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Abstract This paper provides a detailed framework for modeling portfolios, achieving
the highest growth rate under subjective risk constraints such as Value at Risk (VaR) in
the presence of stable laws. Although the maximization of the expected logarithm of wealth
induces outperforming any other significantly different strategy, the Kelly Criterion implies
larger bets than a risk-averse investor would accept. Restricting the Kelly optimization by
spectral risk measures, the authors provide a generalized mapping for different measures
of growth and security. Analyzing over 30 years of S&P 500 returns for different sampling
frequencies, the authors find evidence for leptokurtic behavior for all respective sampling
frequencies. Given that lower sampling frequencies imply a smaller number of data points,
this paper argues in favor of a-stable laws and its scaling behavior to model financial market
returns for a given horizon in an i.i.d. world. Instead of simulating from the class of ellip-
tically stable distributions, a nonparametric scaling approximation, based on the data-set
itself, is proposed. Our paper also uncovers that including long put options into the portfolio
optimization, improves the growth criterion for a given security level, leading to a new Kelly
portfolio providing the highest geometric mean.
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Given a set of investment opportunities, how should the investment weights
be chosen in order to have more wealth than any other investor at the end
of the investment period? The Kelly growth-optimum strategy is a betting
scheme for an investor, who seeks to asymptotically maximize his growth rate
of capital. This strategy outperforms any other significantly different strategy,
given knowledge of the true underlying process (Breiman, 1961). But, the
sole use of the Kelly Criterion implies larger bets than a representative, risk-
averse investor would accept in terms of risk (Clark and Ziemba, 1987; Hausch
and Ziemba, 1985). Thus, the Kelly optimization needs to be restricted by
a security measure. We use stable laws and its scaling behavior in order to
model the underlying financial market returns. Upon the Generalized Central
Limit Theorem (GCLT), the horizon distribution is modelled in an discrete
i.i.d. framework.

The aim is to maximize the geometric portfolio return, i.e. Kelly Criterion and
restrict the objective to a subjective risk constraint, formulated as spectral risk
measure, including quantile (VaR) or Expected Shortfall as special cases. The
formulated trade-off introduces a mapping over growth and security in order to
evaluate the investment decision. The contribution of this paper is three-fold:
The first contribution represents the application of multidimensional stable
laws, in the form of elliptically stable distributions, to the constrained Kelly
portfolio. Second, instead of simulating from the class of elliptically stable dis-
tributions, a nonparametric scaling approximation, based on the data set itself,
is proposed. Third, assets with non-linear payoff structure, long put-options,
are incorporated into the nonlinear optimization to allow for asymmetric pay-
offs, which lead to a higher growth criterion, given a fixed security constraint.
The Kelly Criterion originates from Kelly (1956), dealing with, from the point
of information theory, an optimal investment strategy in a binary channel.
Breiman (1961) formally proves the asymptotic outperformance of the Kelly
strategy for arbitrary distributions in an i.i.d. world. For arbitrarily distributed,
possibly non-stationary processes, those results have been extended by Algeot
and Cover (1988). Incorporating security measures into the Kelly optimization,
MacLean, Ziemba, and Blazenko (1992) discuss the growth-security trade-off
in terms of efficiency. Roll (1973) compares the Markowitz arithmetic mean
maximization with the Kelly geometric mean maximization. In contrast to
Constant Proportion Portfolio Insurance (CPPI), the investment strategy re-
mains fixed fraction, given stationarity.

The distribution of financial market returns for a chosen horizon is modelled
as the sum of daily random variables. As the distribution in some horizon
is presumed to be non-Gaussian, the classical Central Limit Theorem (CLT)
does not apply as second and higher moments may not exist. Thus, the gen-
eralized central limit theorem (GCLT) of Gnedenko and Kolmogorov (1954)
is applied for the sum of random variables, whose second and higher moments
may not be bounded. For the financial application this implies the use of stable
laws (Fama, 1965; Lévy, 1925; Mandelbrot, 1963). As multidimensional stable
random variables are difficult to evaluate for larger dimensions, elliptical sta-
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ble distributions are employed, allowing for efficient portfolio estimation for
dimensions k < 40 (Nolan, 2013) in the presence of linear dependence.

Price data, both for assets with linear and non-linear payoff structure, were
gathered from Bloomberg. For computation, Matlab 2016a was utilized. In
order to solve the formulated nonlinear optimization problem the sequential
quadratic algorithm in fmincon was employed. If a figure containts a link
below, the Matlab-code can be obtained in the form of a quantlet.

The paper is organized as follows: In chapter one the portfolio allocation prob-
lem is stated. The financial model is formulated by using generalized measures
for growth and security. Chapter two, the estimation, starts with a case for
non-Gaussianity of financial log-returns of different sampling frequencies, rea-
soning the utilization of stable laws. For the multidimensional case, elliptically
stable distributions are introduced in order have an analytically tractable class
of distributions. As the nonparametric scaling approximation is introduced, the
estimation of location and scale is illustrated. An application is given in chap-
ter three, the implementation. For a representative investor with a horizon
of one year and a quantile-constraint for his wealth return distribution, the
optimally constrained Kelly portfolio is found, benefitting from the protective
put strategy.

