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1 Introduction

The issue of systemic risk attracts a lot of attention from academics as well as
from regulators in the aftermath of the financial crisis of 2007-2009. Systemic
risk refers to banks and other economic agents with substantial importance
to the financial system due to their size (too big to fail) or their centrality
within the financial network (too interconnected to fail). A bankruptcy of a
systemically important financial institution can lead to the malfunctioning
of the financial system or central banks and governments might be under
pressure to interfere by bailing out respective firm. Due to these negative
externalities, it is a crucial task for central banks and supervising agencies to
identify systemically relevant firms.

A conventional quantitative risk measure is value-at-risk (VaR), which mea-
sures maximum losses at a certain confidence level. The Basel II Accord in-
troduced VaR as a preferred measure for market risk. However, VaR is not
suitable for capturing systemic risk adequately, as it is not capable to analyze
the interdependency among firms. Given the subprime mortgage crisis in 2008,
the Basel Committee on Banking Supervision has revised its Accords to focus
on strong governance and risk management. Basel III is thus set up to con-
trol the systemic risk of the whole financial system, and it enforces additional
requirements for identifying systemic risk important banks and generates de-
mands on evaluating the interdependency of risk among banks. Many methods
for the quantification of systemic risk are proposed. Adrian and Brunnermeier
(2016) come up with conditional value-at-risk (CoVaR), a systemic extension
of VaR. However, their original approach is restricted to analyze systemic risk
in a bivariate context. Namely, they focus primarily on the risk contribution
of an individual financial firm to the entire system, controlling for variables
indicating general macroeconomic conditions. Hautsch et al. (2014) modify
the estimation of CoVaR further to analyze systemic risk in a multiple equa-
tion setup using the LASSO. Härdle et al. (2016) follow up this setup, and
extend it to a nonlinear regression setting. In the meanwhile, there are numer-
ous other methods for calibrating systemic risk. Acharya et al. (2017) build
an economic model of systemic risk and measure the systemic risk externality
of a financial institution by the systemic expected shortfall. Brownlees et al.
(2012) develop a systemic risk measure capturing the capital shortage given
its degree of leverage and marginal expected shortfall. Diebold and Yılmaz
(2014) analyze the connectedness of financial firms in a network context using
forecast variance decompositions in a vector autoregressive framework.

Nonlinearity is an important issue for the prediction performance of risk
measures due to the complex dependency channels of financial institutions
(Chao et al. (2015)). Neural networks have proved to be a suitable method
for fitting nonlinear functions. This paper provides a new perspective for es-
timating CoVaR using neural networks. Over the last years, neural networks
have become state of the art models for prediction. They have been applied
extensively and successfully to various fields, including image classification (Si-
monyan and Zisserman (2014)) as well as speech recognition problems (Graves



Modelling Systemic Risk Using Neural Network Quantile Regression 3

et al. (2013)). We take the off-shelf neural network methodology and apply it
to quantify financial risk. Our findings show that the quantile neural network
based approach provides a unique angle compared to the linear model for cal-
ibrating the systemic risk due to its flexibility. In particular, we find better
out-of-sample prediction with our fine-tuned nonlinear neural network relative
to the baseline linear model.

There is a big literature on econometrics analysis using neutral network.
White (1988) starts to investigate the usefulness of adopting a neural network
for economic prediction. Unfortunately, the message is that even with simple
neural networks the prediction performance is not ideal due to the overfitting
issues. Kuan and White (1994) provide a further overview of neural networks
with some basic concepts and theory. White (1992) provides the theoretical
foundations of a nonparametric quantile neural network approach allowing for
cases of dependent data. In terms of economic risk prediction, Taylor (2000) is
concerned with predicting conditional volatility by adopting a quantile neural
network approach. Xu et al. (2016) consider a quantile neural network proce-
dure for evaluating VaR in the stock market. Cannon (2011) focuses on the
computational perspective of a quantile neural network. We follow the existing
approach and take it further for evaluating and forecasting systemic risk.

