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We consider a new procedure for detecting structural breaks in
mean for high-dimensional time series. We target breaks happening
at unknown time points and locations. In particular, at a fixed time
point our method is concerned with either the biggest break in one
location or aggregating simultaneous breaks over multiple locations.
We allow for both big or small sized breaks, so that we can 1), stamp
the dates and the locations of the breaks, 2), estimate the break
sizes and 3), make inference on the break sizes as well as the break
dates. Our theoretical setup incorporates both temporal and cross-
sectional dependence, and is suitable for heavy-tailed innovations.
We derive the asymptotic distribution for the sizes of the breaks by
extending the existing powerful theory on local linear kernel estima-
tion and high dimensional Gaussian approximation to allow for trend
stationary time series with jumps. A robust long-run covariance ma-
trix estimation is proposed, which can be of independent interest. An
application on detecting structural changes of the US unemployment
rate is considered to illustrate the usefulness of our method.

1. Introduction. Statistical inference of structural breaks in mean is
an important subject to study, which involves estimating the trend functions,
detecting and locating abnormal changes, and making inferences. Breaks
may arise in various applications in di↵erent fields, such as in network anal-
ysis, biology, engineering, economics and finance among others. Specific ex-
amples are anomaly of network tra�c data caused by attacks ([24]), recur-
rent DNA copy number variants in multiple samples ([37]), abrupt changes
in household electrical power consumption ([18]) and minimum wage pol-
icy changes analysis ([9]), etc. In those data scenarios, temporal and cross-
sectional dependence for large dimensional data might pose challenges to
statistical analysis.

To formulate our problem, we assume that observation vectors Y1, Y2, . . . , Yn
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follow the model,

Yt = µ(t/n) + ✏t, t = 1, 2, . . . , n,(1.1)

where (✏t)t is a sequence of zero-mean p-dimensional stationary noise vectors
and µ(·) = (µ1(·), µ2(·), . . . , µp(·))> : [0, 1] ! Rp is a vector of unknown
trend functions. In this way, the data generating process is trend stationary.
We will model breaks occurring on the vector of trend functions µ(t/n).
Notably, we assume that the trend function satisfies

µ(u) = f(u) +
K0X

i=1

�i1u�ui ,(1.2)

where K0 < 1 is some unknown integer representing the number of breaks,
f(·) (f(·) = (f1(·), f2(·), . . . , fp(·))> : [0, 1] ! Rp) is a vector of smooth
trend functions, uks with 0 < u1 < u2 < . . . < uK0 < 1 are the time-points
of the change-points and �k 2 Rps are the jump vectors with size |�k|1 (|.|1
is the infinity norm) at point uk.

Note that the jump sizes are characterized in terms of the infinity norm,
therefore we do not require simultaneous jumps for all entities 1  j  p,
and some coordinates of �k can be zero. Namely, we will focus on the largest
jump (i.e. |�k|1) happening on the cross-sectional dimension for any fixed
time point k (cf. Theorem 2), and this is of particular interest when the
jumps are sparse. In case many series jump at the same time, we further
propose a refined method, which aggregates all the contemporaneous jumps
(cf. Theorem 4). Compared to the classical change-point settings, the smooth
part of the trend functions is zero, i.e. f ⌘ 0. This means that the trend
functions are piece-wise constant for each coordinate. In contrast, our model
is more flexible and realistic since we allow the mean functions to vary
smoothly instead of staying at the same level between break-points. The
goal of this paper is to detect the existence of structural breaks, and in case
that breaks exist, to identify their change-point uk, to calibrate sizes of the
breaks |�k|1, 1  k  K0, and to construct confidence intervals for the
estimated break points.

Change-point detection for univariate or finite dimensional time series
has been intensively studied in the literature, see for instance [1, 2], [6] and
[13]. Di↵erently, we shall consider the case of p ! 1. This setting has re-
cently drawn a lot of attention due to the increasing number of applications
involving large dimensional data in real practice, see [28], [37], [35], [14],
[33], etc. All the aforementioned literature assume the error processes to
be temporally or cross-sectionally independent. Such assumptions are too
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restrictive since for time series dependence is the rule rather than the excep-
tion. Moreover the commonly assumed normality assumption for the error
term, associated with the light tailedness of the distribution, are often too
restrictive for real data. To see this point, [26] documents evidence of the
power-law behavior in asset prices and [30] show heavy tailedness in the high
frequency asset return data.

Due to technical challenges, the literature is thinner for change-point de-
tection in high dimensional data with dependence. [3] considers detecting
a common break-point in time, with linear temporal dependence and no
cross-sectional dependence; [22] extends his method by allowing additional
factor structure to the noise. In this paper, we characterize our dependence
structure through the widely used vector moving average model with infinite
many lags (VMA(1)), which also incorporates the models in [3] and [22].
Specifically, let

✏t =
X

k�0

Ak⌘t�k,(1.3)

where ⌘t 2 Rp̃ are independent and identically distributed (i.i.d.) random
vectors with zero mean and identity covariance matrix, and Ak(k � 0)s are
coe�cient matrices in Rp⇥p̃ such that ✏t is a proper random vector, and
p  p̃  cpp, for some constant cp > 1. If Ai = 0 for all i � 1, then the noise
sequences are temporally independent; if p = p̃ and matrices Ai are diagonal,
then the sequences become the model in [3] which is spatially independent.
The VMA(1) process is very general and includes most important time
series models such as a vector autoregressive moving averages (VARMA)
model, i.e.

(1�
sX

j=1

⇥jB
j)Xi = Xi �

sX

j=1

⇥jXi�j =
tX

k=1

⌅k⌘i�k,

where ⇥j and ⌅k are real matrices such that det(1�
Ps

j=1⇥jz) is not zero
for all |z|  1 and B is the backshift operator.

For multiple change-points detection, various approaches have been in-
vented. A traditional one is through an exhaustive search, which exams all
the possible break points combination. Exhaustive search is very time con-
suming and some dynamic technique and improved versions are invented,
see for instance [4, 5] and [21]. Moreover, when f ⌘ 0, the problem can
be reformulated into a regression problem with sparsity in the parameters,
and thus can be solved through the LASSO (least absolute shrinkage and
selection operator) method, e.g. [19], [32], and [25]. A further alternative is
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the binary segmentation method and its variants, see for example [28] and
[17]. The basic idea is to apply one single change-point detection recursively
within each segments. However, it can be di�cult to interpret the results
and make statistical inference as a multiple testing procedure is involved.
In sum, a computationally cheap method tailored to high dimensional non-
stationary time series with general dependency structure is needed.

Comparatively, we adopt a two-step nonparametric approach. In the first
step, we conduct a “rough” estimation based on a nonparametric moving
sum type method. To be more specific, for any fixed time point t, we con-
sider two kernel estimators, (µ̂(r)(t/n), µ̂(l)(t/n)) of the trends using the left
and the right hand side observations respectively. Then we draw conclusion
on the existence of a break and obtain a “rough” estimate of the change
points locations according to the di↵erence of the two kernel estimates. In
the second step, we refine our jump estimates based on a one-dimensional
aggregated time series. Utilizing estimates from the first step, the aggregated
time series is obtained by a weighted sum of simultaneous observations cor-
responding to estimated significant jump locations. The weights are deter-
mined by the estimated jump sizes. Instead of looking at the biggest break
at one time point, the aggregated change-point statistics carry more infor-
mation regarding significant jumps across contemporaneous locations, and
thus would achieve better precision asymptotically. For moving sum type
statistic, [20] and [34] consider the univariate situations and [27] apply it for
a screening and ranking algorithm. In this paper, we adopt the local linear
method for a better boundary performance, and then establish a uniform
Gaussian approximation for the gap estimate |µ̂(r)(t/n)� µ̂

(l)(t/n)|1, where
|x|1 = max1jp |xi|.

Our theoretical results extend the Gaussian approximation theory in [11,
12], which build on the Stein’s method and the anti-concentration bounds.
Markedly, our theory is developed for modeling dependent data. To this aim,
one important technical non triviality lies in handling the spatial temporal
dependency of the trend stationary high dimensional processes. We have
derived the corresponding concentration inequalities based onm-dependence
approximation of the underlying processes. Compared to existing results on
Gaussian approximation for time series, for example [36], our setting works
for non-centered Gaussian approximation accommodating our interest for
time series with non-smooth trends.

A further challenge is that due to the underlying dependence, our test
statistic needs an estimation of the long-run covariance matrix. A simpler
version of this problem has been considered in [29] and [23] who allow for
a constant mean of the random vector. More generally, [10] consider the
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high-dimensional situation with smooth trends. However, this does not fit
directly to our interest due to the possible existence of the break points, we
then propose a robust covariance matrix estimation motivating from the M-
estimation method in [8] (cf. Section 2.4). Our long run variance covariance
matrix estimation is complementary to the recent article on high dimensional
robust matrix method under independence settings in [16].

To summarize, our method greatly improves upon the existing methods
on change-point detection for multivariate time series in five folds: (i) the di-
mension p can increase as n increases, (ii) both temporal and cross-sectional
dependence are incorporated, (iii) we do not restrict the noise to follow a
specific distribution and allow for the case of heavy-tailedness, (iv) we do
not require the mean function to be a piece-wise constant (i.e. f ⌘ 0), and
instead we allow f to vary smoothly, (v) asymptotic distribution is derived
for the change points locations to facilitates inference on the break-points.
Our procedure is not computationally expensive as we only need to evaluate
the statistic for each point t once. Additionally, we consider the estimation of
the long-run covariance matrices. The paper is structured as follows. Section
2 presents the model setup, and descriptions of change-points test procedure.
Section 3 contains the assumptions and the main theorems for testing the ex-
istence of the change-points with results on test sizes and power. In the same
section, we also derive the asymptotic distribution of the sizes of the breaks.
Simulation results are in Section 4 and an application on US unemployment
rate is given in Section 5. Detailed proofs are presented in Supplementary
materials.

2. Model and estimation. We now introduce some notations. For a
constant k > 0 and a vector v = (v1, . . . , vd)> 2 Rd

, we denote |v|k =
(
Pd

i=1 |vi|
k)1/k, |v| = |v|2 and |v|1 = maxid |vi|. For a matrix

A = (aij)1im,1jn, we define the spectral norm |A|2 = max|v|=1 |Av| and
the max norm |A|max = maxi,j |ai,j |. For a function f, we denote |f |1 =
supx |f(x)|. We set (an) and (bn) to be positive number sequences. We write
an = O(bn) or an . bn(resp. an ⇣ bn) if there exists a positive constant
C such that an/bn  C(resp. 1/C  an/bn  C) for all large n, and we
denote an = o(bn) (resp. an ⇠ bn), if an/bn ! 0 (resp. an/bn ! 1). For
two sequences of random variables (Xn) and (Yn), we write Xn = oP(Yn), if
Xn/Yn ! 0 in probability.

We then provide our model setups and our estimation procedure with
explanations on how our method works. Considering our observations gen-
erated by the model in (1.1) and (1.2), we would like to test the null hy-
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pothesis,

H0 : �1 = �2 = . . . = �K0 = 0,

which corresponds to case of no breaks, against the alternative of the exis-
tence of at least one break i.e. HA : 9k 2 1, · · · ,K0, �k 6= 0.

Next we discuss how to obtain our test statistics. Recall that our trend
function µ(u) can be disentangled into two parts, namely, a smooth transi-
tion part f(u) and a jump part �i1{u � ui}. To estimate the trend function
µ(u), we can define the jump vector at point u as a gap between the right
side function µ

(r)(u) and the left side function µ
(l)(u). Let the gap function

J(u) = µ
(r)(u)� µ

(l)(u),

where µ
(r)(u) = lim

t#u
µ(t) and µ

(l)(u) = lim
t"u

µ(t).

If we assume certain degree of smoothness of the constitutes of f(.), the gap
function J(u) = 0 when there is no jump, and J(u) = �k when u = uk.

A natural way to test the existence of change-points is to check whether
the gap is zero (i.e. J(u) = 0). To this end, we need µ̂

(r)(u) and µ̂
(l)(u),

which are estimates of µ(r)(u) and µ
(l)(u). We propose to adopt the classical

nonparametric local linear estimation technique, see [15].
The local linear estimates µ̂(l)(u) and µ̂

(r)(u) at the point u = i/n are of
the following weighted form

µ̂
(l)
i =

i�1X

t=i�bn

wi�tYt and µ̂
(r)
i =

i+bnX

t=i+1

wt�iYt,(2.1)

with weights

wi = wi,b = wb(0, i/n), i � 1, w0 = 0.(2.2)

The weight functions are defined as

wb(u, v) =
K((v � u)/b)[S2(u)� (u� v)S1(u)]

S2(u)S0(u)� S2
1(u)

,

Sl(u) =
nX

i=1

(u� i/n)lK((i/n� u)/b),(2.3)

whereK(.) is a kernel function and b is a bandwidth with b ! 0 and bn ! 1.
The kernel function plays a critical role in localization, and the bandwidth
parameter is pertained to the local window size. Usually we assume that the
kernel function K(.) is smooth and has a compact support [�1, 1].
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The local linear estimates can precisely evaluate the gap level with a
proper choice of the bandwidth. Therefore if there is no jump around the

time point u = i/n, the gap estimate Ĵ(i/n) = µ̂
(l)
i � µ̂

(r)
i would be small.

Otherwise if for some entity 1  i  p, the gap estimate |Ĵj(i/n)| is too
large, there might exist a jump around i/n.

