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Localizing Multivariate CAViaR ∗†
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Abstract

The risk transmission among financial markets is time-evolving, especially for

the extreme risk scenarios. The possibly sudden time variations of these risk struc-

tures ask for quantitative technology that is able to cope with such situations.

Here we present a novel localized multivariate CAViaR-type model to respond to

the challenge of time-varying risk contagion. For this purpose a local adaptive ap-

proach determines homogeneous intervals at each time point. Critical values for

this technique are calculated via multiplier bootstrap, and the statistical properties

of this ”localized multivariate CAViaR” are derived. A comprehensive simulation

study supports the effectiveness of our approach in detecting structural change in

multivariate CAViaR. Finally, when applying for the US and German financial mar-

kets, we can trace out the dynamic tail risk spillovers and find that the US market

appears to play dominate role in risk transmissions, especially in volatile market

periods.
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1 Introduction

Financial risk dependence and the mechanism of risk spillover among international eq-

uity markets has attracted increasing attentions among theorists, empirical researchers

and practitioners. A risk contagion is generated through dependence between extreme

negative shocks across financial markets. It is well-known that large downside mar-

ket movements occurring in one country would unavoidably have substantial effects on

other international equity markets. Moreover, financial risk scenarios tend to transmit

themselves among different markets, which consequently intensify a global risk contagion

leading to an international economic crisis. There now exists a wide-spread consensus in

the empirical literature that the dependence between the returns of financial assets is non

Gaussian with asymmetric marginals, nonlinear features and time-varying (Longin and

Solnik; 2001; Okimoto; 2008). In order to address these properties Engle and Manganelli

(2004) propose a conditional autoregressive value at risk (CAViaR) model to specify the

evolution of conditional quantile over time for univariate time series. Further, White

et al. (2015) built up a multivariate framework for multiple time series as well as vari-

ous quantile levels, which can be considered as a vector autoregressive (VAR) extension

to quantile models with the underlying value at risk processes not only autocorrelated

but also cross-sectionally intertwined. When applying CAViaR to financial institutions,

it presents valuable results in capturing the sensitivity of financial entities to institu-

tional specific and market-wide shocks of the system. It does however not cope with

time-variation. We therefore propose a feasible extension towards a local multivariate

CAViaR to estimate and forecast the dynamics of financial risk dependence.

The majority of existing literature use volatility as the risk measure and investigate

the volatility risk contagions (e.g. Engle (2002, 2004); Bauwens et al. (2006); Pelletier

(2006)). Although volatility is a crucial instrument to measure the risk movement, it

has been commonly criticized as only capturing the properties of second moments of the
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return time series and ignoring extreme market events structure (Hong et al.; 2009; Han

et al.; 2016). In addition, the volatility risk measure is symmetric and equally values the

gains and losses, which contradicts the facts that investors tends to be more sensitive to

the negative returns and especially for large downside risk, e.g. financial crisis. Therefore

volatility risk measure is not enough to evaluate the financial risk interdependence. On

the contrary, Value at Risk (VaR) is commonly utilized to measure the asymmetric risk

due to the straightforward implications, i.e., evaluate the loss given a predetermined

probability of extreme events. Although not a perfect risk measure, it has been accepted

as a standard for financial regulations, e.g. a criterion by the Basel committee on banking

supervision, Franke et al. (2019).

The interdependence of financial risk and especially the tail risk contagion is typically

featured as unstable and time-varying by empirical studies (Elyasiani et al.; 2007; Baele

and Inghelbrecht; 2010). The risk contagion is caused by dependence between extreme

negative shocks across international financial markets. A parametric model over a long-

run time series is at limit to portray almost certainly existed properties of non-stationarity.

Gerlach et al. (2011) propose a time-varying quantile model using a Bayesian approach

for univariate time series. In this paper, we focus on time-varying parameter properties

of multivariate quantile modeling. We propose a framework for localizing multivariate

autoregressive conditional quantiles by exploiting a local parametric approach, denoted

as LMCR model for simplicity. The advantages of our strategy are at least twofold: (1)

we consider the extreme tail risk spillover among financial markets and (2) we exam-

ine interdependence pattern of the tail risk contagion, both in a dynamic time-varying

context.

The local parametric approach (LPA) utilizes a parametric model over an adaptively

chosen interval of homogeneity. The essential idea of LPA is to find — backwards looking

— the longest interval that guarantees a relatively small modeling bias, see e.g. Spokoiny

(1998, 2009). A great advantage of this modelling approach is the search of balance be-

tween the modeling bias and parameter variability, see e.g. Chen et al. (2010); Chen and

Niu (2014); Härdle et al. (2015); Niu et al. (2017); Xu et al. (2018). Recent advances in

multipliers bootstrap (MBS) allow to construct data-driven critical values for homogene-

ity tests based on change point detection, see Suvorikova and Spokoiny (2017) and the
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references therein. The MBS only relies on the autoregressive equation for conditional

quantiles and has no particular assumption about the distribution of the innovations. In

our research, we extend LPA to quantile regression and develop LMCR. In Section 2 we

extend the asymptotic results of White et al. (2015) to finite samples. In particular, we

establish a Bahadur-type expansion based on uniform exponential inequality Lemma 2.1,

which may as well be of independent interest. We then compare it with the multiplier

bootstrap counterpart by utilizing the results of Chernozhukov et al. (2013).

Our approach appears particularly suitable to capture the shifting asymmetric de-

pendence among different markets. It is worth to mention that many papers appeared

in the literature investigate the co-movements of large changes by utilizing the copula-

based methods, see e.g. Chen and Fan (2006a,b); Zhang et al. (2016). Rather than

relying on a concrete specification of a copula, we emphasize local parametric model-

ing of risk dependence via a multivariate CAViaR model. Moreover, a simulation study

under various parameter change scenarios demonstrates the success of our method to re-

cover time-varying parameter characteristics. In addition, when applying to the tail risk

analysis of US and German market index, we find that at 1% quantile level the typical

LPA interval lengths in daily time series include on average 140 days. At the higher, 5%

quantile level, the selected interval lengths range roughly between 160-230 days. This is

of importance given the current historical simulation risk measures based on around 250

days. Therefore this findings might change today’s regulatory risk measurement tools.

The model also presents appealing merits in tracing the dynamics of tail risk spillover.

We find that the US market appears to play dominate role in risk transmissions of shocks

to German market, especially in volatile market periods.

This paper is structured as follows: we first present the model and corresponding

statistical properties under finite samples in Section 2. Section 3 presents the crucial

theoretical results for our parametric homogeneity test. Section 4 introduce the local

change point detection method and how to implement the model in practice. In Section

5, a simulation study examines the performance of our approach. Section 6 presents an

empirical application. Finally, Section 7 concludes this paper.
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2 Model

We consider a multivariate time series – typically, the log returns if financial institutions

– Y = {Yt : t = 1, . . . , T}, with each Yt being a n × 1 column. Denote the natural

filtration Ft = σ{Y1, . . . ,Yt} and we wish to estimate the quantiles of Yit conditioned

on Ft−1 at any given moment t = 1, . . . , T .

The LMCR model, like CAViaR, assumes that conditional quantiles q∗it = inf{y :

P(Yit ≤ y | Ft−1) ≥ τi} follow the autoregressive equation

q∗it = Ψ>t βi +
q∑

k=1

n∑
j=1

γijkq
∗
jt−k, (1)

where Ft−1–measurable Ψt ∈ Rd denote predictors available at time t, which typically

include lagged values of times series Yt. We have a parametric model with a finite-

dimensional parameter θ =
(
(βi)ni=1, (γijk)

n,n,q
i,j,k=1

)
∈ Rnd+n2q. The modeling quantile

functions are defined recursively,

qit(θ,Y) = Ψ>t βi +
q∑

k=1

n∑
j=1

γijkqjt−k(θ,Y). (2)

For any interval I = [a, b] ⊂ {0, . . . , T} we will write

(Yit,Ψt)t∈I ∼ LMCR(θ),

if the equation (1) is fulfilled on this interval with parameter θ.

The parameter can be estimated via the quantile regression quasi-Maximum Likeli-

hood Estimator (qMLE). For a given quantile level of interest τ ∈ (0, 1) denote the check

function ρτ (x) = x(τ − 1[1 ≤ τ ]) and set

`t(θ) = −
n∑
i=1

ρτ{Yit − qit(θ,Y)},

— quasi log-probability of t’s observation. The log-likelihood based on the interval I ⊂

{1, . . . , T} of observations for a fixed τ reads as

LI(θ) =
∑
t∈I

`t(θ)
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and the estimator based on this set of observations as

θ̃I = arg max
θ∈Θ0

LI(θ). (3)

The paper White et al. (2015) deals with the estimator that uses the whole data set

I = {1, . . . , T} and provides consistency and asymptotic normality of the estimator

when T tends to infinity.

