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Abstract

Second-hand car markets contribute to billions of Euro turnover each year but hardly
generate profit for used car dealers. The paper examines the potential of sophisticated
data-driven pricing systems to enhance supplier-side decision-making and escape the zero-
profit-trap. Profit maximization requires an accurate understanding of demand. The paper
identifies factors that characterize consumer demand and proposes a framework to esti-
mate demand functions using survival analysis. Empirical analysis of a large data set of
daily used car sales between 2008 to 2012 confirm the merit of the new factors. Observed
results also show the value of survival analysis to explain and predict demand. Random
survival forest emerges as the most suitable vehicle to develop price response functions as
input for a dynamic pricing system.

Keywords: Automotive Industry, Price Optimization, Survival Analysis, Dynamic
Pricing

1 Introduction

The paper focuses on management processes in the second-hand car market and devel-
ops analytical models to support decision-making in marketing and sales. The automotive
sector is a multi-billion dollar industry and a guarantor of growth and wealth in many
economies. Operating in increasingly saturated consumer markets, car makers must ac-
tively manage and continuously improve business processes concerning the handling of
used cars. The strategic importance of the second hand car segment follows from its direct
connection to the new car business (Prado, 2010). Selling a new car typically involves
the (re-)purchase of a used vehicle. In the leasing business, vendors even face a legal
obligation to repossess a vehicle after contract expiration. A large number of take-back
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obligations also arises from deals with car rental companies, which routinely refurbish
their fleets (Desai and Purohit, 1998). Strong interdependence between the new and used
car business is also reflected in sales figures. Considering the case of Germany, for ex-
ample, sales revenues in the car market amounts 186.6 bn Euro, 44 percent of which are
attributed to the second-hand market (DAT, 2017).

Low profit margins of about 1 percent (c.f. 8 percent for new cars) contrast the strate-
gic importance of the used car business and represent a key management challenge for
car makers and other automotive companies(DAT, 2017). Factors explaining the lack of
profit are manifold and include manufacturing overcapacity, excessive supply, increasing
discount levels and fierce competition (Jerenz, 2008). In terms of business optimization,
specific challenges arise in the used car market. While big marketing campaigns together
with a rich set of configuration options and individualization possibilities benefit the sell-
ing of new cars, no such measures are available in the used car segment. This constraints
the set of management controls to raise profits. Given that the supply of used cars is driven
by the new car business, due to retail trade-ins, repossessions, etc., and largely fixed, price
is often the only steering mechanism available to improve margins (Du et al., 2009).

Much research has investigated the antecedents of price formation in the used car mar-
ket; often using prices as cues to shed light on market structure and informational effi-
ciency (Genesove, 1993; Emons and Sheldon, 2009), and how these are affected by the
advent of digital channels such as online auctions (Adams et al., 2011). From a micro-
economics perspective, price discrimination is a suitable strategy to extract consumer sur-
plus and increase margins (Avi, 2018). To implement this strategy, sellers require an ac-
curate estimate of consumers’ willingness-to-pay or, put differently, the price-response-
function (PRF).

The overarching objective of the paper is to develop an approach to estimate PRFs
using survival analysis. Survival analysis models event time distributions and is part of
a larger family of statistical methods to analyze count data (Zhu et al., 2017). Having its
origin in medical data analysis, survival analysis has gained popularity in management de-
cision support to predict the probabilities of critical events in a customer relationship such
as attrition or credit default (Tang et al., 2014; Dirick et al., 2017). Other management
application include predictive maintenance and the modeling a supply-chain risks such as
stockouts (Xishu et al., 2016). A common denominator in these applications is that an an-
alyst is interested in the probability of event occurrence, how this probability evolves over
time, and is affected by subject characteristics such as behavioral customer data. Survival
analysis provides answers to these questions.
In this paper, we define the event of interest to be the sale of a used car. The prize that a
seller offers enters the statistical model as an independent variable; other variables includ-
ing, for example, car age and mileage, special equipments, etc. With this setup, survival
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analysis allows a decisionmaker to examine how the probability of selling a car evolves
with price changes. In other words, the seller obtains a model-estimated PRF, which facil-
itates price - and eventually profit - optimization. For example, Jerenz (2008) proposes a
dynamic programming formulation to identify the optimal amount and frequency of price
updates for a used car dealer, and, by means of simulation, estimates his optimal pricing
strategy to increase profits by 4.6 percent.

In this paper, we further elaborate on the use of survival analysis for PRF estimation
and price optimization as introduced by Jerenz (2008). In this course, the paper contributes
to literature in three ways. First, using a large real-world data set form an online market-
place, we show how classical parametric survival methods fail to capture the effect of car
characteristics, and how this impedes the accuracy of model-estimated purchase proba-
bilities. In a prize optimization context, inaccurate model predictions lead to suboptimal
decisions and eventually diminish sales profit. We further show how a violation of model
assumptions explains the inappropriateness of parametric survival analysis. Second, we
introduce nonparametric survival methods to the field of PRF estimation. By design, these
methods operate in a purely data-driven manner and do not depend on distributional as-
sumptions. We elaborate on the mechanics of corresponding techniques and show how
they estimate purchase probabilities more accurately than techniques previously used in
price optimization. Third, the empirical results gained throughout predictive modeling
of purchase probabilities using survival analysis also provide original explanatory insights
concerning the factors that govern used car sales. To that end, we extend the set of features
previously employed to model used car sales and, referring to dealership size as a proxy,
identify the effect of marketing ability on sales probability. These contributions have im-
portant implications for managers in that they provide evidence for the effectiveness of
the survival analysis framework in car reselling operations and concrete guidance how to
devise a corresponding decision support model.

The remainder of the paper is organized as follows. Section 2 reviews related literature
and derives research questions. Section 3 elaborates on survival analysis and nonpara-
metric survival methods in particular. Section 4 introduces the data used in the empirical
study, results of which are presented in Section 5. Section 6 concludes the paper with a
discussion of the results and their implications.

2 Related literature and research questions

The focus of the paper implies that related works comes largely from two streams
of literature, that on the second-hand car market and that on survival analysis. Given
the scarcity of prior work on survival analysis for PRF estimation and applications in
the automotive sector, Chapter 3 gives a comprehensive overview of survival analysis.
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Recent comparative results from another domain are available in Dirick et al. (2017). To
identify the research gap concerning decision support in car reselling, the review of related
literature focuses on prior work on the used car market.

Since publication of seminal work by Akerlof (1970), this market has received much
attention in economics. Market prices are an important cue in corresponding research as
they signal the degree to which the market is informational efficient (Levin, 2001), exhibits
information asymmetry (Belleflamme and Peitz, 2014), or shows signs of discrimination,
(Ayres and Siegelman, 1995), amongst others. Given that digital channels such as online
auctions significantly impact market ecology (Bapna et al., 2008), several studies have
examined the effect of digital innovation through the lens of the second hand car market
(Chen et al., 2013).