Furthermore, we need to standardize our test statistics in order to get a
regular limit distribution. For this purpose, the long-run covariance matrix
of the underlying innovations is involved in constructing our test statistic.
Recall the definition of the error process as in (1.3), define the sum of the
coe�cient matrix to be S =

P
k�0Ak. The long-run covariance matrix for

the error process is

⌃ = SS
>
.(2.4)

We denote ⌃ = (�i,j), 1  i, j  p, and let the diagonal elements of the
variance covariance matrix form a new matrix

⇤ = diag(�1/2
1,1 ,�

1/2
2,2 , . . . ,�

1/2
p,p ).(2.5)

Finally, we suppose that we know the long run variances ⇤ for the moment.
Following the previous intuition of the e↵ect of jumps on the gap statistics
Ĵ(.), we consider the test statistic

Tn = max
bn+1in�bn

|Vi|1, where Vi = ⇤�1(µ̂(l)
i � µ̂

(r)
i ).(2.6)

Note that we consider the normalized statistic as multiplying the jump es-

timates Ĵ(i/n) = µ̂
(l)
i � µ̂

(r)
i by ⇤�1 since the long-run variances �j,j for

di↵erent coordinates 1  j  p can be very di↵erent.

Remark 1. In practice, we usually do not know the long-run covariance

matrix ⌃. Its estimation ⌃̂ is discussed in Section 2.4. It is worth noting that

all the theorems remain true with ⌃ replaced by ⌃̂ if additionally conditions

in Theorem 5 in Section 3 holds.

2.1. Critical values for testing the breaks. We will proceed with analyz-
ing the asymptotic properties of our test statistics, which gives us critical
values of our test. First we analyze the mean of the normalized jump es-
timators, i.e. EVi. Intuitively, we can decompose the level of our jump es-
timator EVi by two parts, one is the commonly encountered bias term for
the nonparameteric kernel estimators of the smooth trend functions, and
the other is induced by jumps on the deterministic trend, which is denoted
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as di. Recall ⌧k = nuk, the definition of wi in (2.2) for i = 1, 2, . . . , bn, and
wi = 0 for i = 0 and i > bn. We denote ⌦i as a set of indices indicat-
ing the break locations within the bn neighborhood around time i, namely
⌦i =

�
k
��|i � ⌧k|  bn, 1  k  K0

 
. For a time point i with at least one

break around i.e. ⌦i 6= ;, we define the weighted break size to be,

di = (1�

|i�⌧k|X

t=1

wt)⇤
�1

�k, k = argminj2⌦i
|i� ⌧j |,(2.7)

and for the rest of locations i, let di = 0. We further stack di over all break
points that are of interest, which is denoted d = (d>bn+1, d

>
bn+2, . . . , d

>
n�bn)

>.
It should be noted that under the null, d = 0.

For large n, the cardinality of ⌦i is at most one, i.e. |⌦i|  1. Since for
k1 6= k2, |⌧k1 � ⌧k2 | > 2bn in view of ⌧k1 � ⌧k2 = n(uk1 � uk2) ⇣ n. Actually
we do not require ⌧k1 � ⌧k2 ⇣ n as all the results can be directly extended
to the case of min1k1 6=k2K0 |⌧k1 � ⌧k2 | � bn. We denote the smooth part
of the local linear estimate as

f̂
(l)
i =

i�1X

t=i�bn

wi�tf(t/n) and f̂
(r)
i =

i+bnX

t=i+1

wt�if(t/n).

By [15], under some smoothness conditions, the bias part of the estimated
smooth functions would be of the order b2, which goes to zero by assumption.

max
bn+1in�bn

|⇤�1(f̂ (l)
i � f̂

(r)
i )|1 = O(b2).(2.8)

Given the definition of our model Yi = µ(i/T )+✏i, di can be expressed by

the estimated gap (µ̂(r)
i � µ̂

(l)
i ) with a smooth trend component eliminated,

di = E
�
⇤�1

�
(µ̂(r)

i � µ̂
(l)
i )� (f̂ (r)

i � f̂
(l)
i )

� 
.(2.9)

Accordingly, the expectation of our jump statistics Vi would be dominated
by the part induced by jumps �ks, as

|EVi � di|1 = |⇤�1(f̂ (r)
i � f̂

(l)
i )|1 = O(b2).(2.10)

Let us now consider the Vi � EVi part. We observe that the centered
statistics can be expressed as a weighted sum of the error term, namely,

Vi � EVi =
i�1X

l=i�bn

wi�l⇤
�1

✏l �

i+bnX

l=i+1

wl�i⇤
�1

✏l.(2.11)
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To approximate its distribution, we introduce a scaling matrix for variance of
the limit distribution. Recall S =

P
k�0Ak and define a block matrix G

⇧ =

(G⇧
i,l)bn+1in�bn,1ln 2 R(n�2bn)p⇥np̃ with components as p⇥ p̃ dimension

matrices,

G
⇧
i,l =

(
wi�l⇤�1

S, if i� bn  l  i� 1,

�wl�i⇤�1
S, if i+ 1  l  i+ bn,

(2.12)

and elsewhere zero. We let z be a Gaussian vector in Rnp̃ with zero mean
and identity covariance matrix. We set G⇧

i,· be (G
⇧
i,1, G

⇧
i,2, . . . , G

⇧
i,n). It can be

shown that G⇧
i,·z has similar covariance structure as Vi �EVi. In the special

case when ✏i are temporally independent, they share the same covariance
structure. We shall use the distribution of |G⇧

i,·z|1 to approximate the dis-
tribution of |Vi � EVi|1. This approximation is further combined together
with the bias term as in (2.10), and we shall expect that for each time point
i, our normalized break test statistics can be approximated by the maximum
of a Gaussian vector centered around a level di,

P(|Vi|1  u) ⇡ P(|di +G
⇧
i,·z|1  u).

We now let the statistics go over all the time points, and recall the definition
of Tn = maxbn+1in�bn |Vi|1. The asymptotic distribution is also expected
to be approximated well by a multivariate Gaussian distribution.

P(Tn  u) ⇡ P(|d+G
⇧
z|1  u),(2.13)

where we recall that d is a long vector by stacking di, and G
⇧ is a (n �

2bn)p ⇥ np̃ matrix. The above argument will be rigorously formulated in
Theorem 1 in Section 3.

Subsequently we can figure out the critical values and the power of our
test. First, we define the block matrix to be

Q = (Qi,j)bn+1i,jn�bn := G
⇧
G

⇧>
.

Therefore Q only depends on the long-run covariance matrix ⌃ and the
weight functions with the form

Qi,j = $i,j⇤
�1⌃⇤�1 and $i,j =

nX

l=1

w|i�l|w|j�l|sign(i� l)sign(j � l).

(2.14)

Define (Zi)bn+1in�bn to be a sequence of centered Gaussian vectors in
Rp with covariance matrices Qi,j , for bn + 1  i, j  n � bn. We let Z =
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(Z>
bn+1, Z

>
bn+2, . . . , Z

>
n�bn)

>. Then Z is a Gaussian vector with zero mean
and covariance matrix Q. Thus we have the two Gaussian vectors Zi and Z

with the same distribution as the above Gaussian limits

Zi
d
= G

⇧
i,·z and Z

d
= G

⇧
z.(2.15)

Next under the null hypothesis, we have d = 0, then for any prefixed
significant level ↵ 2 (0, 1), we have the critical value of our test as q↵ i.e.
the quantile of the Gaussian limit distribution,

q↵ = inf
r�0

{r : P(|Z|1 > r)  ↵}.(2.16)

As from the Gaussian approximation results, we have the approximated sizes
of the test statistics,

���P(Tn > q↵)� P(|Z|1 > q↵)
��� ! 0.

Finally we will reject the null hypothesis at the significant level ↵, if the
test statistics exceed the critical value i.e. Tn > q↵. Moreover under the
alternative hypothesis, d 6= 0, we can derive the corresponding power (cf.
Corollary 1)

�↵ = P(|d+ Z|1 � q↵)(1 + o(1)).

We can see that the power our test would be depending on the vector d,
whose size is determined by the true jump sizes i.e. �ks.

2.2. Test procedure and break sizes. We now summarize our procedure in
this subsection on estimating the number of change-points, the time stamps,
the spatial coordinates and the sizes of the structural breaks. Define the sizes
of the break points at time k as the maximum absolute value over the jump
vector,

|⇤�1
�k|1.

Here we normalize �k by the diagonal matrix of the long run variances ⇤�1

for the same reason as Vi in (2.6). Intuitively, the noise fluctuation levels for
di↵erent locations can be very di↵erent, and at one location a break can be
significant due to purely high noise level without normalization.

We define the minimum size of breaks over time as

�
⇧ = min

1kK0

|⇤�1
�k|1.(2.17)

In the following we sketch the steps of our testing, detecting and estima-
tion procedure.
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Step 1. For some significance level ↵, we test the existence of jumps based
on the critical value q↵ and the test statistics Tn. If we find no significant
breaks, then we cannot reject the null H0 that there exists no break point
at significant level ↵. q↵ is selected according to the explanation in the pre-
vious section and based on our Gaussian approximation results in Theorem
1. In case our test statistic exceeds the critical value, we reject H0 and
acknowledge the existence of breaks, then we proceed to step 2.
Step 2. To detect the change-points, we collect all the time stamps with
the jump statistics |V⌧ |1 exceeding a threshold value w

†, namely, A1 =
{bn + 1  ⌧  n � bn : |V⌧ |1 > w

†
}, where V⌧ is defined in (2.6). Note

that the threshold value should be big enough to ensure that we identify
breaks with probability approaching 1. Let ⌧̂1 be the time point ⌧ in A1 that
maximizes the test statistics |V⌧ |1. We further eliminate a 2bn neighborhood
of time points around ⌧̂1 from A1 to create A2. Then we find the next point
in A2 that maximize |V⌧ |1, and repeat the same operation until the set Ak is
empty. Namely, for k � 1, we let the kth estimated break point be denoted as
⌧̂k = argmax⌧2Ak

|V⌧ |1 and Ak+1 = Ak \{⌧ : |⌧ � ⌧̂k|  2bn}. We denote the

maximum number of break points as K̂0, with K̂0 = maxk�1{k : Ak 6= ;}.

Step 3. Given the detected break points in Step 2, we calculate the break
sizes over time. We denote the window size to be M = bn,

�̂k = Y
(r)
⌧̂k�M � Y

(l)
⌧̂k+M and �̂

⇧ = min
1kK̂0

|⇤�1
�̂k|1.(2.18)

It is worth noting that in this algorithm, we only need to calculate once for
each point the gap statistics |V⌧ |1 hence it is not time consuming regardless
of the true number of break-points. In Step 1, we test the existence of the
breaks. In Step 2, we use the estimated |V⌧ |1 for all the points from bn+ 1
to n � bn and select the points that beyond the threshold w. Intuitively,
the points in A1 would contain the break indices as well as points in their
neighborhood where estimates are contaminated by the breaks. Therefore in
Step 2, we find the local maximums and discard points around them. In Step
3, we estimate the sizes of the change points and calculate their minimum
values.

In the presence of jumps, it would be of further interest to make inference
on the break sizes. We thus introduce the confidence interval induced from
the asymptotic distribution of our test statistics. We recall the definition for
Qi,j in (2.14). We let Z̃ be a Gaussian vector in Rp with zero mean and a
covariance matrix

Q̃ := Qbn+1,bn+1 = 2
bnX

t=1

w
2
t⇤

�1⌃⇤�1
.(2.19)
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Based on Theorem 2 (ii) and Theorem 3 in Section 3, we can construct
the confidence interval for �k. We set

↵ = P(|Z̃|1 � q) and ✓ = (�1/2
1,1 ,�

1/2
2,2 , ...,�

1/2
p,p )

>
.(2.20)

Then the confidence interval for vector �k⇤ at level ↵ is (�̂k � q✓, �̂k + q✓).

2.3. Aggregated change-point detection, a further refinement.. The esti-
mation procedure in Section 2.2 is only driven by |�k|1, i.e. the maximum
size of jumps at a time point k. Therefore it is only sensitive to the biggest
jump across all the time series at the same time. In case there are multi-
ple jumps occurring at the same time, it would be beneficial to modify our
procedure to aggregate all of the series with jump.

To this end, we need to modify our procedure to first look at the estimated
sizes of the jumps across di↵erent time series. In the case that jump happens
at multiple locations simultaneously, aggregating all of them would improve
the estimation precision. This enlightens us to propose a new two-stage
method: firstly, we follow the steps in the previous subsections to detect the
“rough” timing of the jumps and the estimation of series that jump at each
location; secondly, for each bn neighborhood of a change-point ⌧̂k in step
one, we update the change-point estimates according to a newly aggregated
time series. The time series is calculated with a weighted sum of simultaneous
observations corresponding to significant jump locations and the weights are
based on the jump size estimates in the first step. The aggregation returns us
a one-dimensional time series with richer information on the cross sectional
jumps.