Remark 2.1. The value −LI(θ) is usually referred to as risk or contrast and the cor-

responding estimator as risk minimizer or contrast estimator. We, however, prefer the

terms quasi likelihood and quasi maximum likelihood estimator, as we work with LRTs,

Spokoiny and Zhilova (2015).

The main objective of the present work is to provide a practical technique that chooses

appropriate intervals I. Roughly speaking, the longer the interval the less is the variance

of the estimator, while choosing the interval too large we can bring in bias due to time-

varying parameter. We say that the model is homogeneous at the time interval I, if the

following assumption holds.

Assumption 2.1. There exists the “true” parameter θ∗ ∈ Θ0 such that q∗it = qit(θ∗,Y)

for each i = 1, . . . , n and t ∈ I.

Obviously, such an assumption ensures that θ∗ = arg max E`t(θ) for each t ∈ I,

and, therefore, θ∗ = arg max ELI(θ), which falls into the general framework of maximum

likelihood estimators, see e.g. Huber (1967), White (1996) and Spokoiny (2017).

Here though we study LMCR, a non-stationary CAViaR model, that follows the local

parametric assumption, meaning that for each time point t there exists a historical interval

[t−m; t] where the model is nearly homogeneous, we also derive the theoretical properties

of LMCR under general mixing conditions which might be of interest by itself for a deeper

stochastic analysis.
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2.1 Assumptions

We first impose the following assumptions on the LMCR model, in particular, we say

that the model is “homogeneous” on an interval I if it satisfies the assumptions of this

section.

The first one ensures the identification of the model and is akin to Assumption 4 of

White et al. (2015). The second one controls the values and derivatives of the quantile

regression functions.

Assumption 2.2. There is a set of indices J ⊂ {1, . . . , n} such that for any ε > 0 there

exists δ = δ(ε) > 0 such that whenever ‖θ − θ∗‖ ≥ ε,

P (∪ni=1 {|qit(θ)− qit(θ∗)| ≥ δ}) ≥ δ, t ∈ I. (4)

Assumption 2.3. (i) For s = 0, 1, 2 there are constants Ds > 0 such that for each i, t and

for each θ ∈ Θ0 it holds pointwise |qit(θ, ·)| ≤ D0, ‖∇qit(θ, ·)‖ ≤ D1 and ‖∇2qit(θ, ·)‖ ≤

D2. (ii) Conditional density of innovations εit are bounded from above fit(x) ≤ f0 for each

i, t and x ∈ R. (iii) Additionally, conditional density of innovations satisfies fit(x) ≥ f

for |t| ≤ δ0.

Furthermore, we impose the following assumptions on the given time series. Let us

first recall the definition of the mixing coefficients. For any sub σ-fields A1,A2 of same

probability space (Ω,F ,P) define,

α(A1,A2) = sup
A∈A1,B∈A2

|P(A ∩B)− P(A)P(B)| ,

β(A1,A2) = sup
(Ai)⊂A1,(Bi)⊂A2

∑
i,j

|P(Ai ∩Bj)− P(Ai)P(Bj)| ,

where in the latter the supremum is taken over all finite partitions (Ai) ⊂ A1 and (Bj) ⊂

A2 of Ω. Then, the coefficients

ak((Xt)) = sup
t
α(σ(X1, . . . , Xt), σ(Xt+k, . . . , XT )),

bk((Xt)) = sup
t
β(σ(X1, . . . , Xt), σ(Xt+k, . . . , XT ))

and denote α– and β–mixing coefficients of the process (Xt)t≤T , respectively.
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Assumption 2.4. (i) Suppose, that the sequence of vectors (q·t(θ),∇q·t(θ)) is α–mixing

with α(m) ≤ exp(−γm) for some constant γ > 0; (ii) The sequence of vectors ∇q·t(θ∗,Y)

is β–mixing with coefficients β(m) ≤ m−δ, δ > 1; (iii) for each i = 1, . . . , n the innova-

tions εit for t ∈ I are i.i.d. and satisfy P(εit < 0) = τ .

Finally, we introduce the assumptions concerning information matrix as well as vari-

ance of the score, which corresponds to Assumption 6 of White et al. (2015).

Assumption 2.5. The vector (q∗t ,∇qt(θ∗), εt) is a stationary process for t ∈ I. Addi-

tionally, the matrices

Q2 = Efit(0)∇qit(θ∗)[∇qit(θ∗)]>, V 2 = Var{gt(θ∗)}

are strictly positive definite.

2.2 Consistency of the estimator

Here we present the results for consistency of the estimator θ̃ as the length of the interval

|I| tends to infinity. Unlike White et al. (2015), who show convergence in probability or

in square mean, we provide bounds with exponentially large probabilities, which allows

us to take into consideration growing amount of intervals simultaneously.

One of the main tools in providing convergence and asymptotic normality for M-

estimators is uniform deviation bounds for the score, see e.g. White (1996), Spokoiny

(2017) and the references therein. The score of the likelihood is ∇LI(θ) = ∑
t∈I ∇`t(θ) =∑

t∈I gt(θ), where we denote gt(θ) = ∇`t(θ). By definition of the log-likelihood, we

have gt(θ) = ∑
i∇qit(θ, ·)ψτ{Yit − qit(θ, ·)}. We also introduce the expectation of the

latter λt(θ) = Egt(θ). The following bound provides exponential in probability uniform

deviation bound.

Lemma 2.1. Assume 2.3 and 2.4 hold on an interval I. Then,

sup
θ∈Θ0(r)

1
|I|1/2

∥∥∥∥∥∑
t∈I

gt(θ)− λt(θ)− gt(θ∗) + λt(θ∗)
∥∥∥∥∥ ≤ ♦(|I|, r, x),

with probability at least 1− e−x, where

♦(T ′, r, x) = C1

{
r
√

x + r1/2
√

x + log T ′ + T ′−1/2(log T ′)2(rx + x + log T ′)
}
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with some C1 that does not depend on T ′, r, x.

Remark 2.2. Here the error term with r1/2 comes from the fact that gt(θ, ·) contains non-

differentiable generalized errors ψτ (Yit− qit(θ)), which being Bernoulli random variables,

can not be handled by chaining alone, unlike the case of smooth score, see e.g. Spokoiny

(2017).

Given the result above we can bound the score uniformly over all parameter set. This

allow us to have the following consistency result.

Proposition 2.1. Let assumptions 2.1–2.5 hold on the interval I. It holds with proba-

bility ≥ 1− 6e−x,

‖θ̃I − θ∗‖ ≤ C0

√√√√x + log |I|
|I|

.

2.3 Local quadratic expansion

The next step in providing asymptotic normality of the estimator θ̃ is a local Fisher

expansion. The main tool is linear approximation of the gradient of the likelihood, which

can be done by means of Proposition 2.1.

It is shown in White et al. (2015) (see formula (24)), that for each θ ∈ Θ,

∥∥∥∥∥∑
t∈I
λt(θ)−

∑
t∈I
λt(θ∗) + |I|Q2(θ − θ∗)

∥∥∥∥∥ ≤ C2|I|‖θ − θ∗‖2, (5)

with some C2 that does not depend on the length of the interval. Finally, we present

the main result of this section, that serves as a non-asymptotic adaptation of Theorem 2

of White et al. (2015). We postpone the proof to Section 8.3.

Proposition 2.2. Suppose, on some interval I ⊂ [0, T ] the Assumptions 2.1–2.5 hold.

Then, for any x ≤ |I|, it holds with probability at least 1− 3e−x,

∥∥∥∥√|I|Q(θ̃I − θ∗)− ξI
∥∥∥∥ ≤C (x + log |I|)3/4

|I|1/4
,

∣∣∣L(θ̃I)− L(θ∗)− ‖ξI‖2/2
∣∣∣ ≤C (x + log |I|)3/4

|I|1/4
,

(6)
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where ξI = 1√
|I|

∑
t∈I Q

−1gt(θ∗) and C does not depend on |I| and x.

Remark 2.3. This result serves as a non-asymptotic version of central limit theorem

(CLT) for the estimator, Theorem 2 in White et al. (2015). This follows from the fact

that the sequence (Q−1gt(θ∗))t≤T satisfies CLT as a martingale difference sequence, see

also Theorem 5.24 in White (2014).

3 Homogeneity testing via local change point detec-

tion

Suppose, we have an interval I = [a, b] ⊂ {1, . . . , T} of observations and we want to

test whether there is a change in the parameter, that generates the data on this interval

through the model (1). An alternative would be that there exist a break point s ∈ (a, b)

such that on the left part As = [a, s] the data generating process is described by one

parameter and on the right part Bs = [s + 1, b] it is described by a different parameter.

This means that we want to test a null hypothesis

H0(I) : (Yit,Ψt)t∈I ∼ LMCR(θ∗I), θ∗I ∈ Θ0,

against the alternative

H1(I) : (Yit,Ψt)t∈I ∼ LMCR(θ∗As),

(Yit,Ψt)t∈I ∼ LMCR(θ∗Bs) with some θ∗As 6= θ∗Bs .