1 Model
1.1 Portfolio allocation problem

Given initial wealth of the investor Wy, € RT, there are j = 1,...,k in-
vestment opportunities with fractions f; = [f14,.. .,fkyt]T € RF in period
t =1,2,...,T. T € Nt represents the planning horizon. Assessing solely
self-financing strategies, the budget constraint is given by Z?Zl fix < 1. As

continuous returns X; € R* are time additive, but not additive over assets,
discrete returns are calculated by

Xt = exp {Xt} —1. (1)

Given outcomes int — 1,...,T — 1 the wealth in T is given by

T k
Wr(fe) =Wo [T 1+ f1.6Xi
t=1 j=1 )
T ~
:WOH{lJrftTXt}.
t=1
Given the stochastic wealth process, measures for growth and security are for-

mulated in order to choose investment fractions f;, which suit investor prefer-
ences.
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For a cdf Fyy,. (x) the spectral risk/growth measure with weight function ¢(x) is

def

defined through the quantile function FV}; () ={z:PWr(fp) <z)=a}, a€

(0,1).

M (Wi (f)} = / o(2) Fiyl (2)da 3)

Within the context of spectral risk measures, the measure will be coherent iff
the weight function is positive ¢(z) > 0, increasing ¢’(z) > 0 and normalized

fol ¢(x) =1 (Acerbi, 2002). For the discrete framework (2) with n € N wealth
trajectories, the measure is defined as

Mg {Wr(f)} = Z(biWT,i(ft)a (4)

i=1

where Wr ; denotes element ¢ out of n wealth paths with according weight ¢;.
Growth measures

Following Roll (1973), there are two main strands dealing with the accumula-
tion of wealth and thus, the allocation of wealth into a portfolio. On the one
hand, the Markowitz optimization aims to maximize the expected portfolio re-
turn (Lintner, 1965; Markowitz, 1952; Sharpe, 1964; Tobin, 1958). On the other
hand, the Kelly growth-optimum approach by Kelly (1956), Breiman (1961)
and Thorp (1971), aims to maximize the expected logarithm of wealth, which
is equivalent to maximizing the geometric portfolio return. Within the frame-
work of spectral growth/risk measures, the growth measures for the Markowitz
and the Kelly optimization are evaluated:

— (1 : For the expected wealth, the growth criterion from the Markowitz
optimization, the weight function is

op(x) =1,
giving )
Gop (Wr(f)} = / Fl (x)de = E{Wr(f,)} (5)

— (5 : The expected logarithm of wealth, representing the optimization cri-
terion for the Kelly strategy, is obtained for the weight function

PEl0g () = log(),

giving

Gy AW (f)} = / log Fiyl (r)de = E {logWr(f)} . (6)
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The growth measure will be denoted by G {Wr(f:)} and the optimization for
horizon T without risk constraints is formulated as

k

Y fia<1]. (7)

Jj=1

max |Gy {Wr(f)}

ftERK

This paper focusses on the Kelly growth criterion as it represents a betting
scheme for an investor, who seeks to asymptotically maximize his growth rate
of capital. The betting strategy outperforms any other significantly differ-
ent strategy asymptotically and minimizes the expected time to reach a goal
(Algeot and Cover, 1988; Breiman, 1961). For a comprehensive treatment of
the Kelly Criterion, see MacLean, Thorp, and Ziemba (2011). Whereas the
maximization of the expected wealth in the Markowitz optimization, given fa-
vorable investment possibilities, always implies betting the entire fortune, the
maximization of the expected logarithm of wealth leads to one growth-optimal
portfolio, which is not necessarily optimal in terms of the Markowitz portfolio
(Thorp, 1971). The log-optimal strategy is fixed fraction, independent of time
(MacLean, Ziemba, and Blazenko, 1992).

Security measures

The sole use of the Kelly Criterion implies larger bets than a representative,
risk-averse investor would accept in terms of risk (Clark and Ziemba, 1987;
Hausch and Ziemba, 1985). In order to formulate individual security mea-
sures for different investors, the spectral risk measure from (3), denoted by
Se {Wr(f)}, will be used. Two specific risk measures to include the degree of
risk-aversion into the portfolio optimization are quantile (VaR) and expected
shortfall (ES) constraints:

— 51 : The quantile constraint (VaR) is a special case of the spectral risk
measure from (3)

¢q, () =6(xr =), a€(0,1), (8)

where §(z = «) is the Dirac delta function, well known to be a non-coherent
risk measure. Further drawbacks of the quantile constraint are treated in
Basak and Shapiro (2001). However, the quantile restriction allows to ask
the investor specifically to name a fraction of his wealth he can accept to
lose with probability 1 — a.