We denote Sk to be the set of series that jump at location ⌧k, that is

Sk = {1  j  p | �j 6= 0}.(2.21)

Detailed steps of the aggregation are formulated as follows:
Stage 1. Apply Steps 1-3 in Subsection 2.2 to obtain ⌧̂k and �̂k, k =
1, 2, . . . , K̂0. For some w

†
> 0, let the estimation of Sk be

Ŝk =
�
1  j  p

��|(⇤�1
�̂k)j | � w

† 
.(2.22)

In practice, w† can be chosen to be large enough to ensure that we can detect
all the jumps with probability 1 as in Theorem 2.
Stage 2. For |t� ⌧̂k|  bn, we let

Xt =
X

j2Ŝk

(⇤�1
�̂k)j(⇤

�1
Yt)j .(2.23)
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Note that after the modification, for all the jump locations, the new time
series Xt would only contain positive sized jumps i.e.

P
j2Ŝk

(⇤�1
�k)2j .

Based on the aggregated time series Xt, the refined change point locations
can be detected through a “CUSUM”(cumulative sum) type of test statistics

⌧̃k = argmax|t�⌧̂k|bn

⇣ ⌧̂k+bnX

s=⌧̂k�bn

Xs
t� ⌧̂k + bn

2bn+ 1
�

t�1X

s=⌧̂k�bn

Xs

⌘
, k = 1, 2, . . . , K̂0.

(2.24)

After we update the break points estimation, we can construct confidence
intervals for the updated break points estimates ⌧̃k. We denote the long
run correlation matrix to be (�̃i,j)i,j = ⇤�1⌃⇤�1

, where ⌃ is the long run
covariance matrix for ✏t. We let ⌃̃k = (�̃i,j)i,j2Sk be the sub variance covari-
ance matrix corresponding to the significant jump locations at time k and
the standardized significant break sizes �̃k = (⇤�1

�k)i2Sk . We define two
objects involved in the limit distributions of the breaks i.e.

ak = |�̃k|2 and &
2
k = �̃

>
k ⌃̃k�̃k.(2.25)

Then &
2
k is the long run variance for the sequence

P
j2Sk

(⇤�1
�k)j(⇤�1

✏t)j .
From Theorem 4 in Section 3, with estimates of ak and &k, we can construct
a 100(1� ↵)% confidence interval for ⌧̃k:

(2.26)
�
⌧̃k � bq̂01�↵/2c � 1, ⌧̃k + bq̂0↵/2c+ 1

�
,

where q
0
1�↵/2 (q0↵/2) is 1 � ↵/2 (↵/2)th quantile of the limit distribution of

the break point ⌧̃k i.e. argmaxr{�2�1
a
2
k|r|+ &kW(r)}, and q̂

0
↵/2(q̂

0
1�↵/2) are

estimates of the quantiles. b·c denotes the floor function. q01�↵/2 (q0↵/2) can

be calculated following [31]. Alternatively we can also simulate the critical
values.

2.4. Estimation of the long-run covariance matrix. In the previous sub-
sections, we assume that ⌃ is known. However this is unrealistic in practice
as we mostly do not know the long run covariance matrix. Therefore, in this
subsection, we provide an estimator for it. It is worth noting that due to
the jumps, our method shall be very di↵erent from the classical covariance
matrix estimation.

First of all, to account for temporal dependency, we group our observa-
tions into blocks of the same size m, for some m 2 N. We denote the number
of blocks N1 = b(n �m)/mc, and the observation indices within a block k
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is set to be Ak = {t 2 N : km+ 1  t  (k + 1)m} and we let

⇠k =
X

t2Ak

Yt/m,

be the averaged observations within the block Ak. Without jumps, a natural
estimate of the long-run covariance matrix is

N1X

k=1

(m/2)(⇠k � ⇠k�1)(⇠k � ⇠k�1)
>
/N1.

We note that we take the di↵erence ⇠k � ⇠k�1 to cancel out the trends, as
the trend function µ(·) is smooth, and the aggregated di↵erence between
two consecutive blocks can be shown to be of order m/n, which vanishes
when m/n ! 0. However this estimator can be greatly contaminated by the
jumps. Thus a robust covariance matrix estimation is needed. We borrow
the framework of [7], who considers a new robust M - estimation method.
We extend the method for estimating our long run covariance matrix.

We denote ⇠k = (⇠k,1, ⇠k,2, . . . , ⇠k,p)> and let

�̂i,j,k = m(⇠k,i � ⇠k�1,i)(⇠k,j � ⇠k�1,j)/2, k = 1, 2, . . . , N1.(2.27)

For some ↵i,j > 0, we denote the M - estimation zero function of our variance
covariance matrix to be

hi,j(u) =
N1X

k=1

�↵i,j (�̂i,j,k � u)/N1,(2.28)

where �↵(x) = ↵
�1

�(↵x) and

�(x) =

8
>>>><

>>>>:

log(2), x � 1,

�log(1� x+ x
2
/2), 0  x  1,

log(1 + x+ x
2
/2), �1  x  0,

�log(2), x  �1.

(2.29)

Remark 2. Function |�(·)| is bounded by log(2) and is Lipschitz contin-

uous with the Lipschitz constant bounded by 1. Also note that the function

has envelops of nice form,

�log(1� x+ x
2
/2)  �(x)  log(1 + x+ x

2
/2).(2.30)
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We set the estimates of the components of the long run covariance matrix
�̂i,j be the solution to hi,j(u) = 0 (if more than one root, pick one of them).
We can collect all the estimates of the variance and covariances and organize
them into the variance covariance matrx,

⌃̂ = (�̂i,j)1i,jp, and ⇤̂ = (�̂1/2
1,1 , �̂

1/2
2,2 , . . . , �̂

1/2
p,p ).(2.31)

We denote �̄i,i = 2
P

N1/4k3N1/4
�̂i,i,k/N1 and let the ↵i,j in (2.28) be

�̄
1/2
i,i �̄

1/2
j,j (m/n)1/2.

3. Main theorems. In this section, we present necessary assumptions
to guarantee good empirical performance of our method and provide the
theoretical foundations of our test procedure. The following condition is to
guarantee the smoothness of the trend functions µj(u) when no break occurs.

Assumption 3.1. Function fj 2 C
2[0, 1] with max1jp |f

0
j |1  cf ,

max1jp |f
00
j |1  cf for some constant cf > 0.

Besides, to ensure the property of our kernel estimation, we need condi-
tions on the kernel function.

Assumption 3.2. The kernel K(.) � 0 is symmetric with support [�1, 1],
|K|1 < 1 and

R 1
�1K(x)dx = 1. Also assume K(x) has first order derivative

with |K
0
|1 < 1. Let b ! 0 and bn ! 1.

We also set conditions on the regularity of the long-run covariance matrix
and the dependency strength of the noise sequence.

Assumption 3.3. (Lower bound for the long run variance) �j,j � c�,

1  j  p for some finite constant c� > 0.

Assumption 3.4. (Dependence strength) max1jp
P

k�i |Ak,j,·|2/�
1/2
j,j 

cs(i _ 1)��
, where � > 0 is some constant and Ak,j,· is the jth row of Ak.

Assumption 3.4 is a very general spatial and temporal dependence con-
dition and embraces many interesting processes. We provide an example as
follows.

Example 1. Assume that ⌘t, ⌘
0
t 2 Rp

are i.i.d random vectors with zero

mean and covariance matrix Ip. Let

✏t = Ft + Zt, with Zt =
X

k�0

⇤k⌘t�k and Ft =
X

k�0

vf
>
k ⌘

0
t�k,(3.1)
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where ⇤k = diag(�k,1, . . . ,�k,p), v = (v1, . . . , vp)> and fk = (fk,1, . . . , fk,p)>.
Here Ft is the factor term and Zt,j are independent for di↵erent j. Then the

long-run variances for Zt,j and Ft,j are �Z,j = (
P

k�0 �k,j)2 and �F,j =

|
P

k�0 fk|
2
2v

2
j , respectively. If for some constant c > 0,

X

k�i

|�k,j |/�
1/2
Z,j  ci

�↵ and
X

k�i

|fk|2|vj |/�
1/2
F,j  ci

�↵
,(3.2)

then Assumption 3.4 holds with � = ↵. To see this, we note |Ak,j,·|2 =
(�2

k,j + |fk|
2
2v

2
j )

1/2
, and �j,j = �

2
Z,j + �

2
F,j . Hence

X

k�i

|Ak,j,·|2 
X

k�i

(|�k,j |+ |vj ||fk|2)  ci
�↵(�1/2

Z,j + �
1/2
F,j ) 

p

2ci�↵
�
1/2
j,j .

Assumption 3.5. (Finite moment) The innovations ⌘i,j are i.i.d. with

µq = k⌘1,1kq < 1 for some q � 4.

Assumption 3.6. (Sub-exponential) The innovations ⌘i,j are i.i.d. with

µe = Eea0|⌘1,1| < 1, for some a0 > 0.

Assumptions 3.5 and 3.6 put tail assumptions on the distribution of the
noise sequences. Given the the above-mentioned conditions, we provide the
main Gaussian approximation theorem, which is essential for the asymptotic
distribution of our test statistics Tn.

Theorem 1. (Gaussian approximation for the test statistics) Under As-

sumptions 3.1-3.4 and b
5
nlog(np) = o(1).

(i) If Assumption 3.5 holds and

np(bn)�q/2(log(np))3q/2 = o(1),(3.3)

(ii) If Assumption 3.6 holds and

(bn)�1(log(np))max{7,2(1+�)/�} = o(1),(3.4)

then we have

sup
u2R

��P(Tn  u)� P(|d+ Z|1  u)
�� ! 0.(3.5)

Remark 3. (Allowed dimension) For Theorem 1 case (i), we allow p

to be some polynomial order of n whose order depends on the value of q.

Specifically, for some ⌫1 > 0 and 0 < ⌫2 < 1/2, assume p ⇣ n
⌫1 and



INFERENCE OF BREAK-POINTS 17

b ⇣ n
�⌫2 . If ⌫1 + ⌫2 < q/2 � 1 and ⌫2 > 1/5, then conditions in case (i)

hold. It is easy to see that the bigger the q is, the larger the allowance of the

dimension p. The moment condition 3.5 depend on q which characterizes the

heavy tailedness of the noise, larger q means thinner tails. For case (ii), we

can allow p to be exponential in n, i.e. the ultra high dimensional scenario.

For instance, for some ⌫1 > 0 and 1/5 < ⌫2 < 1, we can set p ⇣ e
n⌫1

and

b ⇣ n
�⌫2 . If ⌫1 < 5⌫2�1 and ⌫1max{7, 2(1+�)/�} < 1�⌫2, then conditions

in case (ii) hold.

To evaluate our testing power, consider the alternative that not all �k = 0,
then d is non-zero. We have the following corollary for power which is a
straightforward consequence of Theorem 1.

Corollary 1. Under conditions in Theorem 1 (i) or (ii). The testing

power is

�↵ � P(|d+ Z|1 � q↵) = o(1).

We can see that the test power is determined by the maximum size of
abrupt changes in a localized window. In the following, we provide a few
results on the property of the estimated breaks. To ensure a good recovery
of the breaks, we need the following assumption on the minimum break size
�
⇧.

Assumption 3.7. Let �
⇧
� max

�p
log(pn)/(bn), b

 
.

It can be seen that the break size requirement is related to the dimen-
sionality of the time series, the number of observations available and the
bandwidth parameter. The larger the sample n, the smaller the requirement
for �

⇧ due to the better approximation of the trends. In the following the-
orem, we show that we would asymptotically obtain the right number of
breaks. Moreover, we can bound the errors of the estimated break locations
and the break sizes.

Theorem 2. We assume conditions in Theorem 1 (i) or (ii) hold, and

Assumption 3.7. If �
⇧
/2 � !

†
� 2c0w(bn)

�1/2
p
log(pn), where c

0
w is the

constant defined as (bn
Pn

i=0w
2
i )

1/2
! c

0
w, then

(i) P(K̂0 = K0) ! 1.
(ii) |⌧̂k � ⌧k⇤| = OP{log(np)/�⇧2}, where k

⇤ = argmini|⌧̂k � ⌧i|.

(iii) |⇤�1(�̂k � �k⇤)|1 = OP((bn)�1/2log(np)1/2 + b), which indicates |�̂
⇧
�

�
⇧
| = OP((bn)�1/2log(np)1/2 + b).
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(i) indicates that the number of breaks is consistently estimated, (ii) sug-
gests that the estimated break dates uk can be consistently set in view of
uk = ⌧k/n, and (iii) shows that the break sizes can be consistently recovered.
The convergence rate of the break sizes is depending on the bandwidth b,
sample size n and the dimension of the time series p.

Given the consistency of the break points, we can obtain a distribution
theory which facilitates us in making inference on the break sizes.

Theorem 3. (Break size inference) Recall that Z̃ is a centered Gaussian

vector with covariance matrix (2.19). Assume conditions in Theorem 2 and

b
3
nlog(np) = o(1). We have

sup
u2R

|P(|⇤�1(�̂k � �k⇤)|1  u)� P(|Z̃|1  u)| ! 0, where k
⇤ = argmini|⌧̂k � ⌧i|.

This theorem indicates that the maximum of the di↵erence between the
estimated jump size �̂k and the true jump size �k can be approximated
by the maximum of a Gaussian random vector with the same asymptotic
variance covariance structure.

We further present a few results on the aggregated break point estimation.
We recall the set of location of significant break as Sk defined in (2.21). For
the aggregated jump estimation, we define alternatively the minimum jump
size across di↵erent locations and time points as,

�
† = min

1kK0

min
j2Sk

|(⇤�1
�k)j |.

Then �
†
 �

⇧ and it functions similarly as �⇧ to capture the jump size of the
time series. We shall put the same assumption on �

† as for �⇧.