The large volume of the second-hand car market implies that it is also relevant from
a managerial point of view. Olivares and Cachon (2009) offer valuable insights concern-
ing the competitive disadvantage of large inventories, which they attribute to suboptimal
pricing. Close connections to the new car business via retail trade-ins, lease returns, and
repossessions from car rental companies (Desai and Purohit, 1998) further contribute to
the criticality of pricing decisions (Ratchford and Srinivasan, 1993). To the best of our
knowledge, only two studies have examined price optimization in the used car business.
Considering the context of online auctions, Du et al. (2009) propose a decision support
system to maximize the net auction profit of distributing vehicles on the basis of their esti-
mated auction prices, asset carrying costs and business constraints. Jerenz (2008) embeds
the pricing problem in a comprehensive revenue management system for used cars. The
system encompasses three components consisting of a forecasting model to estimate resid-
ual values, a survival model to construct a PRF, which receives estimated residual values
as input, and a dynamic program for determining the optimal pricing policy. The study
of Jerenz (2008) is particularly relevant for this paper because it was the first and only
application of survival analysis for used car price optimization.

Du et al. (2009) and Jerenz (2008) estimate vehicle prices and residual values, re-
spectively, using ordinary least-squares regression. Subsequent work has shown that data-
driven forecasting methods such as neural networks or regression tree ensembles provide
significantly more accurate price predictions (Lessmann and Voss, 2017). This finding,
through evidencing the potential of advanced data-driven models within price optimization
frameworks, motivates the focal study. Available decision support systems entail a tempo-
ral modeling of market dynamics. Du et al. (2009) consider an auto-regressive time series
model whereas Jerenz (2008) employs parametric survival models. The ramifications of
revising the temporal modeling component in a used car price optimization framework
and the degree to which the use of a powerful analytic model improves decision support
has eluded research. Striving to close this research gap, we focus on the framework of
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Jerenz (2008), and thus survival analysis, because it is not specific to auction-based used
car sales and generally applicable. In this scope, we aim at understanding the underlying
mechanisms of the second-hand car market to deliver insights for managers how to im-
prove pricing decisions and eventually profits. We pursue this objective through proposing
the following research questions, which we answer in the empirical part of the paper:

1. Which factors influence the time a used car spends on the market before it gets
sold?

2. What is the most accurate statistical method to predict the time on market?

3 Survival Analysis and Methodology

Survival analysis focuses on an event of interest, such as machine’s failure, and the
time until this event occurs. The main purposes of survival analysis are estimation of
survival and/or risk functions, comparisons of survival functions for different groups at
risk and estimation of effects between survival time and external factors (Kleinbaum and
Klein, 2006).
Survival analysis can deal with censored data. These are individuals who do not experi-
ence the event in the time frame of the underlying analysis. Right censoring occurs for
individuals who are still alive at the end of the observed time frame. Left censoring occurs
for individuals who have experienced the event before the beginning of the study.
For this study, the event of interest is a sale of a car at a specific point in time. Right
censoring is equivalent to a car not being sold at the end of the observation time. Left
censoring is not considered in this study.

3.1 Definitions
The survival function S(t) is defined as the probability of an individual to survive past

time t, where T is a continuous random variable

S(t) = Pr(T > t) (1)

The lifetime distribution function is defined as the probability for an event to occur latest
to time t

F (t) = Pr(T ≤ t) = 1− S(t) (2)

For a differentiable F the event density is defined as

f(t) = F ′(t) =
d

dt
F (t), (3)
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which transforms equation 1 and 2 to

S(t) = Pr(T ≤ t) =

∫ ∞
t

f(u)du (4)

F (t) = Pr(T < t) =

∫ t

0

f(u)du. (5)

The instantaneous risk rate or hazard function is the probability for an event at specific
time given T ≥ t

h(t) = lim
∆t→0

Pr(t ≤ T < t+ ∆t)

∆t ∗ S(t)
=
f(t)

S(t)
= −S

′(t)

S(t)
(6)

The cumulative hazard function is defined as

H(t) =

∫ t

0

h(u)du =

∫ t

0

−S
′(u)

S(u)
du = − lnS(t) (7)

and is interpreted as the number of expected events for each individual by time t in case of
a repeatable process. For a continuous random variable T the interchangeability between
the survival function and the cumulative hazard function is easily derived

S(t) = exp[−H(t)] = exp[−
∫ t

0

h(u)du] (8)

3.2 Estimators for survival and hazard functions
We can build and estimator for S(t) as a proportion of all survivors past time t and the

total number of survivors. Due to truncation and censoring not all events happen in the
observation period. This fact makes the intuitive estimation approach rather troublesome.
The Kaplan-Meier estimator examines ascending, ordered event times ti, the number of
events di at time ti and the total number of survivors ni.

Ŝ(t) =
∏
i:ti<t

ni − di
ni

(9)

The Kaplan-Meier estimator (Kaplan and Meier, 1958) is a non-parametric model and
provides a step-wise non-increasing function. With equation (7) a Kaplan-Meier estimator
for the hazard function h(t) can be derived directly as

Ĥ(t) = − ln
∏
i:ti<t

ni − di
ni

(10)
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More common the Nelson-Aalen (Nelson, 1969, 2000; Aalen, 1978) estimator is used for
the hazard function, defined as

Ĥ(t) =
∑
i:ti≤t

di
ni

(11)

3.3 Cox Proportional Hazards Model
Our general introduction to survival analysis states that one of the goals is to describe

effects of variables on the survival or hazard functions. Based on proportionality assump-
tion (Cox, 1992)

h(t|Xi) = h0(t) exp(β1Xi1 + · · ·+ βpXip) = h0(t) exp(Xi ∗ β) (12)

for the realized values of the variablesXi = {Xi1, . . . , Xip}with coefficients β = β1, . . . , βp
the effects of different variables Xi, Xj can be put in comparison

h(t|Xi)

h(t|Xj)
=
h0(t) exp(Xi ∗ β)

h0(t) exp(Xj ∗ β)
=

exp(Xi ∗ β)

exp(Xj ∗ β)
(13)

The coefficient β is estimated via the partial log-likelihood method. First consider the
probability of a unique event at time t such that a time-event indicator Ci = 1 for the event
occurred and Ci = 0 for censoring time is Ci = 1 and Yi = t

Li(β) =
exp(Xi ∗ β)∑

j:Yj≥Yi
exp(Xj ∗ β)

(14)

Assuming statistical independence the joint distribution for all realized events is given by

L(β) =
∏

i:Ci=1

exp(Xi ∗ β)∑
j:Yj≥Yi

exp(Xj ∗ β)
(15)

The partial log-likelihood is derived as

l(β) =
∑

i:Ci=1

(
Xi ∗ β − log

∑
j:Yj≥Yi

exp(Xj ∗ β)
)

(16)

While giving an appealing framework, Cox proportional hazards model is based on sev-
eral assumptions. The most obvious is the proportionality assumption of h0(t) for all
observations. With regards to the different nature of different car models, like technical
specifications, geographical location, size of the dealership and its marketing and nego-
tiations abilities, the proportionality to the baseline hazard function is a very restrictive
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assumption.
The derivation of partial log-likelihood reveals the log-linearity assumption in variables.
This assumption might be violated for continuous variables but does not have the same
emphasis on the model as proportionality.
Additionally, the assumption of non-informative censoring must hold (Ranganathan et al.,
2012). The mechanism behind the censoring of individual observations should not be re-
lated to the probability of the event’s occurrence. Inability to sell a vehicle for a specific
price and resulting price reduction is considered as right-censoring in this study. Thus,
non-informative censoring assumption might not always hold.

