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 PORTMANTEAU TEST AND SIMULTANEOUS INFERENCE

 FOR SERIAL COVARIANCES

 Han Xiao and Wei Biao Wu

 Rutgers University and The University of Chicago

 Abstract: The paper presents a systematic theory for asymptotic inferences based
 on autocovariances of stationary processes. We consider nonparametric tests for se
 rial correlations using the maximum (or C°°) and the quadratic (or £?) deviations
 of sample autocovariances. For these cases, with proper centering and rescaling,
 the asymptotic distributions of the deviations are Gumbel and Gaussian, respec
 tively. To establish such an asymptotic theory, as byproducts, we develop a normal
 comparison principle and propose a sufficient condition for summability of joint
 cumulants of stationary processes. We adapt a blocks of blocks bootstrapping pro
 cedure proposed by Kiinsch (1989) and Liu and Singh (1992) to the C°° based tests
 to improve the finite-sample performance.

 Key words and phrases: Autocovariance, blocks of blocks bootstrapping, Box-Pierce
 test, extreme value distribution, moderate deviation, normal comparison, physical
 dependence measure, short range dependence, stationary process, summability of
 cumulants.

 1. Introduction

 For a real-valued stationary process {Xi}ie, from a second-order inference
 point of view it is characterized by its mean μ = Ε Xi and the autocovariance
 function jk = Ε [(Ao — μ)(Χ}ζ — μ)], k 6. Assume μ = 0. Given observations
 X\,... ,Xn, the natural estimates of 7fc and the autocorrelation rk = 7^/70 are

 ^ η
 7k = - Σ Xi-\k\Xi and h = 1 — n<fc<n — 1, (1.1) η 1 1 7o i=\k\+l ,u

 respectively. The estimator 7% plays a crucial role in almost every aspect of time
 series analysis. It is well-known that for linear processes with independent and
 identically distributed (iid) innovations, under suitable conditions, —Ik) =>
 Λ/"(0,τ|), where =7 stands for convergence in distribution, A/*(0, r|) denotes the
 normal distribution with mean zero and variance r|. Here r| can be calculated
 by Bartlett's formula (see Section 7.2 of Brockwell and Davis (1991)). Other con
 tributions on linear processes include Hannan and Heyde (1972), Hannan (1976),
 Hosoya and Taniguchi (1982), Anderson (1991), and Phillips and Solo (1992) etc.
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 578 HAN XIAO AND WEI BIAO WU

 Romano and Thombs (1996) and Wu (2009) considered the asymptotic normality
 of 77 for nonlinear processes. As a primary goal of the paper, we study asymp
 totic properties of the quadratic (or C2) and the maximum (or C°°) deviations
 of 7fc

 1.1. The C2 theory

 Testing for serial correlation has been extensively studied in both statistics
 and econometrics, and it is a standard diagnostic procedure after a model is
 fitted to a time series. Classical procedures include Durbin and Watson (1950,
 1951), Box and Pierce (1970), Robinson (1991), and their variants. For a general
 account of model diagnostics for time series, see Li (2003). The Box-Pierce
 portmanteau test uses Qk = η J2k=i 7"'fc as the test statistic, and rejects if it
 lies in the upper tail of χ2κ distribution. An arguable deficiency of this test
 and many of its modified versions (for a review see for example Escanciano and
 Lobato (2009)) is that the number of lags Κ included in the test is held as a
 constant in the asymptotic theory. As commented by Robinson (1991):

 "...unless the statistics take account of sample autocorrelations at long
 lags there is always the possibility that relevant information is being
 neglected..."

 The problem is particularly relevant if practitioners have no prior information
 about the alternatives. The incorporation of more lags emerged naturally in the
 spectral domain analysis; see among others Durlauf (1991), Hong (1996), and Deo
 (2000). The normalized spectral density /(α;) = (27γ)_1 77 cos(ku) is (27t)_1
 when the serial correlation is not present. Let f(oj) = -n h(k/sn)rk cos(few)
 be the lag-window estimate of the normalized spectral density, where h(-) is a
 kernel function and sn is the bandwidth satisfying sn —» 00, including correlations

 at large lags, and sn/n —> 0. A test for the serial correlation can be obtained by
 comparing / and the constant function f(u) = (2π)-1 using a suitable metric.
 In particular, using the quadratic metric and rectangle kernel, the resulting test
 statistic is the Box-Pierce statistic with unbounded lags. Hong (1996) established
 that

 ~w= (n Σ^ ~rfc)2 ~Sn) ^ ^(°> -1)' (L2)
 under the condition that the X% are iid, which implies that all the 77 here are
 zero. Lee and Hong (2001) and Duchesne, Li, and Vandermeerschen (2010)
 studied similar tests in the spectral domain, but using a wavelet basis instead
 of trigonometric polynomials in estimating the spectral density and henceforth
 working on wavelet coefficients. Fan (1996) considered a similar problem in a dif
 ferent context and proposed the adapative Neyman test and thresholding tests,
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 using maxi<fc<Sn(Qfc — k)/y/2k and nY^L1r^I{\fk\ > δ) as test statistics, re
 spectively, where δ is a threshold value. Escanciano and Lobato (2009) proposed
 to use QSn with sn being selected by AIC or BIC.

 Whether the iid assumption in Hong (1996) can be relaxed has been an
 important and difficult problem. Similar problems have been studied by Durlauf

 (1991), Deo (2000) and Hong and Lee (2003) for the case that Xi are martingale
 differences. Recently Shao (2011) showed that (1.2) is true when {Xi} is a
 general white noise sequence, under the geometric moment contraction (GMC)
 condition. Since the GMC condition, which implies that the autocovariances
 decay geometrically, is quite strong, the question arises as to whether it can be
 replaced by a weaker one. Paparoditis (2000) considered a closely related problem
 in the spectral domain, and derived the limiting distribution of the integrated
 squared deviation of the ratio between the periodogram and the true spectral
 density from one; a distinguished feature is that the underlying process is a
 dependent linear process. To the best of our knowledge, there has been no results
 if the serial correlation is present in (1.2). This paper addresses these questions
 and substantially generalizes earlier results. We prove that (1.2) remains true
 even if some or all of the are not zero. The variance of the limiting distribution
 now depends on the values of rk- Our result holds for general stationary processes

 and allows the autocovariances to decay algebraically, extending the applicability
 of (1.2). It also helps to understand the joint behavior of sample autocovariances,
 and can be used to construct confidence regions. We also consider a closely related

 problem on the limiting distribution of r\ when serial correlation is present,
 which enables us to calculate the asymptotic power of the Box-Pierce test with
 unbounded lags.