We briefly summarize the steps of calibrating the systemic risk using a
quantile neural network procedure. In the first step, we estimate the VaR
for each global systemically important financial institution (G-SIB) from the
United States by regressing their stock returns on a set of risk factors using
linear quantile regression. Next, we estimate the CoVaRs of the same firms
using neural network quantile regression. To characterize the interdependency
among banks, we regress the return of one asset on the remaining returns
respectively and aggregate the results into a systemic fit. By approximating
the conditional quantile with a neural network we aim for capturing possible
nonlinear effects. To estimate risk spillover effects across banks we calculate
the marginal effects by taking the derivative of the fitted quantile with respect
to the other banks’ stock returns, evaluated at their VaR. By doing so we come
up with a network of spillover effects represented by an adjacency matrix. This
adjacency matrix is time-varying, i.e. we estimate a network for each window
in our moving window estimation procedure.

In the final step, we propose three systemic risk measures building on the
previous results. As a first measure, we propose the Systemic Fragility Index,
which identifies the most vulnerable banks in a given financial risk network.
The second measure is the Systemic Hazard Index, which identifies the financial
institutions which potentially pose the largest risk to the financial system.
These two measures characterize the firm-specific aspects of systemic risk.
Thus we propose a third measure which estimates the total level of systemic
risk, the Systemic Network Risk Index. Our main empirical findings show that
systemic risk increased sharply during the height of the financial crisis after
the bankruptcy of Lehman Brothers in 2008. Systemic risk remains stable over
the last years with two minor spikes in 2011 and 2015. We compare our results
to the aggregated SRISK measure of Brownlees and Engle (2016) and find



4 Georg Keilbar, Weining Wang

a strong co-movement of both indices. We also identify systemically relevant
financial institutions during the financial crisis. In particular, we identify a risk
cluster of four banks, which corresponds to the list of banks that received the
largest funding in the course of the bank bailout of 2008. Finally, we compare
the predictive performance of our neural network model to a linear baseline
model. An out-of-sample prediction comparison shows the superiority of our
approach and leads to the conclusion that non-linear effects are crucial for the
modelling of systemic risk.

The remainder of this paper is organized as follows. Section 2 provides a
brief introduction to neural networks in general and neural network quantile
regression in particular. Section 3 describes in detail the methodology of this
paper. After establishing the research framework step by step, we present the
results in section 4. Section 5 discusses the results and concludes.

2 Neural Network Quantile Regression

2.1 Neural Network Sieve Estimation

Neural networks attract increasing attention due to their success in a variety of
prediction problems. Often described as a black box, single hidden layer neural
networks can be seen as a special case of the nonparametric sieve estimator,
see Grenander (1981) and Chen (2007). With increasing sample size n the
complexity of the estimator of hθ is required to increase appropriately fast.
The structure of the neural network sieve is as follows, with t = 1, 2, · · · , n,

Yt = hθ(Xt) + εt

=

Mn∑
m=1

womψ

(
K∑
k=1

whk,mXk,t + bhm

)
+ bo + εt

(1)

where Yt is the dependent variable, Xt is a K-dimensional vector of indepen-
dent variables and εt is an error term. The nonlinear activation function ψ(·)
is assumed to be fixed and known. Typical choices are sigmoid functions, e.g.
ψ(z) = tanh(z) or the ReLU (rectifier linear unit) function, ψ(z) = max(z, 0).
There are two types of parameters, hidden layer parameters whk,m and bhm and
output layer parameters wom and bo. The sieve parameter space Θn expands
with n. In particular, the number of basis functions (i.e. the number of hidden
nodes) goes to infinity, Mn →∞ as n→∞. Single layer neural networks have
proved to be universal function approximators, as shown by Cybenko (1989)
for sigmoid activation functions and Hornik et al. (1989) for the general case
of bounded, non-constant activation functions. Sonoda and Murata (2017) ex-
tend the universal approximation property to unbounded activation functions,
which includes the popular ReLU function.

