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Summary

In deconvolution in Rd, d ≥ 1, with mixing density p(∈ P) and kernel h, the mix-

ture density fp(∈ Fp) can always be estimated with fp̂n , p̂n ∈ P , via Minimum Distance

Estimation approaches proposed herein, with calculation of fp̂n ’s upper L1-error rate, an,

in probability or in risk; h is either known or unknown, an decreases to zero with n. In

applications, an is obtained when P consists either of products of d densities defined on

a compact, or L1 separable densities in R with their differences changing sign at most J

times; J is either known or unknown. When h is known and p is q̃-smooth, vanishing

outside a compact in Rd, plug-in upper bounds are then also provided for the L2-error

rate of p̂n and its derivatives, respectively, in probability or in risk; q̃ ∈ R+, d ≥ 1. These

L2-upper bounds depend on h’s Fourier transform, h̃( 6= 0), and have rates (log a−1
n )−N1

and aN2
n , respectively, for h super-smooth and smooth; N1 > 0, N2 > 0. For the typical

an ∼ (log n)ζ · n−δ, the former (logarithmic) rate bound is optimal for any δ > 0 and

the latter misses the optimal rate by the factor (log n)ξ when δ = .5; ζ > 0, ξ > 0. The

exponents N1 and N2 appear also in optimal rates and lower error and risk bounds in the

deconvolution literature.
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1 Introduction

In the deconvolution problem, random vectors Y and X in Rd, d ≥ 1, have densities,

respectively, p and fp and satisfy the equation

X = Y + ε; (1)

Y is independent of the error ε that has density h,

fp(x) = h ∗ p(x) =

∫
Rd
h(x− y)p(y)dy, p ∈ P , (2)

FP = FP,d = {fp, p ∈ P}; (3)

P is any class of densities of interest, “ ∗ ” denotes convolution. Independent copies

X1, . . . , Xn of X are observed and the goal is to estimate p, its derivative(s) and cal-

culate the estimation errors. Usually, h is assumed known, with non-vanishing Fourier

transform h̃. The classic approach is to estimate p via a kernel estimate of fp.

Until recently, research has been devoted mainly to the one-dimensional deconvolution

problem. However, X-observations in Rd can be used to estimate fp, e.g., with a kernel

estimate; d > 1. A Minimum Distance Estimate (MDE) fp̂n with p̂n ∈ P can then be

obtained as described in section 3, with calculation of upper L1-error rates when h is

either known or unknown and implementation, as presented in applications. The problem

that has not been tackled so far in the literature is to derive “plug-in” upper error and risk

bounds for p̂n and the s-th order mixed partial derivative, p̂
(s)
n , from the rate of convergence

of fp̂n to fp.

This problem is addressed herein when P is a sup-norm compact family of q̃-smooth

densities vanishing outside a compact Y in Rd (see Definition 2.3); d ≥ 1. The upper

bounds in probability for the L2-errors and their risks are provided for p̂n and for p̂
(s)
n and

depend on the L1-error ||fp̂n − fp||1, non-vanishing h̃ and the smoothing parameter of a

trapezoidal kernel K (Devroye, 1992) that is used as approximation tool.

If fp̂n is L1-optimal with respect to some criterion, e.g. minimax, the difference of

p̂n’s L2-error rate from the optimal is not expected to be substantial. For example, if h

is super-smooth and fp̂n converges to fp in L1-distance with the typical rate an ∼ n−δ ·
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(log n)ζ in probability or in risk, it follows from (31) that p̂n has upper L2-error rate

the optimal, (log n)−q̃/k, for any δ, ζ; k determines the rate of the exponential decay of

h̃, δ > 0, ζ ∈ R. If h is smooth, for fp̂n ’s typical rate and from (32), p̂n has upper L2-

error rate [(log n)2ζ/n2δ)]
q̃

2q̃+2
∑d
i=1

βi+d , which misses the optimal by the factor (log n)ξ when

δ = .5; ξ > 0, β1, . . . , βd are the exponents determining h̃’s algebraic decay. The exponents

in the rates’ bounds coincide with those of the lower or optimal rates for the isotropic Hölder

and Sobolev classes and for the isotropic and bounded Nikolskii class pointwise, for the

mean integrated square error, and in Lu-distance and risk, 2 ≤ u ≤ ∞ (Comte and Lacour,

2013, Rebelles, 2015, Lepski and Willer, 2017). The same holds in univariate deconvolution

(see, e.g., Fan 1991, 1992, 1993, Hall and Meister, 2007, Meister, 2009, Chapter 2, Lounici

and Nickl, 2011).

In multidimensional deconvolution, estimates have been obtained also by Masry (1991)

and Youndjé and Wells (2008). For the deconvolution in R, consistent estimates have

been provided and, when p is q̃-smooth, optimality of the error rates has been established

for smooth and super-smooth h, pointwise and in weighted Lu-distance, among others

by Carroll and Hall (1988), Devroye (1989), Stefanski and Carroll (1990), Zhang (1990),

Hesse (1995) and Loh and Zhang (1996, 1997), Pensky and Vidakovic (1999); 1 ≤ u ≤ ∞.