 1.2. The CP° theory

 A natural choice is to use the maximum autocorrelation as the test statistic.

 Wu (2009) obtained a stochastic upper bound for

 y/n max \% -'Jkl (1-3)
 1 <k<Sn

 and argued that in certain situations the test based on (1.3) has a higher power
 than the Box-Pierce tests with unbounded lags in detecting weak serial corre
 lation. It turns out that the uniform convergence of autocovariances is also
 closely related to the estimation of orders of ARMA processes or linear sys
 tems in general. The pioneer works in this direction were by E. J. Hannan and
 his collaborators, see for example Hannan (1974) and An, Chen, and Hannan
 (1982). For a summary of these works see Hannan and Deistler (1988) and the
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 references therein. In particular, An, Chen, and Hannan (1982) showed that if
 sn = 0[(logn)a] for some a < oo, then with probability one

 y/n max \% - -yk\ = Ο (log log η). (1.4)
 1 <k<sn

 The question of deriving the asymptotic distribution of (1.3) is more chal
 lenging. Although Wu (2009) was not able to obtain the limiting distribution,
 his work provided insights into this problem. Assuming kn —> oo, kn/n —> 0 and
 h > 0, he showed that, for Τk = \/n(% — Ε%),

 (Tkn , Tkn+hf M 0,
 Co &h

 C/ι Co j , where = Σ lklk+h, (1-5) 'J fee

 and we use the superscript Τ to denote the transpose of a vector or a matrix.
 The asymptotic distribution in (1.5) does not depend on the speed that kn —> oo.
 It suggests that, at large lags, the covariance structure of (Tk) is asymptotically
 equivalent to that of the Gaussian sequence

 (Gk) (1-6)
 ie

 where t^'s are iid standard normal random variables. Let

 an = (2logn)-1/2 and bn = (21ogn)1//2 — (81ogn)~1,/2(loglogn-tTog47r). (1.7)

 According to Berman (1964) (also see Theorem 5), under the condition limn_J.00
 Ε (GoGn) log η = 0,

 lim PI max IGA < Jâô(a2sx + b2s) ) = exp{-exp(-x)}.
 s->cx) V l<i<s /

 Wu (2009) conjectured that under suitable conditions, one has the Gumbel con
 vergence

 lim PI max \Tk\ < y/o^(a2Sn x + b2sn) ] = exp{-exp(-x)}. (1.8)
 n->oo \ 1 <k<sn '

 The law with the distribution function exp{—exp(—x)} is called the extreme
 value distribution of type lor Gumbel distribution. In a recent work, Jirak (2011)
 proved this conjecture for linear processes and for sn growing with at most loga
 rithmic speed. We prove (1.8) in Section 4 for general stationary processes, and
 our result allows sn to grow as sn = 0(ηη) for some 0 < η < 1, with η arbitrarily
 close to 1, under appropriate moment and dependence conditions. This result
 substantially relaxes the severe restriction on the growth speed in (1.4) and in
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 INFERENCE FOR SERIAL COVARIANCES 581

 Jirak (2011). The distributional convergence is more useful for statistical infer
 ence. For example, other than testing for serial correlation, (1.8) can be used to
 construct simultaneous confidence intervals of autocovariances. We also extend

 (1.4) for general stationary processes with the maximum taken over the range
 1 < k < n. Other than estimating the order of a linear system, the uniform con
 vergence rate is also useful for bandwidth selection of spectral density estimation,

 see Politis (2003) and Paparoditis and Politis (2012).

 1.3. Relations with the random matrix theory

 In a companion paper, using the asymptotic theory of sample autocovari
 ances developed here, Xiao and Wu (2012) studied convergence properties of es
 timated covariance matrices that are obtained by banding or thresholding. Their
 bounds are analogs under the time series context to those of Bickel and Levina
 (2008b,a). There is an important difference between the two settings: we as
 sume only one realization is available, while Bickel and Levina (2008b,a) require
 multiple iid copies of the underlying random vector.

 There is some work in the random matrix theory literature similar to (1.8).
 Suppose one has η iid copies of a p-dimensional random vector, forming a, ρ χ η

 data matrix X. Let r^·, 1 < i,j < ρ, be the sample correlations. Jiang (2004)
 showed that the limiting distribution of maxi<i<j<p |fy|, after suitable normal
 ization, is Gumbel provided that each column of X consists of ρ iid entries,
 each having finite moment of some order higher than 30, and p/n converges to
 some constant. His work was followed and improved by Zhou (2007) and Liu,
 Lin, and Shao (2008). In a recent article, Cai and Jiang (2011) extended those
 results in two ways: the dimension ρ could grow exponentially as the sample
 size η approaches infinity, under exponential moment conditions; and the test

 statistic max|j_j|>Sre | rtJ | converges to the Gumbel distribution if each column of
 X is Gaussian and is s„-dependent. The latter generalization is important since
 it is one of few results that allow dependent entries. Their method is Poisson
 approximation, see for example Arratia, Goldstein, and Gordon (1989), depend
 ing heavily on the fact that for each sample correlation to be considered, the

 corresponding entries are independent. Schott (2005) proved that Σκί^χρ ?%
 converges to a normal distribution after suitable normalization, under the condi
 tions that each column of X contains iid Gaussian entries and p/n converges to
 some positive constant. His proof depends heavily on the normality assumption.
 Techniques developed in those papers are not applicable here since we have only
 one realization and the dependence structure among the entries can be quite
 complicated.
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 582 HAN XIAO AND WEI BIAO WU

 1.4. A summary of results of the paper

 Our main results are in Section 2, including a central limit theory of (1.2)
 and the Gumbel convergence (1.8). The proofs of the main results are given in
 Section 4. We also report on simulation study in Section 3, where we design
 a simulation-based block of blocks bootstrapping procedure that improves the
 finite-sample performance.

 There is a supplementary file,that contains the proofs of some intermediate
 results used in Section 4, as well as proofs of other theorems and corollaries
 in Section 2. We establish a normal comparison principle in Section S.4 that
 is of independent interest. In Section S.5 we present a sufficient condition for
 summability of joint cumulants that is a commonly used assumption in time
 series analysis. Some auxiliary results are proved in Section S.6.