To construct the test statistics consider a set of candidates for a break point S(I) ⊂

(a, b) and for each such candidate s ∈ S(I) introduce the test,

TI,s = LAI,s(θ̃AI,s) + LBI,s(θ̃BI,s)− LI(θ̃I), (7)

where AI,s = [a, s] represents observations to the left from break point and BI,s = [s+1, b]

are the observations to the right from the break point candidate s ∈ I. The existence of

the break point among the candidates is tested using statistic

TI = max
s∈S(I)

TI,s.

10



Given a certain confidence level α we want to construct a critical value zI,α such that

under the null hypothesis it holds

P (TI > zI,α) = α,

which stands for the false alarm rate. Evaluating such critical values is a crucial question

in hypothesis testing.

The current literatures use so-called propogation approach to construct the critical

values, see e.g. Spokoiny et al. (2013) and Xu et al. (2018). The approach is based

on simulated test statistics under a predetermined data distribution assumption. For

instance, the latter paper assumes a skew normal distribution for innovations. However,

in practice the true distribution is unfortunately unknown. The predetermined model is

possibly misspecified. In this research, rather than relying on a prescribed data distribu-

tion assumption, we construct critical values zI,α(Y) in a wholly data-driven way, which

uses the corresponding data interval for testing. We extend the multiplier bootstrap

technique and account for the detailed procedures and theorems in the next section.

3.1 Multiplier bootstrap

The idea is to simulate the unknown distribution of the original log-likelihood by intro-

ducing MBS with each term reweighted

L◦I(θ) =
∑
t∈I

wt`t(θ),

where (wt)t≤T is a given random sequence of i.i.d. weights independent of the sample.

For sake of simplicity we additionally assume, that they have sub-Gaussian tails.

Assumption 3.1. The weights wt are independent with Ewt = 1 and Var(wt) = 1.

Additionally, there is Cw such that for each t it holds E exp{(wt/Cw)2} ≤ 2.

Denote the corresponding bootstrap estimator

θ̃
◦
I = arg maxL◦I(θ),
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while the expectation of bootstrap log-likelihood with respect to the simulated weights

is obviously maximized by the original estimator,

θ̃I = arg max E◦L◦I(θ) = arg maxLI(θ),

where E◦[·] = E[· | Y ] denotes expectation in the “bootstrap world”. The paper Spokoiny

and Zhilova (2015) shows that with high probability the distribution of the simulated

likelihood ratio L◦I(θ̃
◦
I)−L◦I(θ̃I) in the “bootstrap world” mimics the distribution of the

original likelihood ratio LI(θ̃I) − LI(θ∗) up to some error that decreases with growing

sample. We adapt their theory for the case of regression quantiles.

Proposition 3.1. Suppose, Assumptions 2.1–2.5 and 3.1 hold on the interval I. Then,

there is T0 > 0 such that if T ≥ T0 and x ≤ T , on the event of probability at least 1−e−x,

it holds with probability at least 1− e−x conditioned on the data, that∥∥∥∥√|I|Q(θ̃◦I − θ̃I)− ξ◦I
∥∥∥∥ ≤ C

(x + log T )3/4

T 1/4 ,

∣∣∣L◦I(θ̃◦I)− L◦I(θ̃I)− ‖ξ◦I‖2/2
∣∣∣ ≤ C

(x + log T )3/4

T 1/4 ,

where ξ◦I = 1√
T

∑
t∈I wtQ

−1gt(θ∗) and C does not depend on T and x.

The papers Suvorikova and Spokoiny (2017) and Avanesov and Buzun (2016) apply

the approach for change point detection. Following them, introduce the bootstrap test

for change point s on the interval I,

T ◦I,s = L◦As(θ̃
◦
As) + L◦Bs(θ̃

◦
Bs)− sup{L◦As(θ) + L◦Bs(θ + θ̃Bs − θ̃As)},

T ◦I = max
s∈S(I)

TI,s.

Note, that here the shift θ̃Bs − θ̃As is devoted to compensate the biases of the estimators

θ̃
◦
As and θ̃◦Bs in the bootstrap world, which is not required in the original test. This

test can further be used to simulate the critical values, since it’s distribution conditioned

on the data mimics the distribution of the original test TI with high probability, as the

following theorem states.

Theorem 1. Suppose, that on an interval I ⊂ {0, . . . , T} the model satisfies 2.2-2.5 and

3.1. Suppose, that the set of break points satisfies for some α0 > 0

max
s∈S(I)

(|AI,s|, |BI,s|) ≥ α0|I|. (8)
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Then, there are C, c > 0 that does not depend on |I|, such that it holds with probability

at least 1− 1/|I|,

sup
z∈R
|P (TI > z)− P◦(T ◦I > z)| . C|I|−c.

The theorem justifies that the distribution of the bootstrap statistics T ◦I mimics the

unknown distribution of the original statistics TI , so we can construct critical values for

the change point test by simulating the bootstrap statistics:

z◦I(α) = z◦I(α; Y) = inf{z : P◦(T ◦I > z) ≤ α}, (9)

is totally data-dependent and can be estimated via Monte-Carlo simulations with arbi-

trary precision (see Sections 5 for details). Given the theorem above, we can use these

data-dependent critical values for the original test on the same data interval.

Corollary 3.1. Under the assumptions of Theorem 1, we have

|P(TI > z◦I(α))− α| ≤ C|I|−c,

where C, c > 0 do not depend on the interval length.

4 Localizing Multivariate CAViaR

Although time series should not be (globally) fitted by a parametric model with con-

stant parameter, we assume that at each time point t = 1, . . . , T , there exists a historical

interval [t − m, t], over which the data process follows a parametric model, in our case

equation (1). This local parametric assumption enables us to apply well-developed para-

metric estimation techniques in time series analysis. What is more, such an assumption

includes the following scenarios as special cases: (i) the parameters are time-varying as

the interval length changes over time and simultaneously (ii) our approach accounts for

possible discontinuities and jumps in parameter coefficients as a function of time.

The essential idea of the proposed LMCR framework is to find the longest time series

data interval, labeled as the interval of homogeneity, over which the LMCR model can
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be approximated by the parametric model. As illustrated in section 3, the interval of

homogeneity is adaptively selected among interval candidates using a sequential testing

procedure, the so-called local change point detection test. The critical values of the

sequential test are correspondingly simulated by the data-driven multiplier bootstrap

technique in section 3.1. Finally, the parameter vector at every time point t is estimated

using the adaptively selected data interval.

Interval Selection

The common way of selecting the homogeneous interval is as follows. To alleviate the

computational burden, choose (K + 1) nested intervals of length nk = |Ik|, k = 0, . . . , K,

i.e., I0 ⊂ I1 ⊂ · · · ⊂ IK . Interval lengths are usually taken to be geometrically increasing

with nk = dn0c
ke, where c > 1 is slightly greater than one, so that in the worst case one

only neglects a small proportion of unknown homogeneous interval. We assume that the

initial interval I0 is small enough, so that the model parameters are constant within this

interval.

Local Change Point Detection Test

Further, we conduct a sequential testing procedure. The detailed techniques are illus-

trated in the previous section 3. For each k = 1, . . . , K we want to test the homogeneity of

the parameter over interval Ik against the alternative of homogeneity over interval Ik−1.

By our assumption I0 is homogeneous. The resulting interval of homogeneity would then

be the last before the first one rejected. Therefore, for each such k = 1, . . . , K we choose

a set of breaking points Sk = Ik \Ik−1 outside of the interval that we already tested. The

algorithm at step k is visualized in Figure 1.

The hypotheses of the test at step k read as

H0 : parameter homogeneity of Ik vs H1 : ∃ change point within Sk = Ik \ Ik−1.

The test statistics, i.e. the statistics in 7, is

TIk,s = LAIk,s(θ̃AIk,s) + LB_kI,s(θ̃BIk,s)− LIk+1(θ̃Ik+1), (10)

where AIk,s = [t − nk+1, s] and BIk,s = [s + 1, t] are are subintervals of Ik+1. Since the

change point position is unknown, we test every point s ∈ Sk.
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Figure 1: Sequential testing for parameter homogeneity in interval Ik with length nk

ending at fixed time point t.

According to the homogeneous testing procedure in section 3, we reject the kth inter-

val, if

max
s∈Sk

TIk,s > z◦Ik(α),

where z◦Ik(α) is generated through multiplier bootstrap (9).

Observe that if the model is homogeneous on a historical interval [t− n∗, t], then due

to Corollary 3.1 we will accept homogeneity of each interval Ik = [t− nk, t] with nk ≤ n∗

with high probability. If an interval Ik remains homogeneous, the estimator θ̃Ik has

small bias, while the variance decreases with growing number of observations, according

to Theorem 2.2. The least variance, therefore, corresponds to the largest found interval

of homogeneity, and the final estimator reads as

θ̂ = θ̃Î
k
, k̂ = max{k : Ik is not rejected against Ik−1}.

