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Abstract

A copula model with flexibly specified dependence structure can be useful to

capture the complexity and heterogeneity in economic and financial time series.

However, there exists little methodological guidance for the specification process

using copulas. This paper contributes to fill this gap by considering the recently

proposed single-index copulas, for which we propose a simultaneous estimation and

variable selection procedure. The proposed method allows to choose the most rel-

evant state variables from a comprehensive set using a penalized estimation, and

we derive its large sample properties. Simulation results demonstrate the good per-

formance of the proposed method in selecting the appropriate state variables and

estimating the unknown index coefficients and dependence parameters. An appli-

cation of the new procedure identifies six macroeconomic driving factors for the

dependence among U.S. housing markets.

Keywords: Semiparametric Copula, Single-Index Copula, Variable Selection, SCAD

JEL classification: C14, C22

∗Lingnan (University) College, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
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1 Introduction

There is a growing literature on copula-based models for characterizing the dynamics of

economic and financial time series data. Copula-based multivariate models, mainly driven

by the seminal contribution of Sklar (1959), allow to model multivariate distributions in a

simple and flexible way. Every joint distribution with continuous margins can be decom-

posed into marginal distributions and a copula that explains the dependence structure. In

financial econometrics, the copula has become one of the most popular methods to ana-

lyze the dependence in financial time series and has been widely applied in different areas

such as exchange rates (Patton, 2006), Value-at-Risk (Giacomini, Hardle and Spokoiny,

2009), equity and bond markets (Garcia and Tsafack, 2011), and international financial

market (Chollete, Heinen and Valdesogo, 2009), among others.

To account for changes in the dependence structure over time, a copula model should

allow for time-variation of the parameters that determine the dependence. Time-varying

copulas have been studied via different approaches. One stream of studies assumes that

the dependence parameters are parametric functions of either observed variables or latent

processes. For example, Patton (2004) specifies the conditional correlation as a function

of the lagged risk-free rate, default spread, dividend yield, and the forecasts of the con-

ditional means of two marginal variables. Furthermore, he models exchange rates with

an autoregressive moving average (ARMA)-type process in the dependence structure of

time-varying copulas (Patton, 2006). Giacomini et al. (2009) assume that there exists an

interval of time homogeneity in which the copula parameter is well approximated by a

constant. Autoregressive-type dynamic copula models have been proposed by Hafner and

Manner (2012) and Bartram, Taylor and Wang (2007). Patton (2012) provides a com-

prehensive survey of time-varying copulas and their applications in financial time series

analysis.

Another line of research investigates the dependence in a nonparametric way to avoid

inconsistency due to possible mis-specification. For example, Hafner and Reznikova (2010)

specify the copula parameter as a deterministic function of time, while Acar, Craiu and
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Yao (2011) assume that it varies as a function of a measured covariate. Both of them

employ kernel smoothing methods for estimation.

In this paper, we contribute to the literature by developing a variable selection pro-

cedure for the single-index copula, an innovative time-varying copula model introduced

by Fermanian and Lopez (2018). The single-index copula model is a semi-parametric

conditional copula whose parameter is an unknown link function of an univariate in-

dex. This index form avoids the curse of dimensionality because it essentially reduces

the multivariate problem to a univariate one. From an economic perspective, this index

offers a convenient univariate summary statistic that describes the current state of the

various time-varying economic/financial indicators related to the tail dependence in risk

management.

Fermanian and Lopez (2018) propose an estimation method for the single-index copula.

However, the large sample properties of their estimators are derived for the independently

identically distributed (i.i.d.) case, which is potentially restrictive and may not be suitable

for financial time series with weakly dependent data. Moreover, the univariate single-index

could be a linear combination of many state variables with only a few being statistically

and economically important for the dependence structure. We address these issues in this

paper by doing the estimation and variable selection simultaneously for the single-index

copula model under α-mixing conditions. The variable selection procedure for this index

form has been extensively studied in semiparametric models such as partially linear single-

index models (Liang, Liu, Li and Tsay, 2010) and functional index coefficient models (Cai,

Juhl and Yang, 2015). It has also been applied to semiparametric asset pricing models:

Cai, Ren and Yang (2015) propose a semiparametric conditional capital asset pricing

model (CAPM) by combining the predictors into an index, while Guo, Wu and Yu (2017)

model the conditional market alpha and beta as flexible functions of state variables.

Our contribution is threefold. First, we do the estimation and variable selection si-

multaneously for single-index copulas. Using a sophisticated estimating function coupled

with the smoothly clipped absolute deviation (SCAD) penalty term (Fan and Li, 2001),

we can identify the most relevant state variables from a comprehensive set. Based on
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α-mixing conditions and other regularity conditions, we provide the large sample prop-

erties for the unpenalized estimator and derive the consistency and oracle properties for

the penalized estimator.

Second, we propose a three-step procedure to estimate the parametric and nonpara-

metric components of the copula model, where the marginal parameters are estimated by

maximizing the marginal log-likelihoods, the index coefficients are estimated by maximiz-

ing a global log-likelihood via a profile likelihood approach, and the dependence parame-

ters are obtained by a local log-likelihood function with kernel smoothing. A fixed-point

iterative algorithm is provided to facilitate the implementation. We discuss other prac-

tical issues such as the selection of the bandwidth and tuning parameters, the choice of

the copula family, and the estimation of the asymptotic covariance matrix.

Third, we proceed comprehensive simulations and investigate an empirical application.

The simulation results demonstrate that the proposed method works well in selecting the

appropriate state variables and estimating the unknown index coefficients and dependence

parameters. When applied to housing prices in the United States, the index copula

model encompasses eight macroeconomic variables to account for the heterogeneity in

dependence. The variable selection results suggest that several macroeconomic factors

such as the unemployment rate and GDP growth rate substantially contribute to the

dependence among housing markets in Arizona, California, Florida and Nevada, which

were devastatingly hit during the 2007-2008 economic recession.

The remaining structure of the paper is as follows. Section 2 introduces the proposed

index copula model and the three-step estimation method. In the same section, we es-

tablish large sample properties for both unpenalized estimators and penalized estimators.

Section 3 reports the finite sample simulation results. Section 4 applies the model to the

dependence of housing prices in the United States. The final section draws conclusions.

The technical proofs are provided in the Appendix.
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2 The single-index copula model

In this paper, we consider the single-index copula model in which its bivariate case can

be written as

C(F1(X1|Z;ψ1), F2(X2|Z;ψ2)|Z; θ(γᵀZ)), (1)

where Z = (Z1, Z2, · · · , Zd)ᵀ is a vector of state variables, γ is a d-dimensional vector

of corresponding loadings, and the dependence parameter θ that controls the strength

of the dependence is assumed to be a flexible function of the so called single-index γᵀZ,

i.e., a linear combination of d-dimensional state variables Z. The marginal distributions

are of the form Fi(Xi|Z;ψi) with qi-dimensional parameter vectors ψi for i = 1, 2. We

assume that ‖γ‖ = 1 and the first element of γ is positive for identification, where ‖ · ‖

is the Euclidean norm (L2−norm). Clearly, the index copula model covers several other

existing nonparametric copula models as a special case. For example, when d = 1, the

index copula model reduces to a nonparametric copula with single exogenous variable as

in Acar et al. (2011). When the covariate is time, it becomes to the nonparametric copula

model proposed by Hafner and Reznikova (2010).

The single-index copula model in (1) alleviates the “curse of dimensionality” by pro-

jecting the d-dimensional state space onto the one-dimensional single index via the de-

pendence parameter θ. This is crucial for empirical studies since there is often a large

number of candidate state variables, but only short samples in the case of monthly or

quarterly data. Moreover, we can consider the single-index as a composite measure of

economic/financial conditions, which are the main drivers of the dynamics of dependence.

By taking first derivatives of the distribution function with respect to X1 and X2

sequentially, we obtain its density function as

f1(X1|Z;ψ1)f2(X2|Z;ψ2)c(F1(X1|Z;ψ1), F2(X2|Z;ψ2)|Z; θ(γᵀZ)),

where fi(Xi|Z;ψi) = ∂Fi(Xi|Z;ψi)/∂Xi are conditional marginal densities and c(U1, U2|Z;

θ(γᵀZ)) = ∂2C(U1, U2|Z; θ(γᵀZ))/∂U1∂U2 is the conditional copula density. The corre-
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sponding log-likelihood function for the observed series {X1t, X2t, Zt}Tt=1 is defined as:

L(ψ, θ(γᵀZ)) = L1(ψ1) + L2(ψ2) + Lc(ψ, θ(γ
ᵀZ))

where ψ = (ψᵀ1 , ψ
ᵀ
2)ᵀ, Li(ψi) =

∑T
t=1 `it(ψi), `it(ψi) := log fi(Xit|Zt;ψi), i = 1, 2, and

Lc(ψ, θ(γ
ᵀZ)) =

∑T
t=1 `ct(ψ, γ, θ), `ct(ψ, γ, θ) := log c(F1(X1t|Zt;ψ1), F2(X2t|Zt;ψ2)|Zt; θ(γᵀZt)).

The joint log-likelihood for the single-index copula model is equal to the sum of the two

marginal log-likelihoods and the copula log-likelihood with a single-index form in the de-

pendence parameter θ. To reduce the computational burden for the estimation of the

parametric and nonparametric components of the model, we propose a three-step proce-

dure as described in the following.

2.1 Three-step estimator

First, we let f(Λ) be the density function of Λ = γᵀZ and ε be a small positive constant.

Define the domain of Λ as AΛ = {Λ : f(Λ) ≥ ε; there exist a and b such that Λ ∈ [a, b]},

i.e., AΛ is the set of bounded Λ whose density is bounded away from 0. Assume that

the copula parameter θ(γᵀZt) is linked to the conditional Spearman rank correlation

ρ(X1t, ρ2t|Zt) as

θ(γᵀZt) = g(ρ(X1t, X2t|Zt))

where g is a nonlinear, strictly monotone function. For example, in the bivariate Gaussian

copula case it is given by g(x) = 2 sin(π
6
x), x ∈ [−1, 1]. Many other popular copulas

satisfy this assumption. An estimator of the conditional Spearman rank correlation will

allow us to obtain an initial estimator of γ.

We propose the following three-step procedure to estimate the parametric and non-

parametric components of the model:
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Step 1 For the marginal distributions, their parameters ψ̂1 and ψ̂2 are respectively

estimated by maximizing the marginal log-likelihoods L1(ψ1) and L2(ψ2), i.e.,

ψ̂i = arg max
ψi

Li(ψi) for i = 1, 2.

