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Abstract

Weekly, quarterly and yearly risk measures are crucial for risk reporting according to Basel
III and Solvency II. For the respective data frequencies, the authors show in a simulation and
backtest study that available data series are not sufficient in order to estimate Value at Risk and
Expected Shortfall sufficiently, given confidence levels of 99.9% and 99.99%. Accordingly, this
paper presents a semi-parametric estimation method, rescaling data from high- to low-frequency
which allows to obtain significantly more data points for the estimation of the respective risk mea-
sures. The presented methodology in the α-stable framework, which is able to mimic multifractal
behavior in asset returns, provides tail events which never occurred in the original low-frequency
dataset.

Keywords: high-frequency, multifractal, stable distribution, rescaling, risk management, Value
at Risk, quantile distribution
JEL Classification: C14, C22, C46, C53, G32

1. Introduction

Value at Risk and Expected Shortfall estimation for high confidence levels,
i.e. 99.9% or 99.99% are central parts of risk reporting for banking (Basel III)
and insurance (Solvency II) institutions. As the aimed holding periods range from
weekly to annual [BIS, 2017], available data-sets for respective sampling frequencies
cover a limited amount of data, which is not sufficient in order to model the tails of
the loss / return distribution. In this regard, the authors develop a methodology in
the α-stable framework which rescales an empirical high-frequency distribution to a
lower sampling frequency. Given more data points provided, the semi-parametric
method provides an efficient estimation for risk measures with high confidence
levels.

1Financial support from the Deutsche Forschungsgemeinschaft via International Research
Training Group 1792 ”High Dimensional Nonstationary Time Series”, Humboldt-Universität zu
Berlin, is gratefully acknowledged.

Preprint submitted to Elsevier



We start to contribute to the literature by formulating a concrete specifica-
tion of the sample quantile estimation problem for larger confidence levels given
a limited number of observations. Within a simulation study, we show by intro-
ducing sample quantile bias and overestimation as a function of the number of
data points available, that datasets of ten years history and less do not suffice in
order to efficiently estimate high confidence quantiles (99.9% / 99.99%) for weekly
and lower frequencies. The developed frequency rescaling methodology allows to
estimate low-frequency risk measures by rescaling high-frequency data, inducing
tail events which never occurred in the history of the lower frequency. Further-
more we show that the multifractal scaling law can be mimicked by the frequency
rescaling methodology, which employs long-memory GARCH methods. The back-
test evaluates the frequency rescaling method in terms of efficiency and coverage
and indicates the outperformance over diverse methods for the weekly sampling
frequency.

Basel regulations demand that ”assumptions made within the internal model
are appropriate and do not underestimate risk. This may include the assumption
of the normal distribution” [BIS, 2016]. As leptokurtic distributions with finite
variance - such as Student-t for the daily frequency - are governed by the Central
Limit Theorem, the relevant annual distribution would be approximately Gaus-
sian. To circumvent this asymptotic inevitability, returns from different sampling
frequencies are analyzed in the framework of α-stable distributions, which have
their own domain of attraction and limit theorems [Gnedenko and Kolmogorov,
1954]. Deviating from the Gaussian random walk, first applications in finance
are due to Mandelbrot [Mandelbrot, 1963, 1967] and his student Fama [Fama,
1965], who rest their work on Lévy stable processes [Lévy, 1925]. In contrast to
the theoretical results of stability under addition [Fama and Roll, 1968], Fama
[1976], McFarland et al. [1982], Boothe and Glassman [1987], Dacorogna et al.
[2001] as well as Grabchak and Samorodnitsky [2010], show that the stability ex-
ponent decreases empirically for higher sampling frequencies. This implies that
high-frequency returns are heavier tailed than low-frequency returns, still differ-
ing significantly from Gaussianity. Modeling the dispersion of price increments
as a function of its past absolute or squared returns, Bollerslev and Domowitz
[1993], Andersen and Bollerslev [1997], Andersen and Bollerslev [1998] and Boller-
slev et al. [2000] show that in terms of temporal dependence, higher frequency
returns exhibit a longer memory, which call for different function approximations
over sampling frequencies. Allowing for hyperbolic decay of the autocorrelation
function, long memory can be modelled accordingly [Taylor, 1986]. In contrast
Mandelbrot and van Ness [1968], Mandelbrot [1982], Mantegna and Stanley [1995]
and Xu and Gencay [2003] rest their analysis on the empirical scaling law, which
deviates empirically from uni- and mesofractal models. Mandelbrot et al. [1997]
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and Mandelbrot et al. [1997b] model multifractality by modeling the price in-
crements under a subordinated (fractional) Brownian motion. The subordinator
is represented by a multifractal measure, which controls tail behavior and long
memory [Calvet and Fisher, 2002]. On the foundation of frequency dependent
stochastic properties in terms of heavy tails, time dependence and multifractality,
we analyze ten years of Level-1 tick data for Microsoft, which are gathered from
Lobster. For computation, Matlab has been utilized. The paper is organized as
follows: The first chapter formulates the financial model and introduces the sample
quantile estimation problem in a simulation study. The high-frequency data-set of
Microsoft is subsequently analyzed over varying sampling frequencies in chapter
two. Given the varying behavior over sampling frequencies, a method to rescale
the data-set from high- to low-frequency is introduced in chapter three. The last
chapter verifies the performance of the respective quantile estimates in an in- and
out-of-sample backtest.