 2. Main Results

 To develop an asymptotic theory for time series, it is necessary to impose
 suitable measures of dependence and structural assumptions for the underlying
 process {Ai}· Here we adopt the framework of Wu (2005). Assume that {Xt} is
 a stationary causal process of the form

 Xi =g(··· ,«i-i,ei), (2.1)

 where ei,i G, are iid random variables, and g is a measurable function for which
 Xi is a properly defined random variable. We define an operator Qk as follows.
 Suppose X = 1,...) is a random variable which is a function of the
 innovations eh I < j, then Qk(X) := h(tj,ek+i, e'k, ek-i, ■ ■.), where (e'k)ke is
 an iid copy of (ek)kç. Here ek in the definition of X is replaced by e'k.

 For a random variable X and ρ > 0, we write X G CP if ||X\\p := (E \X\p)l/p
 < oo. In particular, use ||X|| for the £2-norm ||A||2· Assume X{ G Cp, ρ > 1.
 Define the physical dependence measure of order ρ as

 Sp(i) = \\Xi - n0(Xi)\\p, (2.2)

 which quantifying the dependence of Xi on the innovation cq. Our main results

 depend on the decay rate of δρ(ί) as i -» oo. Let p' = min(2,p) and define

 a W

 ®p(n) = Σ φρ(«) = (Σ δρ(*)Ρ') P '
 i=n i=n (23)

 Δρ(η) =
 i=0
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 INFERENCE FOR SERIAL COVARIANCES 583

 where Cp is (ρ — l)-1 when 1 < ρ < 2, and \Jp — 1 when ρ >2. It is easily seen
 that Φρ(·) < θρ(·) < Δρ(·). We use θρ, Φρ, and Δρ as shorthands for θρ(0),
 Φρ(0) and Δρ(0) respectively. We make the convention that 5p(k) — 0 for k < 0.

 There are reasons to use the framework (2.1) and the dependence measure
 (2.2). First, the class of processes (2.1) is large, including linear processes, bi
 linear processes, Volterra processes, and many other time series models. See for
 instance Tong (1990) and Wu (2011). The physical dependence measure is easy to
 work with and is directly related to the underlying data-generating mechanism.
 The framework allows the development of an asymptotic theory for complicated
 statistics of time series.

 2.1. Maximum deviations of sample autocovariances

 Note that % is a biased estimate of 7^ with Ε % = (1 — \k\/n)^k- It is
 convenient to consider the centered version maxi<fc<Sn ^/η\% — Ε%| instead of
 maxi<fc<Sn ^n\% - 7fc|· Recall (1.7) for an and bn.

 Theorem 1. Assume EXi = 0, Xi G CP for some ρ > 4, and Qp(m) = 0(m~a),
 Ap(m) = 0{rn~a ) for some a > a' > 0. If sn satisfies sn —» 00 and sn = 0(ηη)
 with

 Ό

 0 < η < 1, η < a-, and rymin{2(ρ — 2 — ap), (1 — 2a')p} < ρ — 4, (2.4)
 Ζ

 then for all χ G M,

 lim P( max \Vn[% - (1 - -)7fc]| < \^ô(a2sn x + i>2sj) = exp{-exp(-a:)}. n-> 00 \ 1 <k<Sn n J

 (2.5)

 In (2.4), if ρ < 2 + ap or 1 < 2a', then the second and third conditions are
 automatically satisfied, and hence Theorem 1 allows a very wide range of lags
 sn — 0(nv) with 0 < η < 1. In this sense Theorem 1 is nearly optimal.

 For the maximum deviation maxi<fc<n \A/k ~ Ε % | over the range 1 < k <
 n, it seems not possible to derive a limiting distribution by using our method.
 However, we can obtain a sharp bound (n_1 log n)1/2. The upper bound is given
 in (2.7), while the lower bound can be obtained by applying Theorem 1 and
 choosing a sufficiently small η such that (2.4) holds. Using Theorem 2, Xiao and
 Wu (2012) derived convergence rates for the thresholded autocovariance matrix
 estimates.

 Theorem 2. Assume EXi = 0, Xi € Cp for some ρ > 4, and 0p(m) = 0(m~a),
 Ap(m) = 0(m~a') for some a > a' > 0. If

 a>\ or a'P > 2 (2.6) £
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 584 HAN XIAO AND WEI BIAO WU

 then for cp = 6(p + 4) ep/4 K4 Θ4,

 lim p( max \fk - Εγ^Ι < CpJ= 1. (2.7)
 n-> 00 V1 <k<n V η /

 Since Qp(m) > Φρ(τη), we can assume a > a'. For a detailed discussion of
 their relationship, see Remark 6 of Xiao and Wu (2012). It turns out that for
 the special case of linear processes (2.4) can be weakened to

 OLV Ό — 4
 0 < η < 1, η <—, and (1 — 2α)η < . (2.8)

 2 ρ

 See Remark S.l of the supplement. Furthermore, for linear processes (2.6) can
 be relaxed to ap > 2.
 The mean μ = EIo is often unknown and we estimate it by the sample
 mean Xn = (1/n) X)"=1 Xi- The usual estimates of autocovariances and autocor
 relations are

 , n

 lk = - Σ (Xi-k - Xn)(Xi - Xn) and fk = ΤΓ, |fc| < η — 1. (2.9)
 n · Tlili To î=|fc|+l

 Corollary 1. Theorem 1 and Theorem 2 still hold if we replace fk therein by %.
 Furthermore,

 lim Ρ ( max
 n-ioο V 1 <k<sn

 Vn[h-(l--)rk\
 n  < (y^-){a2sn x + b2sj) = exp{— exp(-x)}.

 Ύη / 70

 Proof of Corollary 1. For the fk version of Theorem 1, it suffices to show that

 mgJ,/5a-^)| = oP(—U). (2.10)
 Let Sk = Σι=ι Xi- By Theorem 1 (iii) of Wu (2007), we have ||maxi<fc<n |5fe||| <
 2^02- Since

 n n n—k k

 Σ CXi-k - Xn)(Xi -Xn)~ Σ Xi~kXi = ~x" ΣΧί+Χ"ΈΧί~ kX™
 i=k+1 i=k-1-1 i=1 i=1

 we have (2.10). The proof of the fk version of Theorem 2 is similar. The assertion
 on sample autocorrelations can be proved easily, and details are omitted.