This step uses classical parametric estimation and is referred to as the inference function

for margins (IFM) approach by Joe (2000). Under weak regularity conditions, the stan-

dard convergence rate of the estimators is ‖ψ̂i − ψ0i‖ = Op(1/
√
T ) where ψ0i is the true

value of ψi. Denote the true value vector ψ0 = (ψᵀ01, ψ
ᵀ
02)ᵀ and its corresponding estimator

vector ψ̂ = (ψ̂ᵀ1 , ψ̂
ᵀ
2)ᵀ hereafter.

Step 2 Let Ûit := Fi(Xit|Zt; ψ̂i), i = 1, 2. An initial estimator of the index coefficient γ̃

is obtained by maximizing the global log-likelihood given as

γ̃ = arg max
γ

1

T

T∑
t=1

log c(Û1t, Û2t|Zt; θ̃−t(γᵀZt)). (2)

where θ̃−t(Λt) is a nonlinear transformation of a nonparametric initial estimator of Spear-

man’s rho, i.e.

θ̃−t(Λt) = g(ρ̂−t(Λt))

ρ̂−t(Λt) =
Σ̂12,−t(Λt)√

Σ̂11,−t(Λt)Σ̂22,−t(Λt)

where Σ̂ij,−t(Λt) is a Nadaraya-Watson leave-one-out estimator of the conditional covari-

ance of (Ûiτ , Ûjτ ) evaluated at Λt. That is,

Σ̂ij,−t(Λt) =

∑
τ 6=t I(Λτ ∈ AΛ)kb(γ

ᵀ(Zτ − Zt))Ûiτ Ûjτ∑
τ 6=t I(Λτ ∈ AΛ)kb(γᵀ(Zτ − Zt))

− µ̂i,−t(Λt)µ̂j,−t(Λt), i, j ∈ {1, 2}

where µ̂i,−t(Λt) is a corresponding estimator of the conditional mean evaluated at Λt, i.e.

µ̂i,−t(Λt) =

∑
τ 6=t I(Λτ ∈ AΛ)kb(γ

ᵀ(Zτ − Zt))Ûiτ∑
τ 6=t I(Λτ ∈ AΛ)kb(γᵀ(Zτ − Zt))

, i ∈ {1, 2}
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and where kb(·) = k(·/b)/b with k(·) being a kernel function and b a bandwidth.

Step 3 The nonparametric dependence estimator θ̂(Λ) at a given index point Λ is ob-

tained by maximizing the local log-likelihood copula function,

θ̂(Λ) = arg max
θ

1

T

T∑
t=1

log c(Û1t, Û2t|Zt; θ(Λ))kh(γ̃
TZt − Λ)

and the index coefficient γ is estimated by

γ̂ = arg max
γ

1

T

T∑
t=1

log c(Û1t, Û2t|Zt; θ̂(γᵀZt)). (3)

In fact, it is challenging to find a solution for γ̂ in (3) when its dimension is large.

To reduce the computational burden, we obtain the estimator by a fixed-point iterative

algorithm which will be described with details in Section 2.3.

To study the asymptotic properties of the unpenalized estimators under α-mixing

conditions, we introduce the following assumptions:

(A1) The copula is Lipschitz continuous in its dependence parameter θ. And the func-

tion θ(·) is continuous, bounded, not constant everywhere and has second order

continuous derivatives on AΛ.

(A2) There exists no perfect multicollinearity within the components of Z, and none of

the components of Z is constant.

(A3) The parameter γ is element of Γ, a compact subset of Rd, and γ0 lies in the interior

of Γ. The first element of γ is positive and ‖γ‖ = 1, where ‖ · ‖ is the Euclidean

norm (L2 norm).

(A4) For any γ ∈ Rd and Λ ∈ AΛ, the density function f(Λ) is continuous and there

exists ε > 0 such that f(Λ) ≥ ε.

(A5) The joint likelihood function Lc is three times differentiable with respect to θ and
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twice differentiable with respect to ψ1 and ψ2. The marginal likelihood function

Li(ψi) is twice differentiable with respect to ψi.

(A6) The kernel function k(z) is twice continuously differentiable on its support, and

its second derivative satisfies a Lipschitz condition. Define the kernel constants

µ2 =
∫
z2k(z)dz <∞ and ν0 =

∫
k2(z)dz <∞.

(A7) The bandwidth h = hT satisfies h → 0 and Th → ∞, as T → ∞. And the

bandwidth b = bT satisfies b→ 0 and Tb/(− log b)→∞, as T →∞.

(A8) Assume that {X1t, X2t, Zt}Tt=1 is a strictly stationary α-mixing sequence. Fur-

ther, assume that there exists some constant c > 0 such that E|X1t|2(2+c) < ∞,

E|X2t|2(2+c) < ∞, E|Zt|2(2+c) < ∞, and the mixing coefficient α(`) satisfying

α(`) = O(`−ϑ) with ϑ = (2 + c)(1 + c)/c.

Conditions (A1)-(A3) are mild conditions for identification. It is obvious that γ cannot

be identified if θ is a constant. The no perfect multicollinearity condition in Assumption

(A2) is similar to that in classical linear models. A constant is excluded from Z as

it can be absorbed by the nonparametric function θ. As γ is identified up to sign and

scale, Condition (A3) imposes sign and scale restrictions for identification. Condition (A4)

implies that the distance between two ranked values γᵀZ(t) is at most of order Op(log T/T ),

see Janson (1987). For any value Λ ∈ AΛ, we can find a closest value γᵀZt to Λ = γᵀZ such

that |γᵀZt − Λ| = Op(log T/T ). Under Condition (A1), ‖θ(Λt) − θ(Λ)‖ = Op(log T/T ),

which is of smaller order than the nonparametric convergence rate T−2/5. This implies

that we only need to estimate θ̂(Λt) for t = 1, 2, · · · , T , rather than θ̂(Λ) for all values in

the domain AΛ. The detailed arguments can be found in Wang and Xia (2009). Condition

(A5) is for deriving the asymptotic distribution and Conditions (A6) and (A7) are common

assumptions in nonparametric estimation. In our simulation and empirical study, the

commonly adopted Epanechnikov kernel function k(u) = 3/4(1 − u2)I(|u| ≤ 1) is used,

where I(|u| ≤ 1) takes the value 1 if |u| ≤ 1 and 0 otherwise. The bandwidth b in (A7)

is used for obtaining an initial estimator of the index coefficient γ. The conditions in
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(A8) are the common conditions with weakly dependent data. Most financial time series

models, such as ARMA and GARCH, satisfy these conditions, see e.g. Cai (2002).

To find the asymptotic properties of the estimators, we introduce some notations.

Let ξ = (ψᵀ, γᵀ)ᵀ, ξ0 = (ψᵀ0 , γ
ᵀ
0)ᵀ, Λ = γᵀZ, mz(Λ) = E(Z|Λ) and `′it(ψi) = ∂`it(ψi)/∂ψi.

The efficient score function related to the copula part of the model is given by π(θ,mz, ξ) =∑T
t=1 πt(θ,mz, ξ), where πt(θ,mz, ξ) = `′ct(ψ, γ, θ)θ

′(Λt)(Zt−mz(Λt)), the derivative `′ct(ψ, γ, θ) =

∂`ct(ψ, γ, θ)/∂θ, and θ′(·) is the first derivative of the function θ(·) which exists by Assump-

tion (A1). Similarly, we can define ξ̂ = (ψ̂ᵀ, γ̂ᵀ)ᵀ, m̂z(Λ) = Ê(Z|Λ) with Ê(Z|Λ) being the

local constant (Nadaraya-Watson) estimate of Z at Λ, and π(θ̂, m̂z, ξ) =
∑T

t=1 `
′
ct(ψ, γ, θ̂)θ̂

′(Λt)(Zt−

m̂z(Λt)). Further, we define the efficient score vector for the complete set of parameters

as

Π(θ,mz, ξ) =


∂L1(ψ1)/∂ψ1

∂L2(ψ2)/∂ψ2

π(θ,mz, ξ)

 and Π(θ̂, m̂z, ξ) =


∂L1(ψ1)/∂ψ1

∂L2(ψ2)/∂ψ2

π(θ̂, m̂z, ξ)

 .

Theorem 1. Let {X1t, X2t, Zt}Tt=1 be a strictly stationary α-mixing sequence following the

index copula model in (1). Under Conditions (A1)-(A8), as T →∞, ‖ξ̂−ξ0‖ = Op(T
−1/2)

and
√
T (ξ̂ − ξ0)

d→ N(0, V ),

where V = M−1Ω(M−1)ᵀ with M = −E ∂Π(θ,mz, ξ0)/∂ξ and Ω =
∑∞

j=−∞ Γj with

Γj = Cov (ζt, ζt−j) and ζt := (`′1t(ψ01)ᵀ, `′2t(ψ02)ᵀ, πt(θ,mz, ξ0)ᵀ)ᵀ.

If the random vector sequence {ζt}∞t=1 is either i.i.d. or a martingale difference se-

quence, then the long-run variance Ω simplifies to Ω = Γ(0) = Var(ζt). Otherwise, the

autocovariance function Γ(j) may not be zero at least for some lag order j 6= 0 due to the

serial correlation of ζt.

Remark 1. To find the asymptotic distribution of the estimator of γ in the index copula

model, we define ι = (0, Id), where 0 is a d × q matrix of zeros with q = q1 + q2, and
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Id is the d-dimensional identity matrix, where q and d are the dimensions of ψ and γ,

respectively. Then, as T →∞,
√
T (γ̂ − γ0)

d→ N(0, Vγ) where Vγ = ιV ιᵀ.

Theorem 2. Let {X1t, X2t, Zt}Tt=1 be a strictly stationary α-mixing sequence following the

index copula model in (1). Assume that the bandwidth h = Op(T
−1/5) and the estimators

ψ̂ and γ̂ satisfy ‖ψ̂−ψ0‖ = Op(1/
√
T ) and ‖γ̂−γ0‖ = Op(1/

√
T ), respectively. For a fixed

point Λ lying in the interior of the support AΛ, under Conditions (A1)-(A8), as h → 0

and Th→∞, we have

√
Th{θ̂(Λ)− θ(Λ)− h2B(Λ)} d→ N

(
0,

ν0

f(Λ)
Σ(Λ)−1Φ(Λ)Σ(Λ)−1

)
,

where B(Λ) = 1
f(Λ)

θ′(Λ)f ′(Λ)µ2 + 1
2
θ′′(Λ)µ2, Σ(Λ) = −E{`′′ct(ψ, γ, θ(Λ))|γᵀZ = Λ} and

Φ(Λ) =
∑∞

j=−∞Rj(Λ) with Rj(Λ) = E{`′ct(ψ, γ, θ(Λ))`′c(t+j)(ψ, γ, θ(Λ))ᵀ|γᵀZ = Λ}.