Devroye (1989) showed in particular that one can construct a consistent kernel estimate of p

when the set {t : h̃(t) = 0} has Lebesgue measure zero. More recent work includes, among

others, Delaigle and Gijbels (2002), Groneboom and Jongbloed (2003), Meister (2006) and

Butucea and Tsybakov (2007). Johannes (2009) estimated non-parametrically p when ε’s

distribution in (1) is estimated. Hall and Meister (2007) presented a new estimate for

p using ridging, “not involving kernels in any way”, used also when h̃ has periodic zeros.

Meister (2008) proposed also an estimate for p using local polynomials when h̃ has periodic

zeros. Under additional assumptions on either p or h, the estimates in Hall and Meister

(2007, see page 1542, lines -3, -2) and in Meister (2008, see the Introduction) are optimal

but the assumptions and the rates are different.
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2 Notation, Definitions and Tools

All the functions used are defined in Rd and are measurable and integrable with real

values; d ≥ 1. The densities are defined with respect to Lebesgue measure. When the

domain of integration is Rd, it is omitted. For any function g, its Fourier transform is g̃.

The vectors X, Y take values, respectively in X , Y , which are both sets in Rd. C, c, C1, C2

denote generic positive constants. For positive a, b, a ∼ b means C1b ≤ a ≤ C2b. Constants

an, bn, βn, δn decrease to zero as n increases.

Definition 2.1 (Distances) For densities p1, p2 defined in Y(⊂ Rd) their Lu-distance is

||p1 − p2||u = [

∫
Y
|p1(w)− p2(w)|udw]1/u, 1 ≤ u <∞.

The sup-norm (or L∞)- distance is

||p1 − p2||∞ = sup
w∈Y
|p1(w)− p2(w)|.

The Hellinger distance is

H(p1, p2) = [

∫
Y

(
√
p1(y)−

√
p2(y))2dy]1/2.

A well-known inequality between the L1-distance and Hellinger distance is used:

||p1 − p2||1 ≤ 2H(p1, p2). (4)

Notation: If x = (x1, . . . , xd) ∈ Rd, a ∈ R and s = (s1, . . . , sd) is a d-tuple of non-

negative integers,

xs = (xs11 , . . . , x
sd
d ), xs = x1s1 + . . .+ xdsd, ax = (ax1, . . . , axd), [s] = s1 + . . .+ sd;

for y ∈ Rd,

|x− y| = max{|xi − yi|, i = 1, . . . , d}.

For a real valued function g defined in Rd let g(s)(x0) denote the [s]-th order mixed partial

derivative of g at x0, i.e.

g(s)(x0) =
∂[s]g(x0)

∂xs11 . . . xsdd
.
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Definition 2.2 The modulus of continuity w of g is a function from R+ with positive

values such that

w(δ) = sup{|g(x)− g(y)| : |x− y| ≤ δ}, δ > 0. (5)

If the r-th order mixed partial derivative of g has modulus of continuity w, then

|g(t)(x)− g(t)(y)| ≤ w(|x− y|), [t] = r. (6)

Definition 2.3 Let P in (2) consist of densities defined on the same compact set Y (⊂ Rd),

that have all s-mixed order partial derivatives uniformly bounded, 0 ≤ [s] ≤ q, with the q-th

mixed order derivative having the same and known modulus of continuity wq.

When

wq(δ) = L · δγ, L > 0, 0 < γ < 1, q̃ = q + γ, (7)

P is called q̃-smooth family of densities, ignoring L.

Let K(x) be a symmetric function defined in Rd at least q times continuously differ-

entiable with bounded Fourier transform K̃ having compact support [−M,M ]d, M > 0,

such that for s ∈ (R+)d,∫
K(x)dx = 1,

∫
xsK(x)dx = 0, [s] = 1, . . . , q,

∫
(|x|q + |x|q+1)K(x)dx <∞. (8)

Kernel K can be obtained by taking d-fold products of Devroye’s trapezoidal kernel (De-

vroye, 1992) and making smooth enough the linear leg of the trapezoid (Devroye, 2013).

For any positive number bn, let

Kn(x) = b−dn K(xb−1
n ), (9)

with bn decreasing to 0 as n increases. If X1, X2, . . . , Xn are independent, identically

distributed (i.i.d.) vectors in Rd with density f, the kernel estimate of f using K is

f̂n(x) =
1

n

n∑
j=1

Kn(x−Xj). (10)

The notion of Total Positivity is introduced from Karlin (1968).
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Definition 2.4 A real function Q(x, y) of two variables ranging over linearly ordered sets

X and Y , respectively, is said to be Totally Positive of order r (abbreviated TPr) if for all

x1 < x2, < . . . < xm, y1 < y2 < . . . < ym, xi ∈ X , yi ∈ Y , 1 ≤ m ≤ r, (11)

the determinant ∣∣∣∣∣∣∣∣∣∣∣∣

Q(x1, y1) Q(x1, y2) . . . Q(x1, ym)

Q(x2, y1) Q(x2, y2) . . . Q(x2, ym)

. . .

