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Abstract

Understanding the topological structure of real world networks is of huge interest in a
variety of fields. One of the way to investigate this structure is to find the groups of densely
connected nodes called communities. This paper presents a new non-parametric method of
community detection in networks called Adaptive Weights Community Detection. The idea
of the algorithm is to associate a local community for each node. On every iteration the
algorithm tests a hypothesis that two nodes are in the same community by comparing their
local communities. The test rejects the hypothesis if the density of edges between these
two local communities is lower than the density inside each one. A detailed performance
analysis of the method shows its dominance over state-of-the-art methods on well known
artificial and real world benchmarks.

Keywords: Adaptive weights, Gap coefficient, Graph clustering, Nonparametric, Over-
lapping communities

1. Introduction

Discovering the topological structure of real world networks is a fundamental problem which
arises in a variety of fields. Networks can be of a very different nature like brain activity,
web applications, protein interactions, social networks. One of the way of exploring the
structure of networks is finding communities inside. A community is a group of nodes
which are more densely connected to each other than to the rest of the network Girvan
and Newman (2002) . Implicit definition of a community as well as methods for finding
communities vary from field to field. This diversity is natural as far as one can not expect
for networks from different fields to obey the same generating process. In real world graphs
where nodes represent entities and edges represent the relations between them, communities
can relate to groups of entities of the same interest. The modern graphs can consist of up
to several millions of nodes which makes it crucial to develop scalable community detection
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algorithms. For a comprehensive survey on main approaches we refer to Fortunato (2010),
Fortunato and Hric (2016).

Graph partitioning methods aim to divide a network into k communities of predefined
size such that the number of edges between communities (so called cut size) is minimal.
This group includes Kernighan-Lin algorithm Kernighan and Lin (1970), one of the earliest
methods proposed and still frequently applied, and many others, see e.g. Pothen (1997).
When there is no preliminary knowledge about the network structure, which is usually the
case, the graph partitioning methods requiring fixing the number of communities are non
effective.

Often real networks display hierarchical structure, where small communities are included
in larger communities. In this case hierarchical clustering algorithms can be used, Fried-
man et al. (2001). Having a defined similarity measure between nodes, these algorithms
cluster nodes either iteratively merging clusters with high similarity, or splitting clusters by
removing edges connecting nodes with low similarity. The divisive hierarchical algorithm
Girvan and Newman, Girvan and Newman (2002); Newman and Girvan (2004), is one of
the most popular algorithms in the field of modern community detection. It iteratively
removes intercommunity edges until the resulting partition reaches maximum modularity.
Intercommunity edges are identified based on high edge betweenness value, which expresses
the number of shortest paths between nodes that run along the edge. The algorithm has
a complexity O(n3) on a sparse graph. The quality function modularity, introduced by
Newman and Girvan, Newman (2006), has became one of the most popular metrics for
measuring the goodness of a partition and gave a boost to algorithms based on modularity
maximization, e.g. Blondel et al. (2008), Clauset et al. (2004), Noack and Rotta (2009).
Modularity is based on the comparison between the number of edges in each community
and the number of edges one would expect in the null model, where the edges are randomly
distributed, while preserving the same degree sequence as in the original graph.

Louvain is one of the well known modularity optimization methods introduced by Blon-
del et al. (2008) which is a greedy multiphase algorithm used for extracting community
structure of large networks. It starts with assigning to each node in a network its own
community, then at the first phase it sequentially moves each node from its community to
another one trying to maximize the weighted modularity. At the second phase it merges all
nodes from the same community into one supernode yielding a new graph with loops and
weighted edges. The weight between new nodes equals to the number of edges in the old
graph between corresponding communities. The procedure is then iterated, until modular-
ity computed with respect to the original graph does not grow any more. This method has
linear complexity in the number of edges of the graph.

Many clustering algorithms explicitly or implicitly try to optimize some quality measure
such as normalized cut, Shi and Malik (2000), or modularity, White and Smyth (2005). The
class of spectral graph clustering methods partition a network by using the eigenvectors of
the similarity matrix or it’s derivatives, Von Luxburg (2007). The idea is that eigenvector
components corresponding to nodes in the same community should have similar values, if
communities are well identified. Two popular algorithms Shi and Malik (2000), Ng et al.
(2002) focus on the eigenvectors of the normalized Laplacian. The drawback of spectral
methods is that they require a fixed k number of clusters, besides, the computation of the
first k eigenvectors of a Laplacian matrix in large graphs is computationally expensive.

2



Adaptive Nonparametric Community Detection

Methods based on statistical inference attempt to fit a generative model to the actual
graph structure based on hypotheses on connectivity properties of nodes. Newman and Le-
icht (2007) uses Bayesian inference to derive the best fit of a model to the data, expressed by
likelihood that is maximized by means of the expectation-maximization method Dempster
et al. (1977). Its drawback is the need to specify the number of groups, which is usually
unknown.

Rosvall and Bergstrom viewed the problem of finding the best partition of a graph as
the problem of optimally compressing the information needed to describe the process of
how information flows across the graph. Random walk is chosen as a proxy of information
diffusion. The intuitive idea is that a random walker will be “trapped” inside communities
for a long time rather than walking between communities. The best graph partition is the
one yielding the Minimum Description Length of an infinite random walk, Rissanen (1978),
Grünwald et al. (2005). This optimisation of the description length is carried out with a
combination of greedy search and simulated annealing. This method known as Infomap is
frequently used for community detection in large networks and has linear complexity in the
number of edges in the network.

In this work we introduce a novel method for detecting communities called Adaptive
Weights Community Detection AWCD. The idea of the algorithm is to associate a local
community for each node. These communities may intersect. Technically, for each node
i its local cluster is described in terms of binary weights wij and includes only nodes j
with wij = 1 . Thus, the community structure of a graph is described using the matrix
of weights W which is recovered from the original graph. The weights are computed by
an iterative multiscale procedure. On every iteration the algorithm tests a hypothesis that
two nodes are in the same community by comparing their local communities. The test
rejects the hypothesis if the density of edges between these two local communities is lower
than the density inside each one. The idea originates from the propagation-separation
approach introduced in Polzehl and Spokoiny (2006a) for nonparametric smoothing. A
similar idea of hypothesis testing is used in the nonparametric clustering technique AWC
Efimov et al. (2017). However, an extension to graph clustering is a non-trivial task. Here
the construction of the test is entirely different. The main advantage of the proposed
procedure is that it is fully adaptive and does not require any preliminary information
about the number of communities. We show the performance of AWCD on real world
datasets and artificial LFR benchmark, the latter became a standard among all the new
algorithms for community detection. The implementation of the method is publicly available
on http://quantlet.de. More details about the platform can be found in Borke and Härdle
(2017).