 2.2. Box-Pierce tests

 Box-Pierce tests (Box and Pierce (1970); Ljung and Box (1978)) are com
 monly used in detecting lack of fit of a particular time series model. After a
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 INFERENCE FOR SERIAL COVARIANCES 585

 correct model has been fitted to a set of observations, one would expect the
 residuals to be close to a sequence of iid random variables, and therefore one
 should perform some tests for serial correlations as model diagnostics. Suppose
 {Xi}i<i<n is an iid sequence, let ffc be its sample autocorrelations. Then the
 distribution of Qn(K) := nJ2fc=i is approximately χ2κ. Logically, it is not
 sufficient to consider a fixed number of correlations as the number of observa

 tions increases, because there may be some dependence at large lags. We present
 a normal theory about the Box-Pierce test statistic that allows the number of
 correlations included in Qn to go to infinity.

 Theorem 3. Assume Xi €E C8, Ε Xi = 0 and Y^kLo^^sik) < oo. If sn —» oo
 and sn = 0(nP) for some β < 1, then

 1

 Sn  Σ n(% - (1 - ^bfc)2 - (1 - =>JV(o,2
 k=ι fee

 To see the connection to the Box-Pierce test, we have a result on autocor
 relations. Using the same argument, we can show that the same asymptotic law
 holds for the Ljung-Box test statistic Qlb = n(n + 2) r2K/(n-k).

 Corollary 2. Under the conditions of Theorem 3, the same result holds if % Is
 replaced by 7%. Furthermore,

 Σ n(h - (1 - ^)rk)2 - (1 - I =^(θ,^5>2). (2.11) Sn k= 1

 The main condition of Theorem 3 and Corollary 2 is on how strong the
 dependence is. For example, if Xi = is a linear process, where et are
 i.i.d. with mean zero, then the condition k(iSg(k) < oo is satisfied provided
 Σΐ,ι*:6|otl < oo and Eef < oo. In the previous work, Hong (1996) considered

 i.i.d. processes; Durlauf (1991) and Deo (2000) studied martingale differences and
 required finite eighth moment of the underlying process; Shao (2011) considered
 general white noise whose physical dependence measures decay exponentially
 fast.

 Remark 1. Theorem 3 clarifies an issue in the test of correlations. If 7^ = 0
 for all k > 1, which means Xi are uncorrelated, then σο = 7q and = 0 for all
 |fc| > 1, and (2.11) becomes

 Σ
 Sn fc=1

 nrl - (1 - Î)  λί{0,2). (2.12)

 In an influential paper, Romano and Thombs (1996) argued that, for fixed K, the
 chi-squared approximation for Qn(K) does not hold if XL are only uncorrelated
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 586 HAN XIAO AND WEI BIAO WU

 but not independent. One of the main reasons is that for fixed K, r\
 are not asymptotically independent if Xi are not independent. The situation is
 different if the number of correlations included in Qn can increase to infinity.
 According to (1.5), \fnxkn and y/n%n+h are asymptotically independent if h > 0
 and kn —> oo, because the asymptotic covariance is = 0. Therefore, the
 original Box-Pierce approximation of Qn(sn) by χ2η, with unbounded sn, is still
 asymptotically valid as in (2.12) since (χ2η — sn)/y/s^ =>■ λΓ(0,2) as sn —> oo.
 For example, consider the model Xi = Ζ,Ζ,-γ used in the simulation study of
 Romano and Thombs (1996), where Zi are i.i.d. standard normal. Simulation
 shows that x'2Sn is a reasonably good approximation of ΣΐΣ η'~Γ\ when η = 103
 and sn = 50. This observation again suggests that the asymptotic behaviors
 for bounded and unbounded lags are different. A similar observation has been
 made in Shao (2011), whose result also suggests that (2.12) is true under the
 assumption that ôg(k) = 0(pk) for some 0 < ρ < 1. They also considered
 non-uniform weights of sample autocorrelations by using kernel functions. Our
 condition ΣΙΣι k('8g(k) < oo is much weaker.

 By allowing large sn, the test can be powerful for detecting weak but long
 range persistent correlations. To illustrate, we idealize that the rk are indepen
 dent and normally distributed as fk ~ N(Sk,l/n), where the 5k are small but
 with similar order of magnitude. Then the Box-Pierce tests with small sn may
 fail to reject the null hypothesis Ho \ δχ = ... — 0. However, for large sn, if
 si/2 = o(n"Yfk=i then Hq can be rejected.

 Our next result has two closely related parts, one is on the estimation of
 σο = Ifc' aild the other is related to the power of the Box-Pierce test.
 Define the projection operator

 V3· = E(-|J"ioc) -E(-|J"^), where T{ = (eh ei+1,..., ej), i,j G .

 Theorem 4. Assume Xi G Τ4, EXj = 0, and Θ4 < 00. If sn —> 00 and
 sn = o(y/n), then

 Sn Sn

 v^( Σ Σ 7fe2) ^^(0,4||D(,||2), (2.13)
 k= S γι k= S γι

 where D'0 = Σ//ζ0'Ρ0(ΧίΥί) with Y{ = 7oXj + IJ/kLiAkXi-k· Furthermore, if
 Σfcli 71 > °> then

 Sn

 ν^(Σ>2-Σ>2) =»JV(0,4||A>||2), (2.14)
 fc=1 k=1

 where D0 = ΣΖο^°(Χ^) with Y = ££°=i7fc^-fc·
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 INFERENCE FOR SERIAL COVARIANCES 587

 Corollary 3. Under the conditions of Theorem 4, the same results hold if 77 is
 replaced by 7k ■ Furthermore, there exist positive numbers τ( and t| such that

 Sn Sn $n sn

 and ^( Σ Σ rfc) =^·λ/'(ο»'γ22)·
 fe=l fe=l k=—sn k=—sn

 As an immediate application, we consider the power of testing whether {A,}
 is an uncorrelated sequence. Battaglia (1990) studied the power of portmanteau
 tests with bounded lags. Hong (1996) considered the consistency and the asymp
 totic local power. Shao (2011) also briefly discussed the local power. Fan (1996)
 studied the power in a different but closely related context. According to (2.12),
 we can use the test statistic with unbounded lags

 Tn :=
 / \ sn(2n sn 1)

 QnySn) '  2 η

 whose asymptotic distribution under the null hypothesis is Λί(0,2). The null
 is rejected when Tn > ν2ζι_α, where z\-a is the (1 — a)th quantile of a stan
 dard normal random variable Z. However, under the alternative hypothesis
 J2kLi ΐ~Ί > 0, the distribution of Tn is approximated according to Corollary 3,
 and has asymptotic power

 D frn ^ /o td( Ύ ^ ' Zl—a Sn{2n Sn 1) ,— ν 2\ \ > w P(TlZ > y/n + ~ ^ΣΓ0'
 \J2S,, · Z\—a Sn(2n Sn 1)

 — V"

 k~l

 which increases to 1 as η goes to infinity.