Q(xm, y1) Q(xm, y2) . . . Q(xm, ym)

∣∣∣∣∣∣∣∣∣∣∣∣
≥ 0. (12)

Most often X and Y are either intervals of the real line or countable subsets of discrete

values along the real line. When r is omitted in TPr, total positivity holds for any value

of r. Many density functions Q(x, y) are totally positive (TP ) with respect to a σ-finite

measure, with the variable y being a real parameter. Examples include the exponential

family, the normal and the non-central t-density (Karlin, 1968, p. 19 and 20).

Proposition 2.1 (Karlin, 1964, p. 34, 1968, Theorem 3.1 (a), p. 21) Let Q(x, y) be

TPr, let µ denote a σ-finite measure such that
∫
Y Q(x, y)dµ(y) exists for every x ∈ X and

µ(U) > 0 for each open set U for which U ∩ Y is not empty. Suppose p(y) is bounded,

measurable and changes sign J ≤ r − 1 times. Let

fp(x) =

∫
Q(x, y)p(y)dµ(y),

be well defined such that the integral converges absolutely, then fp(x) changes sign at most

J times.

Definition 2.5 (Vapnik and Cervonenkis, 1971) Given a class C of subsets of a set V and

a finite set U that is subset of V, let ∆C(U) be the number of different sets A∩U for A ∈ C.

Let

mC(n) = max{∆C(U) : U has n elements}, n = 1, 2, . . . ,

v(C) =

 inf{n : mC(n) < 2n}

∞, if mC(n) = 2n for all n.

The class C will be called a Vapnik-Cervonenkis (VC) class of exponent v(C) if v(C) <∞.
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3 Estimates fp̂n with p̂n ∈ P and convergence rates

Let X1, . . . , Xn be a sample of d-dimensional vectors from unknown density g ∈ G, d ≥

1;G is a known family of densities, ρ is a distance for densities.

Definition 3.1 Let Sn be an estimate of g(∈ G).

a) Sn is uniformly consistent estimate for g in probability, with upper rate of convergece

δn, if for every ε > 0 there is C(ε)(> 1 w.l.o.g.) such that

sup
g∈G

Pg[ρ(Sn, g) > C(ε)δn] ≤ ε, ∀n ≥ 1; (13)

(13) is briefly denoted “Sn has upper ρ-error rate, δn, in probability, ρ(Sn, g) ≤ Cδ′′n.

b) The uniform upper risk rate of Sn is δn when there is constant CU(> 0) such that

sup
g∈G

Egρ(Sn, g) ≤ CUδn, ∀n ≥ 1; (14)

(14) is briefly denoted “Sn has upper ρ-risk rate, δn, Egρ(Sn, g) ≤ Cδ′′n.

Pg and Eg in (13), (14) denote, respectively, probability and expected value under g which

is ommited in the sequel.

For any estimate Tn of g in G with Tn /∈ G, a Minimum Distance Estimate (MDE) ĝn ∈ G

is obtained with the same upper convergence rate as Tn.

Lemma 3.1 Let X1, . . . , Xn be a sample of d-dimensional vectors from unknown density

g, element of a known family of densities G, ρ is a distance; d ≥ 1. Let Tn be an estimate

of g, Tn /∈ G, such that the upper ρ-error rate of Tn is δn, either in probability or in risk.

Define MDE ĝn ∈ G :

ρ(Tn, ĝn) ≤ inf{ρ(Tn, g
∗); g∗ ∈ G}+ δn. (15)

Then, the upper ρ-error rate of ĝn is 3δn, either in probability or in risk.

Remark 3.1 The MDE ĝn(∈ G) always exists, whether achieving the value of the infimum,

In, in (15) or another value in (In, In + an]; ĝn is not necessarily unique. Lemma 3.1 holds

also for any parameter space G with distance ρ and estimate Tn /∈ G.
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In the deconvolution problem (1)-(3), with FP replacing G, kernel estimate f̂n in (10)

can be used for Tn in Lemma 3.1 to obtain MDE fp̂n . A direct approach to obtain MDE

fp̂n is used when FP is L1-totally bounded, first when h is known. The distance ρ in (15) is

replaced by a sequence of pseudo-distances ρn approximating the L1 distance as described

in Yatracos (1985, 1988).