2. Graph clustering

Consider the graph G with the set of vertices V = {v1, v2, . . . , vn} and the set of edges E .
In the following we assume that the graph G is undirected and unweighted. The adjacency
matrix of the graph is the matrix Y = (Yij)i,j=1,...,n , where Yij = 1 if there is an edge
between the nodes vi and vj , otherwise Yij = 0 . We set Yii = 0 for all nodes vi .
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2.1 Stochastic block model

Stochastic block model is widely employed as a canonical model to study the statistical
and computational properties of random graphs, hence is used in many methods trying to
recover the community structure of networks. Consider a stochastic graph model

Yij ∼ Bernoulli(θij) .

Here θij are the underlying edge probabilities. A block model assumes a piecewise con-
stant structure of these probabilities. Namely, let the set of vertices V is split into non-
overlapping communities C1, . . . ,CM . The block structure means that the probabilities θij
only depend on the community of the indices i and j . Namely, assume that for some set
(θξη) , it holds

Yij ∼ Bernoulli(θξη), i ∈ Cξ , j ∈ Cη , i 6= j.

Also set Yii ≡ 0 for all i . Block structure implicitly assumes that the diagonal probabilities
θξξ are significantly larger than the cross diagonal entries θξη for ξ 6= η .

2.2 Weighted communities

A block structure is very transparent and appealing but can be too restrictive. In particular,
it does not allow to model overlapping communities. An extension can be given by the
notion of weighted communities. Let Ξ be the index set for all considered communities,
Ξ = {1, . . . , n} . In what follows we suppose that the community structure is described by
the binary matrix W with entries wξη , ξ, η ∈ Ξ . By technical reasons, we set wξξ ≡ 0
for all ξ . For each ξ , define the set of its friends Cξ which consists of all other nodes η
with wξη = 1 :

Cξ =
{
η : wξη = 1

}
.

In the case of non-overlapping communities, the matrix W has a block structure (except
the diagonal terms). In general, we allow for overlapping communities and they do overlap
significantly. Our basic assumption is that the edge probability in our graph is determined
by the community structure. Namely, for each ξ, η ∈ Ξ , let θ∗ξη be the related parameter,
that is,

IP (Yij = 1) = θ∗ξη i ∈ Cξ , j ∈ Cη, i 6= j.

By Nξ we denote the volume of Cξ :

Nξ
def
=
∑
η

wξη . (1)

Also denote by Nξη the number of possible connections between Cξ (friends of ξ ) and Cη
(friends of η ):

Nξη
def
= NξNη .
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Apart of these quantities consider the one-neighbourhood uξ of ξ , which is given by a
vector uξ = (uξη) describing for each η ∈ Ξ , the number of connections between η and
all friends of ξ :

u>ξ
def
= w>ξ Y =

(∑
ζ

wξζYζη

)
η∈Ξ

.

The community η is in the one-vicinity of ξ , if uξη > 0 . By U we denote the matrix
with the rows u>ξ , ξ ∈ Ξ . The number of edges connecting Cξ and Cη can be written as

Sξη
def
= S(Cξ,Cη) = w>ξ Ywη = u>ξ wη .

Then we can write the matrix S = (Sξη) as

S = UW = WYW.

The proposed procedure consequently repeats two steps: given the community struc-
ture in terms of the matrix of weights W , one-vicinity matrix U , and the values Nξ , it

recomputes the estimates θ̃ξη of the parameters θ∗ξη :

θ̃ξη
def
= argmax

θ
Lξη(θ) =

Sξη
Nξη

.

Further, with the given family of estimates θ̃ξη , it reconsiders the whole community struc-
ture by the mean of statistical tests on homogeneity and gap. These statistical tests are
discussed further in details in the section 5.

For each ξ, η , consider the testing problem whether there is a significant difference
between the parameters θ∗ξξ , θ∗ηη , and θ∗ξη , or one can combine two communities into one
with a joint parameter θ∗ . This leads to the formulation of the null hypothesis:

H0 : θξξ = θηη = θξη

H1 : alternative

Let ξ ∨ η denote the union of two communities.
The null hypothesis leads to the maximum likelihood estimation (MLE):

θ̃ξ∨η
def
= argmax

θ

{
Lξξ(θ) + Lηη(θ) + Lξη(θ)

}
=

Sξξ + Sηη + Sξη
Nξξ +Nηη +Nξη

,

and the likelihood ratio (LR) test statistic reads as

Tξη
def
= sup

θξξ,θηη ,θξη

{
Lξξ(θξξ) + Lηη(θηη) + Lξη(θξη)

}
− sup

θ

{
Lξξ(θ) + Lηη(θ) + Lξη(θ)

}
.

The Lemma 2 in the section 5.1 shows that

Tξη = NξξK(θ̃ξξ, θ̃ξ∨η) +NηηK(θ̃ηη, θ̃ξ∨η) +NξηK(θ̃ξη, θ̃ξ∨η) (2)
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where K(θ1, θ2) is the Kullback-Leibler divergence between two Bernoulli distributions with
parameters θ1 and θ2 :

K(θ1, θ2) = θ1 log
θ1
θ2

+ (1− θ1) log
1− θ1
1− θ2

.

The null hypothesis has to be rejected if this quantity exceeds some critical value λ : Tξη >
λ . The Wilks phenomenon Fan et al. (2001) claims that Tξη is nearly χ2

2 under the null
hypothesis θ∗ξξ = θ∗ηη = θ∗ξη for large samples Nξξ , Nηη , and Nξη . This gives some hints
about the choice of the hyperparameter λ .

3. Procedure

Initialization The starting point of the algorithm is the trivial community structure:
one community ξ per point, where the friends of ξ are given by the adjacency matrix.