Remark 2. The condition ‖ψ̂ − ψ0‖ = Op(1/
√
T ) can be derived from the marginal log-

likelihood estimation and the condition ‖γ̂ − γ0‖ = Op(1/
√
T ) is obtained from Theorem

1. From Theorem 2, as expected, the initial estimators of both ψ̂ and γ̂ have little effect

on the final estimation of θ̂(·) in large samples, due to the fact that the parametric parts

of the model ψ̂ and γ̂ are estimated at a faster convergence rate than the nonparametric

component θ̂(·). The convergence rate of the nonparametric estimator is
√
Th, and the

bias term is h2B(Λ).

2.2 Penalized estimating function estimator

In the case where many state variables are included in the dependence function, there is

a risk of overfitting and efficiency loss. As pointed out in the discussion part of Acar et

al. (2011), “we recommend a careful selection of the variable prior to estimation of the

calibration function if more covariates are of potential interest for the conditional copula

model.” This motivates us to do the estimation and variable selection simultaneously.

In the literature, variable selection is usually implemented by maximizing a penalized

likelihood function or minimizing a penalized least square criterion. In our case, the
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likelihood function for the index copula model is composed of several parts pertaining

to the marginal distributions and the dependence parameter, and we have to make a

choice for the penalization of these parts. In a general framework, penalized estimating

functions have been proposed by Johnson, Lin and Zeng (2008), where the functions do

not necessarily correspond to the likelihood-based criteria.

In this section, we propose the following penalized estimating function,

ΠP (θ̂, m̂z, ξ) = Π(θ̂, m̂z, ξ)− Tp′λ(|ξ|)sgn(ξ) (4)

where p′λ(|ξ|) = (0ᵀ, p′λ1(|γ1|), · · · , p′λd(|γd|))ᵀ, with 0 being a q-vector of zeros, and p′λ(·)

the derivative of a penalty function with tuning parameter λ. We do not penalize the

marginal parameters ψ1 and ψ2 since our main focus is the dependence structure. An

estimator of ξ will be defined as the solution of the equation

ΠP (θ̂, m̂z, ξ) = 0. (5)

Note that the estimating equation (5) can be obtained from classical moment conditions

and is referred to as an estimating function method (EFM) in Johnson et al. (2008). By

the definition of πt(θ,mz, ξ), note that E[πt(θ,mz, ξ)] = 0. The solution of ΠP (θ̂, m̂z, ξ) =

0 yields a consistent estimator of γ as long as one of `′ct(ψ, γ, θ) and θ′(Λt) is correctly

specified, see Zhu, Dong and Li (2013) for details.

Various penalty functions have been proposed over the last decades. As pointed out

by Fan and Li (2001), a good penalty function should have three properties: unbiasedness

for large parameters, sparsity, and continuity to avoid instability in model prediction.

Here, we will use the smoothly clipped absolute deviation (SCAD) penalty function (Fan

and Li, 2001) that enjoys all three properties, although many other penalty functions

such as LASSO (Tibshirani,1996) and adaptive LASSO (Zou, 2006) are also applicable.

The first-order derivative p′λk(|γk|) of the continuous differentiable SCAD penalty function
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pλk(|γk|) is given by

p′λk(|γk|) = λkI(|γk| ≤ λk) +
(aλk − |γk|)+

(a− 1)
I(|γk| > λk)

for some a > 2, where I(·) is the indicator function and (aλk − |γk|)+ takes its positive

value if aλk − |γk| is positive, and zero otherwise. For simplicity, we assume that the

tuning parameters λk are the same for k = 1, . . . , d by taking λk = λT . We select a = 3.7

from a Bayesian risk point of view as suggested by Fan and Li (2001). They note that

this choice provides a good practical performance for various variable selection problems.

To find the asymptotic properties of the proposed penalized estimating function, with-

out loss of generality, we assume the first d1 coefficients of γ to be nonzero and all (d−d1)

remaining components of γ to be zero. That is, the true parameter vector is decomposed

as γ0 = (γᵀ10, γ
ᵀ
20)ᵀ, where all elements of the d1-dimensional vector γ10 are nonzero and

all elements of the (d− d1)-dimensional vector γ20 are equal to zero. Moreover, we define

ξ10 = (ψᵀ0 , γ
ᵀ
10)ᵀ, and let Z = (Zᵀ1 , Z

ᵀ
2 )ᵀ with Z1 being the d1 relevant state variables, Z2

the (d− d1) irrelevant state variables, Λ1 = γᵀ1Z1 and mz1(Λ1) = E(Z1|Λ1).

Furthermore, we include the following additional technical conditions:

(B1) lim
T→∞
{
√
Tp′λT (|γk|)} = 0 and p′′λT (|γk|) → 0 for k = 1, · · · , d1. For any C >

0, lim
T→∞
{
√
T inf‖γ‖≤C/

√
T p
′
λT

(|γk|)} → ∞, for k = d1 + 1, · · · , d.

Condition (B1) holds when the tuning parameter λT → 0 and
√
TλT →∞ as T →∞,

which are commonly employed in the SCAD penalty based variable selection. See Fan

and Li (2001) for details.

The next two theorems respectively postulate the existence of the
√
T -consistent esti-

mator and its oracle property from the proposed penalized estimating functions.

Theorem 3. Let {X1t, X2t, Zt}Tt=1 be a strictly stationary α-mixing sequence following

the index copula model in (1). Under conditions (A1)-(A8) and (B1), there exists a
√
T -consistent estimator ξ̂ satisfying both ‖ξ̂ − ξ0‖ = Op(T

−1/2) and ΠP (θ̂, m̂z, ξ̂) = 0.
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The next theorem states that the estimator of ξ10 is as efficient as the maximum

likelihood estimator that uses the information γ20 = 0, which is commonly called the

oracle property.

Theorem 4 (Oracle Property). Let {X1t, X2t, Zt}Tt=1 be a strictly stationary α-mixing

sequence following the index copula model in (1). Assume that the tuning parameter

λT → 0 and
√
TλT → ∞ as T → ∞, under conditions (A1)-(A8) and (B1), the

√
T -

consistent estimator for ΠP
k (θ̂, m̂z, ξ̂) = 0, denoted by ξ̂ = (ξ̂ᵀ1 , γ̂

ᵀ
2)ᵀ with ξ̂1 = (ψ̂ᵀ, γ̂ᵀ1)ᵀ,

satisfies the following two properties:

(a) Sparsity: γ̂2 = 0,

(b) Asymptotic normality:
√
T (ξ̂1 − ξ10)

d→ N(0, V1),

where V1 = M−1
1 Ω1(M−1

1 )ᵀ with M1 = −E ∂Π(θ,mz1 , ξ10)/∂ξ1 and Ω1 =
∑∞

j=−∞ Γ1j

with Γ1j = Cov (ζ1t, ζ1,t−j) and ζ1t = (`′1t(ψ01)ᵀ, `′2t(ψ02)ᵀ, πt(θ,mz1 , ξ01)ᵀ)ᵀ.

Sparsity is an important statistical property in high-dimensional statistics. By assum-

ing that only a small subset of state variables is important, the sparsity principle reduces

complexity and improves the model’s interpretability and predictability. The sparsity

property from Theorem 4 demonstrates that the proposed penalized estimating function

based copula model shrinks the zero components of the true parameter vector to zero

with probability one as the sample size T goes to infinity.

2.3 Practical issues

A. Algorithm In the following, we only present the algorithm for penalized estimators

in (5), since we can remove the penalty term in (5) to find the unpenalized estimators in

(3).

In Step 3 of the estimation procedure in Section 2.1, it is challenging to find a solution

for γ̂ in (5) since the assumption ‖γ‖ = 1 represents a non-standard problem: the true
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coefficient γ0 is on the boundary of a unit ball. Moreover, we do not have closed form

expressions for γ̂ and the local likelihood estimator θ̂. Numerical optimization algorithms

such as Newton-Raphson might be sensitive to starting values and suffer from heavy

computational costs.

We propose to use a fixed-point iterative algorithm (Cui, Härdle and Zhu, 2011),

which is less sensitive to initial values, to compute the penalized estimator in (5). First,

we standardize all state variables to have mean zero and standard deviation one. Define

πP (θ̂, m̂z, (ψ̂
ᵀ, γ̂ᵀ)ᵀ) = π(θ̂, m̂z, (ψ̂

ᵀ, γ̂ᵀ)ᵀ)−Tp′λ(|γ|)sgn(γ) with p′λ(|γ|) = (p′λ1(|γ1|), · · · , p′λd(|γd|))ᵀ

and efficient score function π(·) being defined in Section 2.1. Let πP (γ̂(0)) = πP (θ̂, m̂z, (ψ̂
ᵀ, γ̂(0)ᵀ)ᵀ)

and πP1 (γ̂(0)) denotes the first element of πP (γ̂(0)).

Then, the coefficient γ can be iteratively updated by γ̂(j)/‖γ̂(j)‖ with

γ̂(j) =
C1

πP1 (γ̂(j−1))/‖πP (γ̂(j−1))‖+ C1

γ̂(j−1) +
|πP1 (γ̂(j−1))|/‖πP (γ̂(j−1))‖2

πP1 (γ̂(j−1))/‖πP (γ̂(j−1))‖+ C1

πP (γ̂(j−1)),

(6)

for j = 1, 2, . . ., where the marginal parameters ψ̂ are estimated from Step 1 in Section 2.1,

and θ̂ and m̂z are the nonparametric estimators with given ψ̂ and γ̂(j−1). The derivative

θ̂′(γ̂(0)ᵀZt) is numerically approximated by θ̂′(γ̂(0)ᵀZt) = (θ̂(γ̂(0)ᵀZt̄)−θ̂(γ̂(0)ᵀZt))/(γ̂
(0)ᵀZt̄−

γ̂(0)ᵀZt), where γ̂(0)ᵀZt̄ is the closest value to γ̂(0)ᵀZt in the sequence {γ̂(0)ᵀZt}Tt=1 except

for γ̂(0)ᵀZt itself. C1 is a constant satisfying πP1 (γ̂(0))/‖πP (γ̂(0))‖ + C1 6= 0 for any γ̂(0).