3.4 Survival trees
The assumptions of proportionality, log linearity and non-informative censoring, which

are indispensable for the mathematical model, propose strict restrictions. To overcome
these restrictions a modeling approach using survival trees may be used here. The concept
of Classification And Regression Trees (CART) developed by Breiman (Breiman et al.,
1984) sets the guidelines for the development of the survival tree framework (Bou-Hamad
et al., 2011).
The two main parts of a tree algorithm are node splitting and stopping rule or pruning
criteria. The first part is necessary for partitioning the variables space in smaller sub-
partitions. The second part is necessary for the reduction of fully grown trees to prevent
overfitting. For censored data there is no natural measure of node homogeneity. Thus, the
impurity reduction splitting rule from CART algorithm is not directly applicable. Similar
problems arise with regards to the definition of a natural loss function for censored data
and the pruning part of a tree algorithm.
The first step is to construct a proper metric for the node splitting process (Crowley et al.,
1995). Consider two random variable X1 ∼ F1 and X2 ∼ F2. The Wasserstein distance
for two distributions can be described as[ ∫ 1

0

|F−1
1 (u)− F−1

2 (u)|pdu
] 1

p
(17)

For censored observations the integral has to be adjusted. Consider estimates F̂1 and F̂2

for F1 and F2 respectively.
Define

lim
u→∞

F̂1(u) = m1 ≤ 1

lim
u→∞

F̂2(u) = m2 ≤ 1
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and assume further without loss of generality

m1 ≤ m2

Set

m3 = F−1
2 (m1)

and define

F̃2(u) =

{
F̂2(u) if u < m3

m1 if u ≥ m3

The Lp Wasserstein distance for censored data is then[ ∫ m3

0

|F̂−1
1 (u)− F̃−1

2 (u)|pdu
] 1

p
(18)

In case of ordinary Lp metric given as[ ∫ ∞
0

|F1(u)− F2(u)|pdu
] 1

p

define

m4 = min
(
F̂−1

1 (m1), F̂−1
2 (m2)

)
and get the ordinary Lp metric for censored data[ ∫ m4

0

|F̂−1
1 (u)− F̂−1

2 (u)|pdu
] 1

p
(19)

With regards to a precise formulation and deep understanding of the survival tree methods
a formal framework for the development of survival trees is given here.
Let U be the true survival time and C the true censoring time. Define z = min(U,C) as
either event or censoring. Further define an indicator δ = I(U ≤ C) with δ = 1 corre-
sponding to an event and δ = 0 corresponding to a censoring. Define x = (x1, . . . , xp) a
vector of variables. With n independent subjects the learning sample is defined as

Ln = (zi, δi, xi)

Further define Ŝt as an estimator of the survival function and δ̂Ŝt
as a step function. The

reduction in impurity at a node t based on the learning sampleLn is given by

G(t) = p(t)d(Ŝt, δ̂Ŝt
)− [p(l(t))d(Ŝl(t), δ̂Ŝl(t)

) + p(r(t))d(Ŝr(t), δ̂Ŝr(t)
)] (20)

where
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• p(t) is the proportion of observations at node t

• d(Ŝt, δ̂Ŝt
) is the Lp Wasserstein distance

• r(t) is the right child of the node t at split

• l(t) is the left child of the node t at split

Based on the learning sample Ln and the splitting rule from equation (20) a tree T (Ln)
can be constructed.
Practitioners in R have to resort to rpart package with the implementation of the split-
ting rule proposed by LeBlanc and Crowley thoroughly discussed above. Multiple further
approaches on survival trees are introduced for within-node homogeneity as well as for
between-node heterogeneity. Nevertheless, only a few have been implemented as widely
used statistical routines.

3.5 Conditional inference trees
Based on the CART approach survival trees inherit its intrinsic drawbacks, overfitting

and selection bias towards nodes with multiple possible splits or missing values. Applica-
tion of pruning overcomes the first issue, but the selection bias still remains. The approach
of growing trees derived from conditional inference is designed to overcome both issues.
A recursive binary partitioning with a generic algorithm is performed in 3 steps (Hothorn
et al., 2004, 2006a,b)

1. Test for conditional independence between the variables X = X1, . . . , Xm and the
response variable Y .

2. Perform a split based on predefined selection criteria.

3. Recursively repeat 1 and 2 until the hypothesis of conditional independence cannot
be rejected.

In step 1 m partial hypotheses of independence for each variable Xj are postulated and
combined to a global hypothesis.

Hj
0 : D(Y |Xj) = D(Y )

H0 = ∩mj=1H
j
0

with D(Y |X) being the conditional distribution of the response variable Y given the vari-
able X. With the learning sample Ln and the case weights w the association between the
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response variable and the j-th variable is measured by a linear statistic of the form

Tj(Ln, w) = vec
( n∑

i=1

wigj(Xji)h(Yi, (Y1, . . . , Yn))T
)
∈ Rp,q (21)

where

• gj : Xj → Rpj is a non-random transformation of the variable Xj

• h : Y ×Yn → Rq is an influence function depending on the responses Y1, . . . , Yn in
a permutation symmetric way

• vec operator converts pj × q matrix into a pjq column vector by column wise com-
bination

The distribution of Tj(Ln, w) is usually unknown and permutation tests under Hj
0 are used

to reject the dependency on the joint distribution of Y and Xj . The splitting rule of the
CART framework cannot be used in the step 2 with the original metric on censored data.
Thus, the following splitting criteria is used

TA
j∗(Ln, w) = vec

( n∑
i=1

wiI(Xj∗ ∈ A)h(Yi, (Y1, . . . , Yn))T
)
∈ Rq (22)

where

• A is a possible split subset

• j∗ denotes the variable index for the variable with the strongest association to Y
deducted in step 1

• I(·) is the indicator function

Maximization of a test statistic over all possible subsets A leads to the optimal split

A∗ = argmax
A

c(tAj∗ , µ
A
j∗ ,Σ

A
j∗) (23)

where

• µA
j∗ is the conditional expectation derived under the use of permutation tests

• ΣA
j∗) is the conditional covariance derived under the use of permutation tests
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• c : t ∈ Rpq → R is a univariate test statistic mapping an observed multivariate linear
statistic to R

A pruning routine is obsolete as overfitting and excessive tree sizes are prevented through
conditional independence test before each split. Conditional inference trees can be used on
censored survival data without further considerations. Their predictive power is shown to
be on par with trees from CART framework. For R practitioners the conditional inference
trees are implemented in the party package.