This means that W (0) = Y . The size N
(0)
ξ of the starting community ξ is equal to

the degree of this node. The one-vicinity matrix is U (0) = W (0)Y = Y2 . The matrix
S(0) = U (0)W (0) = Y3 describes the paths of length 3 from each node.

The further step of the procedure requires to compute the weights w
(k+1)
ξη for any ξ

and any η from its one-vicinity.

Update of the community structure The procedure subsequently updates the whole
community structure at each step starting from the initialization. Suppose that the com-
munity structure is fixed after k steps of the algorithm in terms of the symmetric matrix

W (k) of weights w
(k)
ξη for each pair ξ, η ∈ Ξ . At the step k + 1 we recompute all the

weights w
(k)
ξη for η from the one-vicinity of ξ given by u

(k)
ξ which are columns of the

one-vicinity matrix U (k) = W (k)Y .

As before, for each ξ , let N
(k)
ξ stand for the number of friends of ξ ∈ Ξ at step

k ; see (1). Now we set w
(k+1)
ξξ = 0 and for each η with u

(k)
ξη > 0 , we compute the new

weight w
(k+1)
ξη and update the other elements of the community structure as follows. Define

N
(k)
ξη = N

(k)
ξ N

(k)
η . Further, set

S(k) = U (k)W (k) = W (k) YW (k) (3)

which means

S
(k)
ξη = w

(k)
ξ

>
Yw(k)

η = u
(k)
ξ

>
w(k)
η =

∑
ζ

u
(k)
ξζ w

(k)
ηζ , ξ, η ∈ Ξ.
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Only nodes ζ with positive values u
(k)
ξζ or w

(k)
ηζ are involved in this computation. The new

estimates of the edge density parameters are

θ̃
(k)
ξη =

S
(k)
ξη

N
(k)
ξη

,

θ̃
(k)
ξ∨η =

S
(k)
ξξ + S

(k)
ηη + S

(k)
ξη

N
(k)
ξξ +N

(k)
ηη +N

(k)
ξη

.

The test statistics T
(k)
ξη is given by (2). This requires only few arithmetic operations for

each pair ξ, η . The new weight w
(k+1)
ξη is the test which compares the test statistics with

the corresponding threshold parameter λ . For each pair ξ, η with u
(k)
ξη 6= 0 , update

w
(k+1)
ξη = II(T

(k)
ξη < λ).

Hence, for each pair ξ, η ∈ Ξ(k) we only need a finite number of operations for computing

w
(k+1)
ξη , and only communities η from one-vicinity of ξ have to be rechecked.

Without a statistical test, the procedure would replace the community C
(k)
ξ by its one-

vicinity at each step k . A statistical test makes this extension in a more sophisticated way
with the aim to restrict such an expansion only to the true underlying community.

Tuning the parameter λ The procedure has only one parameter λ , which influences
its performance. Large λ values result in a conservative gap test allowing to skip small gaps
between groups. This leads to aggregation of such groups and may result a partition with
big communities. In the contrary, small λ values increase the sensitivity of the method
towards small density between local communities and may lead to artificial segmentation
of a graph. We propose to fix the parameter λ which maximises the modularity.

3.1 Complexity

Initialization. A sparse structure of the graph with a bounded degree mi ≤ m for each

node i yields the same row sparsity m of Y and allows to compute each value N
(0)
i by at

most m operations. Moreover, each one-vicinity vector u
(0)
i describes all paths of length

2 from i and is also computable in finite time m2 . The one-vicinity matrix U (0) = Y2

can be computed in nm2 time and it can still be considered as sparse, through the sparsity
m2 is much less prominent compared to the original adjacency matrix Y . Computing the
matrix S(0) = U (0)W (0) = Y3 requires nm3 time.

Complexity of the step k can be easily bounded via the sparsity m of the network and

the max-volume N
(k)

= maxξN
(k)
ξ of the communities at step k . The most computation-

ally intensive part of the procedure is to compute the matrix S(k) from (3). This can be

done in nm(N
(k)

)2 time. One can see that the procedure remains scalable provided that
the size of each community does not grow over a certain value.

Note that for real world networks, the “small world phenomenon” yields that the edge
matrix Yk becomes dense for k larger than 4 or 5. In other words, each node can find
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a path to almost any other node in the network by crossing 4-5 edges. If W (k) inherits
such a dense structure, the procedure can become computationally infeasible. To prevent
communities from uncontrolled size growth, the procedure checks on a possible gap between
any two communities. This allows to control the complexity of the method as well.

4. Propagation effect

Here we discuss the propagation property of the AWCD algorithm in the homogeneous case
of just one community. Let the probability of an edge in the graph be the same for all pairs
(i, j) :

IP
(
Yij = 1

)
= θ∗. (4)

We show that the choice of the parameter λ as λ = C log n for a specific absolute con-
stant C ensures the propagation property, which means a small probability of artificial
partitioning of a homogeneous region.

Theorem 1 Suppose (4). If λ ≥ 4 log n , then IP
(
w

(k)
ij = 0

)
≤ 1/n .

Proof See Appendix C 6.5.

5. Two communities and statistical tests

Consider a stochastic block model with edges Yij and two communities C1 and C2 given
by weights wij . The value wij = 1 means that i, j are in the same block, wij = 0 for the
opposite event. Let also θ11 and θ22 denote the edge probability within each community
while θ12 be the edge probability between communities, that is,

IP (Yij = 1) = θξξ if i, j ∈ Cξ IP (Yij = 1) = θ12 if i ∈ Cξ, j 6∈ Cξ

for ξ = 1, 2 .
Split the data Yij into three groups:

Y11
def
=
{
Yij : i, j ∈ C1

}
,

Y22
def
=
{
Yij : i, j ∈ C2

}
,

Y12
def
=
{
Yij : i ∈ C1, j ∈ C2

}
.

Note that each edge in Y11 and Y22 is counted twice, this is useful especially for overlapping
communities.

5.1 LR test of homogeneity

The parameters θ = (θ11 , θ22 , θ12) can be estimated by the maximum likelihood method:

θ̃ = argmax
θ

L(θ) =
(
θ̃11 , θ̃22 , θ̃12

)
8
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with

θ̃ξη
def
= argmax

θ
Lξη(θξη) = argmax

θξη

∑
i,j∈Yξη

`(Yij , θξη)

for ξ, η = 1, 2 . Here `(y, θ) is the log-likelihood function for the Bernoulli family:

`(y, θ) = y log(θ) + (1− y) log(1− θ).