— S5 : In contrast, Expected Shortfall is a coherent risk measure representing
the average loss beyond a given quantile constraint. Being a special case of
the spectral measure, the weight function is given as

dgs, (z) = o M(z < a). (9)
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Growth-security frontier

Following MacLean, Ziemba, and Blazenko (1992), the possible combinations
of growth and security measures are given by the set

U= [G¢ {WT(ft)} s S¢ {WT(ft)}] 7ft feasible. (10)
The growth-security frontier is accordingly formulated as
Ui = Go AWr (£}, Se {Wr ([}, [} feasible, (11)

where the f; € R¥ is the investment fraction maximizing the growth measure
under security restriction.

Ji =argmax Gy {Wr(f)}
f7eRk

s.t. S¢ {WT(ft)} < b, be R,

k
Z fie <1
=1

(12)

Portfolio value

Expected logarithm of wealth E[log WT(f)]

Security constraint S[WT(f)] Stock price

Fig. 1: Kelly-security frontier Fig. 2: Protective put strategy

For the Kelly Criterion with a security constraint as proposed, the frontier is il-
lustratively visualized in figure 1. In contrast to the Markowitz maximization,
implying a steady tradeoff between mean and security, the geometric mean
maximization implies one specific portfolio - the Kelly portfolio - exhibiting
the highest geometric mean possible (horizontal dotted line). From this view-
point, portfolios exhibiting a larger security constraint than the Kelly portfolio
(to the right of the vertical dotted line) are not efficient. If the investor prefers a
smaller security constraint than the full Kelly investor, restricted Kelly port-
folios (solid line) constitute the Kelly-security frontier. These are portfolio
strategies with the highest growth criterion given security constraint.
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1.2 Tail constraints and non-linear instruments

The introduction of assets as nonlinear functions of the underlyings, deriva-
tives, allows for controlling the asymmetry of the wealth distribution in such a
way, that it will be skewed to the left. Albeit the distribution of the risk mea-
sure, the loss of the portfolio is limited by construction for high confidence
levels. The main instrument utilized to achieve this asymmetric payoff pro-
file are long put options. By construction, corridor options, as argued in the
context of quantile constraints, are circumvented (Basak and Shapiro, 2001).
A simplified representation of the protective put strategy is given in figure 2,
consisting of one stock (blue) and one long put option (green) with chosen
strike (dotted black). The result is the protective put strategy (red). The dif-
ference in payoff above the strike level is due to the put price, which the option
holder has to pay. For k linear assets with multiple put options each, given a
pre-specified horizon, the choice of the fraction of linear and nonlinear assets
is not obvious.

2 Estimation
2.1 A case for non-Gaussianity

Although Fama (1965) finds evidence for a-stable characteristics for all re-
turns of the Dow Jones Index, it can be observed that financial (log-)returns
tend to the Gaussian distribution as the sampling frequency decreases, see
also McFarland, Pettit, and Sung (1982), Boothe and Glassman (1987), and
Dacorogna, Gencay, Muller, Olsen, and Pictet (2001). The subsequent text-
book example for the Standard and Poor’s 500 reads as table 1. Due to the
2009 financial crisis, an outlier week of —60% increases (decreases) the sample
kurtosis (skewness) for the weekly frequency significantly from 13.67 (-1.27)
to 131.09 (-6.7). If the outlier week is omitted, see column S&P (weekly*) of
table 1, the general observation of decreasing kurtosis and increasing negative
skewness is supported for different sample sizes. Still, letting the data speak,
erratic behavior of sample moments definitely appears even for this reference
data series.

Descriptives S&P (daily) S&P (weekly) S&P (weekly*) S&P (monthly) S&P (yearly)

Data points 7564 1513 1512 360 30

Mean (in %) 0.03 0.17 0.21 0.70 8.37
Std (in %) 1.16 2.96 2.51 5.03 16.60
Skewness —1.29 —6.70 —1.27 —1.87 —1.78
Kurtosis 31.26 131.09 13.67 12.26 7.13

