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* Humboldt-Universität zu Berlin, Germany

This research was supported by the Deutsche
Forschungsgesellschaft through the

International Research Training Group 1792
”High Dimensional Nonstationary Time Series”.

http://irtg1792.hu-berlin.de
ISSN 2568-5619

In
te
rn
a
ti
o
n
a
l
R
es
ea

rc
h
T
ra
in
in
g
G
ro
u
p
1
7
9
2

http://irtg1792.hu-berlin.de


Article

Forecasting in Blockchain-based Local Energy
Markets

Michael Kostmann 1,∗ and Wolfgang K. Härdle 2

1 School of Business and Economics, Humboldt-Universität zu Berlin, Spandauer Str. 1, 10178 Berlin,
Germany; michael.kostmann@hu-berlin.de

2 Ladislaus von Bortkiewicz Chair of Statistics, School of Business and Economics, Humboldt-Universität zu
Berlin, Unter den Linden 6, 10099 Berlin, Germany; Wang Yanan Institute for Studies in Economics, Xiamen
University, 422 Siming Road, Xiamen, China, 361005; Department of Mathematics and Physics, Charles
University Prague, Ke Karlovu 2027/3, 12116 Praha 2, Czech; haerdle@hu-berlin.de

* Correspondence: michael.kostmann@hu-berlin.de

Version June 2, 2019 submitted to Energies

Abstract: Increasingly volatile and distributed energy production challenge traditional mechanisms1

to manage grid loads and price energy. Local energy markets (LEMs) may be a response to those2

challenges as they can balance energy production and consumption locally and may lower energy3

costs for consumers. Blockchain-based LEMs provide a decentralized market to local energy consumer4

and prosumers. They implement a market mechanism in the form of a smart contract without5

the need for a central authority coordinating the market. Recently proposed blockchain-based6

LEMs use auction designs to match future demand and supply. Thus, such blockchain-based7

LEMs rely on accurate short-term forecasts of individual households’ energy consumption and8

production. Often, such accurate forecasts are simply assumed to be given. The present research tests9

this assumption. First, by evaluating the forecast accuracy achievable with state-of-the-art energy10

forecasting techniques for individual households and, second, by assessing the effect of prediction11

errors on market outcomes in three different supply scenarios. The evaluation shows that, although12

a LASSO regression model is capable of achieving reasonably low forecasting errors, the costly13

settlement of prediction errors can offset and even surpass the savings brought to consumers by14

a blockchain-based LEM. This shows, that due to prediction errors, participation in LEMs may be15

uneconomical for consumers, and thus, has to be taken into consideration for pricing mechanisms in16

blockchain-based LEMs.17

Keywords: Blockchain; Local Energy Market; Smart Contract; Machine Learning; Household; Energy18

Prediction; Prediction Errors; Market Mechanism19

JEL Classification: Q47; D44; D47; C5320

1. Introduction21

The “Energiewende”, or energy transition, is a radical transformation of Germany’s energy sector22

towards carbon free energy production. This energy revolution lead in recent years to widespread23

installation of renewable energy generators [1,2]. In 2017, more than 1.6 million photovoltaic24

micro-generation units were already installed in Germany [3]. Although this is a substantial step25

towards carbon free energy production, there is a downside: The increasing amount of distributed and26

volatile renewable energy resources, possibly combined with volatile energy consumption, presents27

a serious challenge for grid operators. As energy production and consumption have to be balanced28

in electricity grids at all times [4], modern technological solutions to manage grid loads and price29
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renewable energy are needed. One possibility to increase the level of energy distribution efficiency30

on low aggregation levels is the implementation of local energy markets (LEMs) in a decentralized31

approach, an example being the Brooklyn Microgrid [5].32

LEMs enable interconnected energy consumers, producers, and prosumers to trade energy in near33

real-time on a market platform with a specific pricing mechanism [6]. A common pricing mechanism34

used for this purpose are discrete double auctions [7–9]. Blockchain-based LEMs utilize a blockchain as35

underlying information and communication technology and a smart contract to match future supply36

and demand and to settle transactions [10]. As a consequence, a central authority that coordinates the37

market is obsolete in a blockchain-based LEM. Major advantages of such LEMs are the balancing of38

energy production and consumption in local grids [11], lower energy costs for consumers [12], more39

customer choice (empowerment) [13], and less power line loss due to shorter transmission distances40

[14].41

In the currently existing energy ecosystem, the only agents involved in electricity markets are42

utilities and large-scale energy producers and consumers. Household-level consumers and prosumers43

do not actively trade in electricity markets. Instead, they pay for their energy consumption or they are44

reimbursed for their infeed of energy into the grid according to fixed tariffs. In LEMs, on the contrary,45

households are the participating market agents that typically submit offers in an auction [7,15]. This46

market design requires the participating households to estimate their future energy demand and/or47

supply, to be able to submit a buy or sell offer to the market [16]. Therefore, accurate forecasts of48

household energy consumption/production are a necessity for such LEM designs. In existing research49

on (blockchain-based) LEMs, it is frequently assumed that such accurate forecasts are readily available50

[see, e.g., 6–8,16,17]. However, forecasting the consumption/production of single households is51

difficult due to the inherently high degree of uncertainty, which cannot be reduced by the aggregation52

of households [18]. Hence, the assumption that accurate forecasts are available cannot be taken in53

practice to be correct. Additionally, given the substantial uncertainty in individual households’ energy54

consumption or production, prediction errors may have a significant impact on market outcomes.55

This is where our research focuses on: We evaluate the possibility of providing accurate56

short-term household-level energy forecasts with existing methods and currently available smart57

meter data. Moreover, our paper aims to quantify the effect of prediction errors on market outcomes58

in blockchain-based LEMs. For the future advancement of the field, it seems imperative that the59

precondition of accurate forecasts of individual households’ energy consumption and production for60

LEMs is assessed. Because, if the assumption cannot be met, the proposed blockchain-based LEMs61

may not be a sensible solution to support the transformation of our energy landscape. This, however,62

is urgently necessary to limit CO2 emissions and the substantial risks of climate change.63

1.1. Related research64

Although LEMs started to attract interest in academia already in the early 2000s, it is still an65

emerging field [11]. Mainly driven by the widespread adoption of smart meters and internet-connected66

home appliances, recent work on LEMs focuses on use cases in developed and highly technologized67

energy grid systems [19]. While substantial work regarding LEMs in general has been done [e.g.,68

7,8,15], there are only few examples of blockchain-based LEM designs in the existing literature. [10]69

derive seven principles for microgrid energy markets and evaluate the Brooklyn Microgrid according70

to those principles. With a more practical focus, [6] implemented and simulated a local energy71

market on a private Ethereum-blockchain that enables participants to trade local energy production72

on a decentralized market platform with no need for a central authority. [20] similarly elaborate a73

peer-to-peer energy market concept on a blockchain but focus on operational grid constraints and a74

fair payment rendering. Additionally, there are several industry undertakings to put blockchain-based75

energy trading into practice, such as, Grid Singularity (gridsingularity.com) in Austria, Powerpeers76