Proposition 3.1 In the deconvolution problem (1)-(3), let X1, . . . , Xn be a sample from

unknown density fp, p ∈ P . Assume that FP,d is L1 totally bounded and let NFP,d(an) be

the smallest number of L1-balls of radius an needed to cover FP,d. Then, a MDE fp̂n can

be constructed with upper L1 error bound in probability

C1an + C2(
logNFP,d(an)

n
)1/2, C1 > 0, C2 > 0, (16)

and upper-L1-rate of convergence, an, to fp in probability

an ∼ (
logNFP,d(an)

n
)1/2. (17)

The centers of the balls covering FP,d in Proposition 3.1 are FP,d’s elements and consti-

tute an an-L1-sieve that depends on h and is used to construct fp̂n . The Minimum Distance

Estimation method to obtain fp̂n can be used also when model parameters, like h or the

smoothness q̃ are not known. The unknown parameters are included in the MDE criterion

and the size of the sieve used is increased. An example is provided in the next proposition

that is the only one where h is assumed unknown, element of a family of densities H that

is L1 totally bounded.

Proposition 3.2 In the deconvolution problem (1)-(3), let X1, . . . , Xn be a sample from

unknown density fp, p ∈ P . Assume that h is unknown, element of a space of densities

H and that P and H are both L1 totally bounded. Let NP(an) and NH(ξn) be, respectively

the smallest numbers of L1-balls of radius an and ξn needed to cover P and H. Then, a

MDE ĥn ∗ p̂n can be constructed with upper-L1-rate of convergence max{an, ξn} to fp in

probability, with

an ∼ (
logNP(an)

n
)1/2, ξn ∼ (

logNH(ξn)

n
)1/2. (18)

9



Remark 3.2 Upper error rates as those in Propositions 3.1 and 3.2 can be obtained also

under weak dependence, with the mixing coefficient φ(pn) appearing under the square-root

in (16); with the proper choice of pn the upper rate is the same with that in the i.i.d. case

(Roussas and Yatracos, 1996, 1997).

Upper rates are now obtained for particular examples of deconvolution problems (1)-(3).

Proposition 3.3 For the d-dimensional deconvolution problem (1)-(3), assume that Y

consists of d independent random variables, h is standard multivariate normal N (0, Id) and

P is the family of d-products of q̃-smooth densities, each having known support [−a, a], a ∈

R+; Id is unit matrix in Rd, d ≥ 1.

A MDE fp̂n can be obtained with upper-L1-rate of convergence an in probability,

an ∼ {
[log(1/an)]2

n
}1/2 ∼ log n√

n
. (19)

A family P is considered that has not been used often in the literature and an is obtained

via Yatracos (1988), without using the metric entropy, logNFP,d(an), that appears in (17).

Proposition 3.4 For the deconvolution problem (1)-(3) in R, let h be Totally Positive

(TP) and let PJ be a family of bounded and measurable densities that is L1-separable

(to avoid measurability problems), such that for every p1, p2 in PJ their difference (p1 −

p2) changes sign at most J times; 0 < J < ∞. Assume also that the σ-finite measure

determined via h and Lebesgue measure satisfy the conditions in Proposition 2.1. Then, a

MDE fp̂n can be obtained with upper-L1-rate of convergence in probability,

a) when J is known,

an ∼
(log n).5

n.5
, (20)

b) when J is unknown,

an ∼
m,5
n (log n).5

n.5
, (21)

with mn increasing to infinity as slow as it is wished.

The next Lemma is used to obtain p̂n’s upper rate of convergence from that of fp̂n .
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Lemma 3.2 For the deconvolution problem (1)-(3), if the upper ρ1-error rate of fp̂n is an,

in probability and/or in risk, and for the ρ2-error of p̂n holds

ρ2(p̂n, p) ≤ λn + µnρ1(fp̂n , fp), λn > 0, µn > 0, (22)

then, the upper ρ2-error rate of p̂n is λn + µnan, respectively, in probability and/or in risk.

4 L2-upper rates of convergence for p̂n, h̃ 6= 0

For the deconvolution problem in Rd, let X1, . . . , Xn be i.i.d. vectors with values in

X (⊂ Rd) and density fp satisfying (2) with p defined on Y(⊂ Rd); d ≥ 1

The Assumptions:

(A1) h is known, h̃ 6= 0, ||h̃||2 <∞,

(A2) Y is compact,

(A3) P is the family of q̃-smooth densities (Definition 2.3),

(A4) Y ⊂ X ⊂ Rd, d ≥ 1,

(A5) fp̂n is an estimate of fp, obtained as described in section 3, with upper L1-error rate,

an, in probability and in risk; p̂n ∈ P .

Let h̃ and K̃n be, respectively, the Fourier transforms of h and Kn (see (9)). Since h̃ 6= 0,

let ψn be the inverse Fourier transform of

ψ̃n =
K̃n

h̃
. (23)

By the convolution theorem,

ψn ∗ h = Kn. (24)

An upper bound for ||ψn||2 is obtained. The set [−M,M ]d is the support of K̃.

Lemma 4.1 Under (A1),

||ψn||2 = C||ψ̃n||2 ≤ C · [
∫

[−M
bn
,M
bn

]d
|K̃(tbn)|2|h̃(t)|−2dt ]1/2 ≤ C ·

supt∈[−M/bn,M/bn]d |h̃(t)|−1

b.5dn
.