We choose C1 ∈ [2/
√
d, d/2] which gives a good practical performance as suggested by

Cui et al. (2011). We iterate equation (6) until γ̂ converges. The final vector γ̂(j)/‖γ̂(j)‖

is the estimate of γ0.

B. Choosing bandwidth and tuning parameters To do the nonparametric esti-

mation and variable selection simultaneously, we need to choose suitable regularization

parameters, i.e., the bandwidth h for the nonparametric estimator and λT for the penalty

terms. Various methods for the selection of bandwidths and tuning parameters have been

discussed in the variable selection literature, such as cross-validation, AIC- and BIC-type

criteria, among others. Due to the time series nature of the sequence {X1t, X2t, Zt}Tt=1, we

14



propose to use the forward leave-one-out cross-validation to select both the bandwidth h

and tuning parameter λT in the penalty term simultaneously.

Define Θ̂(h, λT ) ≡ (θ̂(h, λT ), m̂z(h, λT ), ξ̂(h, λT )) as the parametric and nonparametric

estimators for the penalized index copula models in (5) with known bandwidth h and tun-

ing parameter λT . For each data point t0 + 1 ≤ t∗ ≤ T , we use the data {X1t, X2t, Zt, t <

t∗} to construct the estimate Θ̂t∗(h, λT ) at the sample point {X1t∗ , X2t∗ , Zt∗}, where t0

is the minimum window size used to estimate Θ̂t0+1(h, λT ). Under this forward recursive

scheme, we obtain the sequential estimators {Θ̂t∗(h, λT )}Tt∗=t0+1 and the optimal band-

width h∗ and tuning parameter λ∗T can be obtained by maximizing the objective function

(h∗, λ∗T ) = arg max
(h,λT )

T∑
t∗=t0+1

{`ct∗(ψ̂, γ̂, θ̂)|Θ̂t∗(h, λT )}.

It is clear that (h∗, λ∗T ) is the forward leave-one-out cross-validation estimator in terms of

the log-likehood.

C. Choosing copula families In practice, any copula-based modeling must be ac-

companied by a strategy to select among a large set of candidate copula families to best

approximate the time series data at hand. The selection for copula family in a paramet-

ric setting is usually implemented by comparing the likelihood values plus the AIC or

BIC penalty term (Patton, 2004 and Patton, 2006). To verify how well the model fits

the underlying process, the goodness-of-fit (GoF) test for parametric copula models was

developed by using a Rosenblatt probability integral transformation (Dobric and Schmid,

2007). However, the same approach does not apply to the selection of copula family in

a semiparametric or nonparametric setting, as the scales of the likelihood vary across

families via nonparametric estimation. Following the idea of Acar et al. (2011) who se-

lect copula with i.i.d. data, we propose to use a cross-validated prediction error (CVPE)

method for time series observations.

Let C := {C1, . . . , CN} be a set of N candidate copula families. The aim is to select

an optimal copula family C∗ that best fits the time series sequence {X1t, X2t, Zt}Tt=1. By
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the same token as in choosing the bandwidth and tuning parameters, we use the data

{X1t, X2t, Zt, t < t∗} to construct the estimate Θ̂t∗(Cj) for the j-th copula family Cj, where

t0 + 1 ≤ t∗ ≤ T and t0 is the minimum window size used to estimate Θ̂t0+1(Cj). Then,

the CVPE for the j-th copula family Cj is defined as

CVPE(Cj) =
T∑

t∗=t0+1

(Û1t∗ − Ũ1t∗(Cj))2 +
T∑

t∗=t0+1

(Û2t∗ − Ũ2t∗(Cj))2

where Ũ1t∗(Cj) =
∫ 1

0
U1c(U1, U2|Θ̂t∗(Cj))dU1 and Ũ2t∗(Cj) =

∫ 1

0
U2c(U1, U2|Θ̂t∗(Cj))dU2.

The optimal C∗ is then defined as C∗ = arg minC CVPE(Cj).

D. Estimation of the variance covariance matrix It is difficult to estimate the

variance-covariance matrix T−1V directly since it is not straightforward to calculate the

exact form of M . To avoid this difficulty, we adopt the idea of jackknife suggested by Joe

(2000) to estimate T−1V . Let ξ̂(−t) be the leave-one-out estimator of ξ, t = 1, 2, . . . , T ,

then the jackknife estimator of T−1V can be calculated by
∑T

t=1(ξ̂(−t)− ξ̂)(ξ̂(−t)− ξ̂)T . If

the sample size T is large enough, we can extend the estimator to the leave-one-block-out

jackknife estimator. Denote the full data set (X1, X2, Z) by z, and the training set and

the test set by z\zb and zb for b = 1, 2, · · · , κ, respectively, where κ is the number of

blocks. For each b, we obtain the estimator ξ̂(−b) from the training set z\zb. Then the

leave-one-block-out jackknife estimator of T−1V is calculated by
∑κ

b=1(ξ̂(−b)−ξ̂)(ξ̂(−b)−ξ̂)ᵀ.

Note that the leave-one-out jackknife estimator is a special case of the leave-one-block-out

estimator if there is only one observation in the test set zb.

3 Numerical studies

In this section, we investigate the finite-sample performance of the proposed estimation

and selection method through a series of numerical studies. We consider a bivariate case
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where the data are generated by an ARMA(1,1)-GARCH(1,1) process:

xit = ρixi,t−1 + eit + ϕiei,t−1, i = 1, 2; t = 1, ..., T,

where ρ1 = 0.05, ρ2 = 0.1, ϕ1 = 0.1, ϕ2 = 0.2, and eit = σitεit. We further assume that

σ2
it = αi0 + αi1e

2
i,t−1 + βi1σ

2
i,t−1,

where α10 = 10−5, α11 = 0.05, β11 = 0.90 for the first margin, and α20 = 10−5, α21 = 0.04,

β21 = 0.91 for the second margin. The dependence structure between ε1t and ε2t is

governed by a single-index copula model

C(U1, U2; θ(γᵀZ)),

where U1 and U2 respectively denote the marginal distributions of ε1t and ε2t which are

respectively assumed to be student’s t-distribution with 3 and 4 degrees of freedoms. The

copula dependence parameter θ is a function of γᵀZ, where Z = (Z1, Z2, · · · , Z5)ᵀ is a

vector of state variables and γ = (γ1, γ2, · · · , γ5)ᵀ is a vector of corresponding loadings

satisfying the assumptions that γ1 is positve and ||γ|| = 1. We generate Z1, Z2, · · · , Z5

from a truncated standard normal distribution with the interval of truncation [−1, 1],

and then standardize all state variables to have mean zero and standard deviation one.

Moreover, three of the five index coefficients γ1, γ2, · · · , γ5 (say γ3 ∼ γ5) are set to be

zeros. The goal of the simulation studies is to check whether the proposed method can

accurately estimate the unknown parameters and correctly select the state variables.

We respectively consider three commonly used copulas: the Clayton, Gumbel and

Frank copulas as the copula function. These three copulas are suitable for different de-

pendence structures. As is well known, the Clayton copula exhibits strong lower tail

dependence, and can well capture cases such as simultaneous crash in two markets. The

Gumbel copula shows strong upper tail dependence and can be an appropriate model

when two markets tend to boom together. In contrast to the Clayton and Gumbel cop-
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ulas, the Frank copula shows no tail dependence and strong dependence appears at the

center.

For each copula function, we consider two models for the index coefficients and the

dependence parameters. Therefore, we have 3× 2 = 6 cases in total:

• Model 1: γ1 =
√

2
2

, γ2 =
√

2
2

, γ3 = γ4 = γ5= 0; θ(Λ) = exp( 5
12

Λ + 1) + 2 for Clayton

and Gumbel, and θ(Λ) = exp( 5
12

Λ + 1) for Frank;

• Model 2: γ1 =1
2
, γ2 =

√
3

2
, γ3 = γ4 = γ5= 0; θ(Λ) = 6.6 − 0.7Λ2 for Clayton and

Gumbel, and θ(Λ) = 4.6− 0.7Λ2 for Frank.

In addition, two sample sizes, T = 500 and 1000, are considered for each case, and

all simulations are repeated 1000 times (M = 1000). For each sample, we calculate the

estimates for the dependence parameters at 101 equally-spaced grid points Λi = −2+0.04i

for i ∈ {0, 1, ..., 100}.

We use Table 1 to check whether the proposed method can correctly select the state

variables. The numbers in Table 1 present the percentages corresponding to the correctly

and incorrectly (in parentheses) selected state variables for the 6 cases respectively. The

results in Table 1 demonstrate that the proposed method can select the appropriate state

variables with high accuracy. For all cases of T = 500, the correct state variables are

selected with at least 93% probability. When the sample size increases to 1000, the

probability of selecting the important state variables is 100% for all cases except for

Model 2 of Frank (which is 98.7%). Furthermore, the percentage that the redundant

state variables (the variables that are not included in the true index copula models) are

selected is small. For example, when T = 1000, the probability of selecting the redundant

state variables is 7.1% and 6.9% respectively for Models 1 and 2 of Clayton, and 4.9%

and 5.1% respectively for Models 1 and 2 of Gumbel. Even for the worst case (Model 2

of Frank), the probability is still not higher than 10%.

To investigate the performance of the proposed method in estimating the unknown

index coefficients, we report the means, medians, and mean square errors (MSEs) of the

estimators of the nonzero index coefficients (γ1 and γ2) for all 6 cases in Table 2. One
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can easily see that as sample size increases, the means and medians are getting closer to

the true values and the MSEs decrease. Moreover, the proposed method can accurately

estimate the unknown index coefficients.

The MSEs of the estimated copula dependence parameter θ respectively shown in the

6th, 9th and 12th columns of Table 2 are calculated as

MSE(θ̂) =
1

M

1

101

M∑
j=1

101∑
i=1

(
θ̂j(Λi)− θ(Λi)

)2

.

We observe that as the sample size increases from 500 to 1000, the MSEs of the estimated

θ decrease and the estimates become more accurate.

Figure 1 further evaluates the performance of the proposed method in estimating θ by

presenting the estimated and the true dependent parameter paths for different models.

We depict the true dependence parameter function through a black solid line, and use two

curves to respectively represent medians (blue) and means (red) of the 1000 simulation

parameter function estimates at the grid points. The two black dashed curves represent

the 5% and 95% percentiles of the dependence parameter estimates at the grid points.