 3. Blocks of Blocks Bootstrapping

 If j is a sequence of autocorrelations, one might be interested in the
 hypothesis test that 77 = r^ for all k > 1. This cannot be tested in practice,
 except in some special parametric cases. A more tractable hypothesis is

 H0 : rk = r|j.0) for 1 < k < sn■ (3.1)
 In traditional asymptotic theory, one often assumes that sn is a fixed constant, for
 example, the popular Box-Pierce test for serial correlation. Our results provide
 both C°° and T2-based tests that allow sn to grow as η increases. Nonetheless,
 the asymptotic tests can perform poorly when the sample size η is not large
 enough, and there may exist noticeable differences between the true and nominal
 probabilities of rejecting Ho (hereafter referred as error in rejection probability
 or ERP). Horowitz et al. (2006) showed that the Box-Pierce test with bootstrap
 based p-values can significantly reduce the ERP. They used the blocks of blocks
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 588 HAN XIAO AND WEI BIAO WU

 bootstrapping with overlapping blocks (hereafter referred as BOB) of Kiinsch
 (1989) and Liu and Singh (1992). For finite samples, our £2-based test is similar
 to the traditional Box-Pierce test considered in their paper, so we focus on the
 £°°-based tests. We provide simulation evidence showing that the BOB works
 reasonably well.

 Throughout this section, we let the innovations et be iid standard normal
 random variables, and consider four models:

 I.ID. Xi = ei\ (3-2)
 AR(1) Ai = bXi.ι + ei; (3.3)

 Bilinear Xi = (a + bei)Xi-i + ef, (3.4)

 ARCH ^ = γΓα + 6AÎ2_1 · (3.5)
 We generated each process with length η — 2 χ ΙΟ3, 2 χ ΙΟ4, 2 χ ΙΟ5, 2 χ ΙΟ7,
 and computed

 ,\/S h - (ι - jH
 νϋ <3'β)

 with sn — 200, 2 χ ΙΟ3, ΙΟ4, 5 χ ΙΟ5, and σο = r|, where tn = |_n1//3J.
 Based on 1000 repetitions, we plot the empirical distribution functions in Fig
 ure 1. We see that when η = 2 χ 107 and sn = 5 χ 105, the four thickest
 long-dashed empirical curves are close to that of the Gumbel distribution, which
 confirms our theoretical results.

 On the other hand, the empirical distributions (yellow, green and red curves)
 are not very close to the limiting one if the sample sizes are not large-the Gumbel
 type of convergence in (2.5) is slow. This is a well-known phenomenon; see for
 example Hall (1979). It is therefore not reasonable to use the limiting distribution
 to approximate the finite sample distributions. To perform the test (3.1), we
 repeat the BOB procedure of Horowitz et al. (2006) (called SBOB in their paper).
 Since in the bootstrapped tests, the test statistics are not to be compared with
 the limiting distribution, we can ignore the norming constants in (3.6) and simply
 use the test statistics

 Mn = max
 1<k<Sn

 ι - -yk (0)
 η

 and A4 n = ^

 where Mn is the self-normalized version with σο estimated as σο = b2.,
 and tn = min{ |_n1//3J, sn}. For simplicity, we refer to these tests as the M-test
 and the Ai-test, respectively.

 From the series Ai,..., An, for some specified number of lags sn included
 in the test and block size bn, form T) = (A,, Aj+i,..., Ai+Sn)T, 1 < i < η — sn
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 I.I.D. AR(1)
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 Figure 1. Empirical distribution functions for quantities in (3.6). We chose
 b = 0.5 for model (3.3), a = b = 0.4 for model (3.4), and a = b = 0.25
 for model (3.5). The solid line gives the true distribution function of the
 Gumbel distribution.

 and blocks Bj = (Yj,Yj+1,..., Y)+bn_ι), 1 < j < η — sn — bn + 1. For simplicity
 assume hn = n/bn is an integer. Suppose Yj is obtained by sampling a block
 B$ from the set of blocks {Βχ,Β2, · · ·, Bn-sn-bn+i}> and then sampling a column
 from B$, let Cov j represent the covariance of the bootstrap distribution of Yj,
 conditional on (Χι, X2, ■ ■ ■, Xn)· Denote by Y* the jth entry of Yj, and set

 η
 ^/cov ,(y/, r,1) · Oov ,(y,*+\ r,'+1)

 The explicit formula for was given in Horowitz et al. (2006). The BOB
 algorithm is as follows.
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 Je)
 rk

 1. Sample hn times with replacement from {#ι, B2, ■ ■ ·, Bn-sn-bn+i} to obtain

 blocks {B\, , · · ■, B*h } that are laid end-to-end to form a series of vectors

 2. Take ... ,Y*) as a random sample of size η from some sn-dimensional
 population distribution, and let r*k be the sample correlation of the first entry

 and the (fc+l)th entry. Calculate the test statistic M* = maxi<fc<Sn

 and A4* = M*/y/σζ, where σ*0 = Σ{=-ίη (rk f·
 3. Repeat steps 1 and 2 for Ν times. The bootstrap p-value of the M-test is

 given by #(M* > Mn)/N. For a nominal level a, we reject Ho if #(M* >
 Mn)/N < a. The Ad-test is performed in the same manner.

 We compared the BOB tests and the asymptotic tests for the four models
 listed at the beginning of this section, with a — Λ for (3.3), a = b = .4 for (3.4)
 and a = b = .25 for (3.5). We set the series length as η = 1800, and considered
 four choices of sn: (log(n)J = 7, [n1/3] = 12, (v^J = 42, and 25. The BOB
 tests were performed with Ν = 999, and the asymptotic tests were carried out by

 comparing {^/nM.n — &2s„) with the corresponding quantiles of the Gumbel
 distribution. The empirical rejection probabilities based on 10,000 repetitions
 are reported in Table 1. All probabilities are given in percentages. For all cases,
 we see that the asymptotic tests are too conservative, and the ERP are quite
 large. At the nominal level 1%, the rejection probabilities are often around 0.1%
 or less, and are at most 0.51%; at nominal level 10%, they are often less than 3%
 and are at most 6.4%. Except for the bilinear models with sn = 7 and sn = 12,
 the bootstrapped tests significantly reduce the ERP: often less than 0.2% at
 nominal level 1%, less than .5% at level 5%, and less than 1% at level 10%. The
 performance of the M-test and the Ad-test are similar, with the former being
 slightly more conservative. The BOB tests are relatively insensitive to the block
 size, which provides additional evidence of the findings on BOB tests in Davison
 and Hinkley (1997).