It obviously holds

θ̃ξη =
Sξη
Nξη

with

Nξη
def
=

∑
i,j∈Yξη

1, Sξη
def
=

∑
i,j∈Yξη

Yij , ξ, η = 1, 2.

Now consider the null hypothesis that two communities C11 and C22 can be joined into
one, that is θ11 = θ22 = θ12 . We will denote this value by θ1∨2 . The estimator of θ1∨2
under the null reads as

θ̃1∨2
def
= argmax

θ

{
L11(θ) + L22(θ) + L12(θ)

}
=

1

N11 +N22 +N12

∑
i,j

Yij =
S11 + S22 + S12
N11 +N22 +N12

.

Note that we double the inner edges in C1 and C2 . This does not affect the values θ̃11
and θ̃22 , however it matters for θ̃1∨2 . In fact, this doubling balances the impact of inner
connections from Y11 ∪ Y22 and inter connections from Y12 . The population counterpart
of θ̃1∨2 is

θ∗1∨2
def
=

1

N11 +N22 +N12

∑
i,j

IEYij =
N11θ

∗
11 +N22θ

∗
22 +N12θ

∗
12

N11 +N22 +N12

Now let us introduce the likelihood ratio test of the null hypothesis against the alternative
that the communities are different. The related likelihood ratio test statistic reads as:

T12
def
= sup

θ11,θ22,θ12

{
L11(θ11) + L22(θ22) + L12(θ12)

}
− sup

θ

{
L11(θ) + L22(θ) + L12(θ)

}
.

Also define the statistical distance between the null and the alternative set:

T 12
def
= sup

θ11,θ22,θ12

IE
{
L11(θ11) + L22(θ22) + L12(θ12)

}
− sup

θ
IE
{
L11(θ) + L22(θ) + L12(θ)

}
.
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Lemma 2 It holds

T12 = N11K(θ̃11, θ̃1∨2) +N22K(θ̃22, θ̃1∨2) +N12K(θ̃12, θ̃1∨2).

T 12 = N11K(θ∗11, θ
∗
1∨2) +N22K(θ∗22, θ

∗
1∨2) +N12K(θ∗12, θ

∗
1∨2).

where θ∗ξη are the true values and K(θ1, θ2) is the Kullback-Leibler divergence between two
Bernoulli distributions with parameters θ1 and θ2 :

K(θ1, θ2) = θ1 log
θ1
θ2

+ (1− θ1) log
1− θ1
1− θ2

.

Proof See Polzehl and Spokoiny (2006b).

Moreover, the Wilks phenomenon Fan et al. (2001) claims that under the null hypothesis
θ∗11 = θ∗22 = θ∗12 , the T12 is nearly χ2 with two degrees of freedom for large samples N11 ,
N22 , and N12 .

5.2 Test on similarity

Below we differentiate two departures from the null hypothesis. The first one compares
the intercommunity parameters θ11 and θ22 . If they are significantly different, the null is
rejected. The corresponding test is entirely based on Y11 and Y22 . Similarly to Polzehl
and Spokoiny (2006b), the LR-test statistic reads as

D12 = N11K
(
θ̃11, θ̃1+2

)
+N22K

(
θ̃22, θ̃1+2

)
.

where

θ̃1+2
def
=

S11 + S22
N11 +N22

.

This statistic is sensitive provided that the value

D∗12
def
= N11K

(
θ∗11, θ

∗
1+2

)
+N22K

(
θ∗22, θ

∗
1+2

)
with

θ∗1+2
def
=

N11θ
∗
11 +N22θ

∗
22

N11 +N22

is sufficiently large; Polzehl and Spokoiny (2006b).

5.3 Test on a gap

Now we consider a different situation when the communities are similar, that is, the value
D∗ is not sufficiently large. Then we assume that θ∗11 = θ∗22 and introduce the gap coefficient
which measures the ratio between θ∗11 and θ∗12 . The gap means that θ∗12 is significantly

10
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smaller than θ∗11 . To quantify the notion of significance, we consider the statistical likeli-
hood ratio test of “gap” between two local communities. Consider a one sided test with a
composite null H0 : θ∗12 < θ∗1+2 .

Then the corresponding test statistic reads as

G12
def
=
{
N1+2K

(
θ̃1+2, θ̃1∨2

)
+N12K

(
θ̃12, θ̃1∨2

)}
×
{

1I
(
θ̃1+2 > θ̃12

)
− 1I

(
θ̃1+2 < θ̃12

)}
,

where

N1+2
def
= N11 +N22, θ̃1+2

def
=

S11 + S22
N11 +N22

, θ̃1∨2
def
=

S11 + S22 + S12
N11 +N22 +N12

.

See Lemma 4 in the Appendix B for the proof.

Again, the test is sensitive if the following value is sufficiently large:

G∗12
def
=
{
N1+2K

(
θ∗1+2, θ

∗
1∨2
)

+N12K
(
θ∗12, θ

∗
1∨2
)}

1I
(
θ∗1+2 > θ∗12

)
.

with

θ∗1+2
def
=

N11θ
∗
11 +N12θ

∗
22

N11 +N12
, θ∗1∨2

def
=

N11θ
∗
11 +N22θ

∗
22 +N12θ

∗
12

N11 +N22 +N12
.

5.4 Alternative test on a gap

The aforementioned test works very well on classical artificial benchmarks and is easier for
theoretical development. Here we consider an alternative approach to test the gap between
communities to face some specific situations which arise in real world graphs. Suppose for
communities C1,C2 we have the next situation: θ∗11 < θ∗12 < θ∗22 . This means that the
community C1 is more connected to the community C2 than its own nodes are connected
to each other. In case of social networks, the C2 would consist of the popular members and
C1 would consist of their followers or fans. It is arguable what the algorithm should do in
this special case: separate C1 and C2 or join them. We believe this depends on the nature
of the network and in many scenarios we will want to merge them. Hence, we consider a
“gap” between communities, when the observed density of edges between communities is
lower than any density inside communities. We separate C1 and C2 if we observe a gap
between them. The reformulated null hypothesis in this case has the form:

H0 : θ∗12 < min(θ∗1, θ
∗
2) (5)

Lemma 3 The likelihood ratio test statistics T for the hypothesis (5), has the form

T = min(TA, TB)

if θ̃12 < min(θ̃1, θ̃2), otherwise T ≤ 0,

11
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where

TA
def
= N1K(θ̃1, θ̃1∨12) +N12K(θ̃12, θ̃1∨12),

TB
def
= N2K(θ̃2, θ̃2∨12) +N12K(θ̃12, θ̃2∨12),

Proof See Appendix A 6.5.