We only present the results for T = 1000 to save space. Figure 1 shows that in all cases,

the median and mean curves closely follow the true value paths, which again confirms

the good performance of the proposed method in estimating the unknown dependence

parameters.

4 Empirical applications

In this section, we use the proposed estimation method to examine the dependence of

housing prices in the United States. Asset prices are well known to be closely correlated

and housing prices are not an exception. Even though housing markets in different areas

are commonly believed to be localized, they are often related across different geographic

areas because prices are sensitive to nation-wide macroeconomic factors such as monetary

policy and fiscal policy (Del Negro and Otrok, 2007 and Kallberg, Liu and Pasquariello,
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2014).

We collect quarterly percentage changes of the Housing Prices Index (HPI) in four

states — Arizona, California, Florida and Nevada — from the U.S. Federal Housing

Finance Agency (FHFA). These four states were strongly hit during the economic recession

of 2008-2010 (Zimmer, 2012). The data span the period from 1975:Q1 to 2018:Q1, a

period that witnessed five recessions. Figure 2 shows the paths of the quarterly percentage

changes of HPI in the four states and the five economic recessions (indicated by the five

shaded areas) identified by the National Bureau of Economic Research (NBER). For the

four states, the greatest volatility in housing prices happened during the late 1970s and

early 1980s. Since then, housing prices in these states have become less volatile until 2006,

the eve of the subprime mortgage crisis which caused substantial decline in housing prices

through almost the whole country. For potentially relevant state variables, we collect eight

national economic factors from the Federal Reserve Economic Data (FRED): the consumer

price index (CPI), the quarterly growth of per capita real GDP (GDP ), the quarterly

growth of real disposable personal income (INC), the effective real federal funds rate

(INT ), the quarterly growth of residential investment as a percent of GDP (INV ), the

quarterly growth of industrial production index (IPI), the quarterly growth of oil price

(West Texas Intermediate, OIL), and the civilian unemployment rate (UNE). All these

factors can, to some extent, mirror the macroeconomic situation and are tracked closely

by investors and policy makers. The descriptive statistics for the percentage changes of

housing prices and the eight state variables are documented in Table 3.

Preliminary examinations suggest that autocorrelation and autoregressive conditional

heteroscedasticity exist in all four states’ housing price series. The Ljung-Box test (not

tabulated here) indicates that the percentage changes of housing prices are serially cor-

related up to the fourth order. To avoid spurious dependence, we follow Chen and Fan

(2006) and use AR-GARCH models for filtering. For example, we fit the percentage

changes of housing prices to an AR(p)-GARCH(1,1) process specified as

yit = δi + γi1yi,t−1 + γi2yi,t−2 + ...+ γipyi,t−p + eit,
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where yit denotes the growth rate of housing prices at time t for division i and eit is a con-

ditionally heteroskedastic error term. The error term is decomposed as eit = σitεit, where

εit is an i.i.d. innovation term with mean zero and variance one. The contemporaneous

dependence of the pair (ε1t, ε2t) will be characterized by a copula model, to be specified.

The conditional variance σ2
it is specified as a classical GARCH(1,1) model, i.e.,

σ2
it = ωi + αi1ε

2
i,t−1 + βi1σ

2
i,t−1.

To capture potentially fat tails in the conditional distribution of the error terms, we

assume that the marginal distribution of εit is a standardized Student’s t distribution.

Table 4 summarizes the coefficients of the AR-GARCH filtering and most of the results

are statistically significant. Ljung-Box tests confirm the zero autocorrelation for the

filtered percentage changes. For AZ, CA and NV, we use the AR(1)-GARCH(1,1) model

while for FL we use the AR(2)-GARCH(1,1) model. We adopt the Jarque-Bera test

to examine whether the four states’ housing prices, after the filtering, follow a normal

distribution. The test statistics in Figure 3 provide evidence of the non-normality in the

four filtered series and support the use of the Student’s t distribution for εit.

The set of candidate copulas includes six widely-used copulas in empirical studies:

Gaussian, Clayton, Gumbel, Frank, Rotated Clayton and Rotated Gumbel. We first use

the proposed CVPE method to choose the optimal copula. Table 5 presents the prediction

errors of the six candidate copulas and it shows that Frank is selected for AZ-CA, CA-FL,

CA-NV and FL-NV and Gumbel is selected for AZ-FL and AZ-NV. Next, we implement

the proposed method to identify state variables which are relevant to the dependence

structure of housing prices among the four states. Table 6 documents the estimates of γ

associated with the eight state variables. We have two observations on Table 6. Besides

several important macroeconomic variables such as the GDP growth and unemployment

rate, the share of gross residential investment in GDP also significantly contributes to

the dependence structure of housing prices. Shiller (2007) identifies that the residential

investment is highly correlated with the business cycle. On average, the magnitude of
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the γ associated with the share of residential investment in GDP is the largest. As an

important channel of housing’s contribution to GDP, the residential investment usually

includes construction of new single-family and multifamily structures, residential remod-

eling, production of manufactured homes, and brokers fees. From 1980 to 2005, the

residential investment increased from 333 billion dollars to 873 billion dollars, but then

sharply dropped to 382 billion dollars in 2010 (U.S. Bureau of Economic Analysis). One

can also observe that the industrial production index (IPI) and oil price (OIL) are rel-

atively less important than the other six state variables and are filtered out by SCAD in

all six pairs. This finding is consistent with Kallberg, Liu and Pasquariello (2014) who

find that the comovements among housing markets can be attributed to the fundamental

factors directly influencing real estate prices.

For comparison purposes, we transform the estimated single-index copula parameters

into Kendall’s τ which ranges between -1 and 1.1 In Figure 4, we plot the paths of

Kendall’s τ for the six pairs to examine how the dependence evolves during the sample

period. The black solid curve indicates the estimates of Kendall’s τ and the red dashed

curves represent the 95% confidence interval. We have three observations for Figure 4.

First, the dependence of housing prices among the four states are relatively stronger before

the 1980s, but the degree of dependence has begun to decline since then. Second, for each

of the six pairs, there is an obvious upward trend in the degree of dependence path starting

from the end of 1990s and early 2000 when the bubble in the housing market was formed

(Shiller, 2007). After the most recent economic recession which led to the burst of housing

bubbles, the degrees of dependence (τ) in most pairs have decreased substantially. One

exception is the pair of California and Florida: Figure 4(d) shows that the comovement

of housing prices in the two states has become strengthened again since 2013.

1For Gumbel, Kendall’s τ = 1 − 1
θ . For Frank, Kendall’s τ = 1 + 4(D1(θ)−1)

θ where D1(θ) =
1
θ

∫ θ
0

t
exp (t)−1dt. See Nelson (2006) for details.
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5 Conclusion

We propose a simultaneous estimation and variable selection procedure for the single-

index copula model, in which the dependence parameter is a deterministic function of a

linear combination of multiple state variables. We carry out a three-step procedure to

estimate the parametric and nonparametric components of the model, and derive their

large sample properties. We then adopt an exhaustive variable selection procedure to

select the most relevant state variables from a large candidate set. The simulation results

confirm that the proposed method can correctly select the state variables and accurately

estimate the unknown parameters. Empirical results demonstrate that, besides several

important macroeconomic variables such as the GDP growth rate and unemployment

rate, the percentage of residential investment in GDP also significantly contributes to

the dependence structure of housing prices. However, the contribution of the industrial

production index and oil price is relatively small and these two state variables are filtered

out by the SCAD variable selection procedures.
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6 Appendix: mathematical proofs

In this appendix we establish the main results of Section 2. We will first show consistency

of the initial estimator γ̃, for which the following lemmas are useful.

Lemma 1. Let Θ̃−t(Λ) denote the probability limit of θ̃−t(Λ). Under Assumptions (A1)
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to (A8), as T →∞,

P (sup
γ
|θ̃−t(Λ)− Θ̃−t(Λ)| > ε)→ 0.

Proof: Consider first Σ̂ij,−t(Λt) = ÂtT/BtT , where

ÂtT :=
1

T

∑
τ 6=t

I(Λτ ∈ AΛ)kh(γ
ᵀ(Zτ − Zt))Ûiτ Ûjτ

and

BtT :=
1

T

∑
τ 6=t

I(Λτ ∈ AΛ)kh(γ
ᵀ(Zτ − Zt)).

Note that Ûiτ = Uiτ + op(1), with Uit := Fi(Xit|Zt;ψi) and the op(1) term converging

uniformly in Γ. Therefore, uniformly in Γ, ÂtT = AtT + op(1) with

AtT :=
1

T

∑
τ 6=t

I(Λτ ∈ AΛ)kh(γ
ᵀ(Zτ − Zt))UiτUjτ

which converges in probability to At. That is to say, we have

sup
γ∈Γ
|AtT − At| ≤ sup

γ
|AtT − E(AtT )|+ sup

γ
|E(AtT )− At|.

The first term on the right hand size converges to zero in probability under the assumption

TbT/(− log bT )→∞ using Lemma 8 of Ichimura (1993), and the second term on the right

hand size is O(b2
T ) by standard arguments.

Similarly, BtT converges uniformly to its probability limit. This implies that

sup
γ∈Γ
|ρ̂ij,−t(Λ)− ρij(Λ)| →p 0

and

sup
γ∈Γ
|θ̂−t(Λ)− θ(Λ)| →p 0.

Lemma 2. Under Assumptions (A1) to (A8), as T →∞, γ̃ →p γ.
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Proof : Let

Lc(γ) =
1

T

T∑
t=1

log c(U1t, U2t|Zt; θ̃−t(Λ))

L̃c(γ) =
1

T

T∑
t=1

log c(U1t, U2t|Zt; Θ̃−t(Λ))

L̄c(γ) =
1

T

T∑
t=1

E log c(U1t, U2t|Zt; Θ̃−t(Λ)).

Following the same argument as the proof of Theorem 5.1 of Ichimura (1993), it suffices

to show that

P (sup
γ∈Γ
|Lc(γ)− L̃c(γ)| > ε)→ 0 (7)

and

P (sup
γ∈Γ
|L̃c(γ)− L̄c(γ)| > ε)→ 0. (8)

First, by Lipschitz continuity in Assumption A1,

|Lc(γ)− L̃c(γ)| ≤ C|θ̃−t(Λ)− Θ̃−t(Λ)|

for some constant C > 0. Thus, (7) follows by Lemma 1. Second, (8) follows by the

uniform convergence theorem of Andrews (1987) as his assumptions A1, A2 and A4 hold

under our set of assumptions.