Assumption 3.8. Let �
†
� max

�p
log(pn)/(bn), b

 
.

In the following corollary, we show that we can consistently recovers the
locations of the series with a jump for each change point. It can be directly
derived from Theorem 2 (iii).

Corollary 2. We assume conditions in Theorem 1 (i) or (ii) hold,

and Assumption 3.8. If �
†
/2 � w

†
� (bn)�1/2log(np)1/2 + b, then we have

P(Ŝk = Sk, k = 1, 2, . . . , K̂0) ! 1.

In addition, we provide a theorem that allows us making inference on the
estimated break dates ⌧̃k from the aforementioned procedure in Subsection
2.3.
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Theorem 4. (Aggregated break estimation) Assume conditions in Corol-

lary 2, and that for some constants c1, c2 > 0,

c1  �max(⇤
�1⌃⇤�1)/�min(⇤

�1⌃⇤�1)  c2.(3.6)

Recall definition of ak and &k in (2.25). Then we have

(i) |⌧̃k � ⌧k⇤ | = OP(&2k/a
2
k).

(ii) In addition, if Assumption 3.4 holds with � > 1, then we have

⌧̃k � ⌧k⇤
D
! argmaxr(�2�1

ak|r|+ &kW(r)),

where W(r) is a two-sided Brownian motion, that is W(r) = W1(r), if r > 0,
and W(r) = W2(�r), if r  0, and W1, W2 are two independent Brownian

motions.

Remark 4. Since the variance part of the limit distribution satisfies

&
2
k  |⌃̃k|2ak, and the drift part has ak � |Sk|�

†2
, if |⌃̃k|2/(|Sk|�

†2) = o(1)
then by Theorem 4 (i) we have ⌧̃k ! ⌧k in probability. For example, if the

noise sequence ✏t is spatially independent, then ⌃ = Ip and thus |⌃̃k|2 = 1. In
this case, |⌧̃k�⌧k| = OP(|Sk|

�1
�
†�2), which becomes oP(1) when |Sk|�

†2
! 1.

If ⌃̃k is a d-banded matrix, |⌃̃k|2  (|⌃̃k|1|⌃̃k|1)1/2  d. We can derive that

|⌧̃k � ⌧k| = OP(d|Sk|
�1

�
†�2).

In view of Theorem 4 (i), after the aggregating, we can obtain a finer
estimation of the change point ⌧̃k. The asymptotic distribution result (ii)
can be used for drawing inference for the estimated break points.

Finally, we derive a theorem on the precision of the estimated long run
variance covariance estimation.

Theorem 5. (Long run variance precision) We assume Assumption 3.4

holds with � � 1.5, and let

& = |⇤�1(⌃̂� ⌃)⇤�1
|max.

Then we have &log(np)2 ! 0 in probability under either one of the following

two conditions:

(i) Assuming conditions in Theorem 1 (i), p  cn
v
with v < q/4 � 1/2

and some c > 0, we take take m = min{n(q/4�1/2�v)/2
, n

1/2
}.

(ii) Assuming conditions in Theorem 1 (ii), we take m = min{b�1
, n

1/2
}.

By the above theorem, for the diagonal values we have max1ip |�̂i,i �

�i,i|/�i,i = oP(1). Let Q̂ be the same as Q in (2.14) with ⌃ therein replaced
by ⌃̂ in (2.31). We denote Ẑ as the Gaussian vector with covariance matrix
Q̂, then by Theorem 5 and Lemma 3, |Ẑ + d|1 converges to |Z + d|1 in
distribution. Thus all previous results are still valid with ⌃̂ as well.
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4. Simulation. In this section, we conduct a simulation study to eval-
uate the accuracy of our method. The discrete version of the model can be
written as:

(4.1) yit = uit +
K0X

j=1

�jit1{t � ⌧j}+ ✏it,

i = 1, · · · , p, t = 1, · · · , n.
We consider di↵erent kind of data generating processes. We choose a)

fi(u) = i
2
/p

2 + u
2, b) fi(u) = sin(2⇡u + i/p). Let uit = fi(t/n), n =

500, 1000, p = 20, 30. ✏t is taken to follow either 1) a i.i.d. standard normal
distribution 2) a VAR(1) model, with a randomly simulated coe�cient ma-
trix (maximum eigenvalue smaller than 1). The break locations are selected
to be starting at time point 100 and are distanced by 100, and the break sizes
are set to be either i) �jit = 0.05 for i = 5, 10, or ii) �jit = (

p
j ⇤ t/(pn)).

Fig 1. Visualization of one sample of simulated data with jump in case a),2),ii).

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

x1

−1.0

−0.5

0.0

0.5

1.0

x2

−1.0

−0.5

0.0

0.5

1.0

ynew

−1

0

1

2

Data

We use cross validation to select the bandwidth and the block parameter.
The detailed testing procedure is summarized as follows in line with the
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descriptions in Section 2.

Step 1 (Long run covairance estimation.) We estimate of the long-run
covariance matrix ⌃̂ = (�̂i,j) and its diagonal matrix ⇤̂. We first cal-
culate �̂i,j,k in (2.27) and we let �̂i,j be the solution of hi,j(u) = 0 as
in (2.28).

Step 2 (Q matrix relates to critical values.) We construct the block ma-
trix Q̂ = (Q̂i,j) where Q̂i,j is Qi,j in (2.14) with ⌃ and ⇤ therein
replaced by ⌃̂ and ⇤̂ respectively.

Step 3 (Calculating critical values.) We generate i.i.d. Gaussian vectors
Ẑ

(i)
, i = 1, 2, . . . N, with the covariance matrix Q̂ and we obtain q̂↵

which is the empirical (1 � ↵) quantile of the |Ẑ
(i)
|1 over several

samples and it can be viewed as an estimate of q↵ in (2.16).
Step 4 (Testing the existence of jump.) We construct T̂n as Tn in (2.6)

with ⇤ replaced by ⇤̂. We reject the null hypothesis that there is no
jump at level ↵ if T̂n is larger than q̂↵.

Step 5 (Detecting significant of break-points.) Supposing that in Step 4
we reject the null, we will continue with the following steps. To detect
the significant jumps, we construct |V̂t|1 for t = bn+1, bn+2, . . . , n�
bn, where V̂t is same as Vt in (2.6) with ⇤ therein replaced by ⇤̂. Let
A1 = {⌧ : |V̂⌧ |1 > w

†
}. w

† can be set as q̂↵ with ↵ to be small, for
example w

† = 0.0001.
Step 6 (Stamping multiple breaks) In case of multiple significant breaks

in Step 5, we sequentially locate the multiple change-points following
steps in Section 2.2. To be more specific, for k � 1, we let ⌧̂k =
argmax⌧2Ak

|V̂⌧ |1 and Ak+1 = Ak \ {⌧ : |⌧ � ⌧̂k|  2bn}. Then the

estimate of the number of breaks is K̂0 = maxk�1{k : Ak 6= ;}.

Step 7 (Estimating the sizes of breaks) We construct �̂k as in Step 3
in Subsection 2.2. We set the estimates of the sizes of the jumps as
�̂k = |⇤̂�1

�̂k|1 and their minimum as �̂⇧ = min1kK̂0
�̂k.

Step 8 (Constructing confidence interval for the sizes) We construct

q̃↵ as in (2.20). Let ✓̂ = (�̂1/2
1,1 , �̂

1/2
2,2 , ..., �̂

1/2
p,p )>. Then the confidence

interval for vector �k⇤ at level 2↵ is (�̂k � q̃↵✓̂, �̂k + q̃↵✓̂).
Step 9 (Aggregated jump location estimation and confidence interval

construction) Construct aggregated jump location estimates ⌧̃k as in
(2.24). The confidence interval for ⌧k is (⌧̃k � x, ⌧̃k + x), where x is
the 1�↵/2 quantile of the distribution argmaxr(�2�1

â
2
k|r|+ &̂kW(r))

and âk (resp. &̂k) is ak (resp. &k) with ⇤, ⌃ and �k replaced by their
estimations.

Figure 1 shows the simulated data with the model corresponding to the
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Table 1
AD averaged over 1000 samples in di↵erent simulation scenarios, and their standard

deviations in bracket.

p = 20, n = 500 p = 30, n = 1000
1) 2) 1) 2)

a)
i) 0.033 (0.008) 0.047 (0.007) 0.027 (0.004) 0.036 (0.006)
ii) 0.026 (0.012) 0.037 (0.010) 0.021 (0.005) 0.023 (0.006)

b)
i) 0.037 (0.011) 0.039 (0.012) 0.031 (0.003) 0.036 (0.004)
ii) 0.022 (0.009) 0.031 (0.010 0.015 (0.003) 0.026 (0.002)

Table 2
AM/n averaged over 1000 samples in di↵erent simulation scenarios, and their standard

deviations in bracket.

p = 20, n = 500 p = 30, n = 1000
1) 2) 1) 2)

a)
i) 0.041 (0.011) 0.045 (0.021) 0.036 (0.010) 0.038 (0.008)
ii) 0.029 (0.014) 0.054 (0.019) 0.013 (0.008) 0.020 (0.008)

b)
i) 0.025 (0.013) 0.047 (0.022) 0.018 (0.004) 0.034 (0.007)
ii) 0.047 (0.023) 0.066 (0.029) 0.034 (0.007) 0.038 (0.008)

cases a),1),ii). We evaluate our simulation performance over 1000 samples.
We report the averaged di↵erence between the estimated number of breaks
and the true break points (AD) (|K̂0 � K0|) as in Table 1. The averaged

distances between the breaks
PK̂0

k=1 |⌧̃k � ⌧
⇤
k |1 (AM) are shown in Table 2.

And the averaged coverage probabilities of the confidence interval for the
breaks (AC) are in Table 3 at the confidence level of 90%. As the sample
sizes increase, the estimation precision is improved. We can see that our
method is robust against di↵erent data simulation scenarios, and we can
achieve good level of accuracy of our method. In particular the spatial and
temporal dependency in the error term would not a↵ect our estimation.

Figure 2 shows the plot of the estimated robust long run covariance ma-
trix (right) against the true one (left). On an overall level, we see that the
true correlation matrix has been recovered precisely, as the patterns of these
two plots look the same. We also report the distance between our robustly
estimated variance covariance matrix and the true one in Table 4. The es-
timation precision of the long run variance covariance matrix is maintained
across di↵erent data generating processes.

5. Application. As an application, we analyze the monthly unemploy-
ment rate data in 20 states in the USA (namely, Alabama, Arizona, Cal-
ifornia, Colorado, Florida, Georgia, Illinois, Indiana, Kentucky, Michigan,
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Table 3
AC in di↵erent simulation scenarios over all the estimated break points and samples.

p = 20, n = 500 p = 30, n = 1000
1) 2) 1) 2)

a)
i) 0.653 0.660 0.789 0.753
ii) 0.689 0.662 0.798 0.776

b)
i) 0.677 0.668 0.799 0.783
ii) 0.654 0.608 0.776 0.765

Table 4
Averaged di↵erence between the variance covariance and the true one. (L1 norm divided

by p(p� 1)/2).

p = 20, T = 500 p = 30, T = 1000
1) 2) 1) 2)

a)
i) 0.006 0.008 0.004 0.007
ii) 0.008 0.009 0.005 0.007

b)
i) 0.009 0.009 0.003 0.004
ii) 0.004 0.007 0.004 0.006

Mississippi, New Jersey, New York, North Carolina, Ohio, Pennsylvania,
Texas, Virginia, Washington and Wisconsin). The data time span is from
Jan, 1976 to Sep 2018, and the data source is Burean of labor statistics from
Department of labor in the United States (https://www.bls.gov/). Figure 3
displays the 20 time series of unemployment rate. Although from a long
time span and on an overall level, we do not see obvious abrupt structural
changes. It would be still of great interest to think of detect changes induced
by some well known exogenous shocks, such as the sub-prime crisis in 2008.
It is understood that there will be likely a smooth cyclical trend associated
with the unemployment time series, as they mostly raises during recession
and falls during period of economics prosperity following the business cy-
cle. To study whether the shock induced by recessions creates significantly
structural change in the unemployment rate is of our interest.

Figure 4 shows the estimated robust long run correlation matrix using the
method in Section 2.4. One sees some significant values in the correlations
between residuals in di↵erent states. We can see that the correlations across
di↵erent locations are not negligible, however our method is robust against
the underlying spatial temporal dependency.