 The bootstrapped tests still perform relatively poorly for bilinear models

 when sn is small (sn = 7 and 12). This is possibly due to the heavy-tail of the
 bilinear process. Tong (1981) gave necessary conditions for the existence of even
 order moments. Horowitz et al. (2006) showed that the iterated bootstrapping
 further reduce the ERP. It is of interest to see whether the iterated procedure has

 the same effect for the £°° based test, in particular, whether it makes the ERP
 reasonably small for the bilinear models when sn is small. The simulation for
 the iterated bootstrapping is computationally expensive and we do not pursue it
 here.
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 Table 1. Empirical rejection probabilities (in percentages).

 Test
 sn — 7  s  η = 12  s  η = 25  s η —  42

 1  5  10  1  5  10  1  5  10  1  5  10

 I.I.D.  0.00  0.34  1.6  0.02  0.69  2.3  0.03  0.93  3.2  0.04  1.0  3.3

 bn = 5  1.3  5.1  10.0  1.1  5.2  9.8  0.95  4.7  9.3  1.0  4.7  9.6

 1.4  5.3  10.4  1.2  5.6  10.5  1.1  5.1  10.1  1.1  5.1  10.2

 bn - 10  0.83  4.8  10.0  1.1  4.9  9.6  1.1  4.9  10.1  0.65  4.3  8.9

 0.94  5.1  10.3  1.2  5.4  10.3  1.1  5.5  11.0  0.78  4.7  9.6

 AR(1)  0.01  0.17  1.2  0.01  0.36  1.8  0.02  0.77  2.5  0.02  0.8ί ? 2.8

 bn = 10  1.3  5.7  10.9  1.3  5.5  11.4  1.3  5.5  10.9  1.1  5.7  11.2

 1.3  5.7  11.2  1.4  5.9  11.7  1.3  6.0  11.5  1.2  6.0  11.7

 bra = 20  0.98  5.5  10.9  1.0  5.8  11.3  1.1  5.3  10.6  0.86  4.9  10.5

 1.0  5.7  11.0  1.1  6.1  11.9  1.2  5.6  11.0  0.83  5.0  10.9

 Bilinear  0.34  2.8  6.4  0.43  2.5  5.8  0.51  2.5  5.9  0.40  2.8  5.9

 b„ = 10  2.8  8.7  14.4  1.8  7.1  12.7  1.2  6.1  12.0  1.2  5.4  10.9

 2.7  8.6  14.5  1.8  7.3  12.9  1.3  6.2  12.2  1.1  5.5  11.1

 b„ = 20  2.7  8.4  14.6  2.1  7.2  13.5  1.5  6.3  12.0  1.3  5.2  10.8

 2.5  8.3  14.6  2.1  7.5  13.9  1.5  6.2  12.0  1.2  5.3  10.9

 ARCH  0.05  0.82  3.2  0.06  1.5  3.9  0.09  1.3  4.0  0.12  1.4  4.4

 bn = 10  0.99  5.0  10.5  1.2  4.9  9.7  0.80  4.6  9.9  0.82  4.7  9.3

 1.1  5.4  10.9  1.4  5.3  10.4  0.92  5.1  10.7  0.94  5.1  10.2

 bn = 20  0.86  5.1  10.5  1.0  5.0  10.3  0.69  4.8  9.7  0.63  4.3  8.9

 0.98  5.5  11.0  1.2  5.6  11.0  0.89  5.1  10.4  0.76  4.7  9.5

 The values 1, 5, 10 in the 2nd row indicate nominal levels in percentages. The numbers in the
 third row starting with the model name "I.I.D." are for the asymptotic tests. The fourth row
 starting with bn = 5 is for BOB M-tests with block size 5. The fifth row is for BOB Ad-tests
 with the same block size 5. Other rows should be read similarly.

 Remark 2. Assume the time series is governed by a parameter or a set of
 parameters p. Let ρ be an estimate of p, then the autocovariance estimates given
 by the parametric model are 7fc(p). The results of Theorem 1 and Theorem 3
 can be used for diagnostic checking if we replace the true autocovariances 7^ by
 7fc(p). The same asymptotic results hold for a broad class of parametric models.
 For example, consider the AR(1) model Χι = pX%-\ + ej, where |p| < 1. Without
 loss of generality, take EXj = 0 and Var (Xt) = 1. Let ρ be a λ/τι consistent
 estimate of p. By Lemma 4 and

 max

 tn<k<s·  I (ΐ-ί)νπ.(ρι-Λι = οΡ[(ί + 1)'"

 the limiting distribution in (2.5) remains true if we replace 7^ by pfe. On the
 other hand, we also have

 /p 1 \
 = Op[(| + -)