3.6 Random Survival Forest
Random forest is one of the most popular machine learning algorithm with numerous

applications for regression and classification. While the basic idea of random forest is
assumed to be known by an interested reader several adjustments to random survival forest
are given here (Ishwaran et al., 2008).
As previously discussed, the splitting rule during the tree growing phase has to be adjusted
to explicitly involve survival time and censoring information. Random survival forest
incorporates four splitting rules

• log-rank splitting rule (Segal, 1988; LeBlanc and Crowley, 1993)

• conservation-of-events splitting rule (Naftel et al., 1985)

• log-rank score rule (Hothorn and Lausen, 2003)

• random log-rank splitting rule (Hothorn and Lausen, 2003)

For a terminal node h and the N(h) distinct event times t1,h, . . . , tN(h),h a cumulative
hazard function (CHF) is defined as Nelson-Aalen estimator

H(t|xi) = Ĥh(t) =
∑
tl,h≤t

dl,h
Yl,h

, if xi ∈ h (24)

where

• dl,h is the number of events at time tl,h

• Yl,h is the number of individuals at risk at time tl,h

With Ii,b an indicator function for out-of-bag cases and H∗b (t|xi) the CHF for a tree from
b-th out of total B bootstrap sample the out-of-bag ensemble CHF is given by

H∗∗e (t|xi) =

∑B
b=1 Ii,bH

∗
b (t|, xi)∑B

b=1 Ii,b
(25)
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and the bootstrap ensemble CHF for i is given by

H∗e (t|xi) =
1

B

B∑
b=1

H∗b (t|, xi) (26)

The prediction error is calculated on the out-of-bag data using the concordance index,
where for pre-specified unique times t01, . . . , t

0
m the case i has a worse predicted outcome

than case j if

m∑
l=1

H∗∗e (t0l t|xi) >
m∑
l=1

H∗∗e (t0l t|xj) (27)

The concordance index (C-index) is constructed in such a way that the derived prediction
error lies in a rage [0, 1] with value of 0.5 equal to a random guess. The five-step, random
survival forest algorithm is implemented in R in the randomSurvivalForest package.

3.7 Conditional Inference Forest
The methodology chapter is completed with a short remark on the ensembling tech-

nique for conditional inference trees (Hothorn et al., 2004, 2006a). The conditional infer-
ence forest grows trees in the way described in the subsection 3.6. The predictor for a new
individual with variableXnew is the Kaplan-Meier estimator based on all observation from
the learning sample Ln from the same leaf as Xnew

ŜLn(·|Xnew) = ŜLn(Xnew)(·)

The averaging technique differs from random survival forest as the weights are not equally
distributed. Conditional inference forest assigns weights based on the total number of sub-
jects at risk Yl,h for a given terminal node h. For R practitioners the conditional inference
forest is implemented in the party package.

4 Data and feature engineering

4.1 Raw data
The raw data set comprises daily car prices from the 18th September 2008 till the

18th December 2012. Each price observation corresponds to an observed car with various
attributes concerning make, model, performance characteristics and configuration. Each
car observation also corresponds to a vendor, who is described through its location and a
binary flag indicating whether the vendor is a professional dealer. The raw data contains
5,915,774 unique car IDs, 747,102 unique vendor IDs and 190,323,612 price observations.
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All cars and price observations belong to different product lines of a premium car maker.
The data has been gathered from mobile.de, a major online marketplace for used cars. An
agreement between mobile.de and the focal car maker ensured compliance of data gath-
ering. This agreement has also facilitated data collection via API programming, which
benefits data quality compared to web scraping. To reduce the dimensionality of the data,
we focus on seven main types of cars. Oldtimers and young cars have been deleted because
their price dynamics differ from that of ”ordinary” used cars. In addition, we exclude pri-
vate vendors from the data. On the one hand, this decision accounts for the ongoing trend
of professional car dealerships dominating the market. On the other hand, professional
dealers are the recipients of our research. We do not expect private dealers to use data-
driven models to support pricing decisions. Concentrating on professional dealers also
creates a more homogeneous and more comparable group of vendors.
As the data represents daily observations, each day a car spends on the market contributes
one price observation. To obtain the standard data input format for survival analysis, we
merge the multiple observations for a unique car (i.e., for different time points) into a sin-
gle data point that represents the time in days a used car has been observed on the market.
Restricting the data to seven car types and professional vendors, and merging over time
for identical car IDs reduces the initial 190 millions of price observations to 4,875,850
observations.

4.2 Variables for survival analysis
We generate six variables from the raw data: time on market, market size, degree of

overpricing, quantile, age, and size of dealership. The first five variables are based on
Jerenz (2008) and used with minor adjustments. We propose size of dealership as a new
variable to capture the marketing ability and image of a specific dealer. First, this study
defines the target variable time on market (TOM). TOM is the difference in days between
the first and the last date of online presence for the same car with the same price.
Market size (MS) represents the number of equivalent cars being offered simultaneously
to the car of interest, where equivalent cars are from the same model and the same car
category. Additional restrictions on age and mileage within the group ensure the same be-
havior for the cars under consideration. The age for equivalent cars lies within an interval
of plus/minus three months. The mileage is in the interval plus/minus 10 000 km. Market
size is intrinsically related to TOM, as vehicles with larger TOM tend to show higher mar-
ket size. A more advanced definition of market size is part of future work.
Degree of overpricing (DOP) is the proportion between the price reported in the data and
the hedonic price for the specific car, which we estimate using a log-linear regression on
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registration date, car performance, fuel type, age, type and category of the car.

log(Hedonic price) = β1Registration + β2Performance + β3Fuel+
β4Age + β5Type + β6Category + ε

(28)

The hedonic price represents the intrinsic value of a car defined by a set of variables
(Lessmann and Voss, 2017). We then define DOP as

DOP =
Price in dataset

exp (Hedonic price)
(29)

Quantile represents the percentile of the car price for prices in the same car category. Age
represents the age of a car in months. The novel variable size of dealership (SOD) counts
the number of unique cars under the same vendor ID.

5 Results

This section reports the results observed during the application of survival analysis
methods for PRF estimation. We first present results for traditional and data-driven sur-
vival models individually, and then compare their performance using the Brier score and
the C-index for assessing calibration and discrimination performance, respectively. A dis-
cussion how the observed results answer our research questions follows in Section 6

5.1 Classical survival analysis methods
Kaplan-Meier estimators and the Cox proportional hazards model represent classical

survival analysis methods. These methods are pragmatic, easy to implement and allow for
a quick assessment of variable dynamics by visual analysis and statistical measures. Their
results also allow for an interpretation of market dynamics.
Figure 1 depicts Kaplan-Meier curves for each of the independent variables. The visual
analysis provides a first indication how variables (e.g., car features) affect the probability
of selling a used car. To account for the fact that variable effects might differ across value
ranges, we group observations according to the quartiles of variables’ values and estimate
the survival curves from the grouped data. We support results of Figure 1 with statistical
analysis using the Cox proportional hazards model. Corresponding results in form of
exponentiated model coefficients and significance are presented in Table 5.1, where we
estimate individual survival models for individual car categories. Stratification by car
category accounts for possible heterogeneity across car types and is feasible because every
category is well represented in the large data set. Note that an exponentiated coefficient
less than (above) one implies that the probability to sell a car decreases (increases) with
larger values of the variable.

