularization parameter to vary. Second, we also highlight how changes of such

properties interact with each other and catalog their joint effects on the choice of the

regularization parameter.

3.1 Synthetic data generation

We focus exclusively on a linear model of the form:

Yt = Xtβt + εt.

We define the number of observations as n, the number of non-zero parameters as

q = ||β||0 ≤ p and an iid error term ε = (ε1, . . . , εn)>, such that εt ∼ (0, σ2
t ). The p-

dimensional vector of predictor variables Xt was generated from the normal distribution

Np(0,Σ), where the elements of the (p × p) covariance matrix Σ = (σij)
p
i,j=1 were set

to be σij = ρ|i−j|, for i, j = 1, . . . , p, with a correlation parameter ρ. We generate

synthetic data where one of the following properties varies over time (thereby resulting

in non-stationarity):

1. Time-varying variance of residuals - σ2
t varies over time.

2. Time-varying L1- or L0-norm of regression coefficients - q varies over time.

3. Time-varying correlation within design matrix - ρ varies over time.
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For each experiment, the total number of observations was set to n = 400 with a di-

mensionality of p = 20. The optimal choice of the regularization parameter (together

with associated regression coefficients) was estimated using three distinct methods. We

consider the use of the sliding window method in combination with both the Bayesian

information criterion (BIC) and the generalized cross-validation (GCV) to select the

associated regularization parameter. This means setting some of the weights from (1)

to 1 and rest to 0, depending on the window size. Finally, the RAP method proposed

by Monti et al. (2018), with the regularization parameter as in (2) is also considered.

In the latter, we employed a fixed forgetting factor, r, of size 0.95 and thereby adjusted

the weights wt from the objective function (1) to wt =
∑t

i=1 0.95t−i. A burn-in period

of 50 observations was employed to obtain an initial estimate for regression coefficients

as well as λ. Each experiment was repeated 100 times and the mean value of the

regularization parameter was studied.

3.1.1 Change of the variance of residuals

We begin by studying the effect of the residual variance on the choice of the regulariza-

tion parameter λ. The regression coefficients were set to βt = (1, 1, 1, 1, 1, 0, . . . , 0)>,

yielding q = 5 and the covariance parameter was set to be ρ = 0.5. The vector of

residuals was simulated according to a piece-wise stationary distribution as follows

εt ∼

 N(0, σ2
1), for t < 200;

N(0, σ2
2), t ≥ 200,

resulting in a significant change in the variance of the residuals at the 200th obser-

vation. Throughout these experiments we set σ1 = 1 and allowed σ2 to vary from

σ2 ∈ {1.1, . . . , 2}.

In Figure 1, one can see the effect of the changes in the standard deviation on the

Lasso parameter λ. As expected when looking at the formula (3), there is a linear

dependence visible. In the case of the BIC and GCV as selection criteria for the values

of λ, the line is almost identical. For the RAP algorithm, λ changes slower, but the

effect can be clearly seen.

In order to illustrate how the series of values of the Lasso parameter changes over time
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Figure 1: Relative changes of λ in dependence on relative changes of the standard
deviation, σ, for BIC (solid), GCV (dot-dashed) and RAP (dashed) method.

TVRPchangeSQR

and how long it takes to adjust for the new settings of the model, we depict the average

λ over the 100 scenarios in Figure 2, where σ1 = 1 and σ2 = 1.5. Since the BIC and

GCV yield very similar results, we omit the GCV in this case and we normalize the

BIC and RAP values of λ to fit into the interval [0, 1].
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Figure 2: Standardized series of average λ over 100 scenarios with a change point at
t0 = 200 and σ1 = 1 and σ2 = 1.5, for BIC (solid) and RAP (dashed) method.