Critical Values

The critical value defines the level of significance for the aforementioned test statistic

(10). In classical hypothesis testing, critical values are selected to ensure a prescribed

test level, the probability of rejecting the null under null hypothesis (type I error). In the

considered framework, we similarly control the loss of this ’false alarm’ of detecting a non-

existing change point. Based on Theorem 1 in section 3.1, we can mimic the distribution

of the test statistic (10) using the corresponding one with multiplier bootstrap. We can
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use the critical values in bootstrap world given a significance level for the test statistic

on the same data interval.

Summary of LCMR Approach

Before we numerically analyze the proposed procedure in the next two sections, we

summarize the scheme of our proposed LCMR approach:

1. Select intervals Ik, Sk, Ak,s and Bk,s at step k and compute the test statistics TIk ,

see equation (10).

2. Testing procedure - select the set of critical values given a tuning parameter α , see

section 3.1.

3. Interval of homogeneity is considered as the interval I
k̂
for which the null has been

first rejected at step k̂ + 1; k̂ = max
k≤K

{
k : TI` ≤ z◦I`(α), ` ≤ k

}
.

4. Adaptive estimation - the adaptively estimated parameter vector at the interval of

homogeneity θ̂ = θ̃Î
k
.

5 Simulations

In this section we study the effectiveness of our adaptive approach in detecting the struc-

ture breaks in a several parameter scenario. Following the setup of White et al. (2015)

and the simulation study in Gerlach et al. (2011) and Hong et al. (2009), we generate the

data time series using a two-variate GARCH process:

σ1t = β̃11σ1t−1 + β̃12σ2t−1 + γ̃11|y1t−1|+ γ̃12|y2t−1|+ c̃1 (11)

σ2t = β̃21σ1t−1 + β̃22σ2t−1 + γ̃21|y1t−1|+ γ̃22|y2t−1|+ c̃2

Yit = σitεit, εit ∼ N(0, 1) i.i.d. i = 1, 2

Denote the parameter set θ̃ = (β̃ij, γ̃ij, c̃i) where i, j = 1, 2.
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Note, that at a given quantile level τ , the quantile process qit(τ) = Quantτ (Yit | Ft−1)

satisfies qit(τ) = Φ−1(τ)σit, where Φ−1(τ) is the quantile function of the standard normal

distribution. Therefore, the following recurrent equation takes place

q1t(τ) = β11q1t−1(τ) + β12q2t−1(τ) + γ11|y1t−1|+ γ12|y2t−1|+ c1 (12)

q2t(τ) = β21q1t−1(τ) + β22q2t−1(τ) + γ21|y1t−1|+ γ22|y2t−1|+ c2,

where the parameter θτ = (βij, γij, ci)i,j=1,2 consists of ten coefficients βij = β̃ij and

γij = Φ−1(τ)γ̃ij, ci = Φ−1(τ)c̃i for i, j = 1, 2.

For simulations we consider a time series (Yit)500
t=1 with the initial variances σi1 = 1

and parameters

θleft = (0.5, 0, 0, 0.5, 0, 0.2, 0.2, 0, 0.5, 0.5),

θright = (−0.5, 0, 0, 0.5, 0, 0.2, 0.2, 0, 0.5, 0.5),

so that before the break t ≤ s = 250 the time series satisfies (11) with the parameter

θleft and after the break with θright. For each time point with step 20 (i.e. 500, 480,

460, and so on) we test a nested sequence of intervals I0 ⊂ I1 ⊂ · · · ⊂ IK with lengths

nk = dck|I0|e, which we take with K = 9, |I0| = 60 and c = 1.25. The considered lengths

of intervals are therefore,

{60, 72, 87, 104, 125, 150, 180, 215, 258}.

The results for choosing the interval length are presented on the Figure 2. On Figures

3, 4 we show estimated conditional quantiles q̂it based on the observations available at a

point t− 1, using the corresponding selected homogeneity intervals.

Numerical implementation

The optimization problem (3) is computationally involved. We deal with a highly non-

concave target function, that may even have various local maxima. Indeed, the quantile

functions (2) are polynomials of a multivariate parameter, with the total degree growing

up to the number of observations. Notice also that the equation (1) is a simple Recurrent

Neural Network with a linear activation function and one can use software developed
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Figure 2: Selected length of homogeneous intervals for timepoints 80 to 500 with step 20.

Figure 3: LMCR’s predicted quantile one step ahead (red), actual quantile (yellow) and
the original simulated time series (green) for i = 1 in (12).
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Figure 4: LMCR’s predicted quantile one step ahead (red), actual quantile (yellow) and
the original simulated time series (green) for i = 2 in (12).

specifically for fitting neural networks. We choose to use python’s Keras package with

TensorFlow backend. The package exploits gradient descent, and the procedure is well

optimized.

6 Application

6.1 Data and Parameter Dynamics

In risk modeling we consider two stock markets and focus on the dynamics of the repre-

sentative index time series, namely, the S&P 500 and DAX series. Daily index returns

are obtained from Datastream and our data cover the period from 3 January 2005 to

29 December 2017, in total 3390 trading days. The daily returns evolve similarly across

the selected markets and all present relatively large variations during the financial crisis

period from 2008–2010, see Figure 5. Although the return time series exhibit nearly zero-

mean with slightly pronounced skewness values, all present comparatively high kurtosis,

see Table 1 that collects the summary statistics.

In the analysis of the selected (daily) stock market indices presented in Section 6.1,

we consider different interval lengths (e.g., 60 and 500 observations) and analyze the

corresponding estimates. One may observe a relatively large variability of the estimated
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Figure 5: Selected index return time series from 3 January 2005 to 29 December 2017
(3390 trading days).

Index Mean Median Min Max Std Skew. Kurt.
S&P 500 0.0002 0.0003 -0.0947 0.1096 0.0121 -0.3403 14.6949
DAX 0.0003 0.0007 -0.0743 0.1080 0.0137 -0.0406 9.2297

Table 1: Descriptive statistics for the selected index return time series from 3 January
2005 to 29 December 2017 (3390 trading days): mean, median, minimum (Min), maxi-
mum (Max), standard deviation (Std), skewness (Skew.) and kurtosis (Kurt.).
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parameters while fitting the model over short data intervals and vice versa. The time-

variation of the parameter are presented here via two quantile levels, namely τ = 0.01

and τ = 0.05.

Parameter estimates are indeed more volatile when fitting the CAViaR over shorter

intervals (60 days), see e.g. Figures 6 and 7. More precisely, we display the estimated

MV-CARiaR parameters β̂11, β̂12, β̂21, β̂22 in model (12) in a rolling window exercise from

1 January 2007 to 29 December 2017. The upper (lower) panel at each figure shows

the estimated parameter values if 60 (500) observations are included in the respective

window.
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Figure 6: Estimated parameters β̂11, β̂12, β̂21, β̂22 at quantile level τ = 0.05 across the
selected stock markets from 1 January 2007 to 29 December 2017, with 60 (upper panel)
and 500 (lower panel) observations used in the rolling window exercises.

Key empirical results from the presented fixed rolling window exercise can be sum-

marized as follows: (a) there exists a trade-off between the modeling bias and parameter

variability across different estimation setups, (b) the characteristics of the time series of

estimated parameter values as well as the estimation quality results demand the appli-

cation of an adaptive method that successfully accommodates time-varying parameters,
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Figure 7: Estimated parameters β̂11, β̂12, β̂21, β̂22 at quantile level τ = 0.01 across the
selected stock markets from 1 January 2007 to 29 December 2017, with 60 (upper panel)
and 500 (lower panel) observations used in the rolling window exercises.
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(c) data intervals covering 60 to 500 observations may provide a good balance between

the bias and variability. Motivated by these findings, we now introduce using our LMCR

approach.

We follow the procedures demonstrated in section 4 to implement our approach. In

line with the aforementioned empirical results, we select (K + 1) = 13 intervals, start-

ing with 60 observations and ending with 500 observations (two trading years), i.e., we

consider the set

{60, 75, 94, 118, 148, 185, 231, 289, 361, 451, 500}.

The coefficient c = 1.25 in accordance with the literature. We assume that the model

parameters are constant within the initial interval I0 = 60.

Meanwhile, we use the initial two-year time series, i.e. from 3 January 2005 to 30

December 2006, as the training sample to simulate the critical values. We exactly follow

the procedure described in Section 3.1 to operate the simulation. We set two cases of the

tuning parameter: the conservative case α = 0.8 and the modest case α = 0.9 to choose

the critical values. We present the empirical results in the next section.

6.2 Results

A. Homogeneous Intervals

Our model framework accommodates and reacts to structural changes. From the fixed

rolling window exercise in subsection 6.1 one observes time-varying parameter charac-

teristics while facing the trade-off between parameter variability and the modelling bias.