The large sample properties of neural networks have been studied exten-
sively in the literature. Notably, Chen and White (1999) show consistency and
asymptotic normality of the nonparametric neural network sieve estimator
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under certain regularity conditions. Given that the number of basis functions
grows appropriately with increasing sample size, the root mean square conver-
gence rate to an unknown (suitably smooth) true function is of order op(n

−1/4).
This rate is crucial to obtain root-n asymptotic normality for plug-in estima-
tors (Chen and Shen (1998)).

All of the above results concern with neural networks with a single hidden
layer. The approximation theory and the asymptotic results of deep neural
networks, i.e. neural networks with more than one hidden layer, is less un-
derstood compared to the shallow neural network case. Johnson (2018) shows
that deep neural networks with limited width are not universal function ap-
proximators. Rolnick and Tegmark (2017) prove that deep neural networks
can learn polynomial functions more efficiently (in terms of number of nodes
required) than shallow ones.

2.2 Neural Network Sieves and Quantile Regression

Predominantly, neural networks have been applied to classification and mean
regression problems. However, an extension to a quantile regression setting is
straightforward. Consider the linear quantile regression equation for a fixed
quantile level τ , as formulated in Koenker and Bassett Jr (1978) and Koenker
and Bassett Jr (1982).

Yt = Xtβ + εt, t = 1, . . . , n (2)

with Qτ (εt|Xt) = 0. In this setting the dependent variable Yt is modelled as
a linear function of independent variables Xt. The linear quantile estimator is
then the solution to the following minimization problem:

min
β

n∑
t=1

ρτ (Yt −Xtβ) (3)

where ρτ (z) = |z|·|τ−I(z < 0)| is the quantile loss function. This minimization
problem can be formulated as a linear program and can thus be solved by
simplex or interior point algorithms. Neural network quantile regression is a
nonlinear generalization of this regression framework. Instead of using a linear
function, the conditional quantile is approximated by a neural network sieve
estimator as defined in 2.1. The resulting optimization problem is nonconvex
and cannot be solved by linear programming methods:

min
θ

n∑
t=1

ρτ (Yt − hθ(Xt)) (4)

A possible alternative is to use the gradient-based backpropagation algorithm
of Rumelhart et al. (1988). The asymptotic properties of nonparametric neural
network estimators for the conditional quantile are analyzed in White (1992).
Under certain regularity conditions the estimator is consistent, see Appendix
A. This result holds both for i.i.d. and dependent data.
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2.3 Regularization Methods for Model Fitting

Neural networks are prone to overfitting due to their high capacity. An ef-
fective tool to counteract overfitting lies in the choice of the structure and
the hyperparameters of the neural network. In our single hidden layer set-
ting, the most important hyperparameter is the number of hidden nodes, Mn.
Other relevant parameters are the number of epochs and the specification of
the learning algorithm. Typically, hyperparameters are selected according to
a cross-validation criterion. A different approach is to put an extra penalty
term on the weight parameters, whk,m and wom. We are considering both L1

and L2 penalties which we summarize under the term elastic net (Zou and
Hastie (2005)). This penalization method leads to the following optimization
problem:

min
hθ

n∑
t=1

ρτ {Yt − hθ(Xt)}+ λ
{
α‖(wh>k,m, wo>m )>‖1 + (1− α)‖(wh>k,m, wo>m )>‖22

}
(5)

where ‖ · ‖1 is the L1-norm, ‖ · ‖2 is the L2-norm and α ∈ [0, 1] governs
the relative weight put to L1 penalization. λ determines the strength of the
penalization. A different method to prevent overfitting is the dropout method,
proposed by Hinton et al. (2012) and Srivastava et al. (2014). In each iteration
of the backpropagation algorithm, a given node is only considered with a
probability 1 − p. Consequently, each node is excluded with a probability p
which is defined as the dropout rate. The motivation for this is to counteract
memorization of the data by preventing co-adaptation of the nodes. Dropout
is referred to be an ensemble method, as the final model is a result of training
multiple models with reduced capacity.