TVRPchangeSQR

From Figure 2 it is clear that the values of λ adjust for the new model settings for the

whole length of the moving window (50 in this case) if the BIC is implemented and

for the RAP algorithm the adjustment is dependent on the size of the fixed forgetting

factor, r. Nevertheless, the changes are obvious and confirm the drawback of using

a pre-specified value of λ for the whole data sample.
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3.1.2 Change of the L1- and L0-norm of β

In the case of changing either L1- or L0-norm of the parameter vector β, we put

σ1 = σ2 = 1 and ρ = 0.5. For the first example, the change of L1-norm, we generated

βt as

βt =

 (1, 1, 1, 1, 1, 0, . . . , 0)>, for t < 200;

(1, 0.8, 0.6, 0.4, 0.2, 0, . . . , 0)>, t ≥ 200.
(4)

The time series of estimated λ values is presented in Figure 3.
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Figure 3: Standardized series of average λ over 100 scenarios with a change point at
t0 = 200 and β1,2 defined by (4), for BIC (solid) and RAP (dashed) method.

TVRPchangeB

We note that the change in the L1-norm of the model coefficients β results in an upward

trend in λ for the BIC parameter choice visible in the long run. For the short period

after the change, exactly the period of 50 observations in the moving window, the

misspecification of the model drives the size of residuals and with them, the values

of λ higher and lower again in a ‘bump-shaped’ line. The same holds for the RAP

algorithm, however, because of the fixed forgetting factor, the values of λ are adjusting

to the new model settings more slowly.

In order to study the effect of changes in the L0-norm, i.e. the size of the active set,

we generated synthetic data, whereby

‖βt‖0 =

 q1, for t < 200;

q2, t ≥ 200,

with q1 = 5 and q2 ∈ {6, . . . , 10, 15}.
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From Figure 4, where the relative changes of λ in dependence on the relative changes

of the size of the active set q can be found, there is a decay of the values of λ visible.

This figure provides an empirical validation of the inverse relationship between the

magnitude of the active set and the estimated regularization parameter.

1.0 1.5 2.0 2.5 3.0

0.
2

0.
4

0.
6

0.
8

1.
0

q2 q1

λ 2
λ 1

BIC GCV RAP

Figure 4: Relative changes of λ in dependence on relative changes of the size of the
active set q, for BIC (solid), GCV (dot-dashed) and RAP (dashed) method.

TVRPchangeSQR

The time series of the estimated regularization parameter, as inferred either via the

BIC or using the RAP algorithm, are visualized in Figure 5. It is interesting to observe,

that for the BIC case there is a visible upward turn of λ values, which is of size exactly

as long as the moving window length, as it was in the case of the change in the L1-

norm. This can be explained by the model misspecification when the observation with

the change point is a part of the window. More specifically, within this period of time,

the sliding window contains the data from both distributions, implying that a correctly

specified model would need to account for this mixture. The misspecification of the

proposed model leads to an increase in the magnitude of the residuals, which in turn

drives the increase in λ. Interestingly, the RAP method deals with the misspecification

differently and there is no upward ‘bump-shape’ visible. In both cases, however, the

final values of λ decrease as the size of the active set increases.

3.1.3 Change of the covariance parameter ρ

Finally, we study the effect of changes in the covariance structure on the regularization

parameter. We note that while it is possible to vary the covariance structure in many

ways, we consider a simple model of covariance structure, where Σ = (σij)
p
i,j=1 and set

10
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Figure 5: Standardized series of average λ over 100 scenarios with a change point at
t0 = 200 and q1 = 5 and q2 = 10, for BIC (solid) and RAP (dashed) method.

TVRPchangeSQR

σij = ρ|i−j|. The benefit of such a model is that it only depends on a single parameter,

ρ. As such, we consider changes in the covariance parameter ρ, while fixing σ = 1 and

q = 5. The data is generated as follows

ρt =

 ρ1, for t < 200;

ρ2, t ≥ 200,

where ρ1 = 0.1 and ρ2 ∈ {0.2, 0.3, . . . , 0.9}.