Figure 5 plots the estimated break points and the confidence intervals
around them. We see that the estimated breaks ⌧̃k using the CUSUM statis-
tics in Section 2.3 pick up the breaks earlier than the estimates obtained
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Fig 2. Visualization of the real (left) and the estimated correlation matrix (using robust

estimation method).
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from the non-aggregated method i.e. ⌧̂k. We can see that our method can
identify important dates such as the financial crisis period starting at Jan,
2009. Moreover, ⌧̃k tends to detect earlier dates of structure changes than
the observed averaged peaks in the time series. Other time points with sig-
nificant jumps detected are Jan, 1977, Oct, 1981, Jan, 1991 and Oct, 2001.
There are a few documented NBER (national bureau of economics research)
recession periods, namel Nov 1973- Mar 1975, July 1981-Nov 1982, July
1991- March 1991 and Mar 2001 - Nov 2001. All the breaks dates of unem-
ployment structure happen during or slightly before the recession periods,
featuring a close relationship between the structure change of unemploy-
ment rate and the economic cycles. This implies that economic recessions
indeed bring significant structural changes of unemployment rate across all
the states.
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Fig 3. Plot of Unemployment rate of 20 states in USA
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Fig 4. Plot of estimation of the robust long run correlation matrix, m = 10.
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Fig 5. Plot of estimated break points ⌧̃k(⌧̂k) (red lines) and their confidence intervals

(dotted black lines). ⌧̃k (upper panel), ⌧̂k (lower panel). The blue time series line represents

the averaged unemployment rate over states.
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[18] Harlé, F., F. Chatelain, C. Gouy-Pailler, and S. Achard (2016). Bayesian model

for multiple change-points detection in multivariate time series. IEEE Trans. Signal

Process. 64 (16), 4351–4362.
[19] Huang, T., B. Wu, P. Lizardi, and H. Zhao (2005). Detection of DNA copy number

alterations using penalized least squares regression. Bioinformatics 21 (20), 3811–3817.
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SUPPLEMENTARY MATERIAL TO “INFERENCE OF
BREAK-POINTS IN HIGH-DIMENSIONAL TIME SERIES”

APPENDIX A: SOME USEFUL LEMMAS

Lemma 1 (Basic properties of the weights). We assume Assumption 3.2.
We define i =

R 1
0 xiK(x)dx with finite 1,2, 21 6= 20. Then by [8], the

weights of the local linear estimator take the following form

wi =
2 � 1i/(bn)

20 � 21

K(i/(bn))

bn
+O((bn)�2).

We have the following results which holds uniformly over i. There exist
strictly positive constants cw, c0w, c

00
w only depending on kernel K(.), such

that

bn max
0in

|wi|  cw, max
|i�j|m

|wi � wj |  cw
m

(bn)2
, (bn

bnX

i=0

w2
i )

1/2 ! c0w,

and
bn

k

kX

i=1

wi � c00w, k  bn.(A.1)

Proof. We only show the last one, since the rest are similar and easier.
Note

bn
kX

i=1

wi/k = F (k/(bn)) +O((bn)�1), where F (t) =
2

R t

0
K(x)dx� 1

R t

0
xK(x)dx

(20 � 2
1)t

.

Define the numerator function as g(t) = 2
R t
0 K(x)dx � 1

R t
0 xK(x)dx.

We can see that g(0) = 0, g(1) > 0, and the derivative function g0(t) =
(2 � 1t)K(t), which is strictly larger than 0 before 2/1 and less than
0 afterwards. Therefore we have F (x) > 0 on (0, 1]. In addition, we note
F (0+) = 2K(0)/(20 � 21) > 0 and F (1) = 1. Thus inft2(0,1] F (t) > 0 in
view of F (t) is a continuous function.

Lemma 2 (Burkholder [2], Rio [10]). Let q > 1, q0 = min{q, 2}. Let
MT =

PT
t=1 ⇠t, where ⇠t 2 Lq are martingale di↵erences. Then

kMT kq
0

q  Kq0
q

TX

t=1

k⇠tkq
0

q , where Kq = max((q � 1)�1,
p
q � 1).
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APPENDIX B: ASYMPTOTIC RESULTS FOR GAUSSIAN VECTOR

Lemma 3 (Comparison). Let X = (X1, X2, . . . , Xv)> and
Y = (Y1, Y2, . . . , Yv)> be two centered Gaussian vectors in Rv and let d =
(d1, d2, . . . , dv)> 2 Rv. We denote � = max1i,jv |�X

i,j � �Y
i,j |, where we

define �X
i,j = E(XiXj) (resp. �Y

i,j = E(YiYj)). Assume that Yis have the

same variance �2 > 0. Then we have

sup
x2R

���P
�
|X + d|1  x

�
� P

�
|Y + d|1  x

���� . �1/3log(v)2/3,(B.1)

where the constant involved in . only depends on �.

Proof. It su�ces to show for any d 2 Rv,

sup
x

���P( max
1iv

(Xi + di)  x)� P( max
1iv

(Yi + di)  x)
��� . �1/3log(v)2/3.

To this end, we define

F ⇤
� (z) = ��1log

⇣ vX

j=1

exp(�(zj + dj))
⌘
.

Replace the F�(·) in the proof of Theorem 2 in [5] by F ⇤
� (z). Then by the

argument in equation (10) in [5], we have

P
⇣

max
1iv

(Xi + di)  x
⌘
 P

⇣
max
1iv

(Yi + di)  x+ � + ��1log(v)
⌘
+ c(��2 + ���1)�,

where c is some absolute constant. Then by Lemma 4, we have

P
⇣
max
1iv

(Xi + di)  x
⌘
� P

⇣
max
1iv

(Yi + di)  x
⌘

.(� + ��1log(v))
p

log(v) + (��2 + ���1)�,

where the constant in . only depending on �. Take � = ��1log(v) and
� = log(v)1/6�1/3. Same argument can be applied in the other direction,
and the desired result follows.

Lemma 4 ([9]). Let X = (X1, X2, . . . , Xv)> be a centered Gaussian vec-
tor in Rv. Assume E(X2

i ) � b for some b > 0 and all 1  i  v. Then for
any e > 0 and d 2 Rv,

sup
x2R

P
⇣��|X + d|1 � x

��  e
⌘
 ce

p
log(v),(B.2)

where c is some constant depending only on b.
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APPENDIX C: PROOF OF GAUSSIAN APPROXIMATION FOR THE
TEST STATISTICS

Proof of Theorem 1. The proof of Theorem 1 is quite involved. We
shall first provide some intuitive ideas of the proof strategy. We define

I✏ := max
bn+1in�bn

��
i�1X

t=i�bn

wi�t⇤
�1✏t �

i+bnX

t=i+1

wt�i⇤
�1✏t + di

��
1.(C.1)

By (2.10) and (2.11) we have

|Tn � I✏|  max
bn+1in�bn

|EVi � di|1 = O(b2).(C.2)

Thus we only need to work on I✏. For some m > 0, let a truncated version
of the error term be defined as

✏t,m =
m�1X

k=0

Ak⌘t�k.

Consider the m-dependent approximation I✏,m of I✏, where I✏,m is I✏ with ✏t
replaced by ✏t,m. Then we have I✏ ⇡ I✏,m for large m. Let Iz,m be I✏,m with ⌘t
therein replaced by zt, where (zt, t 2 Z) are i.i.d. Gaussian vectors with zero
mean and identity covariance matrix in Rp̃. Since I✏,m can be rewritten into
the format of the maximum of summation of independent vectors, by the
Gaussian approximation theorem in [6], the distributions of I✏,m and Iz,m
are close. We complete the proof by showing that the distributions of Iz,m
and |Z+d|1 are close, and the continuity of the maximum of a non-centered
Gaussian distribution.

We now proceed with the formal argument. We shall first focus on case
(i). Let m = (bn)1/(�+1), for any ↵ > 0,

P
�
(bn)1/2Tn  u

�
 P

�
(bn)1/2|Tn � I✏,m| � ↵

�
+ P

�
(bn)1/2I✏,m  u+ ↵

�

and

P
�
(bn)1/2|Z + d|1  u

�
= P

�
(bn)1/2|Z + d|1  u+ ↵

�
� P

�
u < (bn)1/2|Z + d|1  u+ ↵

�
.

Hence

sup
u2R

h
P
�
(bn)1/2Tn  u)� P((bn)1/2|Z + d|1  u

�i

P
⇣
(bn)1/2|Tn � I✏,m| � ↵

⌘
+ sup

u2R

���P(I✏,m  u)� P(|Z + d|1  u)
���

+ sup
u2R

P
⇣��(bn)1/2|Z + d|1 � u

��  ↵
⌘
=: I1 + I2 + I3.
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For the I1 part, |Tn � I✏,m|  |Tn � I✏| + |I✏ � I✏,m|. Recall (C.2), then
|Tn � I✏|  c0b2 for some constant c0 > 0. We define
↵0 = 2c1 max{(bn)�1/2(np)1/q, 1}m��+�/q, where the constant c1 is the one to
be defined in Lemma 5. Then by Lemma 5, we have

P((bn)1/2|I✏ � I✏,m| � ↵0) = o(1).

Hence for ↵ = ↵0 + c0(bn)1/2b2, I1 = o(1).
For the I2 part, we note that

I2  sup
u2R

|P(I✏,m  u)� P(Iz,m  u)|+ sup
u2R

|P(Iz,m  u)� P(|Z + d|1  u)|

=: I21 + I22.

By Lemma 7 (1), we have I21 = o(1). By Lemma 8, I22 = o(1). Hence
I2 = o(1).

For the I3 part, the diagonal entities in bnQ take the same value i.e.
�⇧2 = 2bn

Pbn
i=1w

2
i , which by (A.1), converges to 2c

02
w > 0 , where c0w is a

finite constant. By Lemma 4

I3 . ↵log(np)1/2 = o(1).

The desired result follows by combining the I1-I3 parts and a similar argu-
ment for the other side of the inequality.

For case (ii), we have the same decomposition I1-I3. For the I1 part, we
define ↵ = c1log(np)1/2m�� + c0(bn)1/2b2, for some constant c1 > 0. Then
by Lemma 6, I1 = o(1). For I2 part, by Lemma 7 (2) and Lemma 8, we have
I2 = o(1). For I3, same argument can be applied. Combining the rates of
I1-I3, we obtain the desired result.

Lemma 5 and 6 give us concentration inequalities for the m-dependent
approximation of I✏.

Lemma 5 (m-dependent approximation for polynomial case). Assume
conditions in Theorem 1 (i). For some m > 0 and u > 0, we have

P
�
(bn)1/2|I✏ � I✏,m| � u+ c1(bn)

�1/2(np)1/qm���  c2(e
�c3u

2m2�

+ npm�q�(bn)�q/2u�q),

where c1, c2, c3 are some positive constants only depending on q, cp, cw, cs, µq.

Proof. We note that I✏ � I✏,m can be bounded by

|I✏ � I✏,m|

 max
bn+1in�bn

⇣��
i�1X

t=i�bn

wi�t⇤
�1(✏t � ✏t,m)

��
1 +

��
i+bnX

t=i+1

wt�i⇤
�1(✏t � ✏t,m)

��
1

⌘

=:I1 + I2.
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We let Ei,l =
Pi�1

t=(i�bn)_(l+m)wi�t⇤�1At�l, then I1 can be rewritten into

I1 = max
bn+1in�bn

1j1p

���
X

li�m�1
1j2p̃

Ei,l,j1,j2⌘l,j2

���,(C.3)

where Ei,l,j1,j2 is the (j1, j2)th entity of matrix Ei,l and ⌘l,j2 is the j2th entity
of ⌘l. Since ⌘l,j2s are independent for di↵erent (l, j2), by Lemma A.2 in [4],
for u > 0,

P(
p
bnI1 � 2

p
bnEI1 + u)  e�u2/(3�2) +Kqu

�qHq,(C.4)

where Kq is some constant only depending on q,

�2 = bn max
bn+1in�bn

1j1p

X

li�m�1
1j2p̃

E(Ei,l,j1,j2⌘l,j2)
2,

and

Hq = (bn)q/2
X

ln�bn�m�1
1j2p̃

E

0

@ max
(bn+1)_(l+m+1)in�bn

1j1p

|Ei,l,j1,j2⌘l,j2 |q
1

A .

Then we start to analyze the rates of the objects involved in (C.4). We
define Ei,l,j1,· to be the j1th row of Ei,l. For the �2 part, by Assumption 3.4
and (A.1),

|Ei,l,j1,·|2 
X

t�l+m

wi�t�
�1/2
j1,j1

|At�l,j1,·|2  cwcsm
��/(bn),(C.5)

and therefore

X

ln�bn�m�1

|Ei,l,j1,·|2 
i�1X

t=i�bn

X

lt�m

wi�t�
�1/2
j1,j1

|At�l,j1,·|2  cwcsm
�� .

(C.6)

Combining the above arguments and recall that E⌘2i,j = 1, we have

�2  bn max
bn+1in�bn

1j1p

⇣ X

li�m�1

|Ei,l,j1,·|2 max
ln�bn�m�1

|Ei,l,j1,·|2
⌘
 (cwcs)

2m�2� .

(C.7)
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For the Hq part, by Assumption 3.4 and (A.1), maxi,j1,j2 |Ei,l,j1,j2 | 
cwcs((1� l) _m)��/(bn). Recall that p̃  cpp. Then we have

Hq  (bn)q/2
X

ln�bn�m�1
1j2p̃

[cwcs((1� l) _m)��/(bn)]qµq
q

 (cwcs)
qµq

q(bn)
�q/2p̃

⇣ X

�mln�bn�m

m��q +
X

l<�m

(1� l)��q
⌘

 c0(bn)
�q/2npm��q,(C.8)

where c0 = 3cp(cwcs)qµ
q
q.

For EI1 part, note that EI1  kI1kq. By Lemma 2, we have

EI1 
⇣X

i,j1

E(|
X

l,j2

Ei,l,j1,j2⌘l,j2 |q)
⌘1/q


⇣X

i,j1

�
(q � 1)

X

l

|Ei,l,j1,·|22µ2
q

�q/2⌘1/q
.

Thus by (C.5) and (C.6) we have

EI1 . (bn)�1/2m��(np)1/q,(C.9)

where the constant in . only depends on cw, cs, µq, q. Our conclusions follows
by applying (C.7), (C.8) and (C.9) into (C.4) and a similar argument for
I2.