3 Methodology to Calibrate Systemic Risk

In this section, we explain the details of our systemic risk analysis. Our
methodology involves four steps. The first step is concerned with the esti-
mation of VaR based on a linear quantile regression using a set of risk factors
as explanatory variables. The results are used in the next step to estimate
the CoVaR for each financial institution using a quantile regression neural
network. Next, we calculate marginal effects to model systemic risk spillover
effects, resulting in a time-varying systemic risk network. In the final step, we
propose three systemic risk measures based on this systemic risk network.

Step 1: Estimation of VaR

VaR is defined as the maximum loss over a fixed time horizon at a certain level
of confidence. The Basel II Accord introduces VaR as the preferred measure
for market risk. The calculation of VaR functions as the basis for capital



Modelling Systemic Risk Using Neural Network Quantile Regression 7

requirements of financial institutions. Mathematically, it is the τ -quantile of
the return distribution:

P(Xi,t ≤ VaRτ
i,t) = τ, (6)

where Xi,t is the return of a financial firm i at time t and τ ∈ (0, 1) is the
quantile level. The VaR of each firm i is estimated with a linear quantile
regression procedure by regressing the returns on a set of macro state variables
Mt−1.

Xi,t = αi + γiMt−1 + εi,t, (7)

where the conditional quantile of the error term Qτ (εi,t|Mt−1) = 0. The VaR
is the fitted value of the linear quantile regression problem:

VaRτ
i,t = α̂i + γ̂iMt−1. (8)

The validity of a linear model for the estimation of VaR is analyzed by Chao
et al. (2015). We refrain from using company-specific balance sheet information
due to the low frequency of such data. VaR is a frequently used measure for
understanding the critical risk level for an individual financial institution. The
drawback of VaR is that it cannot account for determining critical risk levels
in a systemic context. Estimating VaR as an individual risk measure is a
necessary first step to prepare for calibrating conditional risk.

Step 2: Estimation of CoVaR with Neural Network Quantile Regression

CoVaR was introduced as a systemic extension of standard VaR by Adrian
and Brunnermeier (2016). Similar to VaR, it is a risk measure defined as a
conditional quantile of the return distribution. But deviating from the VaR
concept, CoVaR is contingent on a specific financial distress scenario. The
motivation for using CoVaR is the identification of systemically important
banks. For the distress scenario, we assume that all other firms are at their
VaR. By doing this we follow the reasoning of Hautsch et al. (2014) and Härdle
et al. (2016).

P(Xj,t ≤ CoVaRτ
j,t |X−j,t = VaRτ

−j,t) = τ, (9)

where X−j,t is a vector of returns of all firms except j at time t and VaRτ
−j,t

is the corresponding vector of VaRs.
CoVaR can be estimated as a fitted conditional quantile, building on the

results for the VaRs obtained in step 1. Chao et al. (2015) and Härdle et al.
(2016) find evidence for nonlinearity in the dependence between pairs of finan-
cial institutions. Hence, linear quantile regression might not be an appropriate
procedure to estimate the risk spillovers, as the interdependencies are po-
tentially different in a state of worsening market conditions. The conditional
quantile function of one bank on another may react nonlinearly to the change
of critical level of another firm. We therefore propose the use of neural network
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quantile regression. The flexibility of the approach allows detecting possible
nonlinear dependencies in the data.

The conditional quantile of bank j’s returns is regressed on the returns of
all other banks and using a neural network as defined in section 2.2:

Xj,t = hθ(X−j,t) + εj,t,

=

Mn∑
m=1

womψ

 K∑
k 6=j

whk,mXk,t + bhm

+ bo + εj,t,
(10)

with the conditional quantile of error term Qτ (εj,t|X−j,t) = 0. To calculate the
CoVaR of firm j, the fitted neural network has to be evaluated at the distress
scenario:

CoVaRτ
j,t = ĥθ(VaRτ

−j,t), (11)

where ĥθ is the estimated neural network. Nonlinearity is introduced by the
use of the nonlinear activation function. CoVaR can be interpreted as the
hypothetical τ -quantile of the loss distribution if we are in a hypothetical
distress scenario. In our case, this distress scenario is all other firms being at
their VaR.