As for the previous experiments, we visualize the relative changes of λ with respect to

the relative changes in ρ in Figure 6 and the time series of the estimated values of λ

over the whole sample size in Figure 7.
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1.
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1.
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ρ2 ρ1

λ 2
λ 1

BIC GCV RAP

Figure 6: Relative changes of λ in dependence on relative changes of the covariance
parameter ρ, for BIC (solid), GCV (dot-dashed) and RAP (dashed) method.

TVRPchangeSQR

From Figure 6, it is important to note that changes of λ no longer show a linear
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dependence. For ρ2 = 0.2, . . . , 0.8 the values of λ tend to rise with a rising covariance

of the predictors and the biggest change occurs for ρ2 = 0.5 in the case of the BIC and

GCV. In the RAP method example, the values of λ decrease for ρ2 = 0.2 and 0.9 and

the biggest change is visible in case that ρ changes to the value of ρ2 = 0.6.

A potential explanation for the non-linear nature of the relationship demonstrated in

Figure 6 is due to the selection properties of the Lasso. It is widely acknowledged that in

the presence of strongly correlated variables, corresponding to large ρ values, the Lasso

tends to choose only a single variable form the group of strongly correlated covariates

(indeed this phenomenon is the inspiration for the elastic net (Zou and Hastie, 2005)).

Hence, as ρ increases, the term X>X from the numerator of λ drives its values higher.

If the ρ value is too big, we speak of multicollinearity, where the denominator of λ is

affected and becomes larger, which consequently causes the λ values to drop.

A
ve

ra
ge

 λ

0 t = 200 400

0.
0

0.
4

0.
8

BIC RAP

Figure 7: Standardized series of average λ over 100 scenarios with a change point at
t0 = 200 and ρ1 = 0.1 and ρ2 = 0.5, for BIC (solid) and RAP (dashed) method.

TVRPchangeSQR

In Figure 7, the change from ρ1 = 0.1 to ρ2 = 0.5 is depicted. We note that there is

a change in λ despite the fact that the true L1- and L0-norms remain unchanged.

3.1.4 Simultaneous changes of model specifications

While the previous experiments have examined the effects of changing a single prop-

erty of the data, we now consider combinations of specific changes. In particular, the

purpose of the remaining experiments is to show how simultaneous changes to two

properties of the data result in cancelling out the effects on the regularization parame-

ter. The purpose of this section is, therefore, to highlight the fact that it is possible to
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have a non-stationary data, where the three properties discussed previously vary and

yet the optimal choice of the sparsity parameter is itself constant.

We begin by studying simultaneous changes in the L0- or L1-norm of the parameters

β as well as changes in the variance of residuals, σ2. Recall that the optimal choice

of the regularization parameter was positively correlated with the magnitude of the

residuals (see Figure 1) while being negatively correlated with q (see Figure 4). The

results are presented in Figure 8. It is important to note the diagonal trend, which

indicates that for any increase in q, a proportional increase in σ directly cancels out

the change in the estimated regularization parameter. This is a natural result, as the

changes in σ influence the numerator, whereas the changes in the L0- or L1-norm affect

the denominator in (3).
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Figure 8: Relative changes of λ corresponding to the combination of relative changes
of q and σ.

TVRPchangeSQR

It is important to mention, that the ratio of the values of λ before and after the change

was computed by leaving out 50 observations right after the change point. In a long

run, the Lasso parameter tends to stabilize itself around a specific value, but shortly

after the change, one can clearly see the changes in its pattern. This is illustrated

in Figure 9 for the BIC and RAP methods, where we simulated such combination of

changes in q and σ which yielded the smallest change in the ratio of the values of λ,

i.e. q1 = 5, q2 = 9 and σ1 = 1, σ2 = 1.6 with ρ1 = ρ2 = 0.1.
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Figure 9: Standardized series of average λ over 100 scenarios with a change point at
t0 = 200 and q1 = 5, q2 = 9, σ1 = 1, σ2 = 1.6 and ρ1 = ρ2 = 0.1, for BIC (solid) and
RAP (dashed) method.