Lemma 3. Under Assumptions (A1) to (A8), as T →∞,

γ̃ − γ0 = Op(T
−1/2).

Proof : By the mean value theorem, for some γ̄ on the line segment between γ̃ and γ0,

LT (γ̃) = LT (γ0) +
∂LT (γ0)

∂γᵀ
(γ̃ − γ0) +

1

2
(γ̃ − γ0)ᵀ

∂2LT (γ̄)

∂γ∂γᵀ
(γ̃ − γ0).
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As LT (γ̃) ≥ LT (γ0) by definition, we have

(γ̃ − γ0)ᵀ
∂LT (γ0)

∂γ
− 1

2
(γ̃ − γ0)ᵀV (γ̃ − γ0) + op(|γ̃ − γ0|2) ≥ 0 (9)

where V is the probability limit of −∂2LT (γ̄)
∂γ∂γᵀ

, which is positive definite by assumption.

Multiplying both sides of (9) by T (1 +
√
T |γ̃ − γ0|)−2, we obtain

cᵀT (γ̃)
√
T
∂LT (γ0)

∂γᵀ
(1 +

√
T |γ̃ − γ0|)−1 − 1

2
(γ̃ − γ0)ᵀV (γ̃ − γ0) + op(1) ≥ 0 (10)

where cT := (1+
√
T |γ̃−γ0|)−1

√
T (γ̃−γ0). Suppose that

√
T |γ̃−γ0| diverges in probability

to infinity. Then, (10) implies that cᵀT (γ̃)V cT (γ̃) ≤ 0. Because V is positive definite, this

implies that |cT (γ̃)| = op(1), or
√
T |γ̃ − γ0| = op(1), which is a contradiction. Therefore,

we must have
√
T |γ̃ − γ0| = Op(1).

Proof of Theorem 1: The proof of consistency for ξ̂ is similar to the proof of Theorem

3 with penalty term, so we omit it here. To show asymptotic normality, we first give

regularity conditions for the semiparametric method of moments in our index copula

model. Let us rewrite the vector of moment functions ζt defined in Theorem 1 as

ζt(ft, gt) =


`′1t(ψ1)

`′2t(ψ2)

ftgt


with ft = `′ct(ψ, γ, θ) and gt = θ′(Λt)(Zt −mz(Λt)) so that Π(θ,mz, ξ) =

∑T
t=1 ζt(ft, gt).

It is clear that the moment condition E(ζt(f0, g0)) = 0 is satisfied. In the following we

suppress the time index for notational simplicity.

Let

D(f − f0, g − g0) =
∂ζ(f0, g0)

∂f
(f − f0) +

∂ζ(f0, g0)

∂g
(g − g0),

where ∂ζ(f0, g0)/∂f and ∂ζ(f0, g0)/∂g are the Frechet derivatives with ∂ζ(f0, g0)/∂f =

(0ᵀ, 0ᵀ, gᵀ)ᵀ and ∂ζ(f0, g0)/∂g =
(
0ᵀ, 0ᵀ, fᵀ)ᵀ.
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By construction, we have

‖ζ(f, g))− ζ(f0, g0)−D(f − f0, g − g0)‖∞ = Op(‖f − f0‖2
∞ + ‖g − g0‖2

∞) (11)

where ‖ · ‖∞ is the supremum norm of a function and its derivatives (Sobolev norm).

Assumption 5.1(i) of Newey (1994) holds using equation (11). Using similar methods as

in Mack and Silverman (1982), we can show that

‖θ̂(Λ)− θ(Λ)‖∞ = op(T
−1/4), ‖θ̂′(Λ)− θ′(Λ)‖∞ = op(T

−1/4)

and ‖m̂z(Λ)−mz(Λ)‖∞ = op(T
−1/4).

The first term implies that ‖f̂(Λ)−f(Λ)‖∞ = op(T
−1/4) and the last two terms imply that

‖ĝ(Λ)− g(Λ)‖∞ = op(T
−1/4). Together with equation (11), they imply that Assumption

5.1 (ii) of Newey (1994) holds. Furthermore, his Assumption 5.2 holds by the expression

of D(f − f0, g − g0).

The estimating equation yields 1
T

∑T
t=1 `

′
ct(ψ, γ, θ(Λ))kh(γ

ᵀZt−Λ) = 0 since θ(Λ) is the

local maximizer of the objective function 1
T

∑T
t=1 `ct(ψ, γ, θ(Λ))kh(γ

ᵀZt − Λ). It follows

that E(`′c(ψ, γ, θ(Λ))|Λ) = 0 by the law of large numbers and E(f) = E(`′c(ψ, γ, θ)) = 0

by iterated expectations. Moreover, E(g) = E{θ′(Z −mz)} = 0 by iterated expectations.

Thus, Assumption 5.3 of Newey (1994) holds because of E(D(f − f0, g − g0)) = 0.

After having verified Assumptions 5.1-5.3 of Newey (1994) for the index copula model

1, we conclude that ξ̂ has the same asymptotic distribution as the solution of the esti-

mating equation

Π(θ0,m0z, ξ) =
T∑
t=1

ζt(f0, g0) = 0.

Asymptotic normality then follows directly by Lemma 5.1 of Newey (1994).

�

For the proof of Theorem 2 we will need the following lemma.

Lemma 4. Assume that the parametric estimators ψ̂ and γ̂ and the local constant esti-
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mator θ̂ are obtained from the three-step procedure of Section 2.1 and satisfy ‖ψ̂ − ψ0‖ =

Op(1/
√
T ), ‖γ̂ − γ0‖ = Op(1/

√
T ) and ‖θ̂ − θ0‖ = Op(1/

√
Th). Define the local log

likelihood function as

Lh(ψ, γ, θ) =
1

T

T∑
t=1

`ct(ψ, γ, θ)kh(γ
ᵀZt − Λ)

where `ct(ψ, γ, θ) = log c(F1(X1t|Zt;ψ1), F2(X2t|Zt;ψ2)|Zt; θ(γᵀZt)). Under conditions

A1-A7, we have

Lh(ψ̂, γ̂, θ̂)− Lh(ψ, γ, θ) = Lh(ψ, γ, θ̂)− Lh(ψ, γ, θ) + op(T
−1).

Proof: Let

Lh(ψ̂, γ̂, θ̂)− Lh(ψ, γ, θ)

= Lh(ψ̂, γ̂, θ̂)− Lh(ψ̂, γ, θ̂)︸ ︷︷ ︸
I1

+Lh(ψ̂, γ, θ̂)− Lh(ψ, γ, θ̂)︸ ︷︷ ︸
I2

+Lh(ψ, γ, θ̂)− Lh(ψ, γ, θ)︸ ︷︷ ︸
I3

.

By Taylor expansion and the conditions ‖ψ̂ − ψ‖ = Op(1/
√
T ), ‖γ̂ − γ‖ = Op(1/

√
T )

and ‖θ̂ − θ‖ = Op(1/
√
Th), the first term I1 is given by

I1 = Lh(ψ̂, γ̂, θ̂(ψ̂, γ̂))− Lh(ψ̂, γ, θ̂(ψ̂, γ))

=

[
√
T
∂Lh(ψ̂, γ, θ̂(ψ̂, γ))

∂γ

]
1√
T

(γ̂ − γ){1 + op(1)}

=

[
√
T
∂Lh(ψ, γ, θ̂(ψ, γ))

∂γ
{1 + op(1)}

]
1√
T

(γ̂ − γ){1 + op(1)}

=

[√
T
∂Lh(ψ, γ, θ(ψ, γ))

∂γ
{1 + op(1)}{1 + op(1)}

]
1√
T

(γ̂ − γ){1 + op(1)}

which is of order Op(1/T ). In the same vein, we can show that the second term,

I2 = Lh(ψ̂, γ, θ̂(ψ̂, γ))− Lh(ψ, γ, θ̂(ψ, γ))
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=

[
√
T
∂Lh(ψ, γ, θ̂(ψ, γ))

∂ψ

]
1√
T

(ψ̂ − ψ){1 + op(1)}

=

[√
T
∂Lh(ψ, γ, θ(ψ, γ))

∂ψ
{1 + op(1)}

]
1√
T

(ψ̂ − ψ){1 + op(1)}

is of order Op(1/T ). The term on the right hand side
√
T∂Lh(ψ, γ, θ(ψ, γ))/∂ψ is of order

Op(1) since the first derivative of the marginal likelihood
√
T∂Lm(ψ)/∂ψ and the first

derivative of the full likelihood
√
T∂Lm(ψ)/∂ψ +

√
T∂Lh(ψ, γ, θ(ψ, γ))/∂ψ are of order

Op(1). This implies that Lh(ψ̂, γ, θ̂)− Lh(ψ, γ, θ̂) is of order Op(1/T ).

Furthermore, by a Taylor expansion and the condition ‖θ̂− θ‖ = Op(1/
√
Th), the last

term

I3 =

[√
Th

∂Lh(ψ, γ, θ)

∂θ

]
1√
Th

(γ̂ − γ){1 + op(1)}

which is of order Op(1/(Th)), dominates the other two terms. This completes the proof.

�

Lemma 4 suggests that we can derive the asymptotic distribution of θ̂ without con-

sidering the errors from parametric estimation. The estimators of (ψ̂, γ̂) have little effect

on the estimation of θ̂ if the sample size T is large. This result is in line with the fact

that the convergence rate of the parametric part of the model is faster than that of the

nonparametric component.

Proof of Theorem 2: Using Lemma 4 we can assume that ψ is known for simplicity.

Define the kernel constants µ2 =
∫
z2k(z)dz, ν0 =

∫
k2(z)dz and ν2 =

∫
z2k2(z)dz. Let

Λt = γᵀZt, `ct(θ(Λ)) = `ct(ψ, γ, θ), L(θ(Λ)) = 1
T

∑T
t=1 `ct(θ(Λ))kh(Λt − Λ), L′(θ(Λ)) =

1
T

∑T
t=1 `

′
ct(θ(Λ))kh(Λt−Λ) and L′′(θ(Λ)) = 1

T

∑T
t=1 `

′′
ct(θ(Λ))kh(Λt−Λ). For a fixed point

Λ lying in the interior of the support AΛ, the normal equation for the local likelihood-based

estimator is given by L′(θ̂(Λ)) = 0. By a Taylor expansion, it can be written as

L′(θ(Λ)) + L′′(θ(Λ))(θ̂(Λ)− θ(Λ)) + op(1/
√
Th) = 0
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which leads to

θ̂(Λ)− θ(Λ) = −[L′′(θ(Λ))]−1L′(θ(Λ)) + op(1/
√
Th).