2. Sample quantile distribution

Financial stake-holders are interested in estimating the (conditional) quantile of
the wealth distribution for large confidence levels in order to report capital at risk,
given a fixed probability of ungovernable events. Although it is possible to estimate
risk measures for all confidence levels, given a limited amount of data, we will show
that respective risk measures are significantly underestimated. From mathematical
statistics it is well-known that the asymptotic distribution of the sample quantile
is unbiased and Gaussian by CLT, given stationarity and finite second moments
[Ruppert, 2010]. Given that empirical time series provide a limited amount of data
points, we are going to examine the bootstrapped sample quantile distribution for
relevant confidence levels and distribution assumptions.

2.1. Financial model

Let Xt ∈ Rk, k ∈ N+ be multidimensional log-returns from distribution P t,
where t indicates the scale, e.g. days. X̃t represents the according discrete returns.
For horizon T ∈ N+ days, the wealth equation

WT (ft) = W0

T∏
t=1

{
1 + f>t X̃t

}
= W0

T∏
t=1

{
f>t exp(Xt)

}
(1)

can be simplified, given constant investment fractions f ∈ Rk over time ft =
f ∀t = 0, . . . , T .

WT (f) = W0

{
f> exp

(
T∑
t=1

Xt

)}
= W0

{
f> exp(X)

}
, X

def
=

T∑
t=1

Xt (2)
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For respective cdf FWT
(x) the spectral measure with weight function φ(x) is

defined through the quantile function F−1WT
(x)

def
= {x : P (WT (ft) ≤ x) = τ} , τ ∈

(0, 1).

Sφ {WT (ft)} =

∫ 1

0

φ(x)F−1WT
(x)dx (3)

Within the context of risk measures, the spectral measure will be coherent iff
the weight function is positive φ(x) ≥ 0, increasing φ′(x) ≥ 0 and normalized∫ 1

0
φ(x) = 1 [Acerbi, 2002]. Two specific risk measures to assess the risk of the

portfolio are quantile (VaR) and expected shortfall (ES) constraints:

� S1 : The quantile constraint (VaR) is a special case of the spectral risk
measure from (3)

φQα(x) = δ(x = τ) (4)

where δ(x = τ) is the Dirac delta function, well-known to be a non-coherent
risk measure. Further drawbacks of the quantile constraint are treated in
Basak and Shapiro [2001]. However, the quantile restriction allows to indi-
cate a loss, which his not exceeded with probability 1− α.

� S2 : In contrast, Expected Shortfall is a coherent risk measure representing
the average loss beyond a given quantile constraint. Being a special case of
the spectral measure, the weight function is given as

φESτ (x) = τ−11(x < τ). (5)

Avoiding the weaknesses of VaR, the Basel Committee on Banking super-
vision proposed to shift the quantitative risk measurement from VaR to
expected shortfall (ES) [BIS, 2013, 2016]. As ES is shown to be sub-additive
and assesses events beyond the quantile, ES is becoming present in the fi-
nancial industry.

2.2. A Microsoft Investor

Presume a stock-market investor is calculating the weekly VaR of his portfolio
by using close to ten years of Microsoft data, representing 471 weekly returns.
Accordingly, Gaussian, Student-t (ν = 5) and Stable (α = 1.7) distributions are
fitted via MLE. The respective quantiles of the discrete wealth return distribution

Q(τ) =

∫ 1

0

δ(x = τ)F−1(x)dx (6)

are estimated by the sample quantile

Q̂n(τ) =

∫ 1

0

δ(x = τ)F̂−1n (x)dx, (7)
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given in Table 2. For the confidence level of 99% the maximum losses of the
Microsoft stock under standard parametric assumptions are -8.38% (Gaussian),
-11.95% (Student-t) and -11.64% (Stable). For confidence intervals larger than
99.9% the tails of the Stable distribution are heavier than the tails of Student-t
and Gaussian. In contrast to the asymptotic Gaussianity of the sample quantile

Confidence 1− τ Gaussian Student-t Stable

99% -8.38 −11.95 −11.64
99.9% -11.01 −20.05 −35.59
99.99% -13.13 −30.90 −81.31

Table 1: : Quantiles (in %) of discrete weekly Microsoft returns for Gaussian, Student-t
(ν = 5) and Stable (α = 1.7) for confidence levels 99%, 99.9% and 99.99%

under stationarity and finite second moments we illustrate the effect of limited
sample size via bootstrap.