(powerpeers.nl) in the Netherlands, Power Ledger (powerledger.io) in Australia, and LO3 Energy77

(lo3energy.com) in the United States.78

https://gridsingularity.com
https://powerpeers.nl
https://powerledger.io
https://lo3energy.com
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Interestingly, none of the above cited works, that employ market mechanisms requiring household79

energy forecasts for bidding, check whether the assumed availability of such forecasts is given. But,80

without this assumption, trading through an auction design as described in, e.g., [9] or [8], and81

implemented in a smart contract by [6] is not possible. Unfortunately, this forecasting task is not82

trivial due to the extremely high volatility of individual households’ energy patterns [18]. However,83

research by [21], [22], [23], and [24] show that advances in the energy forecasting field also extend to84

household-level energy forecasting problems and serve as a promising basis for the present study.85

1.2. Present research86

We investigate the prerequisites necessary to implement blockchain-based distributed local energy87

markets. In particular this means:88

a) forecasting net energy consumption respectively production of private consumers and prosumers89

one time-step ahead,90

b) evaluating and quantifying the effects of forecasting errors, and91

c) evaluating the implications of low forecasting quality for a market mechanism.92

The prediction task was fitted to the setup of a blockchain-based LEM. Thereby, the present93

research distinguishes itself notably from previous studies that solely try to forecast smart meter94

time series in general. The evaluation of forecasting errors and their implications is based on the95

commonly used market mechanism for discrete interval, double sided auctions, while the forecasting96

error settlement structure is based on [6]. The following research questions are examined in the present97

research:98

1. Which prediction technique yields the best 15-minutes ahead forecast for smart meter time series99

measured in 3-minutes intervals using only input features generated from the historical values of100

the time series and calendar-based features?101

2. Assuming a forecasting error settlement structure, what is the quantified loss of households102

participating in the LEM due to forecasting errors by the prediction technique identified in a)?103

3. Depending on b), what implications and potential adjustments for an LEM market mechanism104

can be identified?105

The present research finds that regressing with LASSO on one week of historical consumption106

data is the most suitable approach to household-level energy forecasting. However, this method’s107

forecasting errors still substantially diminish the economical benefit of a blockchain-based LEM.108

Thus, we conclude that changes to the market designs are the most promising way to still employ109

blockchain-based LEMs as means to meet some of the challenges generated by Germany’s current110

energy transition.111

The remainder of the present research is structured as follows: Section 2 presents the forecasting112

models and error measures used to evaluate the prediction accuracy. Moreover, it introduces the113

market mechanism and simulation used to evaluate the effect of prediction errors in LEMs. Section 3114

describes the data used. Section 4 presents the prediction results of the forecasting models, evaluates115

their performance relative to a benchmark model and assesses the effect of prediction errors on market116

outcomes. The insights gained from this are then used to identify potential adjustments for future117

market mechanisms. Finally, Section 5 concludes with a summary, limitations, and an outlook on118

further research questions that emerge from the findings of the present research.119

All code and data used in the present research is available through the Quantnet website (quantlet.120

de). They can be easily found by entering BLEM (Blockchain-based Local Energy Markets) into121

the search bar. As part of the Collaborative Research Center, the Center for Applied Statistics and122

Economics and the International Research Training Group (IRTG) 1792 at the Humboldt-University123

Berlin, Quantnet contributes to the goal of strengthening and improving empirical economic research124

in Germany.125

https://quantlet.de
https://quantlet.de
https://quantlet.de
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2. Method126

In order to select the forecasting technique, we apply the following criteria:127

1. The forecasting technique has to produce deterministic (i.e., point) forecasts.128

2. The forecasting technique had – for comparison – to be used in previous studies.129

3. The previous study or studies using the forecasting technique had to use comparable data, i.e.,130

recorded by smart meters in 60-minutes intervals or higher resolution, recorded in multiple131

households, and not recorded in SMEs or other business or public buildings.132

4. The forecasting task had to be comparable to the forecasting task of the present research, i.e.,133

single consumer household (in contrast to the prediction of aggregated energy time series) and134

very short forecasting horizon (≤ 24 hours).135

5. The forecasting technique had to take historical and calendar features only as input for the136

prediction.137

6. The forecasting technique had to produce absolutely and relative to other studies promisingly138

accurate predictions.139

Based on these criteria two forecasting techniques are selected for the prediction task at hand.140

As short-term energy forecasting techniques are commonly categorized into statistical and machine141

learning (or artificial intelligence) methods [25–27], one method of each category is chosen: Long142

short-term memory recurrent neural network (LSTM RNN) adapted from the procedure outlined by143

[23] and autoregressive LASSO as implemented by [24]. Instead of LSTM RNN, gated recurrent unit144

(GRU) neural networks could be used as well. However, despite needing less computational resources,145

their representational power may be lower compared to LSTM RNNs [28] and their successful146

applicability in household-level energy forecasting has not been proven in previous studies.147

2.1. Benchmark model148

A frequent benchmark model used for deterministic forecasts is the simple persistence model [29].149

This model assumes that the conditions at time t persist at least up to the period of forecasting interest150

at time t + h. The persistence model is defined as151

x̂t+1 = xt. (1)

There are several other benchmark models commonly used in energy load forecasting. Most152

of them are, in contrast to the persistence model, more sophisticated benchmarks. However, as153

the forecasting task at hand serves the specific use case of being an input for the bidding process154

in a blockchain-based LEM, the superiority of the forecasting model over a benchmark model is155

of secondary importance. Hence, in the present research, only the persistence model served as a156

benchmark for the forecasting techniques presented in Section 2.2 and 2.3.157

2.2. Machine learning-based forecasting approach158

The first sophisticated forecasting technique that was employed in the present research to produce159

as accurate as possible predictions for the blockchain-based LEM is a machine learning algorithm.160

Long short-term memory (LSTM) recurrent neural networks (RNN) have been introduced only very161

recently in load forecasting studies [e.g., 22,23,27,30].162

LSTM RNN is an advanced architecture of RNN that is particularly well suited to learn long163

sequences or time series due to its ability to retain information over many time steps [28]. LSTM units164

[31] extend RNN units by an additional state. This state can retain information for as long as needed.165

In which step this additional state is updated and in which state the information it retains is used in166

the transformation of the input is controlled by three so-called gates [32]. These three gates have the167

form of a simple RNN cell. Formally, by slightly adapting the notation of [33] – who use ht−1 instead of168

st−1, whereas the notation used here (st−1) accounts for the modern LSTM architecture with peephole169

connections – the gates can be written as170
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it = σ
(