How to account for the effects of potential market changes on the tail risk based on the

intervals of homogeneity? In this section, we utilize LMCR model to estimate the tail risk

exposure across three stock markets. Using the time series of the adaptively selected 18

interval length, we improve a portfolio insurance strategy employing our tail risk estimate

and furthermore enhance its performance in the financial applications part.

The interval of homogeneity in tail quantile dynamics is obtained here by the LMCR

framework for the time series of DAX and S&P 500 returns. Using the sequential local
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change point detection test, the optimal interval length is considered at two quantile

levels, namely, τ = 0.01 and τ = 0.05. The homogeneity intervals are interestingly

relatively longer at the end of 2009 and at the beginning of 2010, especially at τ = 0.05,

the period following the financial crisis across the stock markets, see, e.g., Figures 8 and

9. All figures present the estimated lengths of the interval of homogeneity in trading days

using the selected stock market indices from 1 January 2007 to 29 December 2017. The

upper panel depicts the conservative risk case α = 0.8, whereas the lower panel denotes

the modest risk case α = 0.9. Recall that the our model selects the longest interval

over which the null hypothesis of time homogeneity of multivariate quantile regression

parameters is not rejected. In the financial crisis initial period, the homogeneity intervals

became shorter, due to the increasing market volatility and obvious market turmoil.

During the post-crisis period, characterized by the high volatile regime, the homogeneity

intervals became relatively longer.

In a similar way, the intervals of homogeneity are slightly shorter in the conservative

risk case α = 0.8, as compared to the modest risk case α = 0.9. The average daily selected

optimal interval length supports this, see, e.g., Table 2. The results are presented for the

selected quantile levels at the conservative and modest risk cases, α = 0.8 and α = 0.9,

respectively. In general the average lengths of selected intervals range between 7-10

months of daily observations across different markets. At quantile levels τ = 0.05, the

intervals of homogeneity are slightly larger than the intervals at τ = 0.01.

α = 0.8 α = 0.9
τ = 0.05 159 231
τ = 0.01 143 171

Table 2: Mean value of the adaptively selected intervals. Note: the average number of
trading days of the adaptive interval length is provided for the DAX and S&P 500 market
indices at quantile levels, τ = 0.05 and τ = 0.01, and the conservative (α = 0.80) and the
modest (α = 0.90) risk case.

B. One-Step-Ahead Forecasts of Tail Risk Exposure

Based on LMCR model, one may directly estimate dynamic tail risk exposure measures

using the adaptively selected intervals. The tail risk at smaller quantile level is lower than
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Figure 8: Estimated length of the interval of homogeneity in trading days across the se-
lected three stock markets from 1 January 2007 to 29 December 2017 for the conservative
(upper panel, α = 0.8) and the modest (lower panel, α = 0.9) risk cases. The quantile
level equals τ = 0.01. The red line denotes one-month smoothed values.
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Figure 9: Estimated length of the interval of homogeneity in trading days across the se-
lected three stock markets from 1 January 2007 to 29 December 2017 for the conservative
(upper panel, α = 0.8) and the modest (lower panel, α = 0.9) risk cases. The quantile
level equals τ = 0.05. The red line denotes one-month smoothed values.
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risk at higher levels, see, e.g., Figure 10. Here the estimated quantile risk exposure for

the two stock market indices from 1 January 2007 to 29 December 2017 is displayed for

two quantile levels. The left panel represents the conservative risk case α = 0.8 results,

whereas the right panel considers the modest risk case α = 0.9. The former leads on

average to slightly lower variability, as compared to the modest risk which results in

shorter homogeneity intervals.
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Figure 10: One-step ahead forecasts of quantile risk exposure at level τ = 0.05 (blue) and
τ = 0.01 (red) for return time series of DAX and S&P 500 indices from 1 January 2007
to 29 December 2017. The left panel shows results of the conservative risk case α = 0.8
and the right panel depicts the results of the modest risk case α = 0.9.

C. Time-Varying Coefficient Estimates

The transitions among the financial markets are directly revealed by the cross-sectional

coefficients, see Adams et al. (2014). Here we take the dynamics of the two coefficients,

β12 and β21, as representations of spillover effects between S&P 500 and DAX. Figure
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11 and 12 plot the dynamics of spillover effects from S&P 500 to DAX, β12 and the

ones from DAX to S&P 500, β21. The upper (lower) panel represent the case of quantile

level τ = 0.01 (τ = 0.05). The blue lines show the results of α = 0.8 and the red lines

depict the results of α = 0.9. The cross-sectional coefficient β12 presents larger and more

volatile dynamics compared with the coefficient β21 for both quantile levels τ = 0.01 and

τ = 0.05. The shifting of the risk spillovers from US market to German market tend to be

more intensive, especially during the unstable market period, e.g. the 2008 financial crisis

period and the 2012 European sovereign debt crisis. Compared with the spillovers from

DAX to S&P 500, the US market appears to play dominate role in risk transmissions of

shocks to German market, especially in volatile time.
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Figure 11: Time-varying coefficients β12 at quantile level τ = 0.01 (upper panel) and
τ = 0.05 (lower panel) for return time series of DAX and S&P 500 indices from 1 January
2007 to 29 December 2017. The blue lines show the results of α = 0.8 and the red lines
depict the results of α = 0.9.
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Figure 12: Time-varying coefficients β21 at quantile level τ = 0.01 (upper panel) and
τ = 0.05 (lower panel) for return time series of DAX and S&P 500 indices from 1 January
2007 to 29 December 2017. The blue lines show the results of α = 0.8 and the red lines
depict the results of α = 0.9.
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7 Conclusion

The cross-sectional tail risk dependence among financial markets are time-varying and the

LMCR model is constructed to cope with this challenge in evaluating the risk contagion.

A local adaptive approach assumes that at any given point of time there is a historical

interval of observations over which the time series follows a parametric model. By utilizing

a local change point detection procedure, one can sequentially determine the interval of

homogeneity over which the time series behavior can be approximated described by a

fixed parameter. LMCR adaptively estimates the tail risk transmission by relying on the

longest detected interval of homogeneity. The corresponding statistical properties of this

method are successfully derived.

A comprehensive simulation study supports the effectiveness of our approach in de-

tecting structural changes in multivariate tail risk estimation. When setting the quantile

levels at τ = 0.05 and τ = 0.01 in a application of stock market indices DAX and S&P

500, the dynamic tail risk measures are successfully obtained. In addition, the developed

approach permits a delineation of the shifting tail risk spillover effects. We find that

the US market tends to play prominent role in risk transmissions of shocks to German

market, especially in volatile times.

8 Appendix

Without loss of generality in Sections 8.1–8.4 we assume, that the interval of interest is

the whole observed data set, i.e. I = {0, . . . , T}. For this reason we neglect the index

“I” where applies, for instance, L(θ̃) instead of LI(θ̃I).

8.1 Proof of Lemma 2.1

Denote,

g̃t(θ) = gt(θ)−
∑
i

∇qit(θ∗)1c[Yit ≤ qit(θ)],
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where for Ft−1–measurable Z we set 1c[Yit ≤ Z] = 1[Yit ≤ Z]− P(Yit ≤ Z | Ft−1). Since

qit(θ) are Ft−1–measurable, we obviously have Eg̃t(θ) = λt(θ). For any two θ,θ′ ∈ Θ

consider the decomposition,

gt(θ)− gt(θ′) =
∑
i

{∇qit(θ)−∇qit(θ′)}ψτi(Yit − qit(θ))

+
∑
i

∇qit(θ∗) {P[Yit ≤ qit(θ) | Fit]− P[Yit ≤ qit(θ′) | Fit]}

+
∑
i

∇qit(θ∗) {1c[Yit ≤ qit(θ)]− 1c[Yit ≤ qit(θ′)]} ,

and, similarly, the difference g̃t(θ)− g̃t(θ∗) has only two first terms in this decomposition.

In the proof of Theorem 2 of White et al. (2015) it is shown, that with Assumption 2.3

‖g̃t(θ)− g̃t(θ′)‖ ≤ D2(np+ f0D1)‖θ − θ′‖.

Let us fix some unit γ ∈ Rp and apply Theorem 1 of Merlevède et al. (2009) to the

sum ∑
t γ
>{g̃t(θ)− g̃t(θ′)}. Since by Assumption 2.4 it holds α(k) ≤ exp(−ck), we have

a Hoeffding-type inequality for each x ≥ 0,

γ>
{∑

t

g̃t(θ)− λt(θ)− g̃t(θ′) + λt(θ′)
}
> C1‖θ − θ′‖(

√
xT + x log2 T ) (13)

with probability ≥ 1 − C2e
−x, where C1 and C2 only depend on γ. Further we apply

Theorem 2.2.27 of Talagrand (2014) to get for any x ≥ 0

P
(

sup
θ∈Θ : ‖θ−θ∗‖≤r

∥∥∥∥∥∑
t

g̃t(θ)− λt(θ)− g̃t(θ′) + λt(θ′)
∥∥∥∥∥ > LA(r, x)

)
≤ LC2e

−x,

where A(r, x) =
√
Tγ2(rB1, ‖ · ‖)

√
x + (log2 T )γ1(rB1, ‖ · ‖)x, with L being a generic

constant, B1 is a unit ball in Rp, and γ1,2(T, ‖ · ‖) are Talagrand gamma-functional,

precisely, see Definition 2.2.18 in Talagrand (2014). In the case of finite dimensional

space, we have γ1,2(rB1(0), ‖ · ‖) ≤ rC, where C = C(p) only depends on the dimension.