Table 1: Log-return descriptives for the different sampling frequencies, S&P 500 1985-2015
Frequency weekly* omits one week in the financial crisis 2009
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The empirical observation of Gaussian convergence for lowering sampling fre-
quencies cannot be shown explicitly by existing data, as data-records capture
only 7564 trading days, representing 30 years of data. The empirical verifica-
tion would require an appropriately large number of weeks, months and years.
In order to emphasize the lack of data points for the annual sampling fre-
quency, we randomly sample 10° 30 subsequent daily returns from the S&P
500 and calculate second, third and fourth moments in order to evaluate dis-
persion, skewness and leptokurtic behavior. Hence, for the three moments,
10° estimators are plotted as histogram in figure 3. The vertical red lines
represent the moment estimators for the whole daily data series. In essence,
dispersion, skewness and especially leptokurtic behavior of the subsets are
significantly biased, compared to the estimator of the whole series, as fewer
sampled data-points imply less probability of sampling data in the tails of the
return distribution. There was not one out of 10° 30 day sub-samples, which
resulted in a comparable kurtosis of the complete data-series. The result holds
for sampling 30 separate days randomly under the i.i.d. assumption. Moments
of order larger than one behave erratically over an increasing data sample,
as first analyzed for commodity prices in Mandelbrot (1963). Figure 4 plots
standard deviation (in %), skewness and kurtosis as function of the used data-
points of the series. The red lines represents the empirical moment behavior
with increasing daily data points. The blue lines represent 100 trajectories of
Gaussian moments with increasing data points. The observation of erratic mo-
ment behavior stands in contrast to Gaussian behavior. The observation holds
over sampling frequencies daily, weekly, monthly and annually. This specific
sample-size problem is crucial in risk management, especially for estimating
the quantile of the wealth distribution as in the constrained portfolio opti-
mization in (12). As the confidence level tends to one, having only a limited
amount of data, the quantile estimate is systematically biased as the quan-
tile is overestimated. The portfolio analyst has to evaluate if the estimated
quantile given the chosen confidence level still has an acceptable distribution.
Consequently, for investors with longer investment horizons, such as a year,
the sum of daily random variables, constituting the yearly distribution, should
not converge to the Gaussian, but to a heavy-tailed distribution, which will
turn out to be the class of a-stable distributions. For financial markets, this
assumption will imply infinite variance, skewness and kurtosis, leading to non-
converging moments, i.e. the observed erratic behavior. The model of chapter 1
will be estimated within a stationary framework for elliptically stable distribu-
tions, striving for scale invariance. Although daily and higher frequency returns
exhibit non-stationary characteristics, the horizon distribution, i.e. yearly, can-
not be shown to exhibit significant volatility clustering.
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Fig. 3: Whole sample (red) and bootstrapped standard deviations (p.a.), skewness and
kurtosis for 10% draws of 30 subsequent daily returns (blue) from the S&P 500, 1985 to 2015
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2.2 Scale invariance

Let X; € R*¥ be a multidimensional, i.i.d. random variable from distribution
P! where t indicates the scale e.g. days. Given the investment horizon of the
investor, T' days, the wealth equation of (2)

T T
Wr(fi) = Wo [T {1+ £7 %0} = wo TT {47 exp(x0)} (13)

t=1
can be simplified, given f; = f Vi =0,...,T.

T

Wr(f) =Wo {fTeXp (ZXt>} =Wy {f—r exp(X)}, XdéfZXt (14)

t=1 t=1

As the horizon T grows, the sum of the random variables X; tends to the
Gaussian as long as the first two moments of the underlying distribution are
finite. Formally, let random variable X; have expectation vector pu; = E(X;)

and covariance matrix Xy = E {{Xt —E(X)H{X, - E(Xt)}—r] Then

T T T
ZXt £> N (Zﬂt,ZZ’t>
t=1 t=1 t=1

X 5N X) (15)

I

T
T Z(Xt — 1) 5 N(0,%).

t=1

If the distribution in horizon 7" is modelled as the sum of higher frequency dis-
tributions, the multidimensional process of returns, which may not be Gaus-
sian, but of finite variance, converges to the Gaussian. In contrast, as argued
in section 2.1, returns of horizons beyond the sampled frequency, are presumed
to be heavy-tailed. Hence, the standard Central Limit Theorem (CLT) does
not apply.

Except for the Gaussian itself, finite variance distributions change their shape
under aggregation. In contrast, the class of stable distributions is scale in-
variant (Mandelbrot, 1963). Scale invariance of distribution P is defined via a
continuous function g, such that for all

9N P(x) = P(Ax), (16)

with Az > zg and ¢ > 0. Equivalently, distribution P has a power-law tail,
implying that for x > 9 > 0,¢ >0 and a > 0

P(z) = cx™“. (17)
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In that respect, a one-dimensional random variable X ~ S(«, 3,7,d) will be
a-stable distributed with parameters 0 < o < 2, =1 < g <1, v > 0 and
0 € R (Cizek, Hérdle, and Weron, 2011; Nolan, 2017), if

Z+6, a#l
x£ L # (18)
YZ 4 (0 + B=ylogy), a=1.

S(Z | «,8,1,0) represents the standard stable form. As only special cases
of stable distributions are available as real-valued densities (e.g. Gaussian,
Cauchy and Lévy), a-stable distributions are expressed as Fourier transforms
of the characteristic function px (u).

S(X|a,B,7,0) = %/@X(u) — exp(—iuX)du (19)

The according characteristic function representation is given by

iud — y*|ul* {1+ iBtan (2F) (signu)}, a #1

iué — y|ul {1+ iB2(signu)log(|ul)}, a=1. (20)

log px (u) = {

Scale invariance under addition implies that for the sum of a-stable variables
Xt ~ S(a757’776t)7 t= 1,...7T

T
1
X1+X2+...+XT:ZX1§:XNS(O‘767TE’7/76)7 (21)

t=1

where § = T'§;. The characteristic function of X is consequently given by

w(To) — T (v*) [u|* {1+ iftan (%) (signu)}, a #1
iu(T;) — Ty|ul {1 +iB2(signu)log(|u])}, o = 1.
(22)
According to Gnedenko and Kolmogorov (1954), the limiting distribution of
T i.i.d. a-stable random variables, 0 < o < 2 is