� draw B = 104 independent bootstrap samples X(1), . . . , X(B) of size n = 471
from parametric distribution F̂θ̂,n, θ̂ = {Gaussian, Student-t, α−Stable} and

� calculate B = 104 quantile estimators Q̂i,n(τ) ∼ Ĝn, i = 1, . . . , B plotted as
histograms in Figure 1.

We chose the block-length n to be 471 as it represents the number of ob-
servations in the weekly frequency of our data-set. The vertical lines in Figure 1
represent the asymptotic quantiles under their parametric assumptions. The boot-
strapped quantile distributions for Gaussian, Student-t and Stable are plotted as
histograms. Whereas the bootstrapped quantile distributions are unbiased under
Gaussianity, the quantile distribution under stable laws is significantly skewed.

In order to evaluate bias and overestimation of the bootstrapped quantile es-
timates, two measures are introduced as a function of the sample size n ∈ N+.
The average bias represents the difference between the asymptotic quantile and
the bootstrapped quantile:

b̄n =
1

B

B∑
i=1

{
Q(τ)− Q̂i,n(τ)

}
. (8)

The upper part of Figure 2 shows the average bias as function of the sample
size. The more leptokurtic the distribution, the more data points are needed in
order to obtain an unbiased estimate. Overall, for a confidence level of 99%, 471
observations suffice to provide an unbiased estimate. The quantile overestimation
gives the minimum overestimation of the quantile for 5% of the bootstrapped
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quantiles. In other words, in 5% of the cases the overestimation of the quantile is
larger than On(ᾱ), where

On(ᾱ) = Q(τ)− Ĝ−1n (ᾱ), ᾱ = 95%. (9)

The lower part of Figure 2 shows the quantile overestimation as function of the
sample size. The more leptokurtic the distributions, the more data points are
needed in order to reduce the overestimation. Overall, for a confidence level of
99% and 471 observations the quantile is overestimated by more than 1% / 2%
/ 3% for Gaussian, Student-t and Stable assumption in 5% of the cases. The
quantile overestimation implies that the respectively reported VaR estimates are
exceeded more often than the confidence level presumes.
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Figure 1: Sample quantile histograms
for n = 471 observations with asymptotic
quantile lines (τ = 1%)
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Figure 2: (Upper) Sample quantile bias
(Lower) 95% quantile overestimation (τ =
1%)

For a confidence level of 99.9% 471 observations barely suffice in order to obtain
an unbiased estimate (see Figure 3). The quantile is overestimated by more than
2% / 7% / 21% for Gaussian, Student-t and Stable assumption in 5% of the cases
(see Figure 4). In order to obtain a reliable estimate in terms of unbiasedness
and overestimation more than 104 observations are necessary. For a confidence
level of 99.99% 471 observations do not suffice in order to obtain an unbiased
estimate. In that respect, the quantile is overestimated by more than 4% / 18% /
66% for Gaussian, Student-t and Stable assumption in 5% of the cases. To obtain
a reliable estimate in terms of unbiasedness and overestimation more than 105

observations are necessary. The clear implication is that although risk measures
can always be calculated for high confidence levels, the limited amount of data
points leads inevitably to underestimated risk estimates as shown for the special
case of the quantile (VaR). For Expected Shortfall the degree of unbiasedness
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Figure 3: Sample quantile histograms
for n = 471 observations with asymptotic
quantile lines (τ = 0.1%)
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Figure 4: (Upper) Sample quantile bias
(Lower) 95% quantile overestimation (τ =
0.1%)

and overestimation is even aggravated due to the conditional formulation of the
quantile. Straight-forward, financial institutions should only report risk measures
for those confidence levels, which can be estimated efficiently for available data.
Within this paper, we are going to describe how to filter and rescale data from
higher frequencies, implying significantly more data points, in order to estimate
lower frequency risk measures.

3. Data

3.1. High-frequency data

The data-set represents transaction level data (Level 1) from 2007-06-27 till
2016-11-16 for Microsoft gathered from Lobster. By utilizing the previous-tick
method, each day gives 390 trading minutes, representing 6 1/2 hours of trading
from 09:30 a.m. till 04:00 p.m., see also Dacorogna et al. [2001]. After transform-
ing the price data to log-returns, the returns are aggregated to their respective
frequencies, up to one week, representing 471 weeks (see Table 2). Two excerpts
of the data-set are given in Figure 5. The blue line represents minute, the red line
hourly, the orange line daily and the violet line weekly prices.