We therefore can rewrite the above inequality,

P
(

sup
θ∈Θ : ‖θ−θ∗‖≤r

∥∥∥∥∥∑
t

g̃t(θ)− λt(θ)− g̃t(θ′) + λt(θ′)
∥∥∥∥∥ > Cr(

√
xT + x log2 T )

)
≤ e−x,

where C only depends on n and γ, and x ≥ 1.

Consider a δ-net {θ1, . . . ,θN} of the set Θ0(r), so that for each θ ∈ Θ0(r) there is

j = 1..N with ‖θ − θj‖ ≤ δ. It is known, that there is such a set with logN ≤ Cp log r
δ
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elements. By Bernstein-type inequality, Theorem 2 in Merlevède et al. (2009), it holds∥∥∥∥∥∑
t

∑
i

∇qit(θ∗)(1c[Yit ≤ qit(θk)]− 1c[Yit ≤ qit(θ∗)])
∥∥∥∥∥ ≤ C{

√
rT
√

x + logN

+(log T )2(x + logN)},

uniformly for all k = 1, . . . , N with probability at least 1−e−x, and the constant only de-

pend on n, γ. Here we use the fact that the terms 1c[Yit ≤ qit(θ)] are centred conditioned

on Ft−1, while ∇qit(θ) are Ft measurable.

Furthermore, taking into account part (iii) of Assumption 2.4 we can use Theorem 5.2

from Boucheron et al. (2005) to get that for any i = 1, . . . , n

|{t : εit ∈ [a, b]}| ≤ Tf0(b− a) + C
√
Tf0(b− a)x + Cx

with probability at least 1−4e−x uniformly over all intervals, with some universal constant

C. By definition, for any θ ∈ Θ0(r) there is some k such that |git(θ)− git(θk)| ≤ D1δ for

each i, t. Therefore, the amount of indices i, t, for which the values of 1[Yit − qit(θ)] and

1[Yit − qit(θk)] differ is bounded by C(Tδ +
√
Tδx + x), constant C does not depend on

T, x, r and δ. We come to the conclusion, that choosing δ = rT−1/2, on the intersection

of the events listed above it holds,∥∥∥∥∥∑
t

∑
i

∇qit(θ∗){1[Yit ≤ qit(θ)]− 1[Yit ≤ qit(θk)]}
∥∥∥∥∥ . T 1/2r +

√
T 1/2rx + x.

Putting the inequalities together we get the result.

8.2 Proof of Proposition 2.1

The claim follows directly from a slightly flexible version, that we are using for the

consistency of bootstrap estimator as well.

Lemma 8.1. Let assumptions 2.1–2.5 hold on the interval I. Then there are T0, a0 > 0

such that whenever |I| ≥ T0, a ≤ a0 and x ≤ |I| the following implication takes place

with probability ≥ 1− 6e−x. Each θ ∈ Θ that satisfies,

LI(θ)− LI(θ∗) ≥ −|I|a
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satisfies as well

‖θ − θ∗‖ ≤
√
a/b+ C0

√√√√x + log |I|
|I|

,

where b, C0 do not depend on |I| and x.

First, we present a uniform bound for the score. Similar to (13) it holds ‖∇ζ(θ∗)‖ ≤

C(
√

xT + x log2 T ) with probability ≥ 1− e−x, while by Lemma 2.1 we have with proba-

bility ≥ 1− e−x, that

sup
θ∈Θ0

‖∇ζ(θ)−∇ζ(θ∗)‖ ≤ C(
√
T
√

x + log T + x log2 T ),

using the fact that the set Θ0 is bounded. Using a simple triangle inequality we have,

‖∇ζI(θ)‖ ≤ C(
√
T
√

x + log T + x log2 T ) (14)

with probability ≥ 1− 2e−x uniformly for each θ ∈ Θ0, with C not depending on T, x.

Next we present a technical lemma, that shows quadratic deviation of the expectation

of log-likelihood in the neighbourhood of true parameter. The resulting inequality is akin

to condition (Lr) of Spokoiny (2017).

Lemma 8.2. Suppose, 2.1–2.3 and 2.5 hold. Then, there are r0, b > 0 that do not depend

on |I|, such that for each θ ∈ Θ satisfying ‖θ − θ∗‖ ≥ r it holds ELI(θ) − ELI(θ∗) ≤

−b|I|(r2 ∧ r2
0).

The proof of this lemma is postponed to Section 8.6.

Proof of Lemma 8.1. By (14) we have for x ≤ |I|,

1
|I|

ELI(θ)− 1
|I|

ELI(θ∗) ≥ LI(θ)− LI(θ∗)− ‖θ − θ∗‖ sup
θ∈Θ
‖∇ζI(θ)‖

≥ −a− C2‖θ − θ∗‖|I|−1/2
√

x + log |I|

≥ −a0 − C2R|I|−1/2
√

x + log |I|

with probability at least 1− 2e−x. By Lemma 8.2 this implies,

b‖θ − θ∗‖2 ≤ a+ C2‖θ − θ∗‖|I|−1/2
√

x + log |I|,
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and it is left to notice that x2 ≤ α+ βx implies x ≤
√
α+ β. Additionally, L(θ̃) ≥ L(θ∗)

pointwise, thus the deviation bound for the estimator takes place.

8.3 Proof of Proposition 2.2

First of all, by Proposition 2.1 it holds with probability ≥ 1−7e−x, that ‖θ̃−θ∗‖ ≤ r0 =

C0

√
T−1(x + log T ). Applying Lemma 2.1 with this radius, we get that with probability

≥ 1− 13e−x additionally this holds for each θ ∈ Θ0(r0):

1√
T

∥∥∥∥∥∑
t

gt(θ)− λt(θ)− gt(θ∗) + λt(θ∗)
∥∥∥∥∥ . δT,x = (x + log T )3/4

T 1/4 . (15)

With θ = θ̃ and using ∑t gt(θ̃) = 0, ∑t λt(θ∗) = 0 we get,∥∥∥∥∥√TQ(θ̃ − θ∗)− 1√
T

∑
t

gt(θ∗)
∥∥∥∥∥ . δT,x.

Similar to the proof of Theorem 2.3 in Spokoiny (2017), introducing the error of quadratic

approximation of log-likelihood near the true parameter and provided (5) and (15), one

can show that the square root of log-likelihood ratio is approximated with the same rate,

i.e.
∣∣∣√2L(θ)− 2L(θ∗)− ‖ξ‖

∣∣∣ ≤ δT,x. Scaling x← x + log 13 provides the result.

8.4 Proof of Proposition 3.1

Similar to the original likelihood,

ζ◦(θ) = L◦(θ)− E◦L◦(θ) =
∑
t

(wt − 1)`t(θ)

denotes the stochastic part of the likelihood in the bootstrap world.

Lemma 8.3. Suppose 2.2, 2.3 and 3.1. For each x ≥ 1 with probability ≥ 1− 4e−x w.r.t.

to the data, the probability of

sup
θ∈Θ(r)

1
T 1/2

∥∥∥∥∥∑
t

(wt − 1){gt(θ)− gt(θ∗)}
∥∥∥∥∥ ≤ ♦[(T, r, x)

conditioned on the data is at least 1− 3e−x, where

♦[(T, r, x) = C3
(
r ∨
√

r + T−1/4{(rx)1/2 ∨ (rx)1/4}+ T−1/2x
)√

x + log T ,

34



with C3 not depending on T, r, x.

Proof. The proof is similar to that of Lemma 2.1.

Corollary 8.1. For x ≤
√
T it holds with probability at least 1− 6e−x,

P◦
(

sup
θ∈Θ
‖∇ζ◦(θ)‖ ≤ C5T

1/2
√

x + log T
)
≤ 1− 5e−x,

where C5 does not depend on T, x.

Now we are ready to state the global concentration result for the bootstrap estimator.

Proposition 8.1. Assume 2.2-2.5 and 3.1. Then, on a set of probability at least 1−12e−x

it holds with probability at least 1− 5e−x conditioned on the data,

‖θ̃◦ − θ∗‖ ≤ C

√
x + log T

T
.

Proof. Denote r = ‖θ̃◦ − θ‖. Using Corollary 8.1 and the fact that L◦(θ̃◦) ≥ L◦(θ∗), we

have on the event of probability at least 1 − 6e−x w.r.t. data, with probability at least

1− 5e−x conditioned on the data, that

L(θ̃)− L(θ∗) ≥ L◦(θ̃◦)− L◦(θ∗)− ‖θ̃◦ − θ∗‖ × sup ‖∇ζ◦(θ)‖

≥ −C5T
1/2r

√
x + log T .