T
ar (Z Xt> —br 5 S(a, 8,1,0), (23)

t=1

T'log px (u) = {

where ar > 0 and by € R. The special case of the Generalized Central Limit
Theorem (GCLT) is the CLT of equation (15) for a =2, 8 =0, v = 75 and

0y = g, given ap = a\l/f and by = @ In general, for 0 < a < 2,

T
T 37X~ 6) 5 S5(a,0,7,0). (24)

t=1
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2.3 Elliptically contoured stable distributions

For the multidimensional estimation, a-stable laws are not extensively acces-
sible as closed-form densities are only available for special cases. One compu-
tationally tractable exception are elliptically contoured a-stable laws, which
can be efficiently estimated for dimensions k < 40 (Nolan, 2013). This class
of distributions enables the modeling of heavy tails while preserving its shape
under aggregation in the presence of linear dependence.

Random vector ¥ = [Y7,... ,Yk]—r has a spherical distribution iff the charac-
teristic function ¢y (u) satisfies for all u € R¥
oy (u) = E {exp (z’uTY)} =Y(uu) = + ... +ud), (25)

where 1 is the characteristic generator of the spherical distribution.
Random vector X ~ Ey (9, I',v) is elliptically distributed with positive definite
scaling matrix I’ = AAT, A € R¥** and location vector § € R¥ when

X £5+ Ay, (26)

where Y is spherical with characteristic generator . The characteristic func-
tion is given by

¢x(u) = E{exp (iuTX)} = exp (iuTé) P (uTFu) . (27)
A subclass of elliptical distributions are normal variance mixtures X = [X3,..., X k]T
for
X EWVY2AZ + 5, (28)

with Z ~ N(0, I;) and W > 0 being a non-negative one-dimensional random
variable, independent of Z (Kring, Rachev, Hochstotter, and Fabozzi, 2009).
A further subclass of normal variance mixtures are a-stable sub-Gaussian X =
(X1,..., X" for W ~ S(a/2,(cosma/4)>/*1,0), 0 < a < 2, being one-
dimensionally a-stable distributed, parameterized following Nolan (2017). G ~
N(0, I") is multidimensional Gaussian with scaling matrix I' = AAT. Then
X ~ Eg(a, 8,1,6,v), B =0 is a-stable sub-Gaussian if

XEwWY2G 45
EWY2AZ +6, Z ~N(0,I}) (29)
f Ay 4+,

while Y ~ Eji(a,0, I}, 0) is radially symmetric a-stable. The according char-
acteristic function of X is

ox(u) = /_Oc fx(z)exp(iu' X)dz =E (iuTX)

1 a/2
= exp {— <2uTFu) + iuT5} ,

(30)
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fx(x) as probability density function. I" € R¥** is the positive definite scale

matrix and § € R¥ the location vector. The characteristic generator is therefore

given by e
W(s,a) = exp {— Gs) } . (31)

This implies that a-stable sub-Gaussian distributions are scale mixtures of
multivariate normal distributions (Samorodnitsky and Taqqu, 1994). Note, for
a = 2, the characteristic function collapses to the Gaussian. For G ~ N(0, I,),
the characteristic function of Y in equation (29) simplifies to

v (u) = E (iuTY) = exp (—°ul") (32)

For the horizon of the investor, T, the estimated daily log-returns are summed
to the chosen frequency:

X =TX ~ Ei(a,0,TT,T5,) (33)

For subsequent estimation, stability parameter 0 < a < 2, scale I" and location
0 need to be estimated, given that —1 < g < 1 can be assumed to be not
significantly different from zero.

2.4 Parameter estimation

The utilization of a-stable laws implies that fractional moments of random
variable X

+oo

X = [ XA (39

—00
are finite for 0 < p < «, p € R and infinite for p > «. This implies that for the
stable Paretian case, representing a slower decay than under the Gaussian,
0 < a < 2, the second moment E|X|?> = oo and higher moments such as
skewness and kurtosis are infinite. For the empirical financial market returns
1 < a < 2 (see chapter 3), the first moment remains finite. For elliptically
stable random variable X ~ Eg(«,0,I",0,%)) the expectation is

EX =0 < oo. (35)

In general, for univariate stable laws the mean is undefined for a < 1 and
EX = 6 — Bytan(Z2) < oo for @ > 1. From the perspective of a data
scientist, analyzing the sample, empirical moments are always finite. But under
the assumptions of being a-stable distributed, fractional moments with p > «
have no intrinsic meaning. As shown in section 2.1 higher moments behave
erratic with increasing data points, contrary to moment convergence under
Gaussianity.

For portfolio allocation the estimation of location and scale are crucial. Found-
ing on the analysis of Chopra and Ziemba (1993), the mean represents the
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largest source of error for estimating the portfolio fraction. Their final im-
plication is straightforward: ”[...] the bulk of resources should be spent on
obtaining the best estimates of expected returns of the asset classes under
consideration”.