W (ix)xt + W (is)st−1 + bi

)
f t = σ

(
W ( f x)xt + W ( f s)st−1 + b f

)
ot = σ

(
W (ox)xt + W (os)st−1 + bo

)
,

(2)

where σ is the sigmoid activation function σ(z) = 1
1+e−z , W denotes the weight matrices that are171

intuitively labelled (ix for the weight matrix of gate it multiplied with the input xt etc.), and b denotes172

the bias vectors. Again following the notation of [33], the full algorithm of a LSTM unit is given by the173

three gates specified above, the input node,174

gt = σ
(

W (gx)xt + W (gh)ht−1 + bg

)
, (3)

the internal state of the LSTM unit at time step t,175

st = gt � it + st−1 � f t, (4)

where � is pointwise multiplication, and the output at time step t,176

ht = φ (st)� ot. (5)

LSTM RNNs are capable of learning highly complex, non-linear relationships in time series177

data which makes them a promising forecasting technique to predict households’ very short-term178

energy consumption and production. The specific LTSM RNN approach adopted in the present179

research is based on the procedure employed by [23] to forecast individual households’ energy180

consumption. According to the relevant use case in the present research, LSTM RNNs are trained for181

each household individually using only the household’s historic consumption patterns and calendar182

features. Specifically, seven days of past consumption, an indicator for weekends, and an indicator for183

Germany-wide holidays are used as input for the neural network in the present research. This follows184

the one-hot encoding used by [30]. Seven days of lagged data are used as input because preliminary185

results indicated that the autocorrelation in the time series becomes very weak in lags beyond one week.186

Moreover, using the previous week as input data still preserves the weekly seasonality and represents187

a reasonable compromise between as much input as possible and the computational resources needed188

to process the input in the training process of the LSTM neural network. The target values in the model189

training are single consumption values in 15-minutes aggregation.190

A neural network is steered by several hyperparameters: The number and type of layers, the191

number of hidden units within each layer, the activation functions used within each unit, dropout rates192

for the recurrent transformation, and dropout rates for the transformation of the input. To identify193

a well working combination of hyperparameter values, tuning is necessary which is unfortunately194

computationally very resource intensive. Table 1 presents the hyperparameters that were tuned and195

their respective value ranges. The tuning was done individually for each network layer. Optimally,196

the hyperparameters of all layers should be tuned simultaneously. However, due to computational197

constraints, that was not possible here and, thus, the described, second-best option was chosen. As198

the hyperparameter values specified in Table 1 for layer 1 alone result in 81 possible hyperparameter199

combinations, only random samples of these combinations were taken, the resulting models trained200

on a randomly chosen data set and compared. In total, 16 models with one layer, 13 models with two201

layers and 13 models with three layers were tuned. The model tuning was conducted on the Machine202

Learning (ML) Engine of the Google Cloud Platform. The job was submitted to the Google Cloud ML203

Engine via Google Cloud SDK and the R package cloudml. The model training was conducted on four204

Tesla P100 GPUs.205
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Table 1. The hyperparameters that were tuned for an optimal LSTM RNN model specification.

hyperparameter possible possible sampling # of assessed
values combinations rate combinations

layer 1

batch size {128, 64, 32}

81 0.2 16hidden units {128, 64, 32}
recurrent dropout {0, 0.2, 0.4}
dropout {0, 0.2, 0.4}

hidden units {128, 64, 32}
layer 2 recurrent dropout {0, 0.2, 0.4} 26 0.5 13

dropout {0, 0.2, 0.4}

hidden units {128, 64, 32}
layer 3 recurrent dropout {0, 0.2, 0.4} 26 0.5 13

dropout {0, 0.2, 0.4}

Based on the hyperparameter tuning results, a model of the following specification was used for206

the prediction of a single energy consumption value for the next 15 minutes:207

Table 2. Tuned hyperparameters for LSTRM RNN prediction model. BLEMtuneLSTM

hyperparameter tuned value

layers 1
hidden units 32
dropout rate 0
recurrent dropout rate 0
batch size 32
number of input data points 3, 360
number of training samples 700
number of validation samples 96

The total length of data points covered in the training process equals batch size times input208

data points times number of data points that are aggregated for each prediction (i.e., 5 data points):209

700 × 32 × 5 = 112,000 data points. This is equivalent to the time period from 01.01.2017 00:00 to210

22.08.2017 09:03. The tuning process and results can be replicated by following the Quantlet link in the211

caption of Table 2.212

The general procedure of model training, model assessment and prediction generation is shown213

in Procedure 1. The parameter tuple is set globally for all household data sets based on the214

hyperparameter tuning. Thereafter, the same procedure is repeated for each data set: First, the215

consumption data time series is loaded, target values are generated, and the input data is transformed.216

The transformation consisted of normalizing the log-values of the consumption per 3-minutes interval217

between 0 an 1. This ensures fast convergence of the model training process. The data batches for the218

model training and the cross-validation are served to the training algorithm by so-called generator219

functions. Second, the LSTM RNN is compiled and trained with Keras which is a neural network API220

written in Python. The Keras R package (v2.2.0.9) which is used with RStudio v1.1.453 and TensorFlow221

1.11.0 as back-end is a wrapper of the Python library and is maintained by [34]. The model training222

and prediction for each household was performed on a Windows Server 2012 with 12 cores and 24223

logical processors of Intel Xeon 3.4 GHz CPUs. The model training is done in a differing number of224

epochs as early stopping is employed to prevent overfitting: Once the mean absolute error on the225

validation data does not decrease by more than 0.001 in three consecutive epochs, the training process226

is stopped. Third, the trained model is used to generate predictions on the test set that comprises227

data from 01.10.2017 00:00 to 01.01.2018 00:00 (i.e., 44,180 data points). As the prediction is made in228

15-minutes intervals, in total, 8,836 data points are predicted. Using the error measures described in229

Section 2.4, the model performance is assessed. Finally, the predictions for all data sets are saved for230

the evaluation in the LEM market mechanism.231

https://github.com/QuantLet/BLEM/tree/master/BLEMtuneLSTM
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Procedure 1 Supervised training of and prediction with LSTM RNN.
1: Set parameter tuple < l, u, b, d >: number of layers l ⊆ L, number of hidden LSTM-units u ⊆ U, batch size b ⊆ B, and dropout rate d ⊆ D.

2: Initiate prediction matrix P and list for error measures Θ.

3: for Household i in data set pool I do

4: Load data set Ψi .

5: Generate target values y by aggregating data to 15-min intervals.

6: Transform time series in data set Ψi and add calender features.

7: Set up training and validation data generators according to parameter tuple < b, d >.

8: Split data set Ψi into training data set Ψi,tr and testing data set Ψi,ts .

9: Build LSTM RNN ζi on Tensorflow with network size (l, h).

10: repeat

11: At kth epoch do:

12: Train LSTM RNN ζi with data batches ϕtrain ⊆ Ψi,tr supplied by training data generator.

13: Evaluate performance with mean absolute error Λk on cross-validation data batches ϕval ⊆ Ψi,tr supplied by validation data generator.

14: until Λk−1 −Λk < 0.001 for the last 3 epochs.

15: Save trained LSTM RNN ζi .