Using Proposition 2.1, we have that, additionally, on the other event of probability 1−6e−x

it holds r .
√
r
√

x+log T
T

+
√

x+log T
T

, which yields the result.

The rest can be accomplished using linear approximation of the score. Similar to the

original likelihood, with r0 = ‖θ̃ − θ∗‖ ∨ ‖θ̃◦ − θ∗‖ it follows from (5),∥∥∥∥∥∑
t

λt(θ̃
◦)−

∑
t

λt(θ̃) + TQ2(θ̃◦ − θ̃)
∥∥∥∥∥ ≤ 2C2Tr

2
0.

Here, ∑t λt(θ) stands for the expectation of gradient of the likelihood. With help

of Proposition 2.1 we first replace it with just the gradient, then, using Lemma 8.3 we

replace it with the gradient of bootstrap likelihood. This finally leads to the proof of the

proposition.

35



8.5 Proof of Theorem 1

W.l.o.g. we have an interval I = {1, . . . , T} and a set of break points S(I) ⊂ I to be

considered. Let us denote T = α0T with α0 > 0 from the conditions of the theorem. We

have by Proposition 2.2, that with probability at least 1− e−x it holds for each s ∈ S(I),
∣∣∣LAI,s(θ̃AI,s)− LAI,s(θ∗)− ‖ξAI,s‖2/2

∣∣∣ ≤ ♦, ∣∣∣LBI,s(θ̃BI,s)− LBI,s(θ∗)− ‖ξBI,s‖2/2
∣∣∣ ≤ ♦,∣∣∣LI(θ̃I)− LI(θ∗)− ‖ξAI‖2/2

∣∣∣ ≤ ♦,
where ♦ = CT−1/4(x + log T + log(1 + 2|S(I)|))3/4, implying

∣∣∣LAI,s(θ̃AI,s) + LBI,s(θ̃BI,s)− LI(θ̃I)− (‖ξAI,s‖
2 + ‖ξBI,s‖

2 − ‖ξI‖2)/2
∣∣∣ ≤ 3♦.

By definition, |I|1/2ξI = |AI,s|1/2ξAI,s + |BI,s|1/2ξBI,s , therefore for α = |AI,s|/|I| and

β = |BI,s|/|I| = 1− α we have,

‖ξAI,s‖
2 + ‖ξBI,s‖

2 − ‖ξI‖2 = ‖ξAI,s‖
2 + ‖ξBI,s‖

2 − ‖α1/2ξAI,s + β1/2ξBI,s‖
2

= β‖ξAI,s‖
2 + α‖ξBI,s‖

2 − 2α1/2β1/2ξ>AI,sξBI,s

= ‖β1/2ξAI,s − α
1/2ξBI,s‖

2

Obviously, similar expansion holds for the bootstrap counterpart, so that denoting

SI,s = 1√
|I|


√√√√ |BI,s|
|AI,s|

∑
t∈AI,s

Q−1gt(θ∗)−

√√√√ |AI,s|
|BI,s|

∑
t∈BI,s

Q−1gt(θ∗)
 ,

S◦I,s = 1√
|I|


√√√√ |BI,s|
|AI,s|

∑
t∈AI,s

Q−1wtgt(θ∗)−

√√√√ |AI,s|
|BI,s|

∑
t∈BI,s

Q−1wtgt(θ∗)
 ,

we have

∣∣∣∣max
s
TI,s −max

s
‖SI,s‖2

∣∣∣∣ ≤ 3♦,
∣∣∣∣max

s
T ◦I,s −max

s
‖S◦I,s‖2

∣∣∣∣ ≤ 3♦. (16)

For a single break point s ∈ S(I) by Azuma-Hoeffding inequality for all x > 0 it holds,

P
(
‖SI,s‖ . 1 +

√
x
)
≥ 1− e−x,

so that it holds with probability ≥ 1− e−x,

max
s
‖SI,s‖ .

√
log T +

√
x, max

s
‖S◦I,s‖ .

√
log T +

√
x.
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Additionally, for each A ⊂ I the covariance

Var◦(ξ◦A) = 1
|A|

∑
t∈A

Q−1gt(θ∗)gt(θ∗)>Q−1.

is concentrated near Σ = Var(Q−1g1(θ∗)) = Q−1V 2Q−1, e.g. by Azuma-Hoeffding

P
(
‖Var◦(ξ◦A)− Σ‖ .

√
1 + x
|A|

)
≥ 1− e−x,

so that taking into account (8), it holds with probability ≥ 1−e−x, that for each A = AI,s

or A = BI,s with s ∈ S(I),

‖Var◦(ξ◦A)− Σ‖ .
√

log T + x
T

. (17)

Now we want to use Lemma A.2 with n = T . Since δ > 1 by Assumption 2.4, we can

choose c2, c
′ > 0 such that (1 + δ)/2 − (1 + 2δ)c2 > 1 + c′. Then, we can have a, ε > 0

such that a+ ε < 1
2 − 2c2 and c2 + (1 + δ)a > 1 + c′. Setting b = a+ γ + ε, we have that

1− b− γa < −c′, b <
1
2 − c2, b− a > c2.

This means, that taking q = dT ae and r = dT be and Dn .
√

log n by Assumption 3.1,

the conditions of Lemma A.2 are satisfied. Moreover, by (17) we have ∆ .
√

log T/T

with probability ≥ 1− 1/(2T ), so that for each t, y ∈ R

∣∣∣∣P(max
s
‖SI,s‖ > t)− P(max

s
‖S◦I,s‖ > t+ y)

∣∣∣∣ . T−c∧c
′ + |y| log1/2 T. (18)

Thus, for |y| ≤ 6♦ taken for x = C log T , we have for each t, y ∈ R

sup
t

∣∣∣∣P(max
s
TI,s > t+ y)− P(max

s
T ◦I,s > t)

∣∣∣∣ . T−c∧c
′ + |y| log1/2 T

with probability ≥ 1− 1/T .

8.6 Proof of Lemma 8.2

Note, that integrating the inequality (5) with Q = ∑n
i=1 Efit(0)∇qit(θ∗)[∇qit(θ∗)]>, we

get second-order approximation in the neighbourhood of θ∗,∣∣∣∣ 1T EL(θ)− 1
T

EL(θ∗) + ‖Q(θ − θ∗)‖2/2
∣∣∣∣ ≤ C‖θ − θ∗‖3,
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therefore we get that for ‖θ − θ∗‖ > r and r ≤ r0 = λmin(Q2)/(4C) we have

1
T

EL(θ)− 1
T

EL(θ∗) < −blocr2, bloc = λmin(Q2)/4.

Next, notice that if a r.v. Z has τ quantile 0, then for δ > 0

Eρτ (Z + δ)− Eρτ (Z) = E(Z + δ)(τ − 1[Z + δ ≤ 0])− EZ(τ − 1[Z ≤ 0])

= δE(τ − 1(Z ≤ δ) + 1[Z ∈ (−δ, 0)]) + EZ1(Z ∈ (−δ, 0))

= E(Z + δ)1(Z ∈ (−δ; 0))

≥ δ/2E1(Z ∈ (−δ/2; 0))

≥
fδ

2

(
δ

2 ∧ δ0

)
,

and by analogy same bound takes place for Eρτ (Z − δ)− Eρτ (Z). Therefore,

E`t(θ)− E`t(θ∗) ≤ E
n∑
i=1

f |qit − q∗it|
2

(
|qit − q∗it|

2 ∧ δ0

)
,

where due to (4), the right-hand side is bounded by fδ(δ ∧ δ0)/4 with δ = δ(r0). Setting

bglob = fδ(δ∧δ0)/(4r2
0), we get that the required inequality is satisfied with b = bloc∧bglob.

8.7 Proof of Corollary 3.1

Let z(α) denotes (1−α)-quantile of the test T , and z◦(α) is that of T ◦ with respect to the

bootstrap probability (here for convenience we write the confidence level in the brackets).

Since P(X + Y > a + b) ≤ P(X > a) + P(Y ≥ b) for arbitrary random variables X, Y

and real numbers a, b, we have for each δ ∈ (0;α)

P(T > z◦(α)) ≤P(T > z(α + δ)) + P(z◦(α) ≤ z(α + δ))

=α + δ + P(z◦(α) ≤ z(α + δ)),

P(T > z◦(α)) ≥P(T > z(α− δ))− P(z◦(α) ≥ z(α− δ))

=α− δ − P(z◦(α) ≥ z(α− δ)).

(19)
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Furthermore,

P(z◦(α) ≥ z(α− δ)) = P {P◦(T ◦ > z(α− δ)) ≥ α} ,

P(z◦(α) ≤ z(α + δ)) = P {P◦(T ◦ > z(α + δ)) ≤ α} .