15



0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survival time

S
ur

vi
va

l p
ro

ba
bi

lit
y

● ● ● ●Q1 < 0.9 Q2 < 1.01 Q3 < 1.14 Q4 < 2
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Figure 1: Assessing the effect of variables with Kaplan-Meier curves. Plot of Kaplan-Meier estimated
survival probabilities for several variables. Groups are divided in quartiles. Survival time is defined in days.
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DOP shows a monotonic increase in survival probability across all classes in Figure
1(a), with cars with the highest prices in relation to their hedonic value spending the most
time unsold. Results of Cox proportional hazard models in Table 1 support this fact for
each car class. The distribution of the coefficient clusters at around 0.3 for most car types;
sports cars being an exception with a DOP coefficient of 0.513. A relatively large DOP
coefficient for sports cars implies that offering a price above the (model estimated) market
value decreases the sales probability of sports cars less than the sales probability of other
cars. In other words, estimated DOP coefficients evidence how the price elasticity of
second-hand sports cars is less than that of other cars.
Figure 1(b) suggests a non-monotonic increase in sales probabilities with larger market
size. Curves with lowest sales probabilities represent the first and the second quartiles
of market size. Corresponding cars face low competition from similar cars in price, age
and mileage, which explains a low chance of selling. Survival curves of the third and
the fourth quartiles do not show the same trend and overlap. We attribute this pattern to
heterogeneity originating from the variable MS capturing both demand- and supply-side
effects. Large MS values may be a consequence of the new car business in that popular
car models exhibit large production and sales volume, which eventually lead to a large
supply of used cars in the second-hand market. On the other hand, low demand may be
the dominating determinant of large market size. Corresponding cars may be regarded as
the ”lemon” of the second-hand market. With coefficient estimates close to one for all car
classes, results of the Cox proportional hazards model suggest a small effect of MS on the
sales probability. To correctly interpret the exponentiated coefficient near one and the high
significance of the feature we recall the definition of MS, which is the number of equivalent
cars being offered simultaneously. The high range in values of MS is responsible for the
exponentiated coefficient very close to one.

The variable quantile shows a similar monotonic behavior as DOP in Figure 1(c). We
explain this result with the direct relationship between Quantile and the vehicle’s price.
Our analysis by car classes supports this result across all classes but Luxury. For most
classes, the coefficients lie within the range of 0.7 - 0.9. Notably, the lowest coefficient
of 0.578 is present in the category sports cabriolet. This reveals that the willingness of a
customer to pay a surplus for specific technical characteristics, resulting in a lower DOP
effect, is compensated by a higher sensitivity regarding the price positioning of the vehicle
within its own class.
The variable age displays a non-monotonic behavior in Figure 1(d). The lowest quartile of
the variable Age shows expected behavior as the survival probability is the lowest among
the four curves. Rather surprisingly is the behavior of the second quartile (up to 28 months
old), as the survival probability is higher as for the third and fourth quartiles. This result
implies that cars up to 28 months of age stay longer in the market as older cars. An ex-

18



planation might be the price of these vehicles. Older cars tend to have lower prices, which
highly increase the probability of being sold, as shown by the survival curves for DOP
and Quantile. The German used car market has two highly frequent age segments. These
are cars around 12 and 48 months of age. The former come from the automobile OEMs
and their employees while the latter come from leasing returns. These segments are also
known to customers (Johnson and Waldman, 2003). It may be plausible that dealers set
higher prices for cars up to 28 months age relatively to their actual market value as they
position them to the category of OEM employees’ cars rather than to the leasing returns.
Car class-wise results of the Cox model also provide results with very small impact on the
survival probability. All classes have coefficients close to one, with Luxury Cabrio being
the only class with a coefficient slightly above one. This fact is similar to the interpretation
of the MS results, as Age has a high variance in its values.
The variable SOD shows a non-monotonic increase in survival probability in Figure 1(e).
SOD represents the size of the dealership and displays lowest survival probability for cars
from large vendors. This might be due to more efficient sales processes, more effective
marketing and higher know-how as the competitive edge. For the third and second quar-
tile observations, the survival probability gradually rises. The survival curve representing
the first quartile crosses the curves of the second and the third quartiles. An explanation
might be dealerships with less than 10 cars on the market, where chance and individual
skill might be more important than the effects arising from the size of the dealership alone.
In the class by class analysis, SOD is the only variable with consistent positive effect on
the sales probability across all car types. This fact undermines the finding from Kaplan-
Meier estimations and validates SOD as a proxy for efficient processes and better market
knowledge. Notably, the coefficients are close to one in the Cox model implying a low
impact of SOD in the Cox proportional hazards model. Again, the variance in SOD values
contributes to the near-one coefficient of the feature.
Overall, the results from Cox proportional hazards model largely agree with results from
Kaplan-Meier curves. Variables with low impact according to the Cox model show non-
monotonic behavior for the probability of a car being sold in the Kaplan-Meier curves.
We have provided possible explanations for non-monotonic behavior for the variables
MS, Age and SOD. However, low impact of these variables according to the Cox propor-
tional hazards model does not mirror our interpretation of Kaplan-Meier results. There-
fore, we proceed with checking model assumptions to analyze whether the results may be
attributable to our data failing to fulfill the linearity and proportionality assumptions of the
Cox proportional hazards model.
We analyze the linearity assumption using visual analysis of the martingale residuals,
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which are defined as

rMi
= δi − rCi

, (30)

where δi is the event status for the i-th observation and

rCi
= Ĥ(Ti, xi) = exp(βxi)Ĥ0(Ti), i = 1, · · · , n (31)

is the Cox-Snell residuals. We plot the residuals against the single features of the model to
test for a non-zero slope, which is an indication for the violation of the linearity assumption
(Therneau et al., 1990). Figure 2 provides corresponding results and reveals that each
variable displays a non-zero slope with the highest deviations for MS, SOD and Age. This
suggests that the initial result of low to zero impact from Cox proportional hazards model
(see Table 1) for these variables comes from the limitations of the model. The graphical
analysis also provides some evidence for the existence of non-linear relationships between
the variables and the target variable TOM.
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Figure 2: Assumptions check - martingale residuals for single features. Variables are plotted against martin-
gale residuals for the linearity check.