6. Evaluation

In this section we investigate the performance of AWCD algorithm on artificial and real
world data. The standard benchmarks considered in the literature are Stochastic Block
Model (SBM) and a more sophisticated LFR benchmark first proposed by Lancichinetti
et al. (2008). The latter is intended to mimic properties of real world graphs such as
heterogeneity in the distributions of node degree and community size. SBM is a pretty
simple set up which makes it possible to develop theoretical results. The evaluation of
community detection algorithms is difficult for real world graphs because there are only few
data sets available with a known true community structure. To be more precise, for real
world graph we know only meta information such as node attributes. Considering the graph
partition based on this meta information as true community structure is questionable, see
Peel et al. (2017), Hric et al. (2014).

We compare the performance of AWCD with the most popular community detection
algorithms Infomap by Rosvall and Bergstrom (2008) based on map equations and greedy
modularity optimization method Louvain by Blondel et al. (2008), both featured in com-
parative analysis of many methods on SBM/LFR benchmarks and on real world datasets.
See the overview of the comparison between various algorithms in Hric et al. (2014), Yang
et al. (2016a), Yang et al. (2016b), Lancichinetti and Fortunato (2009). Lancichinetti and
Fortunato (2009) showed that Infomap outperforms many other community detection algo-
rithms exactly on LFR benchmark, allowing to consider the Infomap as a state-of-the-art
algorithm for this benchmark. The implementation and detailed description of Infomap is
available on the website www.mapequation.org. For the Louvain algorithm we used the
python-louvain python package from https://python-louvain.readthedocs.io.

6.1 AWCD setup

Here we fix the setup of the algorithm showing the best results among aforementioned
versions of test statistics. We briefly describe this setup with notations coming from the
previous section.

0. Initialization: W (0) = Y , k = 0

1. U (k) = W (k)Y

2. For each pair i, j such that u
(k)
ij 6= 0 update wij of matrix W (k) ,

w
(k+1)
ij = II(T

(k)
ij < λ).

12
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where Tij is the classical gap test statistics from section 5.3 for the synthetic data
and alternative gap test statistics from section 5.4 for real world data.

The implementation of the AWCD method including a fast version for sparse graphs is
publicly available on https://github.com/QuantLet/awcd.

6.2 Evaluation criteria

Modularity is the standard evaluation criteria for community detection methods first pro-
posed by Newman (2006). The main idea behind modularity function is that in a good
graph division most of the edges lie inside the groups and only a few of them between
groups. Modularity doesn’t require knowledge about ground truth and can be optimized
directly like in the popular Louvain algorithm Blondel et al. (2008). Newman (2016) showed
that modularity maximization is equivalent to the maximum likelihood approach applied
to a special case of the stochastic block model.

Consider a graph G with the adjacency matrix Y = (Yij)i,j=1,...,n , where Yij ∈ {0, 1} .
Suppose the set of vertices is divided into non-overlapping communities C1, . . . ,CM , and θi
is the index of the community containing the vertex i . The most commonly used definition
of modularity is:

Q =
1

2m

∑
ij

(
Yij −

kikj
2m

)
δθiθj ,

where m is the number of edges in the graph, ki , kj are the degrees of nodes i , j and δ
is the Kronecker delta.

When the true community structure is known one can directly measure the similarity
between the detected community structure and the true partition. This can be done in
many ways. One of the popular measures is Normalized Mutual Information NMI Danon
et al. (2005). Suppose the true community structure is C∗ = {C∗m}Mm=1 and the estimated
community structure is C = {Cl}Ll=1 . Then NMI is defined as:

NMI(C,C∗) =
2I(C,C∗)

H(C) +H(C∗)
=

∑
ml nml log nnml

n∗
m nl√∑

m n
∗
m log(n∗m/n)

∑
l nl log(nl/n)

.

where I(C,C∗) is the mutual information of two partitions, H(C) is the entropy, and
values:

nml = |C∗m ∩ Cl|, n∗m = |C∗m|, nl = |Cl|.

6.3 LFR benchmark

LFR benchmark proposed by Lancichinetti et al. (2008) is a well known network model
with community structure. In this model the node degrees are distributed according to
a power law with exponent τ1 ; the community sizes also obey a power law distribution,
with exponent τ2 . Define by kini and kouti the internal and external degree of the node
i correspondingly. kini is the number of edges between node i and the nodes in the

13
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same community, kouti is the number of edges between node i and the nodes from other
communities. Define by µ the mixing parameter

µ
def
=

kouti

kini + kouti

.

In LFR graphs each node shares a fraction µ of its edges with the other nodes of its
community and a fraction µ with the nodes of the other communities; 0 < µ < 1 is the
mixing parameter. And the condition µ < (N − nmaxc )/N guaranties that all communities
are well defined, with nmaxc being the size of the largest community. For large networks
with nmaxc � N , we have µ < 1 . The software for generating such graphs is available
on https://sites.google.com/site/santofortunato/inthepress2. To generate LFR
graphs, the next parameters of networks were used: the average node degree equal to 20,
the maximum degree equal to 50, the exponent of the degree distribution equal to 2 and
the community size distribution equal to 1. The remaining parameters are the minimum
smin and maximum smax size of communities. It is usual to differentiate two cases: small
(LFR S) and big (LFR B) size of communities as follows: smin = 10, smax = 50 for LFR S
and smin = 20, smax = 100 for LFR B.

6.4 Results for artificial data

To grasp the idea of AWCD through visual illustration, we demonstrate the evolution of
the detected community structure of a graph during different steps of the algorithm. As
an example, on the Figure 1 we show what is happening during the each step of AWCD
algorithm on LFR S benchmark. The Figure 1 has three rows, each row corresponds to
one realization of a graph with n = 500 and the value of the mixing parameter µ ∈
{0.3, 0.55, 0.65} , the value is shown on the left. For each realization, from left to right we
plot its matrix of weights W (k) for steps k = 0, 1, 2, 3 . In this demonstration the parameter
λ is fixed by λ = 5 without any preliminary optimization.