Simulating from the class of elliptically stable distributions implies to estimate
the stability parameter «, scaling matrix I" and location §, given that the
skewness parameter 3 is zero. For the characteristic exponent o the method
of Rachev and Mittnik (2000) is used:

i. Simulate Uy, ..., U, uniformly i.i.d. random variables on the unit hyper-
sphere S*—1,
ii. Estimate the MLE for the index of stability &; (Nolan, 2001) for each 4
from 1 to n, UiTXl, ey UiTXn.
iii. Calculate the index of stability by & =n"* Y"1 a;.

By utilizing the MLE for the characteristic exponent «, severe estimation
biases from e.g. the Hill estimator (Hill, 1975) are circumvented, see also Mc-
Culloch (1997) and Kearns and Pagan (1997). For the proposed nonparametric
scaling approximation in section 2.5, the estimation of stability a will not be
necessary.

Estimating the location vector § € RF of multidimensional variable X ~
Ex(a,0,1,0,1) is of crucial importance for portfolio allocation, representing
the driver for asset growth.

From the perspective of information theory, we aim to chose the parameter
vector, which maximizes the probability of coming from the empirical data-
set. From the perspective of decision theory, this method coincides with the
minimization of expected loss under the 0-1 loss function:

L(6,6) = 1(8 #6). (36)

The according risk function is

R(6,8) = E{L(a,é)} - E{l(é#@)} (37)

Consequently the optimization

0" = arg min [E {1(5 # S)H (38)
5* €RF

leads to the common Maximum Likelihood Estimate (MLE). If the loss func-
tion is not presumed to be 0 — 1 loss, e.g. quadratic, the usual ML estimator
may not be suitable. The inadmissability of the sample mean under the Gaus-
sian for dimensions k > 2 has been first shown by Stein (1955), leading to
the class of shrinkage estimators, starting with James and Stein (1961). An
overview over the class of shrinkage estimators is given in Hansen (2015). To
our knowledge, those results have not been extended to a-stable laws.
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Following Nolan (2013), there are two methods to estimate the scale matrix
I

i. Given that X is elliptically stable,
Vu, uT X ~ Ej, (a, 0, (uT T'u) %, 475, qp) . (39)
The k(k + 1)/2 parameters of the scale matrix I" are estimated by

Iy =4
I =3 {3(1,1) -4 - 43},
where 42(1,1) = (1,1)7(X;,X;) = X; + X; and 4, is the univariate
scale ML estimate of asset j. Note that I;; depends solely on directions
ii. As E{exp(iu' X)} = exp {—7(u)*}

(40)

2
{~1log Eexp(iu—'—X)}a =u' Tu= Zuff’“ + QZUinFi,j, (41)

1<j

so I ; can be estimated as linear function via regression, taking more
directions into account than the first method.

For the remainder of the paper, the first method is utilized due to its analytical
tractability.

2.5 Nonparametric scaling approximation

Instead of simulating from the estimated elliptically contoured stable distri-
bution, a fast scaling approximation is proposed. Three major drawbacks of
elliptically stable distributions can be detected. The first one is the imposition
of the elliptical shape of two random variables plotted on a two-dimensional
projection as the scatter plot. Secondly, simulating from the elliptically stable
distribution implies that

Vi=1,...,k aj=a, 0<a<?2,

: (42)
Vi=1,....k B;=0.

Thirdly, for empirical stock returns, quantiles @Q,, a < 0.02 are underesti-
mated, implying that risk measures for large confidence levels are underesti-
mated. Vice versa, quantiles @,, a > 0.98 are consequently overestimated,
see figure (5). Reasons for the absence of extreme outliers as presumed sta-
ble distributions, may be exchange or central bank restrictions i.e. in times of
crisis or market makers, smoothing the price changes.

The last two drawbacks are dealt with by using stable properties of the sample
data-set. Assume that the daily data-set X; ~ Fj(a, 0, Iy, d¢, 1)) is elliptically
stable distributed. Then,
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i. estimate location §; and scale I; = A; A/ of daily returns X; as proposed
in section 2.4.
ii. Normalize X; to radially symmetric Y ~ Ej(«, 0, I, 0,v)
Y =A7'X, — 6. (43)
iii. Rescale radially symmetric Y to distribution X ~ Ey(a,0,Id,v), I

AAT with investment horizon T,

X =AY 44 (44)

with I' =T1} and § = T0;.

The resulting presumed distribution in horizon T', represented by convoluted
daily distributions, is simply an affine transformation of its radially symmetric
analogue, given its scaling nature. Given that 8 = 0, different stabilities a;; of
the marginals have no effect on location d and scale I".