Frequency 1 min 1 hour 1 day 1 week

Data points 921959 15365 2363 471

Table 2: : Number of data points for different sampling frequencies
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Figure 5: Excerpt of Microsoft mid-price data for minute (blue), hourly (red), daily
(orange) and weekly (violet) frequency

3.2. Return characteristics

Data series from various fields of research, i.e. finance, economics, biology and
physics, share the same characteristics over time and frequency. Starting with
Mandelbrot [1963], log-transformations of cotton prices and later wheat prices,
railroad stocks and financial rates [Mandelbrot, 1967] deviated from the Gaussian
by exhibiting heavier tails than presumed. An overview over various heavy-tailed
models in finance is given in Rachev [2003]. Stable laws specifically are treated in
Zolotarev [1986], Samorodnitsky and Taqqu [1994] and Nolan [2017]. For financial
returns, the degree of leptokurticity decreases with increasing sampling frequency
[Fama, 1976, McFarland et al., 1982, Boothe and Glassman, 1987, Dacorogna et al.,
2001, Grabchak and Samorodnitsky, 2010]. For Microsoft log-returns, the sample
kurtosis decreases from 1153.2 for 1-minute returns to 6.1 for weekly returns (see
Figure 6). Hence, the leptokurtic behavior of Microsoft log-returns decrease over
the sampling frequencies, still differing significantly from the Gaussian assumption.

In order to verify if the sample kurtosis for lower frequencies is underestimated
due to the lack of data points, we sample 104 blocks of 471 minutes, hours and days
and plot the resulting sample kurtosis confidence interval (confidence level 95%)
in Figure 6. Whereas the sample kurtosis increases exponentially with increasing
frequencies, the average bootstrapped kurtosis remains in a range of six to eleven.
For frequencies higher than 10-minutes, even the upper 95% confidence bound
of the bootstrapped kurtosis lays below the empirically observed kurtosis. The
implication is that 471 data points do not suffice to replicate the sample kurtosis
of higher-frequency returns, inducing evidence that the kurtosis of the weekly
frequency is underestimated. Indeed, the sample kurtosis increases with increasing
data points. In Figure 7 the sample kurtosis is plotted as function of number of
data points, used for the respective frequencies. The more data points are used,
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Figure 6: Sample kurtosis over frequency
(blue) with bootstrapped kurtosis (red) for
471 data points (weekly frequency)
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Figure 7: Sample kurtosis for increasing
data points for frequencies from 1 minute
to 1 week

the higher is the sample kurtosis, arguing against the finiteness of sample kurtosis.
Accordingly, we resort to analyze the varying distributions over frequency in the α-
stable framework for section 4, as stable distributions belong to their own domain
of attraction.

Volatility clustering is the empirical observation that ”large changes tend to
be followed by large changes, of either sign, and small changes tend to be followed
by small changes” [Mandelbrot, 1963]. Subsequently, two branches in the analy-
sis of time-dependence developed: On the one hand the (FI)GARCH approach of
Engle [1982], Bollerslev [1986] and Baillie et al. [1996], who aim to model the vari-
ance as a linear function of the past squared daily returns and on the other hand,
the multifractal approach of Mandelbrot et al. [1997], Fisher et al. [1997], Calvet
et al. [1997] and Calvet and Fisher [2002]. For higher sampling frequencies than
daily, see for example Bollerslev and Domowitz [1993], Andersen and Bollerslev
[1997], Andersen and Bollerslev [1998] and Bollerslev et al. [2000]. For increasing
frequency, temporal dependence in absolute and squared returns increases (see Fig-
ure 8). Specifically, 5-minute and 1-hour absolute Microsoft returns exhibit strong
intraday seasonalities, which are not captured by standard time-series models.

The empirical scaling law states that the mean absolute (squared) returns, as
functions of their time intervals, are proportional to a power of the interval size
[Mandelbrot, 1982, Mantegna and Stanley, 1995, Mandelbrot et al., 1997b, Calvet
and Fisher, 2002, Xu and Gencay, 2003]. Starting from the self-affine process
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Figure 8: Sample autocorrelation function of absolute returns for 5-minute, hourly,
daily and weekly frequencies

{Xt} , t ≥ 0 with Hurst exponent H > 0 and c > 0,

Xct
L
= cHXt (10)

E [|Xct|p] = cHp E [|Xt|p] (11)

the scaling relation-ship in moments of order p ∈ R is derived. For c(p) = E [|Xt|p]
and D(p) = H(p)p Mandelbrot et al. [1997] define a fractal process in terms of its
moments as it remains graphically tractable (see Figure 9).

E (|Xt|p) = c(p)tD(p) (12)

For normalization in p, raise the scaling law of equation (12) to the power of 1/p,
giving

E (|Xt|p)1/p =
[
c(p)tD(p)

]1/p
(13)

≺� 1

p
log E (|Xt|p) =

1

p
log c(p) +H(p) log t (14)

If the absolute moments would scale with a unique Hurst exponent 0.5 ≤ H ≤ 1 for
all powers p, the underlying process would come from a Fractional Browian motion
(Unifractal). For the Lévy stable motion the stability exponent would imply H =
1/α for p ≤ α and H = 1/q for p > α, 0 < α ≤ 2 (Mesofractal). But Figure 9 and
10 indicate that the Hölder exponents vary with increasing order of the moment p
(Multifractal). Muller et al. [1990] argue that the empirically observed scaling law
can only be explained by varying distributions for different time intervals, leading
to subordinated (fractional) Brownian motions, see Mandelbrot et al. [1997b]. The
Hölder exponents are estimated by (log-log) linear regression, see formula (14) and
the generalized Hurst exponent by Matteo et al. [2005].
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Figure 10: Hölder exponents H(p) of
Microsoft returns for absolute moments
of order p, estimated by log-log regres-
sion (blue) and generalized Hurst expo-
nent (red)