Step 3: Calculation of Risk Spillover Effects

Based on the weights estimated by the neural network quantile regression pro-
cedure, it is now possible to obtain risk spillover effects between each directed
pair of banks. We propose to estimate the spillover effects by taking the par-
tial derivative of the conditional quantile of firm j’s return with respect to the
return of firm i.

∂Qτ (Xj,t|X−j,t)
∂Xi,t

=
∂

∂Xi,t

Mn∑
m=1

wom ψ

 K∑
k 6=j

whk,mXk,t + bhm

+ bo (12)

In the case of a sigmoid tangent activation function we have

∂Qτ (Xj,t|X−j,t)
∂Xi,t

=

Mn∑
m=1

womw
h
i,mψ

′

 K∑
k 6=j

whk,mXk,t + bhm

 (13)

with

ψ′(z) =
2

(exp−z/2 + expz/2)2
. (14)

In the case of a ReLu activation function we have

∂Qτ (Xj,t|X−j,t)
∂Xi,t

=

Mn∑
m=1

womw
h
i,mI

 K∑
k 6=j

whk,mXk,t + bhm > 0

 , (15)
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where I(·) is the indicator function. Note that the non-differentiability of the
ReLU function is not an issue in practice since the input of the function is
zero with probability zero. As we are interested in the lower tail dependence,
we consider the marginal effect evaluated at the distress scenario as defined in
the previous subsection:

∂Qτ (Xj,t|X−j,t)
∂Xi,t

∣∣∣∣
X−j,t=VaRτ−j,t

=

Mn∑
m=1

womw
h
i,m ψ′

 K∑
k 6=j

whk,m VaRτ
k,t +bhm

 .

(16)

Calculating such a marginal effect for each directed pair of firms yields an
off-diagonal adjacency matrix of risk spillover effects at time t:

At =


0 a12,t . . . a1K,t

a21,t 0 . . . a2K,t
... . . .

. . .
...

aK1,t aK2,t . . . 0

 , (17)

with elements defined as absolute values of marginal effects:

aji,t =


∣∣∣∣ ∂Qτ (Xj,t|X−j,t)

∂Xi,t

∣∣∣
X−j,t=VaRτ−j,t

∣∣∣∣ , if j 6= i

0, if j = i

. (18)

Note that the risk spillover effects are not symmetric in general, thus aji,t 6=
aij,t. This adjacency matrix specifies a weighted directed graph modelling the
systemic risk in the financial system.

Step 4: Network Analysis of Spillover Effects

To further analyze the systemic relevance of the financial institutions we can
calculate several network measures building on the work of Diebold and Yılmaz
(2014). They measure the connectedness of financial firms in terms of variance
decomposition in a vector autoregressive framework. Their methodology is
thus limited to capturing linear spillover effects.

First, the total directional connectedness to firm j at time t is defined as
the sum of absolute marginal effects of all other firms on j.

Cj←·,t =

K∑
i=1

aji,t (19)

Analogously, one can define the total directional connectedness from firm i at
time t as the sum of absolute marginal effects from i to all other firms.

C·←i,t =

K∑
j=1

aji,t (20)
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Lastly, Diebold and Yılmaz (2014) define the total connectedness at time t as
the sum of all absolute marginal effects.

Ct =
1

K

K∑
i=1

K∑
j=1

aji,t (21)

The total connectedness is a measure for the interconnectedness on the level
of the entire system, without differentiating between individual components
of the network. Building on this network analysis, we refine the approach by
incorporating VaR and CoVaR in the measurement of systemic relevance. In
particular, we propose the Systemic Fragility Index (SFI) and the Systemic
Hazard Index (SHI):

SFIj,t =

K∑
i=1

(
1 + |VaRτ

i,t |
)
· aji,t (22)

SHIi,t =

K∑
j=1

(
1 + |CoVaRτ

j,t |
)
· aji,t (23)

The SFI is a systemic risk measure for the vulnerability of a financial insti-
tution. It increases if those adjacency weights pointing to j are large and also
if the VaRs of firms i (i.e. the risk factors for j) increase. The SHI is a risk
measure for the exposure of the financial system to firm i. It depends on the
out-going adjacency weights from i and also on the other firms’ CoVaRs. As a
third measure, we propose the Systemic Network Risk Index (SNRI), a mea-
sure for the total systemic risk in the financial system which depends on the
marginal effects, the outgoing VaRs, and the incoming CoVaRs.