 k—tfi

 Test
 sn — 7  s  « = 12  s n = 25  s n = 42

 1  5  10  1  5  10  1  5  10  1  5  10

 I.I.D.  0.00  0.34  1.6  0.02  0.69  2.3  0.03  0.93  3.2  0.04  1.0  3.3

 bn = 5  1.3  5.1  10.0  1.1  5.2  9.8  0.95  4.7  9.3  1.0  4.7  9.6

 1.4  5.3  10.4  1.2  5.6  10.5  1.1  5.1  10.1  1.1  5.1  10.2

 bn - 10  0.83  4.8  10.0  1.1  4.9  9.6  1.1  4.9  10.1  0.65  4.3  8.9

 0.94  5.1  10.3  1.2  5.4  10.3  1.1  5.5  11.0  0.78  4.7  9.6

 AR(1)  0.01  0.17  1.2  0.01  0.36  1.8  0.02  0.77  2.5  0.02  0.88  2.8

 b„ = 10  1.3  5.7  10.9  1.3  5.5  11.4  1.3  5.5  10.9  1.1  5.7  11.2

 1.3  5.7  11.2  1.4  5.9  11.7  1.3  6.0  11.5  1.2  6.0  11.7

 bra = 20  0.98  5.5  10.9  1.0  5.8  11.3  1.1  5.3  10.6  0.86  4.9  10.5

 1.0  5.7  11.0  1.1  6.1  11.9  1.2  5.6  11.0  0.83  5.0  10.9

 Bilinear  0.34  2.8  6.4  0.43  2.5  5.8  0.51  2.5  5.9  0.40  2.8  5.9

 bn = 10  2.8  8.7  14.4  1.8  7.1  12.7  1.2  6.1  12.0  1.2  5.4  10.9

 2.7  8.6  14.5  1.8  7.3  12.9  1.3  6.2  12.2  1.1  5.5  11.1

 b„ = 20  2.7  8.4  14.6  2.1  7.2  13.5  1.5  6.3  12.0  1.3  5.2  10.8

 2.5  8.3  14.6  2.1  7.5  13.9  1.5  6.2  12.0  1.2  5.3  10.9

 ARCH  0.05  0.82  3.2  0.06  1.5  3.9  0.09  1.3  4.0  0.12  1.4  4.4

 bn = 10  0.99  5.0  10.5  1.2  4.9  9.7  0.80  4.6  9.9  0.82  4.7  9.3

 1.1  5.4  10.9  1.4  5.3  10.4  0.92  5.1  10.7  0.94  5.1  10.2

 bn = 20  0.86  5.1  10.5  1.0  5.0  10.3  0.69  4.8  9.7  0.63  4.3  8.9

 0.98  5.5  11.0  1.2  5.6  11.0  0.89  5.1  10.4  0.76  4.7  9.5
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 if the sequence (tn) satisfies tn —> oo and tn = o(,sn); hence Theorem 3 still holds
 if we replace 7*, by pk. We will consider the impact of plug-in estimates under a
 more general setting in future research.

 4. Proofs

 In this section we prove Theorem 1 and Theorem 3. Since the proofs are
 lengthy, we only provide the major steps and ideas, and leave most technical
 details to a supplementary file. The proofs of other theorems and corollaries are
 also given in the supplementary file.

 We list some notations here. The operator Eo is defined as ΕqX := X — EX
 for any random variable X. For a vector χ = (aq,..., Xd)T € Rd, let |a;| be the
 Euclidean norm, |£c|oo := maxi<i<d \xi\, and |α?|· := mini<i<d |xj|. We use C to
 denote a constant whose values may vary from place to place. A constant with
 a symbolic subscript is used to emphasize the dependence of the value on the
 subscript.

 The framework (2.1) is particularly suited for two classical tools for dealing
 with dependent sequences, martingale approximation and m-dependence approx
 imation. For i < j, let X- = (e,, e^+i,..., ef) be the σ-field generated by the
 innovations ep <7+1,..., ey, and define the projection operator Rj(·) = Ε (·| J7/).
 Set Xi := X°°, XJ := X-oo, and define Rt and W similarly. Given the projec
 tion operators Vj(·) = W(-) - W~l(·), and Vi(-) = Ui{·) - Ήί+ι(·), ('
 and are martingale difference sequences with respect to the filtrations
 (Xj) and (X-i), respectively. For πι > 0, take X{ = Hi^mXi, then (W),;g is a
 (m + l)-dependent sequence.

 4.1. Proof of Theorem 1

 We give an outline of intermediate steps, then conclude with the proof of
 Theorem 1. The proofs of intermediate lemmas are provided in Section S.2 of
 the supplementary file, as are the proofs of other results in Section 2.1.

 Step 1: m-dependence approximation. Define Rn^ = ΣΓ=*;+ι(^-*Λ ~lk)· Set
 mn = [ηβ\, 0 < β < 1. Take Xi = Ήί-πιηΧί, 7k = E(À"0Àfc), and Rntk =
 Σΐ=λ;+1 {Xi-kXi — 7fe)·

 Lemma 1. Assume EXi = 0, Xi € CP, and Qp(m) = 0(m~a) for some ρ > 4
 and a > 0. If sn = 0(ηη) with 0 < η < ap/2, then there exists α β such that
 η < β < 1 and

 max
 1 <k<sn

 Rn,k Rn.k  = Op
 n

 logs*
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 INFERENCE FOR SERIAL COVARIANCES 593

 Step 2: Throw out small blocks. Let ln — [ηΊ\, where 7 G (β, 1). For each
 tn < k < sn, we split the integer interval [k + l,n] into alternating large and
 small blocks

 K\ = [k + 1, sn]

 Hj = [sn"I-(j l)(2mn+Zn) + l, sn + (j l)(2mn,+Zn)+/n]; ινη~~Ί,
 Kj+i = \sn-\-(j 1) (2τηη+Ζη)+1, sn(2ί7ΐη+/η)] ; 1> (4-1)

 and

 Hwn ~ [®n (®n — l)(2mn + In) + l>ri],

 where wn is the largest integer such that sn + (wn — 1) (2mn + ln) + ln < n. Denote
 by \H\ the size of a block H. By definition, ln < \HWn\ < 3ln when η is large
 enough. For 1 < j <wn, define

 Lfcj = TkJ &nd UkJ = ^ ^ 7k^j ·
 i&Kj,i>k iÇ.Hj

 Note that wn ~ n/(2mn + ln) ~ n1-7.

 Lemma 2. Under the conditions of Theorem 1,

 max

 1 <k<sn

 Wn ι

 Step 3: Truncate sums over large blocks. We show that it suffices to consider

 Wn j—

 Tin,k = ÛkJ, where Ûk,j = Eo(Uk,jI^\Uk,j\ < nOES ïâ})'
 3=1

 where /{·} is the indicator function.

 Lemma 3. Under the conditions of Theorem 1,

 »n

 l<k<s

 Wn ι

 =onvi^:)· 3=1

 Step 4: Compare covariance structures. In order to prove Lemma 6, we need
 the autocovariance structure of (Hn,k/V™) t° be close to that of (Gfc). However,
 this only happens when k is large. We show that there exists an 0 < κ 1 such
 that for tn — 3 : maxi<fc<tn \TZn,k/V™\ does not contribute to the asymptotic
 distribution; and the autocovariance structure of (7ZUjk / y/n) converges to that of
 (Gk) uniformly on tn < k < sn.
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 Lemma 4. Under conditions of Theorem 1, there exists a constant 0 < l < 1
 such that for tn = 3 [s£J,

 lim Ρ I max \fcn,k\ > \J σon log sn ] = 0. (4.2)
 n—>oo \l<k<tn J

 Lemma 5. Under the conditions of Theorem 1, and with tn = 3 |_snJ> there exist
 a constant Cp > 0 and 0 < ί < 1 such that, for any tn<k<k + h< sn,

 Cov (fPn^ki P"n,k+h)
 <?h

 η
 <Cp8~e.