16: Set up testing data generator according to tuple < b, d >.

17: Generate predictions ŷi with batches ϕts ⊆ Ψi,ts fed by testing data generator into LSTM RNN ζi .

18: Calculate error measures Θi to assess performance of Xi .

19: Write prediction vector ŷi into column i of matrix P.

20: end for.

21: Save matrix P.

22: End.

2.3. Statistical method-based forecasting approach232

To complement the machine learning approach of a LSTM RNN with a statistical approach, a233

second, regression-based method is used. For this purpose, the autoregressive LASSO approach234

proposed by [24] seemed most suitable. Statistical methods have the advantage of much lower model235

complexity compared to neural networks which makes them computationally much less resource236

intensive.237

[24] use LASSO [35] to find a sparse autoregressive model which generalizes better to new data.238

Formally, the LASSO estimator can be written as239

β̂LASSO = arg min
β

1
2
‖(y− Xβ‖2

2 + λ ‖β‖1 , (6)

where X is a matrix with row t being [1 xT
t ] (the length of xT

t is the number of lag-orders n240

included), and λ is a parameter that controls the level of sparsity in the model, i.e., which lag-orders are241

included to predict yt+1. This model specification selects the best recurrent pattern in the energy242

time series by shrinking coefficients of irrelevant lag-orders to zero and, thereby, improves the243

generalizability of the prediction model. In the present research, the sparse autoregressive LASSO244

approach is implemented using the R package glmnet [36]. Again, as for the LSTM RNN approach,245

model training and prediction are performed for every household individually. Following [24]’s246

procedure, only historical consumption values are used as predictors. Specifically, for comparability to247

the LSTM approach, seven days of lagged consumption values serve as input to the LASSO model.248

The response vector consists of single consumption values in 15-minutes aggregation.249

The detailed description of the model estimation and prediction is presented in Procedure 2. As250

the LASSO model requires a predictor matrix, the time series of each household is split in sequences of251

length n = 3, 360 with 5 data points skipped in between. The skip accounts for the fact that the response252

vector is comprised of 15-minutes interval consumption values (i.e., five aggregated 3-minutes values).253

After generating the predictor matrix for the model estimation, the optimal λ is found in a K-fold254

cross-validation. Here, K is set to 10. The sequence of λ-values that is tested via cross-validation is of255

length L = 100 and is constructed by calculating the minimum λ-value as a fraction of the maximum256

λ-value (λmin = ελmax, where λmax is such that all β-coefficients are set equal to zero) and moving257
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along the log-scale from λmax to λmin in L steps. However, the glmnet algorithm uses early-stopping258

to reduce computing times if the percent of null deviance explained by the model with a certain λ259

does not change sufficiently from one to the next λ-value. The cross-validation procedure identifies260

the biggest λ that is still within one standard deviation of the λ with the lowest mean absolute error.261

The final coefficients for each household are then computed by solving Equation 6 for the complete262

predictor matrix. Thereafter, the predictions are made on the testing data. For this, again, the time263

series was sliced according to the sliding window of length n = 3,360 skipping 5 data points and264

written into a predictor matrix. This matrix comprises data from 01.10.2017 00:00 to 01.01.2018 00:00265

(i.e., 8,836 cases of 3,360 lagged values), resulting again in 8,836 predicted values as in the case of the266

LSTM approach. The predictions on all data sets are assessed using the error measures described in267

Section 2.4 and saved for the evaluation of the prediction in the context of the LEM market mechanism.268

Procedure 2 Cross-validated selection of λ for LASSO and prediction.
1: Initiate prediction matrix P and list for error measures Θ.

2: for Household i in data set pool I do

3: Load data set Ψi .

4: Generate target values y by aggregating data to 15-min intervals.

5: Split data set Ψi into training data set Ψi,tr and testing data set Ψi,ts .

6: Generate predictor matrix Mtr by slicing time series Ψi,tr with sliding window.

7: Generate sequence of λ-values {ls}L
s=1.

8: Set number of cross-validation (CV) folds K.

9: Split predictor matrix Mtr into K folds.

10: for k in K do

11: Select fold k as CV testing set and folds j 6= k as CV training set.

12: for each ls in {ls}L
s=1 do

13: Compute vector β̂k,ls on CV training set.

14: Compute mean absolute error Λk,ls on CV testing set.

15: end for.

16: end for.

17: For each β̂k,ls calculate average mean absolute error Λ̄s across the K folds.

18: Select cross-validated λ-value lCV
s with the highest regularization (min no. of non-zero β-coeff.) within one SD of the minimum Λ̄s .

19: Compute β̂lCV
s

on complete predictor matrix Mtr .

20: Generate predictor matrix Mts by slicing time series Ψi,ts with sliding window.

21: Generate predictions ŷi from predictor matrix Mts and coefficients β̂lCV
s

.

22: Calculate error measures Θi to assess performance.

23: Write prediction vector ŷi into column i of matrix P.

24: end for.

25: Save matrix P.

26: End.

2.4. Error measures269

Forecasting impreciseness is measured by a variety of norms. The L1-type MAE is defined as the270

average of the absolute differences between the predicted and true values [37]:271

MAE =
1
N

N

∑
t=1
|x̂t − xt| , (7)

where N is the length of the forecasted time series, x̂t the forecasted value and xt the observed272

value. As MAE is only a valid error measure if one can assume that for the forecasted distribution the273

mean is equal to the median (which might be too restrictive), an alternative is the square root of the274

average squared differences [29,38]:275

RMSE =

√√√√ 1
N

N

∑
t=1

(x̂t − xt)
2. (8)
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Absolute error measures are not scale independent, which makes them unsuitable to compare276

the prediction accuracy of a forecasting model across different time series. Therefore, they are277

complemented with the percentage error measures MAPE and NRMSE normalized by the true value:278

MAPE =
100
N

N

∑
t=1

∣∣∣∣ x̂t − xt

xt

∣∣∣∣ , (9)

and279

NRMSE =

√√√√100
N

N

∑
t=1

(
x̂t − xt

xt

)2
. (10)

However, as [39] point out, using xt as denominator may be problematic as the fraction x̂i−xi
x̄t

280

is not defined for xt = 0. Therefore, time series containing zero values cannot be assessed with this281

definition of the MAPE and NRSME.282

To overcome the shortage of an undefined fraction in the presence of zero values in the case of283

MAPE and NRMSE, the mean absolute scaled error (MASE) as proposed by [39] is used. That is, MAE284

is normalized with the in-sample mean absolute error of the persistence model forecast:285

MASE =
MAE

1
n−1 ∑N

t=2 |xt − xt−1|
. (11)

In summary, in the present research, the forecasting performance of the LSTM RNN and the286

LASSO were evaluated using MAE, RMSE, MAPE, NRMSE, and MASE.287

2.5. Market simulation288

We use a market mechanism with discrete closing times in 15-minutes intervals. Each consumer289

and each prosumer submit one order per interval and the asks and bids are matched in a closed double290

auction that yields a single equilibrium price. The market mechanism is implemented in R. This allows291

for a flexible and time-efficient analysis of the market outcomes with and without prediction errors.292