SNRIt =

K∑
i=1

K∑
j=1

(1 + |VaRτ
i,t |) · (1 + |CoVaRτ

j,t |) · aji,t. (24)

Lastly, we define the adjusted adjacency matrix,

Ãt =


0 ã12,t . . . ã1K,t

ã21,t 0 . . . ã2K,t
... . . .

. . .
...

ãK1,t ãK2,t . . . 0

 , (25)

with elements defined as:

ãji,t =

{
aji,t · |(1 + |VaRτ

i,t |) · (1 + |CoVaRτ
j,t |), if j 6= i

0, if j = i
. (26)

The adjusted adjacency matrix accounts for the level of outgoing VaRs and
incoming CoVaRs and is an improved representation of risk spillover effects.
Systemic spillover effects are thus determined by the marginal effects of the
neural network quantile regression procedure as well as by the VaRs and Co-
VaRs of the considered banks.
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4 Empirical Study: US G-SIBs

4.1 Data

For the empirical application of our systemic risk methodology we are focusing
on the global systemically important banks (G-SIBs) from the United States
selected by the Financial Stability Board (FSB), see Table 1. These eight
banks constitute systemic risk relevance to the global financial system and are
deemed to be too-big-to-fail. We consider daily log returns in a time period
between January 4, 2007 and May 31, 2018. The data is obtained from Yahoo
Finance.

Financial Institution NYSE symbol
Wells Fargo & Company WFC
JP Morgan Chase & co. JPM
Bank of America Corporation BAC
Citygroup C
The Bank of New York Mellon Corporation BK
State Street Corporation STT
Goldman Sachs Group, Inc. GS
Morgan Stanley MS

Table 1: List of G-SIBs in the USA.

In addition to these stock return data, we consider daily observations of
the following set of macro state variables:

i) Implied Volatility Index (VIX), from Yahoo Finance;
ii) the weekly S&P500 index returns, from Yahoo Finance;
iii) Moody’s Seasoned Baa Corporate Bond Yield Relative to Yield on 10-Year

Treasury Constant Maturity from Federal Reserve Bank of St. Louis;
iv) 10-Year Treasury Constant Maturity Minus 3-Month Treasury Constant

Maturity from Federal Reserve Bank of St. Louis.

These macro variables are the common risk factors for the estimation of
VaR in the first step of our systemic risk methodology.
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4.2 Model Selection

Fig. 1: Rolling window model selection scheme.

The estimation of CoVaR based on neural network quantile regression involves
several tuning parameters. Most importantly, we have to make a choice for
the activation function and determine the size and structure of the neural
network. We select these tuning parameters in a data-driven way. We propose
the following model selection procedure.

The data is separated into a training and a validation set repeatedly in a
moving window approach. We consider an estimation window of 250 days and
a subsequent validation window of 50 days, see Figure 1. A window of 250
observations corresponds to one year of daily return data. For each financial
institution, we regress the returns on the other firms’ returns to estimate the
5% quantile. The start of each estimation window is the beginning of the
new year. The resulting performance indicators are then aggregated over all
firms and all windows to select the best model. As a first and most important
measure for model performance we propose the average tilted absolute error
of prediction (ATAE) which is analogous to the MSE in mean regression:

ATAE =
1

n

n∑
t=1

ρτ

{
Xj,t − Q̂τ (Xj,t|X−j,t)

}
, (27)

where Xj,t is the observed value and Q̂τ (Xj,t|X−j,t) is the fitted conditional
quantile. A small value for the ATAE is preferred. The second performance
measure is the R1 criterion of Koenker and Machado (1999), which is a coeffi-
cient of determination defined analogously to the R2 measure in mean regres-
sion.