Lemma 6 (m-dependent approximation for exponential case). We as-
sume conditions in Theorem 1 (ii). We have

P
�
(bn)1/2|I✏ � I✏,m| � u

�

(
2npe�a1m2�u2

, if u < a2(bn)1/2m�� ,

2npe�a3m�(bn)1/2u, if u � a2(bn)1/2m�� ,

where a1, a2, a3 are some positive constants only depending on a0, cw, cs, µe.

Proof. Recall the definition of I1 and I2 in the proof of Lemma 5. Let
e⇤ = cwcsm��/(bn) and c⇤ = a0/e⇤. Then by (C.5), EecEi,l,j1,j2

⌘l,j2 < 1, for
any 0 < c  c⇤, and we have

E(ecI1) 
X

bn+1in�bn
1j1p

E

0

BB@exp
n
c

X

ln�bn�m�1
1j2p̃

Ei,l,j1,j2⌘l,j2

o
+ exp

n
� c

X

ln�bn�m�1
1j2p̃

Ei,l,j1,j2⌘l,j2

o
1

CCA

=: I11 + I12.
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Since E⌘i,j = 0, for Ei,l,j1,j2 6= 0, we have

E(ecEi,l,j1,j2
⌘l,j2 ) = 1 +

E(ecEi,l,j1,j2
⌘l,j2 � 1� cEi,l,j1,j2⌘l,j2)

c2E2
i,l,j1,j2

c2E2
i,l,j1,j2

 1 +
E(ec⇤e⇤|⌘l,j2 | � 1� c⇤e⇤|⌘l,j2 |)

(c⇤e⇤)2
c2E2

i,l,j1,j2

 1 +
µe

a20
c2E2

i,l,j1,j2 ,

where the first inequality is because that for any x > 0, the function gx(t) =
(etx � 1 � tx)/t2 increases on t 2 (0,1), and et � t  e|t| � |t|. We define
c0 = µe/a20, and the rate of I11 is derived as follows,

I11 
X

i,j1

Y

l,j2

(1 + c0c2E2
i,l,j1,j2) 

X

bn+1in�bn
1j1p

exp
n
c0c2

X

ln�bn�m�1
1j2p̃

E2
i,l,j1,j2

o
,

 np exp
�
c2c1m

�2�/(bn)
 
,

where c1 = c0c2wc
2
s, the second inequality is due to 1 + x  ex for any x � 0,

and the last inequality is by (C.7). Same bound can be derived for I12. We
note that

P(I1 � u)  e�cuE(ecI1)  e�cu(I11 + I12).

We define c⇧ = bnm2�u/(2c1).Hence if c⇧ < c⇤, then P(I1 � u)  2npe�u2m2�bn/(4c1);

if c⇧ � c⇤, then P(I1 � u)  2npeµebn�a0/(cwcs)bnm�u. The proof for I2 is sim-
ilar and therefore omitted.

Lemma 7. Let m ! 1 and m/(bn) ! 0.

(1) Assume conditions in Theorem 1 (i), we have

sup
u2R

|P(I✏,m  u)� P(Iz,m  u)|

.(bn)�1/6log7/6(pn) + ((np)2/q/(bn))1/3log(pn),

where the constant in . only depends on cw, c0w, cs and µq.
(2) Assume conditions in Theorem 1 (ii), we have

sup
u2R

|P(I✏,m  u)� P(Iz,m  u)| .(bn)�1/6log(pn)7/6,

where the constant in . only depends on cw, c0w, cs, a0 and µe.
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Proof. First we consider the case of (1). We denote

Di,l =

(i�1)^(m+l�1)X

t=(i�bn)_l

wi�t⇤
�1At�l, and D⇤

i,l =

(i+bn)^(m+l�1)X

t=(i+1)_l

wt�i⇤
�1At�l.

(C.10)

Then I✏,m can be rewritten into

I✏,m = max
bn+1in�bn

���
X

i�m+1�bnli�1

Di,l⌘l �
X

i�m+2li+bn

D⇤
i,l⌘l + di

���
1
.

Let N0 = (n� 2bn)p and N1 = (n+m� 1)p̃. Let G = (Gi,l)i,l, bn+1  i 
n� bn, 2�m  l  n, be a block matrix in RN0⇥N1 with

Gi,l =

8
><

>:

Di,l if i�m+ 1� bn  l  i�m+ 1,

Di,l �D⇤
i,l if i�m+ 2  l  i� 1,

�D⇤
i,l if i  l  i+ bn,

(C.11)

and elsewhere zero. We define di,j1 to be the j1th entity of di, N2 = bnN1

and Gi,l,j1,j2 be the (j1, j2)th entity of Gi,l. Then

N1/2
2 I✏,m = max

bn+1in�bn
1j1p

���
X

2�mln
1j2p̃

gi,l,j1,j2 +N1/2
2 di,j1

���,(C.12)

where gi,l,j1,j2 = N1/2
2 Gi,l,j1,j2⌘l,j2 .

For any r  q, we denote

Mr := max
bn+1in�bn

1j1p

✓ij1,r, where ✓rij1,r :=
X

2�mln
1j2p̃

E|gi,l,j1,j2 |
r/N1 =

nX

l=2�m

|Gi,l,j1,·|
r
rµ

r
rN

r/2
2 /N1.

By Assumption 3.4 and (A.1), for any r � 2,

|Di,l,j1,·|r  |Di,l,j1,·|2  cwcs/(bn), and similarly |D⇤
i,l,j1,·|r  cwcs/(bn).

(C.13)

Then by (C.11), maxi,l,j1 |Gi,l,j1,·|r  2cwcs/(bn). Since Gi,l is zero for l <
i�m+ 1� bn or l > i+ bn,

Mr  (4cwcsµr)(N1/bn)
1/2�1/r.(C.14)
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Especially, for r = 2, Mr  c1 where c1 = 4cwcsµ2. By (C.10), for i� bn 
l  i�m, and Sm =

Pm�1
k=0 Ak,

Gi,l = Di,l =
m+l�1X

t=l

wi�t⇤
�1At�l = wi�l⇤

�1S + wi�l⇤
�1(Sm � S) +

l+m�1X

t=l

(wi�t � wi�l)⇤
�1At�l.

Therefore by Assumption 3.4 and (A.1), we can derive

��|Gi,l,j1,·|2 � wi�l

�� = ��1/2
j1,j1

wi�l

X

k�m

|Ak,j1,·|2 + ��1/2
j1,j1

l+m�1X

t=l

|wi�t � wi�l||At�l,j1,·|2

 cwcsm
��/(bn) + cwcsm/(bn)2.

Note
Pm

i=1w
2
i bn = O(m/(bn)) = o(1). Thus by (A.1),

min
bnin�bn

1j1p

✓ij1,2 � min
bnin�bn

1j1p

⇣ i�mX

l=i�bn

|Gi,l,j1,·|22µ2
2N2/N1

⌘1/2
� c0wµ2 � o(1) � c1,

(C.15)

some constant c1 > 0. Since maxi,l,j1,j2 |Gi,l,j1,j2 |  2cwcs/(bn),

max
l,j2

E(max
i,j1

|gi,l,j1,j2 |q) = max
i,l,j1,j2

|Gi,l,j1,j2N
1/2
2 |q  (2cwcs)(N1/(bn))

q/2.

Note

Bn := max
n
M3

3 ,M
2
4 ,
�
max
l,j2

E(max
i,j1

|gi,l,j1,j2 |q)
�1/qo . (N1/(bn))

1/2,

where the constant in . only depends on cw, cs, µq. By Proposition 2.1 in
[6] we have

sup
u2R

|P(N1/2
2 I✏,m  u)� P(N1/2

2 Iz,m  u)|

.
�
B2

nlog
7(pn)/N1

�1/6
+
�
B2

nlog
3(pn)/N1�2/q

1

�1/3

.(bn)�1/6log7/6(pn) + ((np)2/q/(bn))1/3log(pn).

For part (2), let M = log2(µe) _ 1, and B0
n = (2cwcsM/a0)(N1/(bn))1/2.

Since maxi,l,j1,j2 |Gi,l,j1,j2 |  2cwcs/(bn), we have

max
i,l,j1,j2

E(egi,l,j1,j2/B0
n)  2.

Note

Bn := max{M3
3 ,M

2
4 , B

0
n} . (N1/(bn))

1/2.
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Apply the same argument as for part (1) with this new Bn, then Proposition
2.1 in [6] leads to

sup
u2R

��P(N1/2
2 I✏,m  u)� P(N1/2

2 Iz,m  u)
�� .

�
B2

nlog
7(pn)/N1

�1/6 . (bn)�1/6log7/6(pn).

Lemma 8. Assume conditions in Theorem 1 (i) or (ii), for m ! 1,
m/(bn) ! 0,

sup
u2R

|P(Iz,m  u)� P(|Z + d|1  u)| .
�
m/(bn) +m��

�1/3
log(np)2/3,

where the constant in . only depends on cw, c0w and cs.

Proof. We recall that Di,l, D⇤
i,l in (C.10), G = (Gi,l) in (C.11) and G⇧

in (2.12). It is not hard to see that the covariance matrix for Iz,m is GG>

and the covariance matrix for Z is Q = G⇧G⇧>. We let

H0 = (Gi,l) 2�ml0
bn+1in�bn

, and H1 = (Gi,l) 1ln
bn+1in�bn

.

Then G = (H0, H1) and

|GG> �G⇧G⇧>|max  |H0H0>|max + 2|(H1 �G⇧)G⇧>|max + |(H1 �G⇧)(H1 �G⇧)>|max

=: I1 + I2 + I3.

By (C.13), maxi,l,j |Gi,l,j,·|2  2cwcs/(bn). Therefore

(bn)I1  (bn) max
i1,i2,j1,j2

0X

l=2�m

|Gi1,l,j1,·|2|Gi2,l,j2,·|2  (2cwcs)
2m/(bn).

Denote �i,l = Gi,l �G⇧
i,l. For i �m + 1 � bn  l < i � bn, �i,l = Di,l, and

thus |�i,l,j,·|2  cwcs/(bn). For i� bn  l  i�m+ 1, we have

�i,l = Di,l � wi�l⇤
�1S =

m+l�1X

t=l

(wi�t � wi�l)⇤
�1At�l � wi�l⇤

�1
X

t�m

At.

(C.16)

Hence |�i,l,j,·|2  cwcsm/(bn)2 + cwcsm��/(bn). For i�m+ 1  l  i� 1,
�i,l = Di,l�D⇤

i,l�wi�l⇤�1S. Then |�i,l,j,·|2  3cwcs/(bn). Similarly we can
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bound |�i,l,j,·|2 for i  l  i + bn. For the rest l, �i,l = 0. We note that
|G⇧

i,l,j,·|  cwcs/(bn). Consequently,

(bn)I2  (bn) max
i1,i2,j1,j2

nX

l=1

|�i1,l,j1,·|2|G⇧
i2,l,j2,·|2 . m/(bn) +m�� ,

where the constant in . only depends on cw, cs. Similarly we have (bn)I3 .
m/(bn) +m�� . Combining I1-I3,

(bn)|GG> �G⇧G⇧>|max . m/(bn) +m�� .

By (A.1), for any j we have bnQj,j = 2bn
Pn

i=1w
2
i ! 2c

02
w . Then the desired

result follows from Lemma 3.

APPENDIX D: PROOFS OF CONSISTENCY FOR ESTIMATED
BREAKS

Proof of Theorem 2 (i). Note 1 � �(x)  (2⇡)�1/2x�1e�x2/2, where
�(·) is the cumulative distribution function of a standard normal distri-
bution. Recall G⇧

i,l in (2.12). Let G⇧
i,· = (G⇧

i,1, G
⇧
i,2, . . . , G

⇧
i,n) and z be a

Gaussian vector in Rnp with zero mean and identity covariance matrix. Let
G⇧

i,·,j,· be the jth row of G⇧
i,·, then

P(|G⇧z|1 � u) 
n�bnX

i=bn

pX

j=1

P(|G⇧>
i,·,j,·z| � u)  np(2⇡)�1/2(�/u)e�u2/(2�2),

(D.1)

where � = |G⇧
i,·,j,·|2 = (2

Pbn
t=1w

2
t )

1/2, which by (A.1) converges to (bn/2)�1/2c0w >
0. Thus

P
�
|G⇧z|1 � 2c0wlog(np)

1/2(bn)�1/2
�
! 0.(D.2)

Let S := {1  i  n : |i � ⌧k| > bn, for all 1  k  K0}. For any i 2 S,
di = 0. Hence by Theorem 1,

sup
u2R

���P
�
max
i2S

|Vi|1 � u
�
� P

�
max
i2S

|G⇧
i,·z|1 � u

���� ! 0.(D.3)

Since maxi2S |G⇧
i,·z|1  |G⇧z|1, by (D.2) and (D.3) we have P(maxi2S |Vi|1 �

!†) ! 0. Thus we obtain

lim
n!1

P
�
8t 2 A1, 91  k  K0, |t� ⌧k|  bn

�
= 1.(D.4)
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Recall that d⌧k = ⇤�1�k. Since |d⌧k +G⇧
⌧k,·z|1 � |d⌧k |1� |G⇧

⌧k,·z|1, we have

P
⇣

min
1kK0

|d⌧k +G⇧
⌧k,·z|1  !†

⌘
 P

⇣
max

1kK0

|G⇧
⌧k,·z|1 � min

1kK0

|d⌧k |1 � !†
⌘

 P
�
|G⇧z|1 � �⇧ � !†�.