(25)
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An upper bound for ||p̂n − p||2 is provided when h̃ 6= 0.

Proposition 4.1 Under assumptions (A1)− (A5),

||p̂n − p||2 ≤ C[bqnwq(bn) +
supt∈[−M/bn,M/bn]d |h̃(t)|−1

b.5dn
||fp̂n − fp||1]; (26)

[−M,M ]d is K̃’s support.

Careful choice of bn determines the least upper bound (26). When h̃(t) varies exponen-

tially as t increases, it determines the upper bound in (26). For algebraic variation of h̃(t)

as t increases, bn satisfies

bq+.5dn wq(bn)

supt∈[−M/bn,M/bn]d |h̃(t)|−1
∼ an. (27)

A small bn-value satisfying (27) exists and is unique since when bn decreases to zero, the

numerator in the left side of (27) decreases to zero, the denominator increases to infinity

and wq, h̃ are continuous.

Models for h are now presented. Let 0 < C1 ≤ C2 < ∞, |t| = (|t1|, . . . , |td|), k >

0, αj ≥ 0, βj > .5, j = 1, . . . , d, ᾱ = 1
d

∑d
j=1 αj, β̄ = 1

d

∑d
j=1 βj.

(M1) h is super-smooth when h̃ 6= 0 and for large |t|-values, dᾱ > 0,

C1e
−

∑d
j=1 αj |tj |kΠd

j=1|tj|βj ≤ |h̃(t1, . . . , td)| ≤ C2e
−

∑d
j=1 αj |tj |kΠd

j=1|tj|βj . (28)

(M2) h is smooth when h̃ 6= 0 and for large |t|-values

C1Πd
j=1|tj|−βj ≤ |h̃(t1, . . . , td)| ≤ C2Πd

j=1|tj|−βj , (29)

The upper error rates for ||p̂n − p||2 in probability and for E||p̂n − p||2 are now given

explicitly as function of an in (A5) for super-smooth and smooth h, using in (30)-(35) and

in Examples 4.1 and 4.2 the brief notations for a) and b) in Definition 3.1 .

Proposition 4.2 Assume that (A1)− (A5) hold.

i) For super-smooth h from model (M1), an upper rate in probability on p̂n’s L2-error is

||p̂n − p||2 ≤ Cᾱ,d,k,M · (log a−1
n )−q/kwq[C(log a−1

n )−1/k]. (30)

12



When wq(bn) = bγn, 0 < γ < 1, q̃ = q + γ,

||p̂n − p||2 ≤ Cᾱ,d,k,M · (log a−1
n )−q̃/k. (31)

The dimension d affects only constant Cᾱ,d,k,M .

ii) For smooth h from model (M2), an upper rate on ||p̂n−p||2 is obtained when bn satisfies

bqnwq(bn) ∼ an

bdβ̄+.5d
n

.

When wq(bn) = bγn, 0 < γ < 1, an upper rate in probability on p̂n’s L2-error is

||p̂n − p||2 ≤ cMa
q̃/(q̃+dβ̄+.5d)
n , q̃ = q + γ. (32)

iii) When E||fp̂n − fp||1 ≤ an and wq(bn) = bγn, the upper rates in (31) and (32) hold also

for E||p̂n − p||2.

Remark 4.1 Model (M1) can be enlarged, with k in (28) replaced by positive kj, j =

1, . . . , d. Then, upper bounds (30), (31) remain valid with max{k1, . . . , kd} replacing k. In

the proof, k of the upper bound in (42) will be replaced by max{k1, . . . , kd}.

Upper rates on the L2-error and risk of the derivative of p̂n follow.

Corollary 4.1 Assume (A1) − (A5) hold, δn is the upper bound obtained in Proposition

4.2, wq(b) = bγ, 0 < γ < 1, q̃ = q+γ, s = (s1, . . . , sd) is a d-tuple of non-negative integers,

[s] = s1 + . . .+ sd ≤ q.

i) If ||p̂n − p||2 ≤ δn in probability, then in probability

||p̂(s)
n − p(s)||2 ≤ C · δ

q̃−[s]
q̃

n . (33)

ii) If the upper rate of E||p̂n − p||2 is δn, then

E||p̂(s)
n − p(s)||2 ≤ C · δ

q̃−[s]
q̃

n . (34)

The next result indicates the reason that, when h is super-smooth, estimates of p and

p(s) are frequently minimax optimal.
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Corollary 4.2 Under the assumptions in Proposition 4.2 a) i) and Corollary 4.1 and if

||fp̂n − fp||1 ∼ n−δ in probability, 0 < δ < 1,

||p̂(s)
n − p(s)||2 ≤ Cᾱ,d,k,M(δ log n)−(q̃−[s])/k, [s] ≥ 0. (35)

If E||f̂n − fp||1 ∼ n−δ, the upper bound in (35) is valid for the risk E||p̂(s)
n − p(s)||2.