As in the case with µ = 0.3 it is seen that the communities are easily identified even
on the step 1. During the step 2 the procedure converges by removing the remaining
connections between communities. Hence, after the further step 3 the matrix of weights
remains unchanged.

The second graph realization with µ = 0.55 corresponds to the breaking point when
the algorithm starts to make mistakes. At the step 1 it sets up the majority of the intra-
community connections, as well as additionally connecting nodes between communities.
Further, on the step 2, the algorithm shapes the identified community structure by deleting
these inter-community connections. And the final cleaning is done at the step 3.

The last graph realization with µ = 0.65 is a complex case, however the algorithm
manages to identify correctly some of the communities.

After demonstrating the behaviour of the procedure with the specified parameters, we
now test the performance of the algorithm by varying λ and the mixing parameter µ . We
also increase the benchmark size by setting the number of nodes n = 1000 . To measure
the performance we compute the average NMI over 10 runs, that is for each value of µ we
generate 10 graphs and run AWCD with different values of λ on these graphs. The results

14
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AWCD

Figure 1: AWCD results (λ = 5 ) for LFR S graph with µ = 0.35, 0.55, 0.65 . From left in
each row: W (0),W (1),W (2),W (3)

15
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are shown on the Figure 2. Consider the left plot for LFR S benchmark. Here besides
AWCD with λ = 0, 1, 2 we plot the performance of Louvain and Infomap algorithms.

One can see from the left plot that for small values of the mixing parameter µ < 0.6
there is no much difference in the performance. All the algorithms correctly identify the
community structure. The NMI values of the algorithms start to decline after further
increasing the parameter µ . As the choice of the best performing λ varies depending on
µ , we show this dependence on the Figure 3. Here for each fixed µ ∈ {0.4, 0.6, 0.65, 0.7, 0.8}
we run AWCD and plot the NMI as a function of λ . It can be seen that the choice of λ
for µ < 0.65 is not significant for the performance of AWCD.

To understand how modularity helps to choose the best performing λ , consider the
Figure 4, where NMI and modularity Q are plotted as functions of λ . The figure consists
of 3 LFR S graph realisations with fixed µ values. Our approach is to choose the λ value,
which maximizes the modularity. As might be seen, the λ value maximizing modularity
does not always coincide with the one providing maximum value of NMI. Nevertheless,
it leads to a close to the optimum NMI value . To test the proposed approach we plot
the performance of AWCD with λ chosen by modularity maximization. The results are
shown on the Figure 5, together with results for Infomap and Louvain algorithms. As we
have seen, for µ < 0.6 all the algorithms produce good results. When µ ∈ [0.6, 0.7] the
performance of Infomap drops significantly resulting a low NMI value for µ = 0.7 and
failing to identify any proper community partition. However, AWCD and Louvain still keep
to detect communities with a slight advantage of AWCD. After µ > 0.7 the performance
of Louvain inevitably worsens , on the contrary AWCD continues to produce results with
acceptable level of NMI.

Comparing Figures 2 and 5 one can conclude that the modularity maximization tech-
nique helps in choosing λ in almost optimal way.

Figure 2: NMI for Louvain, Infomap and AWCD with different λ on LFR bencmhark with
n = 1000 . Average over 10 run. Left: LFR S, λ ∈ {0, 1, 2} . Right: LFR B,
λ ∈ {0, 1, 5} .
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Figure 3: NMI as a function of λ . Each line is an average of AWCD results for 10 graphs
with fixed µ , see the legend. Left: LFR S, n = 1000. Right: LFR B, n = 1000.

Figure 4: NMI and modularity for one realisation of LFR S graph with n = 1000 . From
left: µ = 0.4 , µ = 0.65 , µ = 0.7 .

6.5 Results for real world data

Karate club Zachary (1977) is one of the most popular real world networks used in the
evaluation of community detection algorithms. The data consists of 34 nodes represent-
ing the members of a university karate club. The edges connect those members who has
interacted outside the activities of the club. At some time point a conflict between the
club president and the instructor occurred. This led to a division of the members into two
separate groups. A question arises if it is possible to reconstruct this division by observing
the original network.

We run AWCD on this network with different values of parameter λ and calculate for
each λ the modularity and sum of weights, see the left plot of the Figure 6. For the final
answer we choose λ with maximum modularity Q , that is λ = 0 . As we know the “true”
community structure of this network, we also calculate and plot on the Figure 6 the NMI
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Figure 5: NMI for AWCD with choice of λ maximizing the modularity, n = 1000 Left:
LFR S, Right: LFR B.

score for each λ . One can see from the plot, that λ = 0 also leads to the maximum value
of NMI.

The right plot of the Figure 6 shows the resulted community structure of the network
found by AWCD. Here each detected community is plotted with its own color. To see the
difference between the true community structure, we plotted the network in a way, that the
nodes within one true community have the same size. The plot shows that the community
supporting the president (node 34) is detected perfectly and the community supporting the
instructor is divided further into two groups.

Dolphins dataset Lusseau (2003) is another well known network, consisting of 62 bottle
nose dolphins. A pair of animals were considered connected (by an edge in the network)
when they were seen together more often than expected by chance. To partition this network
we follow the same approach we used for the Karate club dataset. We run AWCD algorithm
for a range of λ and compute modularity, see Figure 7. The highest modularity is achieved
with λ = 0 resulting a community structure shown on the Figure 8 left. On the Figure 7
besides NMI and modularity we also plot the sum of weights. Another interesting insight in
the plot of modularity is the area within range of λ ∈ [2, 9] , where the modularity remains
unchanged forming a so called plateau. This plateau indicates that there is a huge gap
between detected communities, hence we need to drastically increase λ to overcome this
gap and start to merge nodes from different communities.

This structure with a gap is shown on Figure 8 right. Indeed, the gap is easy to see even
by looking at the graph. Furthermore this structure repeats almost exactly the community
structure proposed by Lusseau (2003) except for the node SN89 which originally belongs
to the upper green community.