3 Implementation
3.1 Data

The daily financial asset prices come from Bloomberg and cover the time span
from 1997-12-12 to 2015-10-01, 4617 daily data points per asset. The assets
with a linear payoff structure (stocks, bonds, commodities) are chosen to be
a subset of the investment universe, aiming to represent its main drivers. The
German and the American stock markets are represented by the stock market
indices DAX 30 and Standard and Poor’s 500. The bond market is reflected by
the IBOXX EMU SOV 1-3 and JPMorgan EMBI Global Total Return Index
for emerging markets. The Bloomberg Commodity Index it utilized as proxy
for the commodity markets. For potential short-selling one asset with fixed
interest - the interest rate the investor has to pay in order to lend - is calculated.
The according descriptives including Maximum Likelihood Estimates (MLE)
under a-stability (Nolan, 2001) are given in table 2.

The assets with a non-linear payoff structure are represented as long put op-
tions, written on the stock market indices DAX 30 and Standard and Poor’s
500. As will be assumed for the representative investor in section 3.4, the
maturity, and hence the investment horizon T, is chosen to be one year. No
exchange-traded, liquid long put options are available for the chosen bond and
commodity market proxies. The price of the long put options determines the
price of the hedge and hence the reduction in wealth if the stocks close above
the chosen strike levels. For the distribution of wealth in T, the put option
price Or at maturity is given by the inner value

Or =max {0; K — St}. (45)

Solely for evaluating the price of the non-linear assets between ¢ = 1 and
horizon T, a pricing model is needed.
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Descriptives DAX30 S&P500 EMUSOV EMBI BCI

ux T (in %) 4.74 4.07 3.65 8.46 0

o xTY? (in %) | 24.88 20.22 1.48 9.25 16.6

Skewness 0.04 —0.12 0.17 —2.01 —0.21

Kurtosis 6.22 10.12 22.33 35.47 5.54

a 1.69+0.06 1.59+0.06 1.60+0.06 1.44+0.06 1.79+0.05
—0.20+£0.17 —0.16 £0.16 0.00+0.14 —0.08 £0.12 —0.14 +0.22

~ x T/ 0.24 0.22 0.02 0.11 0.14

oxT 0.17 0.16 0.04 0.15 0.07

Table 2: Return descriptives with ML estimates under o-stability, 1997-2015 including
confidence intervals (99%) for stability o and skewness 3

3.2 Stable tests

In order to verify if the class of elliptically stable distributions is suitable for
the financial assets, the following prerequisites have to be met:

— heavy tails beyond the Gaussian (Leptokurtic behavior)
— linear dependence structure between the margins

— comparable range of «; (for simulation)

— skewness parameter 8 not coherently different from zero.

As examined descriptively in table 2, empirical financial market returns are
significantly non-Gaussian. In figure 5 the densities of the normalized log-
returns on log-scale are plotted for Gaussian (a = 2), Stable (o = 1.7), Cauchy
(o = 1) and the individual assets using Kernel Density Estimates. Within
the stable framework all examined assets lie between Gaussian and Cauchy,
1 < a < 2. The stable fit for a« = 1.7 captures the tails adequately, although
events are captured, which never took place in the data history. The range
of characteristic exponents stands in line with results of Westerfield (1977),
McCulloch (1997) or Nolan (2013).

The elliptical behavior is assessed by using two dimensional projections in the
form of the scatter matrix of the empirical log-returns. The significance of the
skewness parameters ; is verified by the utilization of the Fisher information
from the MLE. The respective confidence intervals for the individual parame-
ters show that §; are not consistently different from zero, given a confidence
level of 99% (see table 2). For larger dimensions, Nolan (2013) reaches the
same conclusion for the Dow Jones constituents.

Making use of the Nonparametric Scaling Approximation implies that there
is no need to estimate one specific alpha for the elliptical stable distribution.
AsVj 1 < a; <2 we can deny the null of Gaussianity coherently for the 99%
confidence level (see table 2), speaking in favour of the a-stable hypothesis.
This implies the assumption of infinite variance. As we are interested in the
horizon distribution, constituted by the sum of daily random variables, the
generalized CLT is utilized.
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Log-Frequency

Normalized Log-returns

Fig. 5: Log-densities for Gaussian, a = 2 (blue), Stable, @ = 1.7 (green), Cauchy, a = 1
(red) and financial assets (gray)
Q Stable_Kelly_LogDensityFinancials

3.3 Stable estimation

Following section 2.4, the parameter estimates for the daily distribution

Xt ~ Ep(a, B, I%,6:,1), B = 0 are scaled to the chosen horizon of one year.
For the utilized scaling approximation, X1 ~ Fy(a,0, I'r, d7,) for location
o0r = Ty and scaling I'r = T'T}, given that 8 = 0. Location vector and scaling
matrix, plotted as heat matrix, are given in table 3 and 4.