R1 = 1−

∑n
t=1 ρτ

{
Xj,t − Q̂τ (Xj,t|X−j,t)

}
∑n
t=1 ρτ

{
Xj,t − Q̂τ (Xj,t)

} , (28)

where Q̂τ (Xj,t) is the estimated unconditional τ -quantile. The R1 criterion
measures the improvement in model fit compared to the unconditional quan-
tile. It should be noted that for the in-sample fit it has to hold that R1 ∈ [0, 1].
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However, the out-of-sample fit for a particular unsuitable model can be worse
than a constant unconditional quantile fit. In this case, the R1 can even be
negative.

Lastly, we introduce the ratio of quantile exceedances (RQEX) as a mea-
sure of calibration. A well-calibrated model should have a ratio close to the
quantile level τ :

RQEX =
1

n

n∑
t=1

I
{
Xj,t < Q̂τ (Xj,t|X−j,t)

}
. (29)

We differentiate between the in-sample and out-of-sample fit. The in-sample fit
will always prefer complex models to simple models and will most likely result
in overfitting. The out-of-sample fit faces a tradeoff between bias and variance
of the prediction and is thus a better measure for generalizing performance.
We propose the following model selection scheme based on the out-of-sample
performance.

Step 1: Split data in training and test set for each window
Step 2: For each bank j and each window, fit the conditional quantile of Xj

contingent on X−j using training data
Step 3: Calculate ATAE, R1 and RQEX for test data
Step 4: Average results over all firms and all windows
Step 5: Choose the model specification with the lowest average ATAE

The first tuning parameter we consider is the number of hidden nodes. A
large number indicates a high capacity of the model. Figure 2a visualizes the
problem of overfitting. Whereas the training error can be effectively reduced,
the test error can only be reduced up to a certain point, after which the
out-of-sample fit becomes worse. The optimal number of hidden nodes is five.
A similar problem occurs with the number of epochs in Figure 2b. A large
number of epochs enables the neural network to learn the structure as well
as the noise of the training dataset, which makes it prone to overfitting. The
optimal number of epochs is 50, conditional on the results of the number of
hidden nodes.

The resulting model structure and complexity of the neural network is
rather limited. However, the issue of overfitting should not be disregarded.
We therefore consider two regularization methods, namely dropout and elas-
tic net regularization. As expected, both methods have a negative effect on
the in-sample fit. However, Figure 2c indicates that a small dropout rate of
10 or 20% leads to better generalizing performance. An explanation for this
observation is that by randomly dropping out input variables in each epoch
the neural network is prevented from memorizing the data. Dropout is also
sometimes referred to as a method of model averaging, as the final model is a
result of training several models with reduced complexity. Elastic net, on the
other hand, counteracts overfitting by putting an extra penalty on the weight
parameters of the neural network. The evidence we find is not conclusive. We
check different specifications for λ, governing the strength of the penalty, and
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(d) Average ATAE contingent on elastic
net parameter α. λ = 0.001 (solid line),
λ = 0.005 (dashed line), λ = 0.01 (pointed
line). The red line indicates the benchmark
without elastic net regularization.

Fig. 3: These figures visualize the dependence of the out-of-sample (red line) and in-sample
(blue line) average ATAE on different tuning parameters.

Model ATAE R1 RQEX
ReLU, Mn = 5 0.002026 0.4668 0.0650
ReLU, Mn = 5, α = 0.25, λ = 0.001 0.002025 0.4676 0.0652
ReLU, Mn = 5, p = 0.1 0.001973 0.4728 0.0595
ReLU, Mn = 10 0.002033 0.4788 0.0752
ReLU, Mn = (5, 5) 0.002165 0.4513 0.0654
ReLU, Mn = (10, 3) 0.002170 0.4397 0.0684
Tanh, Mn = 2 0.002845 0.3030 0.1018
Tanh, Mn = 5 0.002643 0.3691 0.1036

Table 2: Out-of-sample performance for different model specifications. We consider ReLU
and tanh activation functions, Mn refers to the number and structure of hidden nodes, α
and λ are the elastic net parameters and p is the input layer dropout rate.

for α, determining the relative weight put on the L1 and L2 penalty term.
Neither of these specifications leads to significantly improved fit compared to
the baseline model with no penalty. The results are illustrated in Figure 2d.