4. Estimation

4.1. Mesofractality

A one-dimensional random variable X ∼ S(α, β, γ, δ) will be α-stable dis-
tributed with parameters 0 < α ≤ 2, −1 ≤ β ≤ 1, γ ≥ 0 and δ ∈ R [Nolan, 2017,
Cizek et al., 2011], if

X
L
=

{
γZ + δ, α 6= 1

γZ + (δ + β 2
π
γ log γ), α = 1

}
, (15)

where S(Z | α, β, 1, 0) represents the standard stable form. As only special cases
of stable distributions are available as real-valued densities (Gaussian, Cauchy and
Lévy), α-stable distributions are expressed as Fourier transforms of the character-
istic function ϕX(u).

S(X | α, β, γ, δ) =
1

2π

∫
ϕX(u)− exp(−iuX)du (16)

The according characteristic function representation is given by

logϕX(u) =

{
iuδ − γα|u|α

{
1 + iβ tan

(
απ
2

)
(signu)

}
, α 6= 1

iuδ − γ|u|
{

1 + iβ 2
π
(signu) log(|u|)

}
, α = 1.

(17)
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Scale invariance under addition implies that for the sum of α-stable variables
Xt ∼ S(α, β, γ, δ), t = 1, . . . , T

X1 +X2 + . . .+XT =
T∑
t=1

Xt = X ∼ S(α, β, T
1
αγ, Tδ). (18)

The characteristic function of X is consequently given by

T logϕX(u) =

{
iu(Tδ)− T (γα) |u|α

{
1 + iβ tan

(
απ
2

)
(signu)

}
, α 6= 1

iu(Tδ)− Tγ|u|
{

1 + iβ 2
π
(signu) log(|u|)

}
, α = 1.

(19)

According to Gnedenko and Kolmogorov [1954], the limiting distribution of T
i.i.d. α-stable random variables, 0 < α ≤ 2 is

aT

(
T∑
t=1

Xt

)
− bT

L−→ S(α, β, 1, 0), (20)

where aT > 0 and bT ∈ R. The special case of the Generalized Central Limit
Theorem (GCLT) is the standard CLT for α = 2, β = 0, γ = σ√

2
and δ = µ, given

aT = 1
σ
√
T

and bT =
√
Tµ
σ

. In general, for 0 < α ≤ 2,

T−
1
α

T∑
t=1

(Xt − δ)
L−→ S(α, 0, γ, 0). (21)

Figure 11: Stability index α over frequency
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If the scaling exponent α would be constant over the sampling frequency, the
sum of the higher frequency returns under α-stability, see equation (2), could be
modelled under one specific stable distribution [Fama and Roll, 1968]. Figure 11
shows the MLE of the stability index α with respect to the sample frequency, in-
cluding the 95% confidence intervals from the numerical Fisher information [Nolan,
2001]. For all sampling frequencies, the respective distributions are more leptokur-
tic than under Gaussianity (α = 2) and more platykurtic than under the Cauchy
assumption (α = 1). In contrast to the analysis of higher moments, i.e. kurto-
sis, this class of Stable Paretian distributions 1 ≤ α ≤ 2 provides a well-defined
framework in order to assess the tails of the distributions of different sampling fre-
quencies. But, as argued in the context of scaling laws of subsection 3.2, varying
distributions over sampling sequences are observed. Consequently, the mesofractal
assumption of raw Microsoft returns has to be denied. If the distribution of the
higher frequency returns Xt would be modelled under finite variance, such as gen-
eralized hyperbolic distributions with normal-inverse Gaussian (NIG) [Hartmann
et al., 2010] or Student-t [Chen et al., 2010] as special cases, the horizon distri-
bution, which is heavy tailed by empirical observation (see Figure 6), would be
asymptotically Gaussian by the standard Central Limit Theorem.

4.2. Filter for seasonality and time-dependence

In order to examine the intraday seasonalities of Figure 8, we plot the absolute
1-minute returns over the course of the day in Figure 12. As the apparent convex
shape, see also Engle and Sokalska [2012], is not covered by economic theory, the
literature proposed to estimate these intraday seasonalities by universal function
approximators. Whereas Giot [2005] models the intraday patterns with cubic
splines, Andersen and Bollerslev [1997, 1998] use flexible fourier forms. We follow
Andersen et al. [2003] and Engle and Sokalska [2012] by averaging the absolute
returns over each minute k = 1, . . . , 390 of the day.

sk =
1

T

T∑
t=1

|Xt,k| k = 1, . . . , 390 (22)