We analyze the proportionality assumption using visual and statistical analysis of the
Schoenfeld residuals (Schoenfeld, 1982; Andersen, 1982; Aranda-Ordaz, 1983), which
we plot against the survival time in Figure 3. A non-zero slope is once again an indication
for non-proportionality; that is a violation of model assumption. We further secure the
results of a visual inspection of Figure 2 through performing a χ-squared test with the
H0 hypothesis of the hazards being proportional on the data at the significance level of
95%. Note that the significance level of the Schoenfeld residual is dependent on the size
of the sample. As our data has several millions of observations, an even more conservative
significance level may be necessary to accept H0 (Lin et al., 2013). Table 2 provides
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Figure 3: Assumptions check - Schoenfeld residuals for individual variables. Variables’ values are plotted
against Schoenfeld residuals for the proportionality check.

the results of the χ-squared test statistic and reveals that the proportionality assumption
cannot be accepted for any of the variables at the significance level of 95%. In summary,
the χ-squared test statistic and the visual examination provide strong evidence for non-
proportionality.//

Table 2: Proportionality check. Schoenfeld residuals test.

Variable ρ χ2 p-value
MS 0.0718 8587 0
DOP 0.0747 9723 0
Quantile -0.0517 4499 0
Age 0.0806 11168 0
SOD 0.0550 3751 0
Full model 27253 0

The analysis of the assumptions of the Cox model suggests that neither the linearity
nor the proportionality assumption can be accepted. This result restrains further use of
the Cox proportional hazards framework. It also calls for the consideration of methods
with less rigid assumptions and inbuilt ability to capture non-linear and non-proportional
relationships in the data. We argue that this finding is managerially meaningful. On the one
hand, survival analysis in general provides a powerful statistical framework to aid pricing
decisions in the used car market (Jerenz, 2008). On the other hand, the only application of
this framework for car reselling by Jerenz (2008) restricts itself to classical methods like
the Cox model, which our analysis shows to be inadequate.
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5.2 Data driven survival methods
Previous results on the limitations of the Cox model, as representative for classic para-

metric survival models, motivate an analysis of data-driven survival models for PRF esti-
mation. We select four different methods, all of which ground on the concept of decision
tree learning (Breiman et al., 1984): survival tree, random survival forest, conditional
inference tree and conditional inference forest. We discuss our modeling strategy and cor-
responding results using the example of the random survival forest (RSF). Detailed results
for other methods are available in the Appendix. The analysis of model results displays
much similarity across different data-driven survival methods. Focusing on one method,
therefore avoids repetitive discussions. We discuss RSF in the main part of the paper be-
cause it performs best among the four data-driven techniques; as shown later in the paper.

The performance of RSF, as well as other data-driven survival methods, depends on
meta-parameter settings to be selected by the analyst. RSF meta-parameters include the
number of trees in the ensemble and the number of variables to be used at random in each
split (Breiman, 2001). To tune meta-parameters, we consider candidate values of each
meta-parameter and empirically determine the best combination using grid-search (Less-
mann and Voss, 2017). The out-of-bag prediction error, a measure naturally generated in
a random forest framework Breiman (2001), facilitates assessing the predictive accuracy
of a specific combination of meta-parameter values.

Figure 4 provides the results of RSF parameter-tuning on a random sample of 20,000
observations. We draw a random sample because the estimation and assessment of several
candidate RSF models on the full data set would be computationally intractable. Consid-
ering candidate settings of 1, 2, and 3, we find the best number of variables selected at
random per split to be 2. Figure 4 also shows how the out-of-bag error decreases when
adding additional survival trees. This beneficial effect, however, diminishes with forest
size, while adding trees always increases run times and memory requirements. In the light
of Figure 4, we select the forest size for subsequent analysis to be 100 trees. We suggest
this value to provide close to minimal prediction error while avoiding excessive run times
on the full data set.

The first research question we strive to answer concerns the mechanisms that govern
car resale in the second-hand market. Results of the Cox model (Table 5.1) have given
a preliminary answer to this question through estimating the direction, magnitude, and
significance of variable coefficients. Violation of model assumptions draws these results
into perspective. To revisit results of the Cox model and obtain a clearer view on the way
in which features affect resale probabilities, we examine the variable importance of the
RSF. Random forest based variable importance ranks are a popular approach to appraise
how much a variable impacts model predictions and to inform feature selection (Ishwaran
et al., 2011). Roughly speaking, the magnitude of an importance score captures the degree
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Figure 4: Tuning tree parameters - check predicted error stability across changing number of trees and
variables at each split. Number of observations - 20.000.

to which predictive accuracy decreases, if the information within the variable were not
available to the model (Breiman, 2001). We develop 100 RSF models, run them on disjoint
data samples and average the normalized variable importance scores across all models.
Figure 5 provides corresponding results.

We find SOD to be the most important variable, closely followed by Age and MS.
On average, importance scores of the latter two are similar, whereby MS displays larger
variation in that the minimum and maximum variable importance observed across the
100 RSF models show larger spread compared to Age. Interestingly, both price related
variables, Quantile and DOP, show relatively lesser impact. Especially DOP, the variable
previous work identifies as most relevant predictor of sales probabilities (Jerenz, 2008),
comes out as relatively least important variable in Figure 5. This result indicates that
consumers’ price sensitivity depends on factors such as age and competition (captured in
MS). We also find some evidence that deeper market knowledge and more efficient sales
processes, which we associate with SOD, facilitate larger dealerships to charge a premium
price. Last, the fact that the maximum variable importance of DOP is roughly equal to the
minimum importance score of SOD provides strong evidence in favor of our proposition
to include SOD as predictor in survival models for PRF estimation.

We secure results from the variable importance analysis through examining the devel-
opment of the integrated Brier Score when iteratively discarding variables. To that end,
we first calculate the Brier score of the full model using a training sample of 13.500 obser-
vations and a random sample of 1.500 observations for the prediction. Next, we exclude
one variable, reestimate the model, and recalculate the Brier score. The Brier Score mea-
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Figure 5: Variable importance for the five variables - mean values from a sample of 100 models. Red points
indicate maximal and minimal values

sures the degree to which RSF estimated sales probabilities agree with actual values and
is formally defined as the mean of the squared residuals between model forecasts and a
zero-one coded binary target variable (Eren, 2014). It is common practice to consider the
integrated Brier Score in survival analysis. There, an integration of scores occurs in that
Brier Scores can be calculated for each discrete time point. Table 3 provides corresponding
results, where an increase in the Brier score indicates a decrease of model performance.
One finding of Table 3 is that every variable exclusion decreases the performance of the
RSF model. This confirms that each variable is important. The variables SOD and Age
belong once more to the group of most important variables. Their exclusion causes the
largest decrease in performance. As in Figure 5, exclusion of DOP hurts model perfor-
mance the least. The relevance of the variables MS and Quantile differs between the Brier
Score and RSF variable importance analysis.

Additionally, we perform similar analysis using the C-index. Note that in contrary to
the integrated Brier score, a higher C-index corresponds with better model performance.
Table 4 shows a drop in the C-index for each model with a variable excluded. Exclusion
of SOD results in the biggest drop of the C-index and thus model performance, followed
by Age and Quantile. The results of C-index analysis are in line with the integrated Brier
score.