Remark 4.2 When d = 1, p̂
(s)
n is risk minimax optimal for any δ > 0 for the weighted

L2-distance (Fan, 1992) and the L2-distance (see, e.g., Meister, 2009). The same holds

for d > 1, (see, e.g. Comte and Lacour, 2013, Theorem 3, Case B).

We searched the literature for density estimates of fp. For p defined on a compact

subset in R, estimates for location-scale Gaussian mixtures have Hellinger error rates in

probability (log n)ζ/nδ, 0 < δ ≤ .5, ζ > 0 (Genovese and Wasserman, 2000, Ghosal and

van der Vaart, 2001, and Zhang, 2009). From (4) these bounds hold also for L1-distance

and estimates with form fp̂n can be obtained via Lemma 3.1, with the same upper L1-error

rates. These rates and additional results in the literature, e.g., Ibragimov (2001), as well

as (19)-(21) suggest to use an ∼ n−1/2(log n)ζ , 0 < ζ.

Example 4.1 Assume (A1)− (A5) with an ∼ n−1/2(log n)ζ in probability, d = 1, wq(b) =

bγ, γ > 0, q̃ = q + γ. Then:

a) for h the standard normal, h̃(t) ∼ e−t
2

for large |t|, and from (31), (33) in probability

||p̂(s)
n − p(s)||2 ≤ C(log n)(q̃−[s])/2, [s] ≥ 0.

b) for h the Cauchy, h̃(t) ∼ e−|t| for large |t|, and from (31), (33) in probability

||p̂(s)
n − p(s)||2 ≤ C(log n)q̃−[s], [s] ≥ 0.

c) for h the exponential, h̃(t) ∼ |t|−β for large |t|, and from (32) in probability

||p̂(s)
n − p(s)||2 ≤ C

(log n)ξ

n(q̃−[s])/(2q̃+2β+1)
, ξ = ζ(q̃ − [s])/(q̃ + β + .5), [s] ≥ 0.

The bound in c) misses by the factor (log n)ξ the weighted L2-minimax rate (Fan, 1992)

and the L2-minimax rate (see, e.g., Meister, 2009).

The bounds in a)-c) remain valid when an is the risk rate.
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Example 4.2 For the d-dimensional deconvolution in Proposition 3.3, the upper rate of

convergence in probability of fp̂n to fp is logn
n.5

. Thus, the upper L2-rates of convergence

in probability to p(s) for super-smooth and smooth h are, respectively, (log n)(q−[s])/k and

(log n)
2(q̃−[s])

2q̃+2
∑d
i=1

βi+d · n
− q−[s]

2q̃+2
∑d
i=1

βi+d , [s] ≥ 0.

Remark 4.3 When h is smooth, we compare the upper L2-risk rate herein with that of

the lower Lu-risk bound provided by Lepski and Willer (2017, p. 892-895) for the isotropic

and bounded Nikolskii class, Nr,d(q̃, L), in the generalized deconvolution with density of the

X’s in Rd having form (1 − α)p + α(h ∗ p); 0 ≤ α ≤ 1, d ≥ 1, 2 ≤ u < ∞, r is d-vector

(u, u, . . . , u), q̃ and L as defined in (7). The rate of the lower bound is δ
−ρ(α)
n ; ρ(α) depends

on parameters β(α) and ω(α) and on whether a parameter κα(u) is larger than u ·ω(α) or

not. With our notation and for α = 1 that corresponds to the problem herein,

β(1) =
q̃

2
∑d

j=1 βj + d
, ω(1) =

uq̃

2
∑d

j=1 βj + d

and

κ1(u) = ω(1)[2 +
1

β(1)
]− u =

2uq̃

2
∑d

j=1 βj + d
= 2ω(1).

Since κ1(u) is positive and κ1(u) ≤ uω(1), for u ≥ 2,

ρ(1) =
β(1)

2β(1) + 1
=

q̃

2
∑d

j=1 βj + d
/(2

q̃

2
∑d

j=1 βj + d
+ 1) =

q̃

2q̃ + 2
∑d

j=1 βj + d
.

The rate of the Lu-lower bound is n
− q̃

2q̃+2
∑d
j=1

βj+d , 2 ≤ u <∞. When an ∼ (log n)ζn−.5, the

rate of the plug-in upper L2-error bound herein is [ (logn)2ζ

n
]
− q̃

2q̃+2
∑d
j=1

βj+d , missing the lower

bound by a power of log n. However, the exponents in both bounds coincide.

5 Appendix

Proof of Lemma 3.1: From (15), for the estimate ĝn ∈ G it holds

ρ(ĝn, g) ≤ ρ(ĝn, Tn)+ρ(Tn, g) ≤ inf{ρ(Tn, g
∗); g∗ ∈ G}+δn+ρ(Tn, g) ≤ 2ρ(Tn, g)+δn. (36)

When Tn’s risk is bounded by δn, it follows from (15) that

sup
g∈G

Eρ(ĝn, g) ≤ 3δn. .