After normalizing the raw one-minute returns by

Zt,k =
Xt,k√
sk

k = 1, . . . , 390 (23)

the according lower frequencies are calculated and the sample autocorrelation func-
tions of absolute returns are plotted in Figure 13. The ACFs of the deseasonal-
ized absolute returns in Figure 14 indicates the hyperbolic decay which can be
observed for sampling frequencies up to daily, see also Taylor [1986], Robinson
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Figure 12: Absolute returns (minute)
with average (orange) over hour of the day

and polynomial fit (red)

Figure 13: Filtered absolute returns
(minute) with average (orange) over hour
of the day

[1991], Ding et al. [1993] and Andersen and Bollerslev [1997]. Accordingly we
model the observed phenomena of heavy tails, seasonality and long-range depen-
dence by employing the FIGARCH methodology [Baillie et al., 1996] for seasonally
filtered returns [Andersen and Bollerslev, 1998, Muller et al., 1990] under stable
laws [Paolella et al., 2002] in order to explain the instability in distributions, as
observed in subsection 3.2.

The Stable paretian power GARCH process Sδα,βGARCH(r, s) with seasonality
is given by

Xt = δ + skγtεt, εt ∼ Sα,β(1, 0) (24)

γδt = θ0 +
r∑
i=1

θi|εt−i|δ +
s∑
j=1

φjγ
δ
t−j (25)

= θ0 + θ(L)εδt + φ(L)γδt . (26)

The according GARCH equation can be rewritten in lag polynomial form:

{1− θ(L)− φ(L)} εδt = θ0 + {1− φ(L)}
{
εδt − γδt

}
. (27)

In order to allow for a slower decay than exponential, the fractional difference
operator (1 − L)d, 0 < d < 1 is introduced, obtaining the fractionally integrated
GARCH (FIGARCH) equation:

{1− θ(L)− φ(L)} (1− L)dεδt = θ0 + {1− φ(L)}
{
εδt − γδt

}
. (28)

In contrast to the special cases of GARCH (d = 0) and IGARCH (d = 1), David-
son [2004] shows that this class of processes is able to reproduce more flexible
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temporal dependencies, i.e. long memory. As GARCH processes are modelled
separately for each sampling frequency Mandelbrot et al. [1997] argues that this
family of fractionally integrated models is neither self-affine nor scale consistent.
Still, Fisher et al. [1997] find evidence that the class of FIGARCH-models can
mimic multifractality.
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Figure 14: Sample autocorrelation function with hyperbolic fit for 5-minute, hourly,
daily and weekly frequency

4.3. Frequency rescaling

Figure 15 shows the ML estimates of the stability parameter α after deseason-
alizing with (green) and without (blue) FIGARCH(1,1) filter. Comparable to Fig-
ure 11, deseasonalizing price increments without FIGARCH(1,1) filter gives again
evidence for different generating distributions for different sampling frequencies.
After accounting for temporal dependence via FIGARCH(1,1) filter, the stabil-
ity parameter remains to be constant for sampling frequencies larger than five
minutes. The specific parameters of the FIGARCH(1,1) models for the different
sampling frequencies are available on request. Here, the increase of the stability
index with decreasing sampling frequency can be explained to a large extent by
intraday seasonality and time dependence. For higher frequencies than five min-
utes, microstructure effects lead to a overestimated deviations and hence a smaller
stability index [Zumbach et al., 2002, Chaboud et al., 2010].

The result is supported from the perspective of scaling laws, see equation
(14). The observation of multifractality is not evident in the residuals of the
FIGARCH(1,1) model. Figure 16 plots Hölder exponents, which remain to be
constant over the residuals moments of order p. We have shown that the filtered
log-returns give evidence for mesofractality,

εt ∼ Sγ,δ(α, β) (29)
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Figure 15: Stability parameter of inno-
vations εt over frequency with (blue) and
without (green) FIGARCH filter
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Figure 16: Hölder exponents H(p) of
FIGARCH-residuals for absolute moments
of order p, estimated by log-log regres-
sion (blue) and generalized Hurst expo-
nent (red)

for all sampling frequencies larger than five minutes, which makes it possible to
rescale between different frequencies under α-stability, see equation (18). The
proposed semiparametric rescaling method rests on the higher frequency data-set
itself, but uses the α-stable assumption beneath:

i. Filter higher frequency returns X for intraday seasonality and time depen-
dence.

� Let higher frequency returns X ∼ S(αX , βX , γX , δX)

� Let higher frequency residuals εX ∼ S(αε, βε, γε, δε)

� Let lower frequency returns Y ∼ S(αY , βY , γY , δY )

ii. Evaluate if αε = αY
def
= α, βε = βY

def
= β

iii. Normalize higher frequency residuals (for auxiliary models)

Z =
εX − δε
γε

, Z ∼ S(α, β, 1, 0) (30)

iv. Rescale normalized residuals for lower frequency with drift δỸ = TδX and

scale γỸ = T
1
αX γX .