Since �⇧ � 2!†, P(min1kK0 |d⌧k + G⇧
⌧k,·z|1  !†) ! 0. Subsequently the

break statistics will be bigger than the threshold at the points of break with
probability approach 1, P(min1kK0 |V⌧k |1  !†) ! 0 in view of

sup
u2R

���P(|V⌧k |1  u)� P(|d⌧k +G⇧
⌧k,·z|1  u)

��� ! 0.

Therefore we have

P(⌧k 2 A1, 1  k  K0) ! 1.(D.5)

Let B(⌧, r) = {t : |t� ⌧ |  r}. By (D.4) and (D.5), we have

lim
n

P
⇣
{⌧1, ⌧2, . . . , ⌧K0} ✓ A1 ✓ [1kK0B(⌧k, bn)

⌘
= 1.

Since for k1 6= k2, |⌧k1 � ⌧k2 | � bn, for any k1 6= k2 and t 2 B(⌧k1 , bn), for
all large n, B(t, 2bn) \ B(⌧k2 , 2bn) = ;. Thus we complete the proof.

Proof of (ii). Let µ(l)
i (resp. U (l)

i ) be µ̂(l)
i with Yi therein replaced by

µ(i/n) (resp. ✏i). Similarly we can define µ(r)
i and U (r)

i . Let �µi = µ(l)
i �µ(r)

i

and �Ui = U (l)
i � U (r)

i . Let �fi be �µi with µ replaced by f.
Let ⌧ 2 {⌧1, ..., ⌧K0} be some break point associated with jump �. For any

t such that |t� ⌧ |  bn, we have �µt = (1�
P|t�⌧ |

i=1 wi)� +�ft. Hence

Vt = ⇤�1�µt + ⇤�1�Ut

= (1�
|t�⌧ |X

i=1

wi)⇤
�1� + ⇤�1�ft + ⇤�1�U⌧ + (⇤�1�Ut � ⇤�1�U⌧ ).(D.6)

Let ⌧̂ = argmax{t:|t�⌧ |bn}|Vt|1. The proceeding proof contains three steps.
Step 1. Let j⌧ = argmaxj |V⌧̂ ,j |, where V⌧̂ ,j is the jth entity of V⌧̂ . This step
shows

lim inf
n

|(⇤�1�)j⌧ |/�⇧ � 1.

We shall show by contradiction. By (C.2), |�ft|1 = O(b2). If |(⇤�1�)j⌧ | 
c�⇧, for some c < 1, then by (D.6), |V⌧̂ |1  c�⇧ + O(b2) + |⇤�1�U⌧̂ |1.
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Let Ũt be Ut with ⌘i,j replaced by zi,j where zi,j are i.i.d standard normal
random variables. Then maxt |⇤�1�Ũt|1 = OP((bn)�1/2log(np)1/2). Then
by Gaussian approximation Theorem 1,

max
t

|⇤�1�Ut|1 = OP((bn)
�1/2log(np)1/2).

Since �⇧ � (bn)�1/2log(np)1/2, we have |V⌧̂ |1  c�⇧(1+oP(1)). On the other
hand, by (D.6), |V⌧ |1 � �⇧ + O(b2) � |⇤�1�U⌧ |1 = �⇧(1 + oP(1)). These
imply P(V⌧̂ < V⌧ ) ! 1, which is a contradiction.
Step 2. This step shows

max
t

|⇤�1�U⌧ � ⇤�1�Ut|1/|t� ⌧ |1/2 = OP
�
log(np)1/2/(bn)

 
.(D.7)

Let t  ⌧, the other direction can be similarly dealt with. Let (zi,j) be
i.i.d. standard Gaussian random variables. Define �Ũt (resp. ✏̃t) to be �Ut

(resp. ✏t) with ⌘i,j therein replaced by zi,j . Then by Gaussian approximation
Theorem 1, it su�ces to show (D.7) with Ut replaced by Ũt. We note that

�Ũt ��Ũ⌧ =
⌧�bn�1X

i=t�bn

wt�i✏̃i +
t�1X

i=⌧�bn

(wt�i � w⌧�i)✏̃i �
⌧�1X

i=t+1

(wi�t + w⌧�i)✏̃i

�
t+bnX

i=⌧+1

(wi�t � wi�⌧ )✏̃i �
⌧+bnX

i=t+bn+1

wi�⌧ ✏̃i + w⌧�t✏̃t � w⌧�t✏̃⌧ =:
7X

k=1

rk.

For r1, we have

|⇤�1r1|1 = max
1j1p

|
X

l⌧�bn�1,1j2p

El,j1,j2zl,j2 |, where El =
⌧�bn�1X

i=(t�bn)_l

wt�i⇤
�1Ai�l,

with El,j1,j2 as the (j1, j2)th entity of matrix El. Then

max
t

�
|⇤�1r1|1/|t� ⌧ |1/2

�
= OP

�
log(np)1/2/(bn)

 
.

A similar argument leads to the same bound for r3 and r5. For r2, we can
rewrite

|⇤�1r2|1 = max
1j2p

|
X

lt�1

E0
l,j1,j2zl,j2 |, where E0

l =
t�1X

i=(⌧�bn)_l

(wt�i � w⌧�i)⇤
�1Ai�l.

Then similarly we have maxt |⇤�1r2|1/|⌧ � t|3/2 = OP
�
log(np)1/2/(bn)2

 
.

The same bound can be derived for r4 as well. We obtain (D.7) by summing
the above bounds up.
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Step 3. Without loss of generality, assume �j⌧ > 0. Then by the argument
in step 1, with probability tending to 1, V⌧̂ ,j⌧ > 0. By Assumption 3.1, we
have |�ft��f⌧ |1 = O(|t� ⌧ |/n). With probability tending to 1, by (D.6),

|V⌧ |1 � |V⌧̂ |1 � V⌧,j⌧ � V⌧̂ ,j⌧ �
|⌧̂�⌧ |X

i=1

wi(⇤
�1�)j⌧ �O(|⌧̂ � ⌧ |/n)� |⇤�1�U⌧ � ⇤�1�U⌧̂ |1.

By (A.1), we have
P|t�⌧ |

i=1 wi � c00w|t� ⌧ |/(bn). Hence by Step 1 and Step 2
we further derive

|V⌧ |1 � |V⌧̂ |1 � c00w|⌧̂ � ⌧ |�⇧/(bn)�O(|⌧̂ � ⌧ |/n)�OP
�
|⌧ � ⌧̂ |1/2log(np)1/2/(bn)

�
.

Since |V⌧ |1 < |V⌧̂ |1, we have

|⌧ � ⌧̂ | = OP{log(np)/�⇧2}.

Proof of (iii).. Recall the definition of µ(l)
t , µ(r)

t , U (l)
t and U (r)

t in the
proof of (ii) and M = bn. Since M � log(np)/�⇧2,

|µ(l)
⌧̂k�M � µ((⌧̂k �M)/n)|1 = |f (l)

⌧̂k�M � f((⌧̂k �M)/n)|1 = O(b).

Similarly |µ(r)
⌧̂k+M�µ((⌧̂k+M)/n)|1 = O(b). Since max1jp |f 0

j | is bounded,
|µ((⌧̂k+M)/n)�µ((⌧̂k�M)/n)��k⇤ |1 = |f((⌧̂k+M)/n)�f((⌧̂k�M)/n)|1 = O(M/n).

Hence

|⇤�1(�̂k � �k⇤)|1 =
��⇤�1(µ(r)

⌧̂k+M � µ(l)
⌧̂k�M � �k⇤) + ⇤�1U (r)

⌧̂k+M � ⇤�1U (l)
⌧̂k�M

��
1

 O(b+M/n) + |⇤�1U (l)
⌧̂k�M � ⇤�1U (r)

⌧̂k+M |1.(D.8)

By Gaussian approximation and (D.2) we have

P
�
|⇤�1U (l)

⌧̂k�M � ⇤�1U (r)
⌧̂k+M |1 � 2c0wlog(np)

1/2/(bn)1/2
�
! 0.

Inserting the above equation into (D.8) and we obtain the desired result.

APPENDIX E: PROOFS OF LIMIT DISTRIBUTIONS OF BREAK
SIZES

Proof of Theorem 3. We recall M = bn. Similar to (D.8), we have

|⇤�1(�̂k � �k⇤)� ⇤�1(U (r)
⌧̂k+M � U (l)

⌧̂k�M )|1  cM/n. Therefore

sup
u2R

���P
�
(bn)1/2|⇤�1(�̂k � �k⇤)|1  u

�
� P

�
(bn)1/2|Z̃|1  u

����

 sup
u2R

P
�
|(bn)1/2|Z̃|1 � u|  c(bn)1/2M/n

�

+sup
u2R

��P(|⇤�1(U (l)
⌧̂k�M � U (r)

⌧̂k+M )|1  u)� P(|Z̃|1  u)
�� = I1 + I2.
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We note that (bn)1/2Z̃j are i.i.d with variance 2(bn)
Pbn

t=1w
2
t , which by (A.1)

converges to 2c
02
w > 0. Therefore by Lemma 4,

I1 = O{(bn)1/2(M/n)log(np)1/2} = o(1).

Let G̃ = (G̃1, G̃2, . . . , G̃n), where G̃l = w⌧̂k�M�l⇤�1S, if ⌧̂k �M � bn 
l  ⌧̂k�M�1, and G̃l = wl�(⌧̂k+M)⇤

�1S, if ⌧̂k+M+1  l  ⌧̂k+M+bn and
elsewhere zero. Let z be Gaussian vector in Rnp̃ with zero mean and identity

covariance matrix. Then G̃z
d
= Z̃. By the same argument as in Theorem 1

with di = 0 we have

sup
u2R

|P(|⇤�1(U (l)
⌧̂k�M � U (r)

⌧̂k+M )|1  u)� P(|G̃z|1  u)| = o(1).

Thus I2 = o(1) and we complete the proof.

APPENDIX F: PROOF OF AGGREGATED BREAKS ESTIMATION
PROPERTIES

Proof of Proof of Theorem 4 (i). We shall condition on the event
where Ŝk = Sk and |⌧̂k�⌧k| ⌧ bn. By Theorem 2 and Corollary 2, the event
would take place with probability tending to 1. Denote
"t =

P
j2Sk

(⇤�1�̂k)j(⇤�1✏t)j , and âk =
P

j2Sk
(⇤�1�k)j(⇤�1�̂k)j . Then we

have
Xt = âk1t�⌧k +

X

j2Sk

fj(t/n)(⇤
�1�̂k)j + "t.

Let

Dt =
⌧̂k+bnX

s=⌧̂k�bn

Xs
t� ⌧̂k + bn

2bn+ 1
�

t�1X

s=⌧̂k�bn

Xs.

Denote r = ⌧̃k � ⌧k. Assume r > 0. By the continuity of fj , we have

max
j

���
⌧̂k+bnX

s=⌧̂k�bn

fj(s/n)
r

2bn+ 1
�

⌧k+r�1X

s=⌧k

fj(s/n)
���

=max
j

���
⌧̂k+bnX

s=⌧̂k�bn

�
fj(s/n)� fj(⌧k)

� r

2bn+ 1
�

⌧k+r�1X

s=⌧k

�
fj(s/n)� fj(⌧k)

���� = O(br).
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By above and Theorem 2 (iii), we have

D⌧k+r �D⌧k =
⌧̂k+bnX

s=⌧̂k�bn

Xs
r

2bn+ 1
�

⌧k+r�1X

s=⌧k

Xs

= �âk
bn+ ⌧k � ⌧̂k

2bn+ 1
r +

⌧̂k+bnX

s=⌧̂k�bn

"s
r

2bn+ 1
�

⌧k+r�1X

s=⌧k

"s +OP(|�̃k|1br).(F.1)

By Theorem 2 (iii), |(⇤�1�̂k)j2Sk |2 = |�̃k|2(1 + oP(1)). Then together with
(3.6), we obtain that the long run variance for "k is &2k(1 + oP(1)). Hence by

Theorem 1 in [7],
P⌧̂k+bn

s=⌧̂k�bn "s = OP((bn)1/2&k) and
P⌧k+r

s=⌧k
"s = OP(r1/2&k).

Note |�̃k|1  |Sk|1/2|�̃k|2, thus

|�̃k|1b  |Sk|1/2|�̃k|2b ⌧ |Sk|1/2|�̃k|2�†  |�̃k|22 = ak.

Inserting the above equation into (F.1) leads to

D⌧k+r �D⌧k = �2�1akr(1 + oP(1)) +OP(&kr(bn)
�1/2 + &kr

1/2).

Since ⌃̃k is a covariance matrix with diagonal entities 1, |⌃̃k|2  |Sk|. Note
&2k  |⌃̃k|2ak, thus

&k  |Sk|1/2a
1/2
k .

Then we have

&k(bn)
�1/2  |Sk|1/2a

1/2
k (bn)�1/2 ⌧ |Sk|1/2a

1/2
k �†  ak,

where the last inequality is because ak = |�̃k|22 � �†2|Sk|. By above we
further obtain

D⌧k+r �D⌧k = �2�1akr(1 + oP(1)) +OP
�
&kr

1/2
�
.(F.2)

Since D⌧̃k is the maximum, D⌧k+r �D⌧k > 0. Therefore r = OP(&2k/a
2
k). By

a similar argument for the r < 0 part, the desired result follows.