By the moment condition, we have

0 = E{`′ct(θ(Λt))|Λt = Λ}

= E{`′ct(θ(Λ) + rt)|Λt = Λ}

≈ E{`′ct(θ(Λ))|Λt = Λ}+ rtE{`′′ct(θ(Λ))|Λt = Λ}

where rt = θ′(Λ)(Λt − Λ) + 1
2
θ′′(Λ)(Λt − Λ)2 + op(Λt − Λ)2. By construction, we have

E{`′ct(θ(Λ))|Λt = Λ} ≈ −rtE{`′′ct(θ(Λ))|Λt = Λ}. Thus,

E{L′(θ(Λ))|Λt = Λ} = − 1

T

T∑
t=1

rtE{`′′ct(θ(Λ))|Λt = Λ}kh(Λt − Λ)

=
1

T
Σ(Λ)

T∑
t=1

rtkh(Λt − Λ)

where Σ(Λ) = −E{`′′ct(θ(Λ))|Λt = Λ}. Note that

E{L′′(θ(Λ))|Λt = Λ} =
1

T

T∑
t=1

E{`′′ct(θ(Λ))|Λt = Λ}kh(Λt − Λ)

≈ f(Λ)E{`′′ct(θ(Λ))|Λt = Λ}

= −f(Λ)Σ(Λ).

To find the expression for Var{L′(θ(Λ))|Λt = Λ}, using the same argument as in Cai

(2007) , we can show that

Var{L′(θ(Λ))|Λt = Λ} =
ν0

Th
{R0(Λ) + 2

∞∑
j=1

Rj(Λ)}+ op(
1

Th
)

where Rj(Λ) = E{`′ct(ψ, γ, θ(Λ))`′c(t+j)(ψ, γ, θ(Λ))ᵀ|γᵀZ = Λ}.
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It follows by a Taylor expansion and the Riemann sum approximation of an integral

that the bias term of θ̂(Λ) can be expressed as

E{θ̂(Λ)|Λt = Λ} − θ(Λ)

= −[E{L′′(θ(Λ))|Λt = Λ}]−1E{L′(θ(Λ))|Λt = Λ}

=
1

f(Λ)

1

T

T∑
t=1

[
θ′(Λ)(Λt − Λ) +

1

2
θ′′(Λ)(Λt − Λ)2

]
kh(Λt − Λ)

≈ 1

f(Λ)

∫
θ′(Λ)(Λt − Λ)f(Λt)kh(Λt − Λ)dΛt +

1

2f(Λ)

∫
θ′′(Λ)(Λt − Λ)2f(Λt)kh(Λt − Λ)dΛt

=
h

f(Λ)

∫
θ′(Λ)uf(Λ + uh)k(u)du+

h2

2f(Λ)

∫
θ′′(Λ)u2f(Λ + uh)k(u)du

=
h2

f(Λ)
θ′(Λ)f ′(Λ)µ2 +

h2

2f(Λ)
θ′′(Λ)µ2 + op(h

2)

= h2B(Λ)

where B(Λ) = 1
f(Λ)

θ′(Λ)f ′(Λ)µ2 + 1
2
θ′′(Λ)µ2.

The variance term is given by

Var{θ̂(Λ)|Λt = Λ}

= E{L′′(θ(Λ))|Λt = Λ}−1Var{L′(θ(Λ))|Λt = Λ}E{L′′(θ(Λ))|Λt = Λ}−1

=
1

Thf(Λ)
ν0Σ(Λ)−1Ω∗(Λ)Σ(Λ)−1.

�

Lemma 5. Assume that the sequence of random variables bt(X1t, X2t, Zt), denoted by

bt, is bounded, the sequence ωt(X1t, X2t, Zt), denoted by ωt, is stationary with mean zero

and finite variance, and the sequence et(X1t, X2t, Zt), denoted by et, satisfies ‖et‖∞ =

op(T
−1/4). Then,

T∑
t=1

btωtet = op(
√
T ).

The proof of Lemma 5 is similar to that of Lemma A.1 in Liang and Li (2009), and

therefore omitted here.
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�

Lemma 6. For any given constant C,

sup
‖ξ−ξ0‖≤CT−1/2

∥∥T−1/2Π(θ,mz, ξ)− T−1/2Π(θ0,m0z, ξ0) + T 1/2M(ξ − ξ0)
∥∥ = op(1)

where M = − 1
T
∂Π(θ0,m0z, ξ0)/∂ξ. Moreover, T−1/2Π(θ0,m0z, ξ0)

d→ N(0,Ω) with Ω =

Γ(0) + 2
∑∞

k=1 Γ(k), Γ(k) = Cov (ζt, ζt−k) and ζt = (`′1t(ψ10)ᵀ, `′2t(ψ20)ᵀ, πt(θ0,m0z, ξ0)ᵀ)ᵀ.

Proof : We have

T−1/2Π(θ,mz, ξ)− T−1/2Π(θ0,m0z, ξ0)

= T−1/2Π(θ,mz, ξ)− T−1/2Π(θ,m0z, ξ) + T−1/2Π(θ,m0z, ξ)− T−1/2Π(θ0,m0z, ξ)

+T−1/2Π(θ0,m0z, ξ)− T−1/2Π(θ0,m0z, ξ0)

.
= A1 + A2 + A3

where

A1 = T−1/2Π(θ,mz, ξ)− T−1/2Π(θ,m0z, ξ)

=
1√
T

T∑
t=1


`′1t

`′2t

`′ct(ψ, γ, θ)θ
′(Λt)(Zt −mz(Λt))

− 1√
T

T∑
t=1


`′1t

`′2t

`′ct(ψ, γ, θ)θ
′(Λt)(Zt −m0z(Λt))



=
1√
T

T∑
t=1


0

0

`′ct(ψ, γ, θ)θ
′(Λt)(m0z(Λt)−mz(Λt))

 .

By Lemma 5, A1 is of order op(1). Next,

A2 = T−1/2Π(θ,m0z, ξ)− T−1/2Π(θ0,m0z, ξ)
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=
1√
T

T∑
t=1


0

0

[`′ct(ψ, γ, θ)θ
′(Λt)− `′ct(ψ, γ, θ0)θ′0(Λt)] (Zt −m0z(Λt))


and

T−1/2

T∑
t=1

[`′ct(ψ, γ, θ)θ
′(Λt)− `′ct(ψ, γ, θ0)θ′0(Λt)] (Zt −m0z(Λt))

= T−1/2

T∑
t=1

[`′ct(ψ, γ, θ)θ
′(Λt)− `′ct(ψ, γ, θ)θ′0(Λt)] (Zt −m0z(Λt))

+T−1/2

T∑
t=1

[`′ct(ψ, γ, θ)θ
′
0(Λt)− `′ct(ψ, γ, θ0)θ′0(Λt)] (Zt −m0z(Λt))

.
= A21 + A22

where A21 = T−1/2
∑T

t=1 [`′ct(ψ, γ, θ)θ
′(Λt)− `′ct(ψ, γ, θ)θ′0(Λt)] (Zt − m0z(Λt)) = op(1) by

Lemma 5, and

A22 = T−1/2

T∑
t=1

[`′ct(ψ, γ, θ)θ
′
0(Λt)− `′ct(ψ, γ, θ0)θ′0(Λt)] (Zt −m0z(Λt))

= T−1/2

T∑
t=1

[{`′′ct(ψ, γ, θ0)(θ − θ0)}{1 + op(1)}] θ′0(Λt)(Zt −m0z(Λt)).

is again op(1) by Lemma 5. This implies that A2 is op(1). Finally,

A3 = T−1/2Π(θ0,m0z, ξ)− T−1/2Π(θ0,m0z, ξ0)

= T−1/2{(∂Π(θ0,m0z, ξ0)/∂ξ)(ξ − ξ0)}{1 + op(1)}

=
√
T (−M)(ξ − ξ0) + op(1).

Therefore, T−1/2Π(θ,mz, ξ) − T−1/2Π(θ0,m0z, ξ0) + T 1/2M(ξ − ξ0) = A1 + A2 + A3 +

T 1/2M(ξ − ξ0) = op(1), which implies the stated result.

�

Proof of Theorem 3:
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To show that there exists a
√
T -consistent estimator ξ̂ satisfying both ||ξ̂−ξ0|| = Op(1/

√
T )

and ΠP (θ̂, m̂z, ξ̂) = 0, it is sufficient to show that (ξ̂−ξ0)TMTΠP (θ̂, m̂z, ξ̂) < 0. By Lemma

6, we have

√
T (ξ̂ − ξ0)TMT 1√

T
ΠP (θ̂, m̂z, ξ̂)

=
√
T (ξ̂ − ξ0)TMT

[
1√
T

Π(θ0,m0z, ξ0)−
√
TM(ξ̂ − ξ0)−

√
Tp′λ(|ξ̂|)sgn(ξ̂) + op(1)

]
≤

√
T (ξ̂ − ξ0)TMT 1√

T
Π(θ0,m0z, ξ0)−

√
T (ξ̂ − ξ0)TMTM

√
T (ξ̂ − ξ0)

−
√
T (ξ̂ − ξ0)TMT

2

√
Tp′λ(|γ̂1|)sgn(γ̂1)

≤
√
T (ξ̂ − ξ0)TMT 1√

T
Π(θ0,m0z, ξ0)−

√
T (ξ̂ − ξ0)TMTM

√
T (ξ̂ − ξ0)

−
√
T (ξ̂ − ξ0)TMT

2 {
√
Tp′λ(|γ10|)sgn(γ10) +

√
Tp′′λ(|γ10|)(γ̂1 − γ10)}{1 + op(1)} (12)

where M2 is a submatrix of the partition MT = (M1,M2,M3) with M1, M2 and M3 being

(q + d)× q,(q + d)× d1 and (q + d)× (d− d1) matrices, respectively.

The first term on the right hand side of the last inequality in (12) is of order C ∗Op(1)

and the second term is of order C2 ∗ Op(1). Using Condition (B1),
√
Tp′λ(|γ10|) → 0

and p′′λ(|γ10|) → 0. By choosing the constant C sufficiently large, the second term will

dominate the other two terms. This completes the proof.