Polbooks dataset Krebs (2004) is a network of 105 books about US politics sold by
Amazon.com. The edge between two nodes indicates that the books were frequently pur-
chased together. Books are labelled as “liberal”,“neutral” or “conservative”. We consider
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Figure 6: AWCD results for Karate Club network. Left: NMI and modularity. Right:
Graph partition.The size of circles represents the true partition, and the color
corresponds to the community structure detected by AWCD with λ = 0 .

Figure 7: NMI and modularity of AWCD for dolphins dataset.

this labelling as the true community labelling. The left plot of Figure 9 shows the perfor-
mance metrics of AWCD with different values of parameter λ on this dataset. From this
plot we fix λ = 4 , which maximises the modularity, and run AWCD with it. The next plots
on Figure 9 show the true matrix of weights, the observed edge matrix and the detected
partition by AWCD. Again the chosen λ results in almost optimum value of NMI.

Polblogs dataset Political blogs represented as a network of hyperlinks between weblogs
on US politics, recorded in 2005 by Adamic and Glance (2005). Links are all front-page
hyperlinks at the time of the crawl. Groups are assigned “liberal” or “conservative” either
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Figure 8: Dolphins dataset, colors represent the AWCD partition with λ = 0 (left), and
λ = 5 (right).

Figure 9: AWCD results for polbooks network. From left: NMI and modularity, the true
community structure, the observed adjacency matrix, the detected partition with
λ = 4 .

blog directories or occasional self-evaluation. The network consists of 1222 nodes. The left
plot on Figure 10 shows the NMI and modularity values of community structure detected
by AWCD with different parameter λ values. The next plots of the Figure 10 show the true
community structure, edge matrix and the result of our algorithm for optimal λ . As one
can see from the adjacency matrix, the network has a huge gap between communities, and
one needs a very large λ to merge everything into one community. There is no significant
difference in NMI between smaller λ , but the one taken from modularity maximization
leads to almost optimum NMI value, similarly to previous datasets.
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Figure 10: AWCD results for Polblogs network. From left: NMI and modularity, the true
community structure, the observed adjacency matrix, the detected partition with
λ = 400 .

Football network Girvan and Newman (2002) represents the schedule of an American
college football games. Nodes in the graph are the football teams and edges represent
regular-season games between the two teams they connect. The network consists of 115
nodes divided in 12 conferences, which are considered as the true community structure.
The left plot of Figure 11 shows the performance metrics of AWCD with different λ . To
partition this dataset we run AWCD with λ = 0.5 providing maximum modularity. The
true matrix of weights, the observed edge matrix and the AWCD result are shown on the
next plots of Figure 11. Again the chosen λ results in almost optimum value of NMI.

Figure 11: AWCD results for Football network. From left: NMI and modularity, the true
community structure, the observed adjacency matrix, the detected partition with
λ = 0.5 .

Conclusion

Across many fields, from physiology to nutrition to marketing to providing services, de-
tecting and mapping communities is critical in understanding the structure of complex net-
works. In this work we introduced a new method for detecting communities called Adaptive
Weights Community Detection AWCD. The procedure of detecting communities exploits
the idea of automatically extracting the structural information in the observed graph in
terms of adaptive weights and utilizes this information for graph partitioning. The method
is computationally feasible and scalable for applying on huge graphs. The numerical study
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of the method showed a state-of-the-art performance of the method in comparison with
existing well known procedures.
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Appendix A. Proof of Lemma 3

Consider a testing problem with the null hypothesis

H0 : θ∗12 < min(θ∗1, θ
∗
2)

H1 : alternative

The LR test statistics is calculated via

T = supL(θ1, θ2, θ12|H0)− supL(θ1, θ2, θ12|H1),

where

L(θ1, θ2, θ12) = L1(θ1) + L2(θ2) + L12(θ12), θ1, θ2, θ12 ∈ IR.

Then

T = sup
θ12<min(θ1,θ2)

( L1(θ1) + L2(θ2) +L12(θ12))−

sup
θ12≥min(θ1,θ2)

(L1(θ1) + L2(θ2) + L12(θ12)). (6)

Set supθ L1(θ) = L1(θ̃1) , supθ L12(θ) = L12(θ̃12) and supθ L2(θ) = L2(θ̃2) . Without
loss of generality we assume that θ̃1 < θ̃2 .

θ̃12 ≤ θ̃1 ≤ θ̃2
This is a natural “gap” case when the observed density of edges between communities

is lower than any density inside communities. Then the test statistics T from (6) can be
rewritten as

T = L1(θ̃1) + L2(θ̃2) + L12(θ̃12)− sup
θ12≥min(θ1,θ2)

(L1(θ1) + L2(θ2) + L12(θ12)).

Suppose we know the point of maximum (θ∗1, θ
∗
12, θ

∗
2) in the right part of previous equation,

that is θ1 = θ∗1, θ12 = θ∗12, θ2 = θ∗2 . Consider two cases.
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First if θ∗1 ≤ θ∗12 and θ∗2 6= θ̃2 . Then due to concavity of likelihood function another

triplet (θ∗1, θ
∗
12, θ̃2) will lead to a higher value of L(θ1, θ2, θ12) . It means that from θ∗1 ≤ θ∗12

it follows θ∗2 = θ̃2 . In addition again due to concavity of likelihood function as far as

θ̃12 ≤ θ̃1 it follows that θ∗1 = θ∗12 = θ̂ :

θ∗2 = θ̃2, θ∗1 = θ∗12 = θ̂ ∈ [θ̃12, θ̃1]

Another case θ∗2 ≤ θ∗12 by following the same argumentation will lead to:

θ∗1 = θ̃1, θ∗2 = θ∗12 = θ̂ ∈ [θ̃12, θ̃2].

In the end we can rewrite our test statistics

T = inf
(
L1(θ̃1) +L12(θ̃12)− L1∨12(θ̃1∨12),

L2(θ̃2) +L12(θ̃12)− L2∨12(θ̃2∨12)
)
, (7)

where

L1(θ̃1) = S1 log θ̃1 + (N1 − S1) log(1− θ̃1),

L12(θ̃12) = S12 log θ̃12 + (N12 − S12) log(1− θ̃12),

L1∨12(θ̃1∨12) = S1∨12 log θ̃1∨12 + (N1∨12 − S1∨12) log(1− θ̃1∨12) =

= (S1 + S12) log θ̃1∨12 + (N1 − S1 +N12 − S12) log(1− θ̃1∨12).