Overall, variable importance, Brier score and C-index results emphasize the impor-
tance of SOD, Age and, to lesser extent, MS and Quantile. DOP shows the lowest variable
importance and the lowest improvement of model calibration and discrimination. These
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Table 3: Variables analysis. Integrated Brier score for random survival forest models under exclusion of
variables

Integrated Brier Score
Full model 0.090
w/o SOD 0.096
w/o Age 0.096
w/o Quantile 0.096
w/o DOP 0.094
w/o MS 0.094

Table 4: Variables analysis. C-index for random survival forest models under exclusion of variables

Concordance index
Full model 0.600
w/o SOD 0.564
w/o Age 0.579
w/o Quantile 0.579
w/o DOP 0.584
w/o MS 0.586

results stand in contrast to the results of the Cox proportional hazards model. Our analy-
sis of its limitations through strict assumptions delivers a first indication for the deviating
results. While it is possible that classical methods correctly assign the impact of each vari-
able, we assert that data-driven, non-linear tree methods better fit the underlying data and
facilitate a more precise detection of patterns, variable importance, and predictive power.
To confirm this, we compare classical models and data- driven survival methods in the
next section.

5.3 Survival model performance comparison
We compare the Cox proportional hazards model and the data-driven approaches with

regards to calibration and discrimination performance. We assess the calibration perfor-
mance of the models using the Brier score and use the C-index to assess the discriminative
power of each model. We denote the set of models as M with a model Mi, i = 1, . . . , 5
referencing to one specific survival model. We sketch our benchmarking approach in Al-
gorithm 1.
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Algorithm 1 Comparison of calibration and discrimination performance of classic and
data-driven survival methods.

1: Randomly split observations in training set T and validation set V with a 60/40 ratio.
Define Ṽ as a fixed subset of V with 1500 observations

2: Split the training set T in disjoint subsets Tj with T =
⋃100

i=J Tj
3: for j = 1, . . . , 100
4: Fit model Mi, i = 1, . . . , 5 on Tj and define it as M j

i

5: Make a prediction up to 120 days using M j
i on Ṽ

6: Calculate Brier score for M j
i and define it as Brierji

7: Calculate C-index score for M j
i and define it as Cj

i

8: Calculate paired difference Brierji,k = Brierjk −Brier
j
i for i, k = 1, . . . , 6

9: Calculate paired difference Cj
i,k = Cj

k − C
j
i for i, k = 1, . . . , 6

10: Calculate mean and standard error for Brierji,k and Cj
i,k over all j

11: Calculate confidence intervals for means of paired differences based on a t-distribution

Figure 6 and Figure 7 provide comparative results in terms of Brieri,k and Ci,k, re-
spectively, together with the respective confidence intervals. Note that according to Step
8 and Step 9 of Algorithm 1, we calculate the difference in model performance as perfor-
mance of model in row - performance of model in column. A red horizontal line represents
no difference in model performance.
Figure 6 reports pairwise comparison of Brier scores. In the context of pairwise compar-
isons, a difference in means above the red line indicates better performance of the column
model compared to the row model. The difference is statistically significant if the confi-
dence interval, represented by the slashed lines, does not include zero.
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Figure 6: Pairwise model comparison - Brier Score for right censored data. Mean and 95% confidence
interval for paired differences between selected survival models. Estimation from 100 disjoint training
samples.

Random survival forest and the conditional inference tree show the best calibration
performance. Their performance does not differ significantly, as shown in the panel ”RSF
- Ctree”. However, random survival forest and conditional inference tree significantly out-
perform other models in terms of the Brier Score. The Cox proportional hazards model
shows the worst performance, which we attribute to violations of model assumptions for
the data employed here. Figure 7 depicts pairwise comparative results in terms of the
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C-index. Note that unlike for Brier Score, higher C-index indicates better discriminative
performance. Thus, a difference in means below the red line indicates better performance
of the column model compared to the row model.
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Figure 7: Pairwise model comparison - C-Index for right censored data. Mean and 95% confidence interval
for paired differences between selected survival models. Estimation from 100 disjoint training samples.

Figure 7 suggests that the difference in model performances decreases with longer
TOM. This might come from lemons (i.e., cars that are hard to sell) showing common
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patterns, which are easily detected by each model. RSF shows superior performance up
to 60 days on market. The confidence intervals indicate that the difference in performance
is not significant for conditional inference forest and conditional inference tree. For cars
with TOM higher than 60, a change in performance in favor of both conditional inference
models, tree and forest, is present. Nevertheless, the confidence intervals include zero.
Practitioners consider day 60 of a car’s TOM as an unspoken threshold before the price
of car needs to be reduced in used car retail. Single survival tree shows the worst per-
formance, followed by the Cox proportional hazards model. Contrary to the calibration
analysis, a single conditional inference tree does not outperform its ensemble version.

Overall, results of Figures 6 and 7 clearly confirm the need for data-driven survival
methods for PRF estimation. The Cox proportional hazards models cannot compete with
the data-driven alternatives considered here; neither in calibration nor in discrimination
performance. More specifically, we find the random survival forest to be the best model
in the comparison. In terms of both calibration and discrimination performance, random
survival forests perform at least competitive to and typically better than other survival
methods; often outperforming them with statistically significant margin. Surprisingly, the
single conditional inference tree shows superior performance to its ensemble version in
terms of calibration and at least on par performance for discrimination. This contradicts
the view ensemble methods outperform their single model counterparts, which is widely
adopted in predictive modeling (Lessmann and Voss, 2017, e.g.,), and provides some first
evidence that empirical findings obtained in the broader scope of supervised learning might
not necessarily generalize to the more specialized area of survival analysis.

6 Discussion

The empirical results provide insights into the dynamics of car resales in the second-
hand car market. Furthermore, we elaborate on the appropriateness of data-driven methods
for survival analysis in the context of this market, and more specifically the support of
pricing decisions. We consider deeper market understanding and more precise methods
as essential enablers for a dynamic pricing approach in a broader revenue management
framework. Such framework is needed to increase margins and overcome the ”zero-profit-
problem” that affects car manufacturers and independent dealerships in the huge second-
hand car business (Jerenz, 2008). Against this background, we analyze the interactions
of variables and estimate survival curves for used cars, depending on the car’s intrinsic
features, price related variables, and structural effects related to dealership size. Supported
by the empirical results, we can answer our research questions.

1. Which factors influence the time a used car spends on the market before it gets
sold?
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This study analyzes factors related to offer prices (DOP and Quantile), a factor rep-
resenting to the car’s competition within its market segment (MS), a factor capturing
maturity of front-end business processes and market insight, which we originally in-
troduce in this work, (SOD), and the age of a used car. Table 5 summarizes relevant
results across factors and survival models in terms of variable importance ranks.
We assess the magnitude of the exponentiated coefficients for the Cox proportional
hazards model and assign the importance rank accordingly. For survival trees and
conditional inference trees, we focus on the rank of the splits, which are shown in
plots in the Appendix. For random survival forest and conditional forest, we rank
the importance of the variables based on the integrated Brier score. We motivate
our decision to use different statistics to assign importance ranks by the underlying
differences in the models and lack of a common importance statistic. Nevertheless,
as we are able to find meaningful interpretations for the models’ behavior, we pro-
pose to use the overview as a starting point for the discussion. We assign rank 1 to
the variable with the highest importance and 5 to the variable with the lowest im-
portance for a model. We note variables with no impact according to the model as
’none’.