The simulation of the market mechanism follows five major steps: First, the consumption and293

production values of each market participant per 15-minutes interval from 01.10.2017 00:00 to 01.01.2018294

00:00 are retrieved. These values are either the true values as yielded by the aggregation of the raw295

data or the prediction values as estimated by the best performing prediction model. Second, for each296

market participant a zero-intelligence limit price is generated by drawing randomly from the discrete297

uniform distribution U{12.31, 24.69}. The lower bound is the German feed-in tariff of 12.31 EURct
kWh298

and the upper bound is the average German electricity price in 2016 of 28.69 EURct
kWh [40]. This agent299

behaviour has been shown to generate efficient market outcomes in double auctions [41] and is rational300

in so far as electricity sellers would not accept a price below the feed-in tariff and electricity buyers301

would not pay more than the energy utility’s price per kWh. However, this assumes that the agents302

do not consider any non-price related preferences, such as strongly preferring local renewable energy303

[6]. Third, for each trading slot (i.e., every 15-minutes interval), the bids and asks are ordered in304

price-time precedence. Given the total supply is lower than the total demand, the lowest bid price305

that can still be served determines the equilibrium price. Given the total supply is higher than the306

total demand, the overall lowest bid price determines the equilibrium price. In the case of over- or307

undersupply, the residual amounts are traded at the feed-in (12.31 EURct
kWh ) or the regular household308

consumer electricity tariff (28.69 EURct
kWh ) with the energy utility. Fourth, the applicable price for each bid309

and ask is determined and the settlement amounts, resulting from this price and the energy amount310

ordered, are calculated. In the case of using predicted values for the bids, there was an additional311

fifth step: After the next trading period, when the actual energy readings are known, any deviations312

between predictions and true values are settled with the energy utility using the feed-in or household313

consumer electricity tariff. This leads to correction amounts that are deducted or added to the original314
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settlement amounts. For the market simulation, perfect grid efficiency and, hence, no transmission315

losses are assumed.316

3. Data317

The raw data used for the present research was provided by Discovergy GmbH and is available at318

BLEMdata, hosted at GitHub. Discovergy describes itself as a full-range supplier of smart metering319

solutions offering transparent energy consumption and production data for private and commercial320

clients [42]. To be able to offer such data-driven services, Discovergy smart meters record energy321

consumption and production near real-time – i.e., in 2-seconds intervals – and send the readings to322

Discovergy’s servers for storage and analysis. Therefore, Discovergy has extremely high resolution323

energy data of their customers at their disposal. This high resolution is in stark contrast to the324

half-hourly or even hourly recorded data used in previous studies on household energy forecasting325

[e.g., 21,23,43,44]. To our knowledge, there is no previous research using Discovergy smart meter data,326

apart from [45] that used the data as simulation input but not for analysis or prediction.327

The data comes in 200 individual data sets each containing the meter readings of a single smart328

meter. 100 data sets belong to pure energy consumers and 100 data sets belong to energy prosumers329

(households that produce and consumer energy). The meter readings are aggregated to 3-minutes330

intervals and range from 01.01.2017 00:00 to 01.01.2018 00:00. This translates into 175,201 observations331

per data set. Each observation consists of the total cumulative energy consumption and the total332

cumulative energy production from the date of installation until time t, current power over all phases333

installed in the meter at time t and a timestamp in Unix milliseconds.334

For the further analysis, the power readings were dropped and the first differences of the335

energy consumption and production readings were calculated. These first differences are equivalent336

to the energy consumption respectively production within each 3-minutes interval between two337

meter recordings. The result of this computation leaves each data set with two time series (energy338

consumption and energy production) and 175,200 observations.339

Out of the 100 consumer data sets, five exhibited non-negligible shares of zero consumption340

values leading to their exclusion. One consumer data set was excluded as the consumption time341

series was flat for the most part of 2017 and one consumer was excluded due to very low and stable342

consumption values with very rare, extreme spikes. Four more consumers were excluded due to343

conspicuous regularity in daily or weekly consumption patterns. Lastly, one consumer was excluded344

not due to peculiarities in the consumption patterns but due to missing data. As the inclusion of345

this shorter time series would have led to difficulties in the forecasting algorithms, this data set was346

excluded as well.347

Out of the 100 prosumer data sets, 86 were excluded due to zero total net energy production in348

2017. These “prosumers" would not act as prosumers in an LEM as they would never actually supply349

a production surplus to the market. Of the remaining 14 prosumer data sets, one prosumer data set350

was excluded because the total net energy, it fed into the grid in 2017, was just 22 kWh. Additionally,351

one prosumer data set was excluded as it only fed energy into the grid in the period from 06.01.2017 to352

19.01.2017. For all other measurement points the net energy production was zero.353

All in all, 88 consumer and 12 prosumer data sets remained for the analysis. All data sets include354

a timestamp and the consumption time series for consumers respectively the production time series355

for prosumers with a total of 175,200 data points each.356

4. Results357

4.1. Evaluation of the prediction models358

Three prediction methods were used to forecast the energy consumption of 88 consumer359

households 15 minutes ahead: a benchmark model, a LSTM RNN model, and a LASSO based360

regression. All three prediction models were compared and evaluated using the error measures361

https://github.com/QuantLet/BLEM/tree/master/data
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presented in Section 2.4. The performance of the prediction models was tested on a quarter of362

the available data. That is, the prediction models were fitted on the consumption values from363

01.01.2017 00:00 to 30.09.2017 00:00 which is equivalent to 131,040 data points per data set. For364

all 88 consumer data sets, the models were fitted separately resulting in as many distinct LASSO365

and LSTM prediction models. The fitted models were then used to make energy consumption366

predictions in 15-minutes intervals for each household individually on the data from 01.10.2017 00:00367

to 01.01.2018 00:00. This equates to 8,836 predicted values per data set per prediction method.368

Figure 1 displays the total sum of over- and underestimation errors of each prediction method369

per data set.370
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Figure 1. Sum of total over- and underestimation errors of energy consumption per consumer data set
and prediction model. BLEMplotPredErrors

https://github.com/QuantLet/BLEM/tree/master/BLEMplotPredErrors
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The LASSO technique achieved overall lower total sums of errors than the benchmark model.371

Notably, the sum of underestimation errors is higher across the data sets than the sum of overestimation372

errors. This points towards a general tendency of underestimating sudden increases in energy373

consumption by the LASSO technique. The LSTM model on the other hand shows a much higher374

variability in the sums of over- and underestimation errors. By tendency, the overestimation errors375

of the LSTM model were smaller than those of the LASSO and benchmark model. Nevertheless, the376

underestimation is much more pronounced in the case of the LSTM model. Especially, some data377

sets stand out regarding the high sum of underestimation errors. This points towards a much higher378

heterogeneity in the suitability of the LSTM model to predict consumption values depending on the379

energy consumption pattern of the specific data set. The LASSO technique on the other hand seems to380

be more equally well suited for all data sets and their particular consumption patterns.381