Then the left side in (7)

L1(θ̃1) + L12(θ̃12)− L1∨12(θ̃1∨12) = S1 log
θ̃1

θ̃1∨12
+ (N1 − S1) log

1− θ̃1
1− θ̃1∨12

+

+S12 log
θ̃2

θ̃1∨12
+ (N12 − S12) log

1− θ̃12
1− θ̃1∨12

=

= N1[θ̃1 log
θ̃1

θ̃1∨12
+ (1− θ̃1) log

1− θ̃1
1− θ̃1∨12

] +N12[θ̃12 log
θ̃12

θ̃1∨12
+ (1− θ̃12) log

1− θ̃12
1− θ̃1∨12

] =

= N1K(θ̃1, θ̃1∨12) +N12K(θ̃12, θ̃1∨12)
def
= TA

Similarly, the right part

L2(θ̃2) + L12(θ̃12)− L2∨12(θ̃2∨12) = N2K(θ̃2, θ̃2∨12) +N12K(θ̃12, θ̃2∨12) = TB

Therefore the test statistics T in (7) in the case when θ̃12 < θ̃1 < θ̃2 is equal to

T = min(TA, TB).

23



Adamyan, Efimov and Spokoiny

Appendix B. LR test for the classical gap case

Lemma 4 The likelihood ratio test for the hypothesis

H0 : θ∗1 < θ∗2

H1 : alternative

is written as

T =
{
N1K(θ̃1, θ̃1+2) +N2K(θ̃2, θ̃1+2)

}
×
{

1I
(
θ̃2 > θ̃1

)
− 1I

(
θ̃2 < θ̃1

)}
. (8)

Proof Test statistics is calculated via

T = supL(θ1, θ2|H0)− supL(θ1, θ2|H1),

where

L(θ1, θ2) = L1(θ1) + L2(θ2), θ1, θ2 ∈ IR.

Then

T = sup
θ1<θ2

(L1(θ1) + L2(θ2))− sup
θ1≥θ2

(L1(θ1) + L2(θ2)).

We will follow the same notations as in previous chapters: supθ L1(θ) = L1(θ̃1) ,
supθ L2(θ) = L2(θ̃2) .

First consider the case when θ̃1 < θ̃2 . Then

T = L1(θ̃1) + L2(θ̃2)− sup
θ1≥θ2

(L1(θ1) + L2(θ2)).

As far as L′1(θ) > 0 for θ < θ̃1 and L′1(θ) < 0 for θ > θ̃1 , and the same holds for the
L′2 , then

sup
θ1≥θ2

(L1(θ1) + L2(θ2)) = sup
θ

(L1(θ) + L2(θ)) = L1+2(θ1+2)

Following the same logic as in the proof of the Theorem 3, it holds

T = L1(θ̃1) + L2(θ̃2)− L1+2(θ̃1+2) = N1K(θ̃1, θ̃1+2) +N2K(θ̃2, θ̃1+2).

Symmetrically in the case θ̃2 < θ̃1 by following the same argumentation it holds

T = L1+2(θ̃1+2)− L1(θ̃1)− L2(θ̃2).

Hence, by combining both cases we get (8).
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Appendix C. Proof of Theorem 1

We proceed by induction in k . The goal is to show that all the weights w
(k)
ij computed

at each step k are equal to one. This would mean that any community η from C
(k)
ξ and

from its one-vicinity u
(k)
ξ will get the weight one and hence, included in C

(k+1)
ξ .

First consider the step after initialization. For notational convenience we suppress the
upper index (0) for all considered objects. For any node ξ , its friends list Cξ is described
by the ξ -row of Y . It is important that ξ itself is not included in this set. Let Yξ be
the set of edges from the node ξ . Let now η be another node from one-vicinity of Cξ .
This means that Cξ and η are connected by some edge(s). Denote by Yξξ the set of edges
between nodes in Cξ , similarly for Yηη , and by Yξη the set of edges connecting Cξ and
Cη . The key observation is that the sets Yξ and Yη do not overlap with Yξξ , Yξη , and
Yηη yielding their independence. Note also that Nξξ = N2

ξ = |Yξ|2 and only depends on
Yξ , while Sξξ is defined by summation over Yξξ . Therefore, the conditional distribution
of Sξξ given Yξ coincides with the unconditional one and we can proceed as if the set Yξ
were deterministic. The same is true for Sξη and Sηη when conditioning w.r.t. Yξ and
Yη . Therefore, the results from Polzehl and Spokoiny (2006a) for i.i.d. Bernoulli random
sums apply here:

IP
(
NξξK(θ̃ξξ, θ

∗) > z
)

= IP
(
NξξK(θ̃ξξ, θ

∗) > z
∣∣Yξ,Yη) ≤ 2e−z

and similarly for θ̃ξη and θ̃ηη . Moreover, similar bounds apply to θ̃ξ+η and to θ̃ξ∨η . The
choice z = 3 log n allows to bound all considered test statistics simultaneously on a set of
overholming probability 2/n . Therefore, ignoring an event of a very small probability 2/n ,
we can assume that

NξηK(θ̃ξη, θ
∗) ≤ z,

Nξ+ηK(θ̃ξ+η, θ
∗) ≤ z,

Nξ∨ηK(θ̃ξ∨η, θ
∗) ≤ z

for all considered pairs ξ, η .
Suppose the induction assumption for the step k−1 . Then at the step k , the adaptive

vicinity of each vertex Vi coincides with the non-adaptive ball around Vi described by the

condition dij ≤ hk . The related test statistic T
(k)
ij fulfills.
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Zhao Yang, René Algesheimer, and Claudio J Tessone. A comparative analysis of community
detection algorithms on artificial networks. Scientific Reports, 6:30750, 2016b.

Wayne W Zachary. An information flow model for conflict and fission in small groups.
Journal of anthropological research, 33(4):452–473, 1977.

28



IRTG 1792 Discussion Paper Series 2019

For a complete list of Discussion Papers published, please visit
http://irtg1792.hu-berlin.de.

001 ”Cooling Measures and Housing Wealth: Evidence from Singapore” by Wolfgang
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