Ỹ = δỸ + γỸZ, Ỹ ∼ S(α, β, γỸ , δỸ ) (31)
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v. Estimate the risk measure from the nonparametric, rescaled distribution FỸ ,
see equation (3)

Sφ(Ỹ ) =

∫ 1

0

φ(x)F−1
Ỹ

(x)dx (32)

By obtaining a lower-frequency distribution from high-frequency data, the
problem of insufficient data points from high-confidence risk measures of section
2.2 is addressed. For the aimed weekly frequency, we rescale 5-minute returns
to the weekly frequency. For aimed frequencies higher than weekly, the time-
dependence structure of the lower frequency would have to be included. Figure
17 compares the empirical and the frequency-rescaled distributions representing
471 weeks and 184391 rescaled weeks respectively. The bootstrapped confidence
intervals for the kernel density estimates are smaller under frequency rescaling as
increasingly more data points are being used. Albeit coming from the same data-
set, the semi-parametric method allows for sampling positive and negative events,
which never occurred in the original weekly data history.
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Figure 17: Empirical (blue) and frequency rescaled (green) kernel density estimates of
weekly return distribution with bootstrapped 95% confidence intervals

5. Implementation: VaR

5.1. Backtest methodology

Due to transaction costs investors and other stakeholders are not rebalancing
their portfolios at high-frequencies. Consequently institutional investors and also
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regulators are naturally interested in low frequency risk measures at weekly, quar-
terly or annual time scale. Here we focus on the 5-day ”minimum liquidity horizon”
to guarantee a sufficient amount of data, e.g. for the backtest [BIS, 2017]. With
the spectral risk measure (3) the exceedance process It, t = 1, . . . , T is defined as

It =

{
0, Xt > Sφα()

1, Xt ≤ Sφα().
(33)

Given i.i.d. data Xt, the unconditional coverage is given by

E (It) = τ. (34)

Statistical coverage tests by Kupiec [1995] and Christoffersen [1998] utilize that
under such an i.i.d. assumption It ∼ Bern(τ) and accordingly

∑T
t=1 It ∼ Bin(T +

1, 1− τ). A test statistics to evaluate

H0 : τ̂ = τ vs. (35)

H1 : τ̂ 6= τ. (36)

is easily constructed. Alternatively, BIS [1996] propose to use a traffic light ap-
proach, which we will follow here. We are going to compare the proposed frequency
rescaling method (FRM) of section 4.3 with the VaR forecasts of the following mod-
els for the weekly sampling frequency: Under the independence assumption Gaus-
sian, Student-t, Stable and nonparametric VaR estimates are directly calculated
from the according ML fits given weekly data. Accounting for time-dependence
in the data (see Figure 8), GARCH(1,1) and FIGARCH(1,1) risk estimates are
obtained for weekly and 10-minute data. Additionally, the VaR forecasts for the
realized GARCH(1,1) and realized FIGARCH(1,1) are included.

As argued in section 2, 471 observations from the weekly frequency do not
suffice to construct reliable VaR estimates, especially for large confidence levels.
This holds for the backtest of the weekly VaR. Given 471−h, h ∈ N+ testing weeks,
where h = 41 is the number of periods used to initially estimate the VaR levels,
the exceedance probability cannot be sufficiently estimated for large confidence
levels. But as empirical data remain the only viable foundation for the backtest,
the in-sample and out-of-sample exceedances (in%) are given in Table 3 and 4 for
confidence levels 95%, 99% and 99.9%. The unconditional coverage holds for all
respective confidence levels, in- and out-of-sample, for the 3) Stable, 6) Weekly
FIGARCH and 11) Frequency Rescaling models.

Among the models satisfying the theoretically presumed confidence levels, a
smaller level of VaR is beneficial for banks, insurances and other financial insti-
tutions. Accordingly Figure 18 and 19 show in- and out-of-sample median VaR
over time with 95% confidence bounds for confidence levels 95% (green), 99% (red)
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Model τ = 5%
# Exc τ̂ in %

τ = 1%
# Exc τ̂ in %

τ = 0.1%
# Exc τ̂ in %

1) Gaussian 23 5.42 6 1.42 4 0.94
2) Student-t 24 5.66 6 1.42 0 0
3) Stable 23 5.42 3 0.71 0 0
4) Nonparametric 22 5.19 4 0.94 0 0
5) Weekly GARCH(1,1) 12 2.83 3 0.71 0 0
6) Weekly FIGARCH(1,1) 11 2.59 5 1.18 0 0
7) 10-min GARCH(1,1) 18 4.25 4 0.94 1 0.24
8) 10-min FIGARCH(1,1) 21 4.95 5 1.18 1 0.24
9) Realized GARCH(1,1) 20 4.72 4 0.94 0 0
10) Realized FIGARCH(1,1) 34 8.02 6 1.42 0 0
11) FRM 10 2.36 4 0.94 0 0