Table 5: Comparison of importance rank of variables across used models.

Variable Model
Cox p. h. Survival tree RSF C. i. tree C. i. forest

DOP 1 none 5 1 3
MS none 2 4 3 none
Quantile 2 none 3 4/5 2
Age none 3 2 4/5 1
SOD none 1 1 2 none

Random survival forest and conditional inference tree are the only models that re-
gard all variable as important. These models are also the ones with the best predic-
tive performance. This suggests that all variables carry explanatory and predictive
information for the mechanisms of the used car market.
Random survival forest and conditional inference tree both assign high importance
to SOD. This leads to the conclusion that structural effects related to a dealership’s
size are an important factor for a successful car sale. We argue that this finding is
important because prior work on used car revenue management has limited its atten-
tion to variables related to the car (Jerenz, 2008). Our new variable SOD evidences
the relevance of other sources of information to model sales probabilities and iden-
tifies a potentially fruitful direction along which to search future improvements in
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the form of additional variables. For example, SOD itself is a gross measure that
encompasses multiple factors. Future research could examine the explanatory and
predictive value of more specific characteristics of used car vendors.

DOP shows contrary importance for both models. To correctly interpret this result,
we recall Table 3. The integrated Brier scores for all variables are very similar, indi-
cating that a low importance rank is by far not equivalent to no importance. Further,
we recall that price is often the only steering mechanism available to a decision-
maker. Therefore, we conclude that DOP, as a price related variable, has a signifi-
cant predictive and explanatory power.

2. What is the most accurate statistical method to predict the time on market?
The empirical results show superior performance in calibration for random survival
forest and conditional inference tree. In terms of discrimination, random survival
forest shows best performance for used cars with TOM up to 60 days. Models based
on the conditional inference may outperform random survival forest for used cars
with higher TOM.
A potential implementation as a decision support system for a used car dealership
have to take into account the scarcity of internal statistical resources and high costs
of external resources. Thus, even if our results indicate an on-par performance of
two different models, we understand the importance of a final reference towards one
of the potential candidates. Considering our target to estimate the market demand
for further use in a revenue management framework, we suggest to regard additional
model characteristics prior to a final decision. Random survival forest as an ensem-
ble method has a lower tendency towards overfitting (Breiman, 2001) in comparison
to a single tree. With the empirical results and additional considerations, we sug-
gest to use random survival forest as the model of choice for large datasets with
right-censored observations.

We find classical survival analysis methods inappropriate for the real-world data em-
ployed in the study, due to strict assumptions of linearity and proportionality. We introduce
for the first time data-driven survival methods to the context of the used car market and
show superior predictive performance of random survival forest and conditional inference
tree. From additional considerations we suggest to select the random survival forest for an
implementation in a possible decision support system or revenue management framework.
Here, our contribution is not limited to the application of advanced data driven methods,
but also includes survival analysis modeling with significantly larger dataset than used in
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previous work. Such combination of large, real-world data, innovative statistical mod-
eling, and deeper understanding of the market is precisely what promises to be the new
success driver in the ever more Big Data obsessed business world of tomorrow.
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Appendix A Evaluation of tree-based methods

Appendix A.1 Survival trees
As described in the methodology section, survival tree relates to classification and

regression trees (CART) with adjustments to censored data. Figure A.8 shows a survival
tree plot from which we deduct our results. The first split accounts for the feature SOD,
separating the underlying data in larger and smaller dealerships. Next split accounts for
MS and the last split accounts for Age. The survival tree excludes DOP and Quantile and
thus does not incorporate any information regarding the price of the used car. From this we
deduct that survival tree may have low predictive performance on our data set as it cannot
incorporate all information available.
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Figure A.8: Survival tree plot - inspecting splits for a random sample of 13.500 observations from the data.
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Appendix A.2 Conditional inference tree
We fit a conditional inference tree model to our data and deduct our results from the

visual observation of the plot presented in Figure A.9. We can observe effects of interac-
tions between the features. The first two splits occur for DOP and SOD supporting results
of random survival forest and Cox proportional hazards model. Next splits do not show a
predominant feature. Rather groups of separate branches of the tree segregate the data.
DOP lower than 1 has the highest impact for a fast car sale. The fastest decline of the
survival curves reflects this finding. The effect is less present for cars with very large MS
values. This fact indicates that in presence of strong competition within a segment even
a relative appealing price is not enough to offset the competition. The shortest TOM is
present for cars with DOP of 0.8 or less and for cars sold by large dealerships. Contrary,
the longest TOM is present for cars older than 18 months and the price set in the top 10%
for the comparable cars. Highly overpriced cars with DOP over 1.4 also have the highest
survival rates and thus are hard to sell. Further, large dealerships manage to sell cars with
high DOP faster and can even offset the effect of competition corresponding to high MS.
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Figure A.9: Conditional inference tree plot for a random sample of 13.500 observations from the data.
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Appendix A.3 Conditional inference forest
We organize our conditional inference forest modeling approach similar to random

survival forest model. First, we find the parameters for the model, which ensures the best
predictive performance. Conditional inference forest depends on two hyperparameters, the
number of trees in the ensemble and the threshold p to perform a split. Our initial exami-
nation on the suitable number of trees shows similarities to random survival forest. While
higher number of trees improve the model and lowers the out-of-bag error, the effect of
diminishing returns occurs at around 100 trees. Thus, we set the number of trees to 100.
Note, that we do not provide the graphical results from analysis on the number of trees for
conditional inference forest.
We decide to find a suitable p-value from a set of possible candidates from 0.95 to 0.99 in
.01 steps. We use the concordance index as the measure of choice on bootstrapped data
and select the p-value with the highest index value. A threshold value of 0.95 results in
the best performance as shown in Figure A.10. We perform the analysis on feature im-

Figure A.10: Tuning tree parameters: minimal p-value criterion - check predicted error stability across
changing lower p-values. Results from bootstrapped data.
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portance using the integrated Brier score and show the results in Table A.5. Surprisingly,
the exclusion of the features SOD and MS does not worsen the model performance. The
features Age, Quantile and DOP show slight performance increase. The results from con-
ditional inference forest show congruence with findings from Cox proportional hazards
model. Again we assume, that a model which does not consider all variables as important
may have lower predictive power.

Table A.6: Variables analysis. Integrated Brier score for conditional inference forest models under exclusion
of variables

Integrated Brier Score
Full model 0.087
w/o SOD 0.087
w/o Age 0.089
w/o Quantile 0.089
w/o DOP 0.088
w/o MS 0.087
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