TVRPchangeSQR

Interestingly, the pattern of the BIC method is reversed in comparison to the pattern

of the RAP, but in both of the methods under consideration, there is a short-term

change in the values of λ clearly visible.

Furthermore, we also consider the combination of varying the covariance parameter ρ

and the variance of the residuals, parameterized by σ. Recall from the previous dis-

cussion that the parameter ρ did not have a linear relationship with the regularization

parameter λ. A similar non-linear relationship can be seen in Figure 10.
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Figure 10: Relative changes of λ corresponding to the combination of relative changes
of ρ and σ.
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The pattern of the ratio of the values of λ before and after the change stays similar

for all of the fixed values of σ. With changes in σ, the Lasso parameter tends to

rise linearly, as was seen before in Figure 1. Moreover, we note that the changes

in σ tend to dominate the changes in the covariance parameter ρ, resulting in the

occurrence of the most significant changes of λ whenever the changes in σ are large.

Selecting a combination of changes which yields the smallest ratio, we created the plot

of Figure 11, where, again, the pattern of the values of λ changes in the short term

after the structural break.
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Figure 11: Standardized series of average λ over 100 scenarios with a change point at
t0 = 200 and ρ1 = 0.1, ρ2 = 0.9, σ1 = 1, σ2 = 1.1 and q1 = q2 = 5, for BIC (solid) and
RAP (dashed) method.
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Finally, we also consider the combination of changes in the L0-norm together with

changes in the covariance parameter ρ. Note, that the changes in these parameters are

strongly coupled due to the effects of multicollinearity induced by simultaneously in-

creasing the number of non-zero regression coefficients together with their correlations.

The results, provided in Figure 12, highlight these dependencies. For the values of ρ

near ρ = 0.5, there are some combinations which cancel each other. For the extreme

parts of the heatmap, e.g. ρ2 = 0.2 or ρ2 = 0.9, the pattern is clearly driven by the

changes in the active set only.

For a better illustration of the changes, we include Figure 13, where the pattern of λ

values for the combination of changes with the smallest effect on the Lasso parameter

in the long run is considered.

Similarly to what was observed in the previous figures, there is a clear change in the
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Figure 12: Relative changes of λ corresponding to the combination of relative changes
of q and ρ.
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Figure 13: Standardized series of average λ over 100 scenarios with a change point at
t0 = 200 and q1 = 5, q2 = 6, ρ1 = 0.1, ρ2 = 0.4 and σ1 = σ2 = 1, for BIC (solid) and
RAP (dashed) method.
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pattern in Figure 13, too.

3.2 Application to financial and neuroimaging data

Until now we have provided extensive empirical evidence based on a variety of simu-

lations, each varying one or more of the statistical properties of the data. However, it

is interesting to investigate, whether the patterns of λ values are connected to some

specific occasions in a real data analysis.
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For this purpose, we consider two high-dimensional real-world datasets from distinct

applications. The first consists of stock returns and the second corresponds to func-

tional MRI (fMRI) dataset taken from an emotion task. The stock return data consists

of daily stock returns of 100 largest financial companies over a period of January 3,

2007, to August 10, 2018, see Table 1. The companies listed on NASDAQ are ordered

by the market capitalization and downloaded from Yahoo Finance. This sample is par-

ticularly interesting as it covers the financial crisis of 2008 and 2009. By analysing this

data, it is hoped that we may be able to understand the statistical properties which

directly precede similar financial crises, thereby potentially providing some form of ad-

vanced warning. The second dataset we consider corresponds to fMRI data collected

as part of the Human Connectome Project (HCP). This dataset consists of measure-

ments of 15 distinct brain regions taken during an emotion task, as described in Barch

et al. (2013). Data was analysed over a subset of 50 subjects. While traditional neu-

roimaging studies were premised on the assumption of stationarity, an exciting avenue

of neuroscientific research corresponds to understanding the non-stationary properties

of the data and how these may potentially correspond to changes induced by different

tasks (Monti et al., 2017b) or changes across subjects (Monti et al., 2017a).