By Theorem 1 we have on a set of probability ≥ 1− 1/T , that

sup
t
|P (T > t)− P ◦(T ◦ > t)| ≤ CT−c.

Taking δ = 2CT−c and t = z(α− δ) we have,

P ◦(T ◦ > z(α− δ)) ≤ α− δ + CT−c < α

and in a similar way,

P ◦(T ◦ > z(α + δ)) ≥ α + δ − CT−c > α.

Thus, with this choice of δ it holds,

P(z◦(α) ≤ z(α + δ)) ≤ 1/T, P(z◦(α) ≥ z(α− δ)) ≤ 1/T,

which via (19) concludes the proof.

A Technical tools

A.1 Gaussian approximation for change point statistic

Let X1, . . . , Xn ∈ Rd be a martingale difference sequence (MDS) with coefficients bk, and

set

σ2(q) = max
j=1,...,d

max
I

Var
(
q−1/2∑

i∈I
Xij

)
,

σ2(q) = min
j=1,...,d

min
I

Var
(
q−1/2∑

i∈I
Xij

)
,

where maxI ,minI are taken with respect to the subsets I ⊂ {1, . . . , n} of form I =

{i+ 1, . . . , i+ q}. Let additionally, with probability one

|Xij| ≤ Dn, 1 ≤ i ≤ n; 1 ≤ j ≤ p.
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Denote the statistics,

Ť = max
j=1,...,d

n−1/2
n∑
i=1

Xij, (20)

and let Y̌ = (Y̌1, . . . , Y̌d)> be normal with zero mean and covariance EY̌ Y̌ > = Σ :=
1
n

∑n
i=1 EXiX

>
i .

Theorem 2 (Chernozhukov et al. (2013), Theorem B.1). Suppose, positive r, q be such

that r+ q ≤ n/2 and for some c1, C1 > 0 and 0 < c2 < 1/4, c1 ≤ σ(q) ≤ σ(q)∨σ(r) ≤ C1

for each i = 1, . . . , n, j = 1, . . . , d, (r/q) log2 d ≤ C1n
−c2 and,

max
{
qDn log1/2 d, rDn log3/2 d,

√
qDn log7/2 d

}
≤ C1n

1/2−c2 .

Then, there are c, C > 0 that only exist on c1, c2, C1, such that

sup
t

∣∣∣∣P(Ť < t)− P(max
j≤d

Y̌j < t)
∣∣∣∣ ≤ Cn−c + 2(n/q − 1)br.

Suppose we have another MDS X ′1, . . . , X
′
n, from which we construct a similar to

(20) statistic Ť ′. Suppose, the sequence has β-mixing coefficients bounded by the same

values bk and the values of the vectors bounded a.s. by the same Dn. Finally, let us

set Σ′ = 1
n

∑n
i=1 EXiX

>
i . Combining the result above with Gaussian comparison and

anti-concentration we get the following corollary.

Lemma A.1. Suppose, there are positive q, r such that q+r < n/2 and there are c1, C1 >

0 and 0 < c2 < 1/4 such that c1 ≤ σ(q) ≤ σ(q)∨σ(r) ≤ C1 holds for both (Xi), (X ′i). Let

|Σjk − Σ′jk| ≤ ∆ for each j, k = 1, . . . , d. Then, under conditions of Theorem 2 it holds

for each t, δ ∈ R,
∣∣∣P(Ť > t+ δ)− P(Ť ′ > t)

∣∣∣ ≤ C∆1/3 log2/3 p+ C|δ| log1/2 p+ Cn−c + 2(n/q − 1)br,

where c, C > 0 only depend on c1, c2, C1.

Proof. Simply apply Theorem 2, together with Theorem 2 of Chernozhukov et al. (2015)

and Theorem 1 of Chernozhukov et al. (2017).

Let now X1, . . . , Xn ∈ Rp be a martingale difference sequence, with β-mixing coeffi-

cients bk and Var(Xi) = V . We need to bring the statistics

T̂ = max
s∈S

1√
n

∥∥∥∥∥∥
√
n− s
s

s∑
i=1

Xi −
√

s

n− s

n∑
i=s+1

Xi

∥∥∥∥∥∥
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into the above form. Following Zhilova (2015) we consider the following approximation.

Let Gε be an ε-net of the unit sphere in Rp, such that for each a ∈ Rp it holds,

(1− ε)‖a‖ ≤ max
γ∈Gε

γ>a ≤ (1 + ε)‖a‖.

Let Gε = {γ1, . . . ,γ |Gε|} be fixed and set,

[X]Gε = (γ>1 X, . . . ,γ>|Gε|X) ∈ R|Gε|,

and having S = {s1 < s2 < · · · < s|S|} set for each i = 1, . . . , n a stacked vector,

X̃i =
(
αn,s1(i)[Xi]>Gε , . . . , αn,s|S|(i)[Xi]>Gε

)>
∈ R|S|×|Gε|,

αn,s(i) = sign(s− i+ 1/2)
(
n− s
s

)sign(s−i+1/2)/2
,

which implies that

(1− ε)T̂ ≤ max
j

1√
n

n∑
i=1

X̃ij ≤ (1 + ε)T̂ .

For sake of simplicity assume, a−1 ≤ s/(n− s) ≤ a for each s ∈ S. Note, that for each j

and |I| = q it holds for some γ that,

Var
(
q−1/2∑

i∈I
X̃ij

)
= Var

(
q−1/2∑

i∈I
γ>Xi

)
∈ [σmin(V ), σmax(V )].

Suppose, there is another MDS X ′1, . . . , X ′n with same mixing properties and set for each

interval I of observations,

V ′I = 1
q

∑
i∈I

EX ′i[X ′i]>, |I| = q,

and assume that for each such I it holds,

‖V ′I − V ‖ ≤ ∆I , ∆q = max
|I|=q

∆I .

Denote by analogy the test statistics T̂ ′ and the vectors X̃ ′i. In what follows we assume

that the dimension p is constant and the size of S is growing with n. Moreover, assume

that |Xij|, |X ′ij| ≤ Dn for each i, j and that T̂ , T̂ ′ ≤ An, all with probability ≥ 1− 1/n.

Lemma A.2. Suppose, positive r, q be such that r + q ≤ n/2 and for some c1, C1 > 0

and 0 < c2 < 1/4, c1 ≤ σmin(V ) ≤ σmax(V ) ≤ C1 for each i = 1, . . . , n, j = 1, . . . , d,

(r/q) log2 n ≤ C1n
−c2 and,

max
{
qDn log1/2 n, rDn log3/2 n,

√
qDn log7/2 n

}
≤ C1n

1/2−c2 .
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Moreover, assume ∆r,∆q ≤ c1/2. Then, for any C2 > 0 there are c, C > 0 that only

depend on c1, c2, C1, C2, such that for each t, δ ∈ R it holds,
∣∣∣P(T̂ > t+ δ)− P(T̂ ′ > t)

∣∣∣ ≤ C∆1/3 log2/3 n+ C(Ann−C2 + |δ|) log1/2 n

+Cn−c + 2(n/q − 1)br,

where ∆ = maxs∈S{∆[1,s],∆(s,n],∆n}.

Proof. Take ε = n−C2 , then we can have log |Gε| . log n, so that if d is dimension of X̃,

then log p . log n. In order to apply Lemma A.1 with δ = εAn + δ, it is left to bound

the covariance difference ∆. We have, that (assuming s1 ≤ s2)

1
n

∑
i=1

nEX̃ijX̃ik = 1
n

n∑
i=1

as1,n(i)as2,n(i)γ>1 EXiX
>
i γ2

= γ>1

[
s1

n−s1
s1

n−s2
s2
− (s2 − s1) s1

n−s1
n−s2
s2

+ (n− s2) s1
n−s1

s2
n−s2

n
V

]
γ2,

while

1
n

∑
i=1

nEX̃ ′ijX̃ ′ik = 1
n

n∑
i=1

sign(s1 − i+ 1/2)sign(s2 − i+ 1/2)γ>1 EX ′i[X ′i]>γ2

= γ>1

[
s1

n−s1
s1

n−s2
s2
V[1,s1] − (s2 − s1) s1

n−s1
n−s2
s2
V(s1,s2]

n

+
(n− s2) s1

n−s1
s2

n−s2
V(s2,n]

n

]
γ2.

Observe, that (s2−s1)V(s1,s2] = nV[1,n]−s1V[1,s1]−(n−s2)V(s2,n]. Therefore, the difference

between two is bounded by,

|Σjk − Σ′jk| ≤
a2s1

n
‖V[1,s1] − V ‖+ a2(n− s2)

n
‖V(s2,n] − V ‖+ a2‖V[1,n] − V ‖

≤ 2a2 max
s∈S
{∆[1,s],∆(s,n],∆n},

thus the statement follows.
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004 ”Constrained Kelly portfolios under alpha-stable laws” by Niels Wesselhöfft, Wolf-
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