Asset o
DAX30 0.0474
S&P500 0.0407
EMUSOV 0.0365
EMBI 0.0846
BCI 0

Table 3: Estimate for location vector o

Table 4: Estimate for the scaling matrix I'1

3.4 Portfolio implementation

Exemplary, the representative investor has an investment horizon of one year.
According to his regulators, no more than 15% (b = 0.15) of his wealth should
be lost given probability 99.9%. In terms of the discrete wealth return distribu-
tion only a = 0.1% of the wealth paths should end below —15%. The investor
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is able to lend capital for 3% per year, representing the sixth asset, which can
only be short-selled. The two maximization problems, without (k = 6) and
with options (k = 134), as special case of optimization in (12), are formulated
within the framework of spectral measures:

[* = argmax Gy, {Wr(f)}

f*ERk
Wr(f)
W,

} < 0.15,
0

s.t. S¢Qa {1 —

k
ij <1
i=1

The resulting discrete wealth return distributions with according statistics
is given in figure 6 and table 5. Including non-linear instruments into the re-
stricted optimization proves to be beneficial for the Kelly Criterion, preserving
the quantile restriction. The option investment is restricted to half of the initial
capital. In terms of portfolio fractions (see table 6), the leverage is increased
by investing in a combination of the according puts of DAX30 and S&P500
and the according underlyings, equaling the protective put strategy of section
1.2.

(46)

Portfolio (in %) Without With

Geometric mean 6.03 8.85 Fractions  Without With
Arithmetic mean 6.33 10.90
L DAX30 0.01 0.74
Standard deviation 4.98 26.94
N 07 5810 S&P500 0 1.29
inimuim e e EMUSOV 2.36 1.88
Qo.1% —15.00 —15.00 EMBI 0.33  0.48
Q19 —6.02 —8.10 ' '
1.33 0.95 Bet 0 0
Q10% : - SHORT -1.69 —3.89
Qs0% 6.25 527
6 Put DAX / 0.14
QQO% 11.30 23.35 Put S&P500 / 0.36
Qoo 20.92 1.19 '
Maximum 67.26 871.57

Table 6: Portfolio fractions without and
with options

Table 5: Discrete wealth return statistics
(in %) without and with options

Extending the quantile constraint to the interval 0 < b < 1, leads to a series
of optimizations for all relevant quantile levels. b = 0 represents the risk free
portfolio, whereas b = 1 implies that the investor can loose all of his fortune,
given chosen confidence level.
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Fig. 6: Wealth densities without (blue) and
with (green) put-options, VaR constraint Fig. 7: Kelly-quantile frontier without
(red) (blue) and with (green) options, a = 0.001

f* = argmax G¢>Elog {WT(f)}

f*ERk
1%
s.t. S¢Qa{1—T(f)}<b, 0<b<l,

k
ij <1l
=1

This series of restricted optimizations is mapped to the Kelly-quantile fron-
tier (figure 7), in which each point represents a growth-optimal portfolio given
quantile (VaR) constraint. The portfolio with (without) options, which can
lose at most 15% with 99.9% probability is the point where the green (blue)
frontier crosses the quantile constraint (red). Except for the risk-free portfolio,
0 < b < 1, every restricted portfolio with options outperforms the portfolio
without options in terms of the geometric mean. The unrestricted Kelly port-
folio exhibits the highest geometric mean possible (15.69%), given a VaR of
78.82%. The investor, who allows for a larger security constraint b than the un-
restricted Kelly solution, should still invest into the growth-optimal portfolio,
as the geometric mean of the unrestricted Kelly portfolio cannot be surpassed.

4 Conclusion

Whereas the unrestricted Kelly portfolio ensures the asymptotic outperfor-
mance of the investor towards significantly different strategies, the presented
model ensures growth-optimal investment subject to personal risk. The con-
strained optimization is formulated within the framework of spectral measures,
inducing quantile (VaR) and Expected Shortfall as special cases. In order to
allow for an asymmetric wealth distribution, long put options are included
into the optimization.
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Financial market returns are with large probability non-Gaussian. Founding
on the work of Mandelbrot (1963), it can be observed that the stability pa-
rameter « is significantly smaller than two, speaking in favor of the class of
a-stable distributions. Given a chosen investment horizon, the distribution of
financial market returns is modelled as the sum of daily random variables.
For stable laws with a < 2 the variance of those random variables is infinite.
Hence, the standard CLT does not apply and the generalized CLT of Gnedenko
and Kolmogorov (1954) is applied. For the multidimensional estimation ellip-
tical stable distributions, implying a linear dependence structure, are used.
Instead of simulating from this class of distributions, a nonparametric scaling
approximation is proposed. The resulting horizon distribution, represented by
convoluted daily distributions, is simply an affine transformation of its nor-
malized daily analogue, given its scaling nature.

Heavy tails beyond the Gaussian, linear dependence between the marginals and
nonsignificant skewness are empirically supported. Correspondingly, the joint
distribution of financial market returns for a specified horizon is estimated by
elliptical stable distributions utilizing a nonparametric scaling approximation.
The portfolio model is implemented for a representative investor with quan-
tile (VaR) constraint. The resulting growth-optimum strategy maximizes the
geometric mean, given his risk constraint. Including put options into the opti-
mization levers the portfolio by a suitable protective put strategy, leading to an
increased geometric mean for the same quantile. For the Kelly-quantile fron-
tier, except for the risk-free portfolio, every restricted portfolio with options
outperforms the portfolio without options in terms of the geometric mean.
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