The modelling procedure for both of the datasets consists of regressing each of the

components of the multivariate time series on the rest. This way we get either 100 or

15 sequences of the Lasso parameter values, for the financial and neuroimaging data

respectively, which are then averaged and normalized to the [0, 1] interval as before.

The resulting time series for the US stock market data are depicted in Figure 14 and

for the fMRI data the graphical output can be seen in Figure 15.

From Figure 14 it is visible that the values of λ react to the situation on the market

in both of the algorithms, the standard one with the BIC as a selecting rule and the

RAP. Especially pronounced is the change of the values during the financial crisis of

2008 - 2009, where the volatility observable on the market was elevated, and thus,

results in increased values of the Lasso parameter, too. Interestingly, both of the

considered methods react instantly if some change occurs, but take a different amount

of observations to adjust back to the standard situation.

Figure 15 shows the time series of the average regularization parameter over eight
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Figure 14: Standardized series of average λ in the US stock returns data, daily obser-
vations from January 3, 2007, to August 10, 2018, for BIC (solid) and RAP (dashed)
method.
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Figure 15: Standardized series of average λ in the fMRI dataset, for BIC (solid) and
RAP (dashed) method. Distinct tasks are indicated by the background colour (red
indicates a neutral task, blue indicates an emotion task and white denotes the resting
period).
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subjects completing an emotion related task. The task required participants to perform

a series of trails presented in blocks. The trails either required them to decide which

of the two faces presented on the bottom of the screen match the face at the top of

the screen, or which of the two shapes presented at the bottom of the screen match

the shape at the top of the screen. The former was considered to be the emotion

task (denoted in blue in Figure 15) and the latter the neutral task (denoted in red

in Figure 15). From Figure 15 we see clear changes in the estimated regularization
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parameter induced by the changes in the underlying cognitive task, and thus, changes

in the connectedness of the brain regions. This finding is in line with the current trend

in the study of the fMRI data, which is interested in quantifying and understanding

the non-stationarity properties of such a data and how these relate to the changes in

a cognitive state (Calhoun et al., 2014).

4 Discussion

In this work, we have highlighted and provided extensive empirical evidence for various

statistical properties which affect the optimal choice of a regularization parameter in

a penalized linear regression model. Based on the theory of the Lasso, we specifically

consider three distinct properties: the variance of residuals, the L0- and L1-norms of

the regression coefficients and the covariance structure of the design matrix. Through-

out a series of experiments, we confirm the manner in which each of these properties

affects the optimal choice of the regularization parameter. We relate the dependencies

between each of the aforementioned statistical properties and estimated regulariza-

tion parameter to the theoretical properties presented in Osborne et al. (2000). In

particular, we conclude that:

• There is a (positive) linear relationship between changes in the variance of resid-

uals, σ2, and the estimated regularization parameter, as clearly demonstrated in

Figure 1.

• There is a (negative) linear relationship between changes in the size of the active

set (either L0- or L1-norm) and the estimated regularization parameter, as shown

in Figure 4.

• There is a non-linear relationship between changes in the correlation structure in

the design matrix and the estimated regularization parameter, as visualized in

Figure 6.

We further provide a series of experiments where two of the statistical properties jointly

varied in order to demonstrate the possibility of having non-stationary time-series data
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where the optimal regularization parameter does not alter. This is most clearly seen in

the case of changes in the active set, q, together with changes in the residual variance,

σ2, shown in Figure 8.

Finally, we conclude by two case studies involving high-dimensional time-series data

in the context of finance and neuroimaging. Both datasets demonstrate significant

temporal variability in the estimated regularization parameter, thereby validating the

need for the methods through which to iteratively tune such a parameter.