�

Proof of Theorem 4: First, we show the sparsity with γ̂2 = 0. Let us assume that there

exists a
√
T -consistent estimator ξ̂∗ = (ψ̂ᵀ, γ̂ᵀ1 , γ̂

ᵀ
2)ᵀ with γ̂2 6= 0 such that ΠP (θ̂, m̂z, ξ̂

∗) =

0. By Lemma 6, we have

1√
T

Π(θ0,m0z, ξ0)−
√
TM(ξ̂∗ − ξ0) + op(1) =

√
Tp′(ξ̂∗)sgn(ξ̂∗). (13)

The first two components on the left hand side of (13) are of order Op(1). However, the

last d − d1 elements of
√
Tp′(ξ̂∗) on the right hand side diverge to ∞ by the conditions

in (B1). Therefore, by contradiction, we conclude that γ̂2 = 0 must hold.
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Second, we show asymptotic normality. By Lemma 6, we have

1√
T

Π(θ0,m0z1 , ξ10)−
√
TM(ξ̂1 − ξ10) + op(1) =

√
Tp′(ξ̂1)sgn(ξ̂1)

where ξ̂1 = (ψ̂ᵀ, γ̂ᵀ1)ᵀ. The term
√
Tp′(ξ̂1) = 0 as T → ∞ according to the conditions in

(B1). It follows that

1√
T

Π(θ0,m0z1 , ξ10)−
√
TM(ξ̂1 − ξ10) + op(1) = 0.

Asymptotic normality is obtained by the central limit theorrem, which proves the theorem.
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Table 1: Percentages that the corresponding state variables were chosen correctly (incorrectly) for all 6
cases in simulations

Model T Z1 Z2 Z3 − Z5

Model 1 (Clayton) 500 0.996 0.998 (0.179)
1000 1.000 1.000 (0.071)

Model 2 (Clayton) 500 0.954 1.000 (0.100)
1000 0.990 1.000 (0.069)

Model 1 (Gumbel) 500 1.000 1.000 (0.104)
1000 1.000 1.000 (0.049)

Model 2 (Gumbel) 500 0.990 1.000 (0.091)
1000 1.000 1.000 (0.051)

Model 1 (Frank) 500 0.993 1.000 (0.192)
1000 1.000 1.000 (0.093)

Model 2 (Frank) 500 0.930 1.000 (0.189)
1000 0.987 1.000 (0.099)

Note: Values without parentheses are the percentages that state variables in the true index copula
models were chosen correctly. Values with parentheses are the percentages that state variables not in the
true index copula models were chosen incorrectly.
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Table 2: Means, medians, and mean square errors (MSEs) of the estimated (nonzero) index coefficients
(γ1 and γ2), and MSEs of the estimated copula dependence parameters (θ) for all 6 cases in simulations

Clayton Gumbel Frank
Model T γ1 γ2 θ γ1 γ2 θ γ1 γ2 θ

Model 1 500 Mean 0.671 0.679 — 0.692 0.686 — 0.657 0.692 —
Median 0.708 0.705 — 0.707 0.707 — 0.704 0.708 —
MSE 0.025 0.024 0.550 0.015 0.015 0.361 0.029 0.019 0.804

1000 Mean 0.692 0.696 — 0.701 0.694 — 0.684 0.700 —
Median 0.707 0.707 — 0.706 0.708 — 0.707 0.707 —
MSE 0.011 0.011 0.382 0.007 0.008 0.247 0.013 0.011 0.567

Model 2 500 Mean 0.498 0.811 — 0.508 0.827 — 0.477 0.824 —
Median 0.500 0.865 — 0.500 0.865 — 0.500 0.866 —
MSE 0.033 0.026 0.517 0.022 0.019 0.327 0.028 0.037 0.730

1000 Mean 0.502 0.836 — 0.495 0.854 — 0.497 0.840 —
Median 0.500 0.866 — 0.500 0.866 — 0.501 0.865 —
MSE 0.016 0.008 0.358 0.011 0.005 0.233 0.019 0.010 0.525

Table 3: The summary statistics of the quarterly percentage changes of housing prices in Arizona, Cali-
fornia, Florida and Nevada and the eight state variables. CPI = Quarterly consumer price index. GDP
= Quarterly growth rate of GDP. INC = Quarterly growth rate of per capita disposable income. INT
= The effective federal funds rate. INV = Quarterly growth rate of gross private domestic investment in
GDP. IPI = Quarterly growth rate of industrial production index. OIL = Quarterly growth rate of oil
price (West Texas intermediate). UNE = Quarterly growth rate of unemployment rate. ADF indicates
the p-value of the Augmented Dickey-Fuller test for null of non-stationary series. The sample spans from
1975:Q1 - 2018:Q1.

Mean Median Std. Dev Kurtosis Skewness Min. Max. ADF
AZ 1.155 1.216 2.894 1.379 -0.122 -7.256 10.368 0.013

% Change of CA 1.634 1.893 2.629 1.771 -0.398 -8.182 10.180 0.052
Housing Price FL 1.179 1.245 3.770 16.903 0.630 -19.790 26.705 0.039

NV 1.223 1.130 3.716 7.425 0.881 -10.328 22.997 0.019
CPI 0.912 0.785 0.773 3.552 0.775 -2.290 3.946 0.086
GDP 0.451 0.498 0.751 3.386 -0.362 -2.342 3.624 0.010
INC 2.890 2.900 3.655 5.887 -0.391 -15.700 19.900 0.010

State INT 1.125 0.186 19.710 10.039 1.280 -73.883 125.000 0.010
Variables INV 0.104 0.000 4.220 2.573 -0.172 -16.000 17.647 0.018

IPI 0.551 0.669 1.366 3.377 -1.093 -5.622 4.026 0.010
OIL 1.967 1.339 13.599 2.446 -0.088 -50.527 48.070 0.010
UNE 0.007 -1.382 9.520 0.006 0.680 -15.789 34.010 0.010
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Table 4: Results of AR(p)-GARCH(1,1) filtering. LB represents the Ljung-Box test statistic for exam-
ining the null hypothesis of independence in the series filtered by AR(p)-GARCH(1,1).

AR(p) part (up to order 2) GARCH(1,1) part
State γ ω α1 β1 LB

(p-value) (p-value) (p-value) (p-value) (p-value)
AZ 0.757 0.083 0.530 0.558 95.187

(0.000) (0.014) (0.001) (0.000) (0.617)
CA 0.933 0.322 0.438 0.407 79.403

(0.000) (0.015) (0.000) (0.001) (0.936)
FL 0.404, 0.507 0.120 0.376 0.623 83.756

(0.000), (0.000) (0.029) (0.000) (0.000) (0.879)
NV 0.832 0.079 0.448 0.639 111.170

(0.000) (0.276) (0.001) (0.000) (0.209)

Table 5: This table reports the cross-validated prediction errors (CVPEs) of Gaussian, Clayton, Gumbel,
Frank, Rotated Clayton and Rotated Gumbel copulas for all six pairs. The best two models are in bold.

Gaussian Clayton Gumbel Frank Rotated Clayton Rotated Gumbel
AZ - CA 11.087 13.328 12.020 10.704 11.749 12.604
AZ - FL 10.734 11.416 10.485 11.931 11.948 10.574
AZ - NV 10.752 11.394 8.309 11.919 11.987 11.274
CA - FL 13.600 13.469 12.493 12.039 14.433 14.508
CA - NV 11.918 14.548 10.951 9.041 15.247 14.417
FL - NV 5.963 10.017 9.892 5.872 7.223 8.959
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Table 6: This table reports the estimated γs associated with the eight state variables for each of the
six pairs. Values in parentheses indicate standard errors. CPI = Quarterly consumer price index. GDP
= Quarterly growth rate of GDP. INC = Quarterly growth rate of per capita disposable income. INT
= The effective federal funds rate. INV = Quarterly growth rate of gross private domestic investment
in GDP. IPI = Quarterly growth rate of industrial production index. OIL = Quarterly growth rate of
oil price (West Texas intermediate). UNE = Quarterly growth rate of unemployment rate. All state
variables span between 1975:Q1 and 2018:Q1.

CPI GDP INC INT INV IPI OIL UNE
(S.E.) (S.E.) (S.E.) (S.E.) (S.E.) (S.E.) (S.E.) (S.E.)

AZ - CA 0.482 0.441 0.361 0.201 0.522 0 0 0.361
(0.200) (0.234) (0.111) (0.130) (0.212) — — (0.088)

AZ - FL 0.485 0.253 0.414 0.220 0.590 0 0 0.364
(0.155) (0.118) (0.103) (0.170) (0.062) — — (0.095)

AZ - NV 0.496 0.438 0.355 0.196 0.522 0 0 0.354
(0.071) (0.022) (0.042) (0.016) (0.011) — — (0.052)

CA - FL 0.482 0.441 0.362 0.202 0.521 0 0 0.361
(0.243) (0.032) (0.013) (0.013) (0.010) — — (0.029)

CA - NV 0.373 0.225 0.485 0.325 0.600 0 0 0.331
(0.200) (0.112) (0.243) (0.100) (0.088) — — (0.080)

FL - NV 0.449 0.407 0.432 0.643 0.142 0 0 0.117
(0.286) (0.184) (0.209) (0.170) (0.071) — — (0.038)
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Figure 1: Simulation results of the copula dependence parameters for all 6 cases: true values (black
solid lines), mean and median estimates (red and blue lines), and 5% and 95% percentile curves (black
dashed lines). The sample size is 1000.
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economic recessions by NBER.
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Figure 3: The kernel density curves of the filtered percentage changes of housing prices in Arizona, Cal-
ifornia, Florida and Nevada during 1975:Q1 - 2018:Q1. The smoothing kernel function is Epanechnikov.
JB denotes the Jarque-Bera test statistic for null of normality. Values in parentheses are p-values.
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Figure 4: Quarterly estimates of Kendall’s τ of the selected copula for six pairs of housing price indices
(black curve) with the 95% confidence intervals (red dashed lines). For the pairs of AZ-FL and AZ-NV,
the selected copula is Gumbel. For the pairs of AZ-CA, CA-FL, CA-NV and FL-NV, the selected copula
is Frank. The data span between 1975:Q1 and 2018:Q1. The shaded areas represent the recession periods
by NBER.
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Elendner, October 2018

059 ”Towards the interpretation of time -varying regularization parameters in streaming
penalized regression models” by Lenka Zbonakova, Ricardo Pio Monti, Wolfgang
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