The average performance of the three prediction models across all 88 data sets is shown in Table 3.382

As can be seen, LASSO and LSTM consistently outperformed the benchmark model according to MAE,383

RMSE, MAPE, NRMSE and MASE. The LASSO model performed best overall with the lowest median384

error measure scores across the 88 consumer data sets.385

Table 3. Median of error measures for the prediction of energy consumption across all 88 consumer
data sets. BLEMevaluateEnergyPreds

Model MAE RMSE MAPE NRMSE MASE

LSTM 0.04 0.09 22.22 3.30 0.85
LASSO 0.03 0.05 17.38 2.31 0.57
Benchmark 0.05 0.10 27.98 5.08 1.00
Improvement LSTM (in %) 16.21 12.61 20.57 34.98 14.78
Improvement LASSO (in %) 44.02 48.73 37.88 54.61 43.02

Interestingly, there are some consumer data sets which exhibit apparently much harder to predict386

consumption patterns than the other data sets. This is exemplified by the heatmap displayed in Figure 2.387

It confirms that there is quite some variation among the same prediction methods across different388

households. Therefore, one may conclude, that there is no “golden industry standard” approach for389

households’ very short-term energy consumption forecasting. Nevertheless, it is obvious that the390

LASSO model performed best overall. Hence, the predictions on the last quarter of the data produced391

by the fitted LASSO model for each consumer data set will be used for the evaluation of the following392

market simulation.393
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Figure 2. Heatmap of MASE scores for the prediction of consumption values per consumer data set.
BLEMevaluateEnergyPreds

4.2. Evaluation of the market simulation394

The market simulation used the market mechanism of a discrete interval, closed double auction395

to assess the impact of prediction errors on market outcomes. 88 consumers and 12 prosumer data396

sets were available. To evaluate different supply scenarios, the market simulation was conducted397

three times with a varying number of prosumers included. The three scenarios consisted of a market398

simulation with balanced energy supply and demand, a simulation with severe oversupply and399

a simulation with severe undersupply. To avoid extreme and unusual market outcomes over the400

time period of the simulation, two prosumers with high production levels, but long periods of no401

energy production in the simulation period were not included as energy suppliers in the market. The402

https://github.com/QuantLet/BLEM/tree/master/BLEMevaluateEnergyPreds
https://github.com/QuantLet/BLEM/tree/master/BLEMevaluateEnergyPreds


Version June 2, 2019 submitted to Energies 13 of 22

remaining prosumers were in- or excluded according to the desired supply scenario. That is, the403

undersupply scenario comprised six prosumers, the balanced supply scenario additionally included404

one more, and the oversupply scenario included additionally to the balanced supply scenario two405

more prosumers.406

4.2.1. Market outcomes in different supply scenarios407

The difference between supply and demand for each trading period, the equilibrium price of408

each double auction, and the weighted average price – termed LEM price – is shown in Figure 3. The409

LEM price is computed in each trading period as the average of the auctions equilibrium price and the410

energy utilities energy price (28.69 EURct
kWh ) weighted by the amount of kWh traded for the respective411

price. The three graphs below depicting the market outcomes are results of the market simulation with412

true consumption values.413

As can be seen, the equilibrium price shown in the middle panel of Figure 3 moves roughly414

synchronous to the over-/undersupply shown in the upper panel. As there is by tendency more415

undersupply in the balanced scenario (the red line in the upper panel indicates perfectly balanced416

supply and demand), the equilibrium price is in most trading periods close to its upper limit and the417

LEM price is almost always above the equilibrium price. There is by tendency more undersupply418

due to the fact that four of the relevant prosumer data sets are from producers with large capacities419

(> 10 kWh per 15-minutes interval) that dominated the remaining prosumers’ production capacity420

substantially and therefore a more balanced supply scenario could not be created.421

Balanced supply: Market outcomes per trading period with true consumption values
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Figure 3. Market outcomes per trading period simulated with true values and a balanced supply
scenario. BLEMmarketSimulation

https://github.com/QuantLet/BLEM/tree/master/BLEMmarketSimulation
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This observation is in contrast to the oversupply scenario shown in Figure 4. Here, the422

prosumers’ energy supply surpasses the consumers’ energy demand in the majority of trading periods.423

Accordingly, the equilibrium price in each auction is close to the lower limit of the energy utility’s424

feed-in tariff of 12.31 EURct
kWh . Still, trading periods with undersupply lead to visible spikes in the425

equilibrium price which are, as expected, even more pronounced in the LEM price. In all other periods,426

the equilibrium price equals the LEM price as all demand is served by the prosumers and there is no427

energy purchased from the grid.428

Oversupply: Market outcomes per trading period with true consumption values
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Figure 4. Market outcomes per trading period simulated with true values and an oversupply scenario.
BLEMmarketSimulation

Figure 5 shows the market simulation performed in a undersupply scenario. Here, the market429

outcomes are the opposite to the oversupply scenario: The equilibrium prices move in a band430

between 20 EURct
kWh and the upper limit of 28.69 EURct

kWh . The LEM prices are even higher as the deficit431

in supply has to be compensated by energy purchases from the grid. This means, the more severe432

the undersupply, the more energy has to be purchased from the grid, and the more the LEM price433

surpasses the equilibrium price. In summary, one can conclude that the market outcomes are the434

more favourable to consumers, the more locally produced energy is offered by prosumers. Assuming435

a closed double auction as market mechanism and zero-intelligence bidding behaviour of market436

participants, oversupply reduces the LEM prices substantially leading to savings on the consumer437

side. On the other hand, prosumers will favour undersupply in the market as they profit from the438

high equilibrium prices while still being able to sell their surplus energy generation at the feed-in tariff439

without a loss compared to no LEM.440

https://github.com/QuantLet/BLEM/tree/master/BLEMmarketSimulation
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Undersupply: Market outcomes per trading period with true consumption values
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Figure 5. Market outcomes per trading period simulated with true values and an undersupply scenario.
BLEMmarketSimulation

4.2.2. Loss to consumers due to prediction errors441

To assess the adverse effect of prediction errors on market outcomes, the LASSO-predicted energy442

consumption values per 15-minutes interval are used. The predictions of the model served as order443

amounts in the auction bids. After the true consumption in the respective trading period was observed,444

payments to settle over- or underestimation errors were made. That is, if a consumer bid with a higher445

amount than actually consumed, it still bought the full bid amount from the prosumers but had to sell446

the surplus to the energy utility over the grid at the feed-in tariff. On the other hand, if a consumer bid447

with a lower amount than actually consumed, it bought the bid amount from the prosumers but had to448

purchase the surplus energy consumption from the grid at the energy utility’s tariff. Thus, prediction449

errors are costly as the consumer always has to clear the order at less favourable conditions than the450

equilibrium price provides.451

Table 4 contrasts the results of the market simulation with true consumption values with the452

results of the market simulation with predicted consumption values in three different supply scenarios.453