Proof of (ii). Let Ft be the �-field generated by {⌘s,j , s  t, 1  j 
p}. Denote the projection operator Pt· = E(·|Ft) � E(·|Ft�1). Let �̄k,j =
(⇤�1�k)j , if j 2 Sk, �̄k,j = 0 if j /2 Sk. Let (⌘0t) be an i.i.d copy of (⌘t). Then

ct := kP0"tk4  k�̄>k ⇤�1At(⌘0 � ⌘00)k4 . |�̄>k ⇤�1At|2µ4,
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where the last inequality is by Lemma 2 and that ⌘0,j , 1  j  p, are i.i.d.
By Assumption 3.4,

X

st

cs .
X

st

|�̄>k ⇤�1As|2 
pX

j=1

X

st

�̄k,j�
�1/2
j,j |As,j,·|2 . |�̄k|1t�� = |�̃k|1t�� .

Thus by Corollary 2.1 in [1], strong invariance principle holds for
P

st "s.
Thus from (F.1), we have

D⌧k+r �D⌧k = �2�1akr(1 + oP(1))�
⌧k+r�1X

s=⌧k

"s
D! �2�1akr + &kB(r).

The r < 0 part can be similarly dealt with.

APPENDIX G: PROOF OF PROPERTIES OF ESTIMATED LONG
RUN VARIANCE

Proof of Theorem 5 (i). The main idea follows the proof of Propo-
sition 2.4 in [3], however due to the dependence and the break points, our
result is much more involved. Let

S = {k | Ak or Ak�1 contains break points}.

Then by assumption |S|  2K0. We look at estimators without the break
point first.

h̄i,j(u) =
X

k/2S

�↵i,j (�̂i,j,k � u)/N2, where N2 = N1 � |S|.

Let

�̃i,j =
X

k/2S

E�̂i,j,k/N2 and v2i,j =
X

k/2S

E�̂2
i,j,k/N2 � �̃2

i,j .

Define functions

B+
i,j(u, x) = �̃i,j � u+ ↵i,j [(�̃i,j � u)2 + v2i,j ]/2 + x,

B�
i,j(u, x) = �̃i,j � u� ↵i,j [(�̃i,j � u)2 + v2i,j ]/2� x.

The proof contains four steps.
Step 1. This step shows that function Eh̄i,j(u) for any i, j satisfies, the ex-
pected loss functions have upper and lower envelope functions,

B�
i,j(u, 0)  Eh̄i,j(u)  B+

i,j(u, 0).
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By (2.30), �(x)  x+ x2/2 and thus

Eh̄i,j(u) 
X

k/2S

�
E(�̂i,j,k � u) + ↵i,jE(�̂i,j,k � u)2/2

�
/N2 = B+

i,j(u, 0).

Similarly we can bound the other side.
Step 2. This step shows for any x > 0, the estimated influence function

h̄i,j(u) is highly concentrated around its mean, for C0 > 0 and x & (N2log(N2))1/2,

pX

i,j=1

P
⇣

sup
|u��i,j |C0

|h̄i,j(u)� Eh̄i,j(u)| � x(�1/2
i,i �1/2

j,j )/N2

⌘
. p2

�
N2log(n)

q/4x�q/2 + e�x2/(cN2)
�
,

(G.1)

where c and the constant in . are independent of n, p.
First introduce some notation. For any random variable X, denote E0X =

X � EX, the centering operator. Let Fk = (⌘t, t 2 [skAs) and Fk,{s},
s  k, be Fk with ⌘t, t 2 As therein replaced by ⌘0t, where ⌘0t are i.i.d copy
of ⌘t. For any random variable X = h(Fk), let X{i} = h(Fk,{i}). Denote
�⇠k = ⇠k � ⇠k�1. We now show that the temporal dependence measure
decays with polynomial rate. Let ⇣i,j,k(u) = �↵i,j (�̂i,j,k�u). Since |�0|1  1,
we have for any s 2 N and any u,

k sup
u

|⇣i,j,k(u)� ⇣i,j,k,{k�s}(u)|kq/2  k�̂i,j,k � �̂i,j,k,{k�s}kq/2

2�1m
⇣
kE0�⇠k,i(�⇠k,j ��⇠k,j,{k�s})kq/2 + kE0(�⇠k,i ��⇠k,i,{k�s})�⇠k,j,{k�s}kq/2

⌘

= : 2�1m(I1 + I2).

Let Uk,i (resp. fk,i) be ⇠k,i with Yt replaced by ✏t (resp. f(t/n)). Then ⇠k,i =
✏k,i + fk,i when there is no break. Let �Uk,i = Uk,i � Uk�1,i and �fk,i =
fk,i � fk�1,i. Then we have

I1 
���E0�fk,i(�Uk,j ��Uk,j,{k�s})

���
q/2

+
���E0�Uk,i(�Uk,j ��Uk,j,{k�s})

���
q/2

=: I11 + I12.

Since maxj |fj |1 < f⇤,

max
1jp

|�fk,j |  f⇤m/n.(G.2)

Let Ek,l,i,· =
P(k+1)m

t=(km+1)_l At�l,i,·, where At�l,i,· is the ith row of matrix At�l.

Then for s � 1,

Uk,i =
X

l(k+1)m

Ek,l,i,·⌘l/m(G.3)

and �Uk,i ��Uk,i,{k�s} =
X

l2Ak�s

(Ek,l,i,· � Ek�1,l,i,·)(⌘l � ⌘0l)/m.
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Since ⌘l are i.i.d, by Lemma 2, (G.2) and (G.3),

k�fk,i(�Uk,j ��Uk,j,{k�s})kq/2  2f⇤cq
⇣ X

l2Ak�s

(|Ek,l,i·|2 + Ek�1,l,i·|2)2
⌘1/2

µq/2/n.

(G.4)

By Assumption 3.4, we have for any s > 1,

X

l2Ak�s

|Ek,l,i,·|22 . m(m(s� 1))�2��i,i, and
X

l(k+1)m

|Ek,l,i,·|22 . m�i,i,

(G.5)

where the constant in . only depending on �, cs. Hence by (G.4) and (G.5),

I11 . m1/2n�1(m(s� 1))���1/2
i,i ,(G.6)

where the constant in . only depends on �, cs, q, µq, f⇤. By Lemma 2 and
(G.5)

kE0Uk,i(Uk,j � Uk,j,{k�s})kq/2
=
���E0

⇣ X

l1(k+1)m

Ek,l1,i,·⌘l1
X

l22Ak�s

Ek,l2,j,·(⌘l2 � ⌘0l2)
⌘���

q/2
m�2

.m�2
⇣ X

l1(k+1)m

X

l22Ak�s

|Ek,l1,i,·|22|Ek,l2,j,·|22
⌘1/2

.m�1(m(s� 1))���1/2
i,i �1/2

j,j ,(G.7)

where the constant in . only depends on µq, q, cs. Thus I12 . m�1(m(s �
1))���1/2

i,i �1/2
j,j . By combining the bounds for I11 and I12 and a similar argu-

ment for I2, we have

�s := max
k

�� sup
u

|⇣i,j,k(u)� ⇣i,j,k,{k�s}(u)|
��
q/2

. ((ms)��1s>1 + 1s1)�
1/2
i,i �1/2

j,j ,

(G.8)

where the constant in . only depends on µq, cs, c�,�, q, f⇤.

Let � := �1/2
i,i �1/2

j,j x/(2N2) and An be the � net for {u : |u � �i,j |  C0}.
Denote f(u) = h̄i,j(u)� Eh̄i,j(u). Then by |�0|1  1,

sup
|v��i,j |C0

min
u2An

|f(u)� f(v)|  �.
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Therefore |An| = 2C0/� = O(n) and

P
⇣

sup
|u��i,j |C0

|h̄i,j(u)� Eh̄i,j(u)| � x(�1/2
i,i �1/2

j,j )/N2

⌘

P
⇣
max
u2An

|h̄i,j(u)� Eh̄i,j(u)| � x(�1/2
i,i �1/2

j,j )/(2N2)
⌘
.

Desired result follows from Lemma 5.8 in [12].
Step 3. This step shows for the estimator

max
1i,jp

|�̃i,j � �i,j | = O(m��/(�+1)�1/2
i,i �1/2

j,j +m3/n2), and v2i,j = O(�i,i�j,j),

(G.9)

where the convergence is uniform for 1  i, j  p.
Let ✏̂i,j,k be �̂i,j,k with Yt replaced by ✏t and let �⇧

i,j = E✏̂i,j,1. Then by
(G.2),

|�̃i,j � �⇧
i,j |  m

X

k/2S

|�fk,i||�fk,j |/(2N2) = O(m3/n2).(G.10)

Note the convergence in above O(·) and all the followings are uniform for
i, j. Let ⇢i,j,k = E(✏0,i✏k,j). Then for any L < m,

|mE(U1,iU1,j)� �i,j | =
���m�1

X

�m<k<m

(m� |k|)⇢i,j,k � �i,j
���

=O
� X

|k|�L

|⇢i,j,k|+ Lm�1
X

k2Z
|⇢i,j,k|

�
.

By Assumption 3.4,
P

|k|�L |⇢i,j,k| 
P

t2Z,|k|�L |At,i,·|2|At+k,j,·|2 = O(L���1/2
i,i �1/2

j,j ).

Take L = m1/(�+1), then |mE(U1,iU1,j)��i,j | = O(m��/(�+1)�1/2
i,i �1/2

j,j ). And

similarly |mE(U1,iU2,j)| = O(m��/(�+1)�1/2
i,i �1/2

j,j ). Hence

�⇧
i,j = m

�
E(U1,iU1,j) + E(U2,iU2,j)� E(U1,iU2,j)� E(U2,iU1,j)

�
/2

= �i,j +O(m��/(�+1)�1/2
i,i �1/2

j,j ).

Together with (G.10) we obtain the first part in (G.9).
Since �̂i,j,k = m(�fk,i + �Uk,i)(�fk,j + �Uk,j)/2, we have E�̂i,j,k =

m�fk,i�fk,j/2 + �⇧
i,j . By (G.2) and (G.10),

v2i,j =
X

k/2S

E�̂2
i,j,k/N2 � �̃2

i,j =
X

k/2S

Var(�̂i,j,k)/N2 +O(m3n�2�1/2
i,i �1/2

j,j ).
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Note by (G.3) and (G.5) we have

m2Var(�fk,i�Uk,j) = O(m3n�2�j,j), and m2Var(�Uk,i�Uk,j) = O(�i,i�j,j).

Thus Var(�̂i,j,k) = O(�i,i�j,j) and the second part in (G.9) holds.
Step 4. Since |S|  2K0, for any i, j, and |�|1  log(2),

|N1hi,j(u)/N2 � h̄i,j(u)|  2log(2)K0/(↵i,jN2).(G.11)

Combining (G.11), Step 1 and step 2 with x = N2/log
3(np), then with

probability tending 1, for all 1  i, j  p, and |u� �i,j |  C0,

B�
i,j(u,�)  N1N

�1
2 hi,j(u)  B+

i,j(u,�),(G.12)

where

� = h�1/2
i,i �1/2

j,j + 2log(2)K0/(↵i,jN2) and h = log(np)�3.(G.13)

Note if

↵2
i,jv

2
i,j + 2↵i,j�  1,(G.14)

then B+
i,j(u,�) exists real roots. Denote the smaller one as u+, which satisfies

u+  �̃i,j+↵i,jv2i,j+2�. Take ↵⇤
i,j = ↵i,j�

1/2
i,i �1/2

j,j . By Step 3 and Assumption
3.3, if (G.14), then

��1/2
i,i ��1/2

j,j (u+ � �i,j) = O
n
m��/(�+1) +m3/n2 + ↵⇤

i,j + h+m/(↵⇤
i,jn)

o
.

(G.15)

Similar bound can be obtained for u� as well. When (G.12) holds, u� 
�̂i,j  u+. Take ↵⇤

i,j = (m/n)1/2, then with probability greater than 1 �
log(n)�1,

��1/2
i,i ��1/2

j,j |�̂i,j � �i,j | . m��/(�+1) +m3/n2 + (m/n)1/2 + log(np)�3,

where the convergence is uniform for all 1  i, j  p. Since there exists
some constant c1, c2 > 0, such that c1  �̄j,j/�j,j  c2, and any i, j with
probability tending to 1. Thus the desired result follows.

Proof of (ii). Same argument as for (i), except that we need to replace
Step 2 by Step 2’ with x ⌧ N2/log(np)2.5. Then we obtain the desired result.
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Step 2’. This step shows

pX

i,j=1

P
⇣

sup
|u��i,j |C0

��h̄i,j(u)� Eh̄i,j(u)
�� � x(�1/2

i,i �1/2
j,j )/N2

⌘
. p2ne�cxN

�1/2
2 ,

(G.16)

where c and the constant in . are independent of n, p, i, j.
The proof follows similar argument as in Step 2 and Theorem 3 in [11].
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gang K. Härdle, January 2019.

005 ”Usage Continuance in Software-as-a-Service” by Elias Baumann, Jana Kern, Stefan
Lessmann, February 2019.

006 ”Adaptive Nonparametric Community Detection” by Larisa Adamyan, Kirill Efimov,
Vladimir Spokoiny, February 2019.

007 ”Localizing Multivariate CAViaR” by Yegor Klochkov, Wolfgang K. Härdle, Xiu Xu,
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