15



For the upper rate in probability, for ε > 0, let C(ε)(> 1, ) be the constant in (13) such

that

sup
g∈G

P [ρ(Tn, g) > C(ε)δn] ≤ ε.

Then, from (36),

sup
g∈G

P [ρ(ĝn, g) > C(ε)3δn] ≤ sup
g∈G

P [2ρ(Tn, g) + δn > C(ε)3δn] ≤ sup
g∈G

P [ρ(Tn, g) > C(ε)δn].2

Proof of Proposition 3.1: Follows from Yatracos (1985, Theorem 1). 2

Proof of Proposition 3.2: Let h∗1, . . . , h
∗
NH(ξn) be a ξn-L1-sieve forH and p∗1, . . . , p

∗
NP (an)

be a an-L1-sieve for P . For h ∈ H, p ∈ P , let h∗i , p
∗
k be such that

||h− h∗i ||1 ≤ ξn, ||p1 − p∗k||1 ≤ an. (37)

Then, using (37) and Young’s inequality it follows that,

||h ∗ p− h∗i ∗ p∗k||1 ≤ ||h ∗ p− h∗i ∗ p||1 + ||h∗i ∗ p− h∗i ∗ p∗k||1 ≤ ξn + an.

Thus,

{h∗i ∗ p∗k, 1 ≤ i ≤ NH(ξn), 1 ≤ k ≤ NP(an)}

is a (an + ξn)-L1-sieve with cardinality NP(an) ·NH(ξn) in the space

{h ∗ p, h ∈ H, p ∈ P}.

Thus, from (16) the upper bound in probability of the MDE ĥn ∗ p̂n is

C1(an+ξn)+C2(
log[NP(an) ·NH(ξn)]

n
)1/2 ≤ C[an+ξn+(

logNP(an)

n
)1/2+(

logNH(ξn)

n
)1/2]. 2

Proof of Proposition 3.3: Since P is sup-norm compact (Lorentz, 1986, p. 153),

it is also L1-totally bounded and by Young’s inequality, FP,d is also L1-totally bounded.

Thus, for every an > 0 there is a Can-L1-sieve of densities in FP,d. An upper bound for

the logNFP,d(an) is obtained using the an-L1-sieve for p continuous on [−a, a], with the

logarithm of the sieve’s cardinality bounded by C1[log(1/an)]2 (Ghosal and van der Vaart,

2001, Theorem 3.1, p. 1240, with known a, σ = 1 and γ = .5). In every an-L1 ball

with center in this sieve, replace the center by a density in FP,1 from the same ball, if it
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exists. The so-obtained densities are a (2an)-L1 sieve for FP,1 with cardinality bounded by

C1[log(1/an)]2. Thus, d-products of these densities are a C2an-L1 sieve of FP,d and

logNFP,d(C2an) ≤ c[log(1/an)]2. (38)

The rate (19) follows from Proposition 3.1. 2.

Proof of Proposition 3.4: a) Consider the L1-separable subset P∗J = {p∗1, p∗2, . . . , p∗n, . . . , }

of PJ . For every p ∈ PJ denote by Fp the probability measure with density fp. For

βn = (logn).5

n.5
, there is p∗ ∈ P∗J such that ||p− p∗||1 ≤ βn and ||fp − fp∗ ||1 ≤ βn. If

SJ = { {x : h ∗ p∗i (x) > h ∗ p∗j(x)}, i 6= j}, (39)

then, for p1, p2 ∈ PJ ,

||fp1−fp2||1 ≤ 2βn+||fp∗1−fp∗2 ||1 ≤ 2βn+2 sup
A∈SJ

|Fp∗1(A)−Fp∗2(A)| ≤ 6βn+2 sup
A∈SJ

|Fp1(A)−Fp2(A)|.

(40)

By Total Positivity of h for any r and from Proposition 2.1 for every i 6= j, h ∗ (pi − pj)

has at most J changes of sign and the sets in SJ are unions of at most J disjoint intervals,

thus SJ is VC class with exponent 2J + 1. From Yatracos (1988, Theorem 2, p. 287, with

an = βn, lk = 2, vk = 2J + 1, Fak = SJ) it follows that the upper L1 rate of convergence

of fp̂n is

an ∼
(log n).5

n.5
.

b) When J is unknown, consider L1-separable families of densities PI with the same prop-

erties as PJ and I the maximum number of sign changes for the densities’ differences;

I ≥ 1. Observe that PI ⊂ PL, I ≤ L. Let In increase to infinity with n and assume w.l.o.g

that it takes integer values. For n ≥ n0, PJ ⊂ PIn and for p1, p2 ∈ PIn , (40) holds with

βn = (2In+1).25(logn).5

n.5
and SJ replaced by SIn with VC-exponent 2In + 1. From Yatracos

(1988, Theorem 2) it follows that the upper L1 rate of convergence of fp̂n is

an ∼
(2In + 1).5(log n).5

n.5
. 2

Proof of Lemma 3.2: By taking expected values in both sides of (22) and the supre-

mum over all p ∈ P the upper bound follows. For the upper bound in probability, let ε > 0,
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and let C(ε)(> 1) be such that

sup
p∈P

P [ρ1(fp̂n , fp) > C(ε)δn] ≤ ε.