The equilibrium and LEM prices almost do not differ within the three scenarios whether the true or454

predicted consumption values are used. The prices between the scenarios, however, differ substantially.455

The average total revenue over the three-month simulation period of prosumers is largely unaffected456

by the use of true or predicted consumption values. This is not surprising as the revenue is a function of457

the equilibrium price, which is apparently largely unaffected by whether true or predicted consumption458

values are used, and the electricity produced, which is obviously completely unaffected by whether459

true or predicted consumption values are used.460

https://github.com/QuantLet/BLEM/tree/master/BLEMmarketSimulation


Version June 2, 2019 submitted to Energies 16 of 22

Table 4. Average results of the market simulation for three different supply scenarios. Prices are
averaged across all trading periods. Revenues and costs for the whole simulation period are averaged
across all prosumers and consumers respectively. BLEMevaluateMarketSim

Mean Balanced supply Oversupply Undersupply
true predicted true predicted true predicted

Equilibrium price (in EURct) 24.64 24.61 12.50 12.49 25.68 25.69
LEM price (in EURct) 27.31 27.28 12.51 12.49 28.08 28.10
Revenue (in EUR) 1113.84 1108.88 3454.62 3451.69 1035.90 1036.12
Cost with LEM (in EUR) 439.26 457.94 200.75 226.61 451.60 470.69
Cost without LEM (in EUR) 459.83 446.93 459.83 446.93 459.83 446.93

What differs according to Table 4, however, is the cost for consumers. The cost without the LEM is461

on average across all consumers smaller when using predicted consumption values compared to using462

true consumption values. This can be explained by the LASSO model’s tendency to underestimate on463

the data at hand and because correction payments for the prediction errors are not factored into this464

number. The average total cost for electricity consumption in the whole simulation period is with an465

LEM higher when using predicted consumption values compared to using true consumption values.466

This is due to the above-mentioned need to settle prediction errors at unfavourable terms.467

The percentage loss induced by prediction errors is shown in Table 5. Depending on the supply468

scenario it ranges between abound 4.8 % and 13.75 %. These numbers have to be judged relative to469

the savings that are brought to consumers by the participation in an LEM. It turns out, that in the470

balanced supply scenario, the savings due to the LEM are almost completely offset by the loss due to471

prediction errors. As consumers profit more from an LEM, the lower the equilibrium prices are, this is472

not the case in the oversupply scenario. Here, the savings are substantial and amount to about 130 %473

which is almost ten times more than the percentage loss due to the prediction errors. However, the474

problem of the settlement structure for prediction errors becomes very apparent in the undersupply475

scenario. Here, the savings due to an LEM are more than offset by the loss due to prediction errors.476

Consequently, consumers would be better off not participating in an LEM.477

Table 5. Average savings for consumers due to the LEM and average loss for consumers due to
prediction errors in the LEM. BLEMevaluateMarketSim

Mean Balanced supply Oversupply Undersupply

Cost without LEM (in EUR) 459.83 459.83 459.83
Cost predicted values (in EUR) 457.94 226.61 470.69
Cost true values (in EUR) 439.26 200.75 451.60
Savings due to LEM (in %) 4.82 129.08 1.90
Loss due to pred. errors (in %) −4.80 −13.75 −4.76

This result is visualized in a more differentiated way in Figure 6. The figure shows for each478

supply scenario, for each consumer, the total energy cost over the whole simulation period in (1) no479

LEM, (2) an LEM with the use of predicted consumption values, and (3) an LEM with the use of true480

consumption values. For each supply scenario the lower panel shows the percentage loss due to not481

participating in the LEM and the loss due to participating and using predicted consumption values482

compared to participating and using true consumption values. In the balanced scenario there are483

some consumers who would make a loss due to the participation in the LEM and relying on predicted484

values.485

https://github.com/QuantLet/BLEM/tree/master/BLEMevaluateMarketSim
https://github.com/QuantLet/BLEM/tree/master/BLEMevaluateMarketSim
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Figure 6. Total energy cost to consumers from 01.10.2018 to 31.12.2017 in case of no LEM, LEM with true
values, and LEM with predicted values in three different supply scenarios. BLEMevaluateMarketSim

For them, the loss due to no LEM (yellow bar) is smaller than the loss due to prediction errors486

(green bar). However, there are also 56 out of 88 consumer (i.e., 64 %) which profit from the participation487

in the LEM despite the costs induced by prediction errors. Due to the much lower equilibrium prices488

in the oversupply scenario, the LEM participation here is, despite prediction errors, profitable for all489

consumers. However, even in this scenario, the savings for the consumers are diminished by more490

than 10 % which is quite substantial. In contrast, in the undersupply scenario, the loss due to the491

prediction errors leaves the participation in the LEM for almost all consumers unprofitable. Merely492

three consumers would profit and have lower costs in an LEM, despite prediction errors, than without493

an LEM.494

https://github.com/QuantLet/BLEM/tree/master/BLEMevaluateMarketSim
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Overall, it becomes clear that prediction errors significantly lower the economic profitability of an495

LEM for consumers. This, however, is often argued to be one of the main advantages of LEMs. The496

result is especially concerning in LEMs where locally produced energy is undersupplied. Here – still497

assuming the closed double auction market mechanism and zero-intelligence bidding strategies – the498

savings from the participation in the LEM are marginal. Therefore, the costs induced by prediction499

errors mostly outweigh the savings from the participation. This results in an overall loss for consumers500

due to the LEM, which makes the participation economically irrational. Only in cases of substantial501

oversupply, the much lower equilibrium price, compared to the energy utility’s price, compensates for502

the costs from prediction errors.503

In conclusion, this means that LEMs with a discrete interval, closed double auction as market504

mechanism and a prediction error settlement structure as proposed in [6] combined with the prediction505

accuracy of state-of-the-art energy forecasting techniques require substantial oversupply in the LEM506

for it to be beneficial to consumers.507

4.3. Implications for blockchain-based local energy markets508

In light of these results, it remains open to derive implications and to propose potential509

adjustments for an LEM market mechanism. After all, there are substantial advantages of LEMs510

which have been established in various studies and still make LEMs an attractive solution for the511

challenges brought about by the current energy transition. Adjustments mitigating the negative effect512

of prediction errors on the profitability of LEMs could address one or more of the following areas: first,513

the forecasting techniques employed, second, the demand and supply structure of the LEM, and third,514

the market mechanism used in the blockchain-based LEM.515

The first and most intuitive option is to improve the forecasting accuracy with which the516

predictions, that serve as the basis of bids and asks, are made. For example, a common approach to517

reduce the bias of LASSO-based predictions are post-LASSO techniques such as presented by [46].518