 Step 5: Moderate deviations. Let tn = 3 be as in Lemma 4. For tn <
 k\ < &2 kd ^ Sn, take 7in = (Pn,ki > P"n,k2 ) · · · an(i V =
 (Gfcj, Gfc2,..., Gfcd) , where (G&) is defined in (1.6). Let Ση = Cov(72.n) and
 Σ = Cov (V). For fixed χ G R, set zn = 02Snx + &2s„) where the constants an
 and bn are from (1.7).

 Lemma 6. Under conditions of Theorem 1, there exists a constant CP}d > 1 such
 that, for all tn < k\ < ■ ■ · < kd < sn,

 \P{\nn/V^\.>Zn)-P(\V\. >zn)\

 <Cp/W-^+CP,d exp (log Sji) /
 f (logsn)2)
 \ Cp,d /

 We need a result on the Gaussian process that might be of independent
 interest.

 Theorem 5. Let (Xn) be a stationary mean zero Gaussian process, with rk =
 Cov (Xo, Xk)· Assume ro = 1, and Ιΐπΐη-χχ, rn(logn) = 0. If an = (21ogn)-1/2,
 bn = (21ogn)1/2 — (81ogn)-1/2(loglogn + log47r), and zn = anz + bn for ζ G M,
 with Ai = {Xi > zn} and

 Qn,d = Σ P{Ah η · · · η Aid),

 it holds that lim^ooQn,d = e~dz/d\ for all d> 1. Furthermore, the same result
 holds if Ai = {\Xi\ > z2n}·

 The proofs of the preceding results are given in a supplementary file.

 Proof of Theorem 1. Set zn = a2Sn x + b2Sn · It suffices to show

 lim p( max < ^/σοΖη) — exp{— exp(—x)}. (4.3)
 n—>oo \tr,<k<sn \/n )
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 Without loss of generality assume σο = 1. Take Ak = {Gk > zn} and Bk =
 {7Zk/\/n > zn}. Let

 Qn,d= ^ ^ Ρ(-^-fci η···η5d)
 tn<C.k\

 and

 Qm = Σ η4η···η50·
 tn<Ckι K.-"<Ckti^Sn

 By the inclusion-exclusion formula, for any q > 1

 _ / 7? \ ^5—^
 X^(-l)d_1Qn,d < W + max -ρ > a2Sn χ + &2s„) < (-l)d_1Qn,d· (4.4) ytn^k^Sn γ 71 /
 a=l a=l

 By Lemma 6, |Q„)d - Qn,d| < CP)d(logsn)_1/2Qnid + s"1. By Theorem 5 with
 elementary calculations, lim^oo Qn,d = e~dx/d\, and hence lim^oo Qn,d =
 e~dxjd\. By letting η go to infinity and then d go to infinity in (4.4), we ob
 tain (4.3), and the proof is complete.

 4.2. Proof of Theorem 3

 We outline intermediate steps, and then prove Theorem 3. The proofs of
 intermediate lemmas and other results of Section 2.2 are given in Section S.3 of
 the supplementary file.

 Step 1; m-dependence approximation. Without loss of generality, assume sn <
 KJ· Set mn = 2 Κ1- Let ^ = Wi-mnXi and Rnt = YTi^+itXi-kXi - Ik).
 By (S.7) and (S.13), if ©4(771) = o(m~a) for some a > 0, then for all 1 < k < sn,

 Ε IP-n,k ~ Pn,kI — ll^n,fc + -Rn,fc|| ' ||Rn,k ~~ R-n,k\\

 < C Θ4 · η ■ ©4 — 0 (nl

 The condition k6ôs(k) < 00 implies that ©4(771) = 0(m 6). Therefore,
 under the conditions of Theorem 3, we have

 ^fS0(<fc-i?0=op(l). /&ri. _ \ '
 nWs·- k=1

 Step 2: Throw out small blocks. Let ln = [ηη\, where η G (/3,1). Split the
 interval [1, n] into the blocks

 Ko = [1) ^n] )

 Hj = [sn + (j - l)(277in + ln) + 1, sn + (j - 1)(2mn + ln) + ln\, 1 <j< wn,

 Kj = [sn + (j 1)(2?τιη + In) + ln + 1, sn + j(2mn + ln)]i 1 ^ j — 1,
 and
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 — [^n "I" (®n 1 )(2wifi + Zn) + hi τ 1)^]>

 where wn is the largest integer such that sn + (wn — l)(2mn + Zn) + ln < n.
 Take — 0, V^o — "^2,iç,Ko,i>k{Xi—k-Xi — Tfc)) and Ufcj = {Xi—kX-i — 7fc))

 Vfcj = Y,ieKj{Xi-kXi - Ik) for 1 < j < wn. Set Hn^ = J2J=i uk,j- Observe
 that by construction, Ukj, 1 < j < wn are iid random variables.

 Lemma 7. If Xi G C8, EXj = 0, and Y^kLokeSs(k) < oo, then

 η "Tip ΣΕ° (^n,k ~ T^n,k) = dpi1)· Vs" fc=i v 7

 Step 3: Central limit theorem concerning 7Zn^ 's.

 Lemma 8. If Xi G jC.8 , EXi = 0, and k60s(k) < oo, then
 Sn 1

 -^= Σ - E Kk) =» ^(o, 2 Σσ') · 77-λ/ οϋι η fc=i fee

 We are now ready to prove Theorem 3.

 Proof of Theorem 3. By Lemma 7 and Lemma 8,

 ι «« , .

 75= Σ «* - E <*) =- P(°>2 Σ "ή ■
 ι Sn

 tel te

 It remains to show that

 •j^ sn

 tS&^E[ERL-<n-fcH = °· (4·5)
 We need Lemma S.2 of the supplementary file with a slight modification. Observe
 that in equation (S.29) of the supplementary file, we have 02 (j)2 < oo, and
 hence

 \ERl k - (n-k)a0\ < C (n — k)A4^ ^ + 1 j + Vn — k

 With the condition 08(to) = o(m-6), elementary calculations show that A^m)
 = o(m~5), hence (4.5) follows. The proof is complete.
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