Then,

P [ρ2(p̂n, p) > C(ε)(λn+µnδn)] ≤ P [λn+µnρ1(fp̂n , fp) > C(ε)(λn+µnδn)] ≤ P [ρ1(fp̂n , fp) > C(ε)δn]

and the result follows by taking the supremum for p ∈ P . 2

Lemma 5.1 Let g be a function defined on a set Y in Rd that has all s-mixed order partial

derivatives uniformly bounded for 0 ≤ [s] ≤ q, with the q-th derivative having modulus of

continuity wq. Then, for the kernel K satisfying (8), Kn defined in (9) and Y compact,

||g −Kn ∗ g||u ≤ cbqnwq(bn), c > 0, u ≥ 1. (41)

Proof of Lemma 5.1: The result follows from Yatracos (1989, p. 173, Proposition 1).

2

Proof of Lemma 4.1: For the Fourier transform K̃n(x) it holds,

K̃n(x) = C

∫
e−ixyb−dn K(y/bn)dy = C

∫
ei(xbn)yb−1

n K(yb−1
n )d(yb−1

n ) = CK̃(xbn).

Boundedness of K̃ and Parseval’s identity imply that

||ψn||2 = C||ψ̃n||2 = C[

∫
[−M/bn,M/bn]d

|K̃(bnt)|2

|h̃(t)|2
dt].5 ≤ C

supt∈[−M/bn,M/bn]d |h̃(t)|−1

b.5dn
. 2

Proof of Proposition 4.1:

[

∫
Y
|p̂n(y)− p(y)|2dy]1/2 ≤ [

∫
Y
|p̂n(y)−Kn ∗ p̂n(y)|2dy]1/2

+[

∫
X
|Kn ∗ p̂n(x)−Kn ∗ p(x)|2dx]1/2 + [

∫
Y
|Kn ∗ p(y)− p(y)|2dy]1/2

≤ Cbqnwq(bn) + ||ψn ∗ h ∗ (p̂n − p)||2 ≤ Cbqnwq(bn) + ||ψn||2 · ||fp̂n − fp||1.

The first inequality is due to the triangular property of the || · ||2-distance and to Y ⊂ X .

The second inequality is due to Lemma 5.1 and (24). The third inequality follows from
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Young’s inequality for convolutions. The result follows from Lemma 4.1. 2

Proof of Proposition 4.2: i) When h follows the super-smooth model (28), the second

term in the upper bound (26) has an exponential rate but the first term decreases at

algebraic rate. Since

sup
t∈[−M/bn,M/bn]d

|h̃(t)|−1 ≤ C · e
∑d
j=1 αjM

kb−kn ≤ C · edᾱMkb−kn , (42)

the second term in upper bound (26) converges to zero as n increases if

lim
n→∞

exp{dᾱMkb−kn }
b.5dn

an = 0 ⇐⇒ lim
n→∞

dᾱMkb−kn − .5d log bn − log a−1
n = −∞. (43)

Choosing

bkn =
4dᾱMk

log a−1
n

or bn =
(4dᾱ)1/kM

(log a−1
n )1/k

(43) holds and from Lemma 3.2 the terms in upper bound (26) are

bqnwq(bn) ∼ (log a−1
n )−q/kwq[C(log a−1

n )−1/k], (44)

supt∈[−M/bn,M/bn]d |h̃(t)|−1

b.5dn
an ≤ a3/4

n (log a−1
n )5d/k, (45)

with (45) converging faster to 0 as n increases than (44).

When wq(bn) ∼ bγn, (44) determines the upper convergence rate (log a−1
n )−(q+γ)/k.

ii) When h follows the smooth model (29), both terms in upper bound (26) have algebraic

rate. Since

sup
t∈[−M/bn,M/bn]d

|h̃(t)|−1 ≤ C · (M
bn

)dβ̄

and from Lemma 3.2 we choose bn such that

bqnwq(bn) ∼ an

bdβ̄+.5d
n

.

When wq(bn) ∼ bγn, q̃ = q + γ,

bq̃n ∼
1

bdβ̄n · b.5dn
an or bn ∼ a1/(q̃+dβ̄+.5d)

n (46)

and

||p̂n − p||2 ≤ cMa
q̃/(q̃+dβ̄+.5d)
n .
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iii) Follows using the approach in i) and ii). 2

Proof of Corollary 4.1: Follows along the lines in Yatracos (1989), Proposition 2, p.

174 and Remarks (i) and (ii) pages 174, 175, since p and p(s) have compact support. 2

Proof of Corollary 4.2: The bounds are obtained by plugging an ∼ n−δ in the bounds

in Proposition 4.2 a) i) and in (33) and (34). For densities in R, optimality for any δ > 0

follows from the optimal rates in Fan (1991,1992, 1993). 2
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