However, this results in only small corrections. Thus, the most obvious way to achieve a substantial519

improvement is the inclusion of more data. More data may hereby refer either to a higher resolution520

of recorded energy data or to a wider range of data sources such as behavioural data of household521

members or data from smart appliances. A higher resolution of smart meter readings is already easily522

achievable. The smart meters installed by Discovergy that also supplied the data for the present523

research are capable of recording energy measurements up to every two seconds. However, data at524

such a fine granularity requires substantial data storage and processing capacities which are unlikely525

to be available in an average household. Especially, the training of prediction models with such vast526

amounts of input data points is computationally very resource intensive. The potential solution of527

outsourcing this, however, introduces new data privacy concerns that are already a sensible topic in528

smart meter usage and blockchain-based LEMs [e.g., 8,47]. The inclusion of behavioural data into529

prediction models such as the location of the person within their house and the inclusion of smart530

appliances’ energy consumption (as done by [22]) and running schedules raises important privacy531

concerns as well. Pooling and using energy consumption data of several households, as done by [23],532

again introduces privacy concerns as it implies data sharing between households, which in relatively533

small LEMs cannot be guaranteed to preserve the anonymity of market participants. For all these534

reasons, it seems unlikely that in the near future qualitative jumps in the prediction accuracy of very535

short-term household energy consumption or production of individual households will be available.536

The second option addresses the demand and supply structure in the blockchain-based LEM.537

As was shown in Section 4.2, the cost induced by prediction errors and their settlement is more than538

compensated in an oversupply scenario. Hence, employing LEMs only in a neighbourhood in which539

energy production surpasses energy consumption would mitigate the problem of unprofitability due540

to prediction errors as well. Where this is not possible, participation to the LEM could be restricted,541

such that oversupply in a majority of trading periods is ensured. However, this might end up in542
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a market manipulation that most likely makes most of LEMs’ advantages obsolete. Moreover, it is543

unclear on what basis the restriction to participate in the market should be grounded.544

The third option to mitigate the problem is the market mechanism and the prediction error545

settlement structure. A simple approach to reduce forecasting errors is to decrease the forecasting546

horizon. Thus, instead of having 15-minutes trading periods which also require 15-minutes ahead547

forecast, the trading periods could be shrunk to just 3 minutes. This would increase the forecasting548

accuracy, and thereby, lead to lower costs due to the settlement of prediction errors. However, in549

a blockchain-based LEM, more frequent market closings come at the cost of more computational550

resources needed for transaction verification and cryptographic block generation. Depending on the551

consensus mechanism used for the blockchain, the energy requirements for the computations, that552

secure transactions and generate new blocks, may be substantial. This, of course, is rather detrimental553

to the idea of promoting more sustainable energy generation and usage. Nevertheless, using consensus554

mechanisms based on identity verification of the participating agents may serve as a less computational,555

and thus energy intensive alternative, which might make shorter trading intervals reasonable. Another,556

more radical approach might be to change the market mechanism of closed double auctions altogether557

and use an exposed market instead. Hereby, the energy consumption and production is settled in an558

auction after the true values are known, instead of in advance. This means, market participants submit559

just limit prices in their bids and asks without related amounts and the offers are matched in an auction560

in regular time intervals. Then, the electricity actually consumed and produced in the preceding period561

is settled according to the market clearing price. Related to this approach is a solution, where bidding562

is based on forecasted energy values, while the settlement is shifted by one period such that the actual563

amounts can be used for clearing. This approach, however, may introduce the possibility of fraud and564

market manipulation as agents can try to deliberately bid using false amounts. While in the smart565

contracted developed by [6] funds needed to back up the bid are held as pledges until the contract is566

settled (this ensures the availability of the necessary funds to pay the bid), this would be senseless,567

if settlement is only based on actual consumption without considering the amount specified in the568

offer. However, the extent of this problem and ways to mitigate it should be assessed from a game569

theoretical perspective that is out of scope of the present research.570

All in all, prediction errors have to be taken into account for future designs of blockchain-based571

LEMs. Otherwise, they may substantially lower the profitability and diminish the incentive to572

participate in an LEM for consumers. Also, the psychological component of having to rely on an573

unreliable prediction algorithm that may be more or less accurate depending on the household’s574

energy consumption patterns seems unattractive. Even though possible solutions are not trivial and575

each come with certain trade-offs, there is room for future improvement of the smart contracts and the576

market mechanism they reproduce.577

5. Conclusion578

The present research had the objectives (1) to evaluate the prediction accuracy achievable for579

household energy consumption with state-of-the-art forecasting techniques, (2) to assess the effect of580

prediction errors on an LEM that uses a closed double auction with discrete time intervals as market581

mechanism, and (3) to infer implications based on the results for the future design of blockchain-based582

LEMs.583

In the performance assessment of currently used forecasting techniques, the LASSO model yielded584

the best results with an average MAPE across all consumer data sets of 17 %. It was subsequently585

used to make predictions for the market simulation. The evaluation of the market mechanism and586

prediction error settlement structure revealed that in a balanced supply and demand scenario the587

costs of prediction errors almost completely offset savings brought by the participation in the LEM.588

In an undersupply scenario, the cost due to prediction errors even surpassed the savings and made589

market participation uneconomical. The most promising approach to mitigate this problem seemed to590

be adjustment of the market design, which can be two-fold: Either shorter trading periods could be591
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introduced which would reduce the forecasting horizon, and therefore, prediction errors or the auction592

mechanism could be altered to not use predicted consumption values to settle transactions.593

For the present research, data from a higher number of smart meters and more context information594

about the data would have been desirable. Also, the large-scale differences in the production capacities595

of the prosumers, contained in the data, complicated the analysis of the market simulation further.596

Additionally, it is to mention that the market simulation did not account for taxes or fees, especially597

grid utilization fees, which can be a substantial share of the total electricity cost of households. The598

simulation also did not take into account compensation costs for blockchain miners that reimburses599

them for the computational cost they bear.600

Evidently, future research concerned with blockchain-based LEMs should take into account the601

potential cost of prediction errors. Furthermore, to our knowledge there has been no simulation of602

a blockchain-based LEM with actual consumption and production data conducted. Doing so on a603

private blockchain with the market mechanism coded in a smart contract should be the next step for604

the assessment of potential technological and conceptual weaknesses.605

In conclusion, previous research has shown that blockchain technology and smart contracts606

combined with renewable energy production can play an important role in tackling the challenges of607

climate change. The present research, however, emphasizes that advancement on this front cannot be608

made without a holistic approach that takes all components of blockchain-based LEMs into account.609

Simply assuming that reasonably accurate energy forecasts for individual households will be available610

once the technical challenges of implementing an LEM on a blockchain are solved, may steer research611

into a wrong direction and bears the risk of missing the opportunity to quickly move into the direction612

of a more sustainable and less carbon-intensive future.613
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Alexander J. Dautel, Wolfgang K. Härdle, Stefan Lessmann, Hsin-Vonn Seow, March
2019.

009 ”Dynamic Network Perspective of Cryptocurrencies” by Li Guo, Yubo Tao, Wolfgang
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