In conclusion, the purpose of this letter is to highlight and rigorously catalog the various

statistical properties which may lead to changes in the choice of the regularization

parameters in L1-penalized models. Such models are widely employed, indicating that

an appreciation of the relationships between the various statistical properties of the

data and the choice of the regularization parameter is important. Further, the specific

pattern observable throughout the time series of the penalty parameter might be of

interest if one considers change point detection related problems.
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JPM JP Morgan Chase & Co. RF Regions Financial Corporation
BAC Bank of America Corporation IX Orix Corp Ads
WFC Wells Fargo & Company FITB Fifth Third Bancorp
HSBC HSBC Holdings PLC WLTW Willis Towers Watson Public Limited Company
C Citigroup Inc. HIG Hartford Financial Services Group, Inc. (The)
RY Royal Bank of Canada BAP Credicorp Ltd.
TD Toronto Dominion Bank (The) SHG Shinhan Financial Group Co Ltd
HDB HDFC Bank Limited KB KB Financial Group, Inc.
AXP American Express Company HBAN Huntington Bancshares Incorporated
USB U.S. Bancorp BEN Franklin Resources, Inc.
GS Goldman Sachs Group, Inc. (The) SIVB SVB Financial Group
BLK BlackRock, Inc. CMA Comerica Incorporated
ITUB Itau Unibanco Holding S.A. MKL Markel Corporation
WBK Westpac Banking Corporation L Loews Corporation
BNS Bank of Nova Scotia (The) ETFC E*TRADE Financial Corporation
LFC China Life Insurance Company Limited BCH Banco De Chile
SCHW The Charles Schwab Corporation NMR Nomura Holdingd, Inc. ADR
PUK Prudential PLC EFX Equifax, Inc.
LYG Lloyds Banking Group PLC PFG Principal Financial Group Inc.
BBD Banco Bradesco S.A. BSAC Banco Santander Chile
SMFG Sumitomo Mitsui Financial Group, Inc. XL XL Group Ltd.
ING ING Group, N.V. LNC Lincoln National Corporation
BK Bank Of New York Mellon Corporation (The) RJF Raymond James Financial, Inc.
SPGI S&P Global Inc. AJG Arhtur J. Gallagher & Co.
BMO Bank of Montreal (BMO) AEG Aegon NV
COF Capital One Financial Corporation ACGL Arch Capital Group Ltd.
MFG Mizuho Financial Group, Inc. ROL Rollins, Inc.
BBVA Banco Bilbao Viscaya Argentaria S.A. CINF Cincinnati Financial Corporation
MMC Marsh & McLennan Companies, Inc. FNF Fidelity National Financial, Inc.
BCS Barclays PLC CIB BanColombia S.A.
PRU Prudential Financial, Inc. ZION Zions Bancorporation
CM Canadian Imperial Bank of Commerce AFG American Financial Group, In.c
CS Credit Suisse Group TMK Torchmark Corporation
PGR Progressive Corporation (The) Y Alleghany Corporation
MFC Manulife Financial Corp SEIC SEI Investments Company
AFL Aflac Incorporated EWBC East West Bancorp, Inc.
ALL Allstate Corporation (The) WRB W.R. Berkley Corporation
AON Aon PLC RE Everest Re Group, Ltd.
TRV The Travelers Companies, Inc. CACC Credit Acceptance Corporation
STI SunTrust Banks, Inc. BRO Brown & Brown, Inc.
AMTD TD Ameritrade Holding Corporation AMG Affiliated Managers Group, Inc.
MCO Moodys Corporation UNM Unum Group
STT State Street Corporation CBSH Commerce Bancshares, Inc.
IBN ICICI Bank Limited CFR Cullen/Frost Bankers, Inc.
TROW T. Rowe Price Group, Inc. MKTX MarketAxess Holdings, Inc.
MTB M&T Bank Corporation AIZ Assurant, Inc.
DB Deutsche Bank AG BOKF BOK Financial Corporation
NTRS Northern Trust Corporation ORI Old Republic International Corporation
SLF Sun Life Financial, Inc. PACW PacWest Bancorp
KEY KeyCorp PBCT People’s United Financial, Inc.

Table 1: List of 100 largest financial companies listed on NASDAQ (accessed in August
2018).
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