Table 3: : In-sample weekly Value at Risk exceedances with according probabilities for
given confidence levels 95%, 99% and 99.9%

and 99.9% (blue). Whereas the Stable models holds the unconditional coverage by
exhibiting the largest VaR of all tested models, the weekly FIGARCH models en-
sures coverage by time-varying VaR forecasts, resulting, on average, in smaller VaR
forecasts. Although VaR forecasts from the frequency rescaling method (FRM)
are comparable to the weekly FIGARCH models in terms of size, the FRM has the
advantage of producing time-constant VaR in-sample forecasts. Narrower confi-
dence bounds for the VaR forecasts are supported out-of-sample. Out of the VaR
models presented, the FRM is presented to be highly beneficial for institutional
investors dealing with lower sampling frequencies such as weekly, quarterly and an-
nual. Holding the unconditional coverage at low values of VaR, in contrast to the
Lévy stable motion, the VaR forecasts are not time-dependent as in the GARCH
models. Moreover portfolio balance sheets should not only report VaR levels, but
also hedge respective risks, which reduces portfolio turnovers and transaction costs.
In comparison to the nonparametric VaR estimation from weekly data, the FRM
utilizes a semiparametric estimation procedure to scale high-frequency data to the
lower frequency, inducing tail events, which never happened in the original data
history.

6. Conclusion

Estimating risk in a low-frequency context and limited data is difficult for large
confidence levels as relevant weekly, quarterly or annual data capture an insuffi-
cient history or are not relevant for the risk profile of the financial institution.
Utilizing high-frequency data for the estimation of low-frequency risk measures
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Figure 18: In-sample median Value
at Risk over time with 95% confidence
bounds for confidence levels 95% (green),
99% (red) and 99.9% (blue)

Figure 19: Out-of-sample median Value
at Risk over time with 95% confidence
bounds for confidence levels 95% (green),
99% (red) and 99.9% (blue)

Model τ = 5%
# Exc τ̂ in %

τ = 1%
# Exc τ̂ in %

τ = 0.1%
# Exc τ̂ in %

1) Gaussian 11 2.59 6 1.42 4 0.94
2) Student-t 13 3.07 6 1.42 0 0
3) Stable 14 3.30 4 0.94 0 0
4) Nonparametric 15 3.54 4 0.94 2 0.47
5) Weekly GARCH(1,1) 10 2.36 4 0.94 1 0.24
6) Weekly FIGARCH(1,1) 13 3.07 4 0.94 0 0
7) 10-min GARCH(1,1) 28 6.60 7 1.65 3 0.71
8) 10-min FIGARCH(1,1) 30 7.08 8 1.89 4 0.94
9) Realized GARCH(1,1) 36 8.49 16 3.77 4 0.94
10) Realized FIGARCH(1,1) 37 8.73 14 3.30 4 0.94
11) FRM 7 1.65 3 0.71 0 0

Table 4: : Out-of-sample weekly Value at Risk exceedances with according probabilities
for given confidence levels 95%, 99% and 99.9%

can provide significantly more data points, given that a fractal structure could be
verified among different sampling frequencies. The proposed method incorporates
a specific form of rescaling, involving filters for seasonality and time dependence
in the α-stable framework. In contrast, given finite variance and the classic CLT,
Gaussianity cannot be circumvented for long holding periods, which is not sup-
ported empirically.

In an i.i.d. simulation study we indicate that ten years of data barely suffice in
order to efficiently estimate weekly VaR of a stock market portfolio for a confidence
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level of 99.9% and larger. For the relevant confidence levels, the authors recom-
mend to use at least 103 observations for the 99% confidence, 104 observations for
the 99.9% confidence and 105 observations for the 99.99% confidence level. As defi-
ciencies through underestimation of VaR hold for relevant i.i.d. distributions such
as Student-t or Stable, the predicament unfolds in aggravated form for Expected
Shortfall under time-dependent processes.

The high-frequency data-set of Microsoft gives evidence for different generating
distributions over the sampling frequencies. In order to obtain events for the
lower sampling frequencies, we show that by filtering high-frequency returns for
seasonality and long-range dependence, the mesofractal assumption (Lévy stable
motion) cannot be denied for the residuals of sampling frequencies larger than five
minutes. Within the α-stable framework and the underlying fractal structure, 5-
min filtered log-returns are scaled to the weekly minimum liquidity horizon. The
obtained weekly data points cover tail events which never existed in the original
data history, which improve the estimation of the respective risk measures.

Empirically, the backtest reveals that the frequency rescaling method holds
the unconditional coverage or all confidence levels reported, in- and out-of sample.
Given all models which hold the unconditional coverage, the VaR from the fre-
quency rescaling method are the smallest over time, involving no large deviations
given the underlying iid assumptions for the weekly frequency.

In subsequent research we are going to extent the frequency rescaling method
(FRM) to the multidimensional case. The open question remains to be if the data
series we observe are just a preasymptotic snapshot of a fractional Lévy stable
motion [Samorodnitsky and Taqqu, 1994], in which the Hölder exponents have
converged. In that case the only relevant filter for the higher frequencies remains
to be microstructure noise and seasonality, which are generated due to market
makers and cyclical business components. If so, the diverging behavior within the
sampling frequencies of the process is merely a relic of lacking data points in the
lower sampling frequencies.
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