For the final model selection, we consider eight different model specifica-
tions. The results can be found in Table 2. We use the ADADELTA optimiza-
tion algorithm (Zeiler (2012)) with momentum parameter ρ = 0.99 and rate
annealing ε = 1e−08. The number of epochs for all models is 50. The results in
Table 2 suggest that complex models are dominated by less complex models.
As a second observation, the ReLu (rectifier linear unit) activation function is
superior to the tanh activation function. Both dropout and elastic net have a
positive impact on the model performance. The best model of the candidates is
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a neural network with five hidden nodes in a single hidden layer with a ReLU
activation function. The model also has an input dropout ratio of p = 0.1. It
is ranked first in ATAE (the only model below 0.002) and second in R1. Also,
the model’s RQEX (0.0595) is the closest to the theoretical quantile level of
0.05. We will use this model in the following estimation steps.

Finally, we compare the predictive performance of our neural network quan-
tile regression model to a baseline model based on linear quantile regression.

Xj,t = β0 +

K∑
i 6=j

Xi,tβi + εj,t, (30)

with Qτ (εt|X−j,t) = 0. The results stated in Table 3 and 4 clearly show that
neural network quantile regression outperforms the linear baseline model. The
out-of-sample average ATAE is lower for each window and each firm. This
is overwhelming evidence against the linearity hypothesis. The use of a more
complex model like a neural network appears to be necessary. A plausible
explanation for this is that a linear model is not capable to capture the complex
interdependencies of financial firms under distress.

Window WCF JPM BAC C BK STT GS MS
1 0.002 0.001 0.002 0.002 0.002 0.002 0.003 0.002
2 0.005 0.005 0.011 0.017 0.006 0.016 0.006 0.007
3 0.001 0.002 0.002 0.003 0.001 0.002 0.001 0.001
4 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.001
5 0.001 0.001 0.002 0.002 0.001 0.002 0.001 0.001
6 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001
7 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
8 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001
9 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001
10 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
11 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Table 3: Out-of-sample ATAE for final neural network model.

Window WCF JPM BAC C BK STT GS MS
1 0.009 0.009 0.008 0.007 0.006 0.006 0.007 0.007
2 0.029 0.022 0.042 0.047 0.014 0.028 0.011 0.014
3 0.007 0.006 0.009 0.008 0.005 0.008 0.007 0.006
4 0.004 0.004 0.005 0.004 0.003 0.003 0.003 0.004
5 0.003 0.005 0.003 0.006 0.003 0.005 0.003 0.004
6 0.001 0.002 0.005 0.005 0.003 0.002 0.003 0.005
7 0.001 0.002 0.002 0.004 0.003 0.004 0.003 0.004
8 0.003 0.004 0.006 0.005 0.004 0.005 0.004 0.004
9 0.006 0.008 0.010 0.011 0.008 0.008 0.009 0.011
10 0.002 0.003 0.005 0.004 0.003 0.004 0.003 0.005
11 0.004 0.004 0.004 0.004 0.003 0.003 0.004 0.004

Table 4: Out-of-sample ATAE for linear model.
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4.3 Estimation Results

4.3.1 VaR and CoVaR
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Fig. 4: Plot of Returns (black dots), VaR (blue line) and CoVaR estimated by neural network
quantile regression (red line) for Wells Fargo.
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Fig. 5: Fitted quantile regression neural network for Morgan Stanley on March 13, 2008.
Red connections indicate negative weights, blue connections indicate positive weights. The
color of the input nodes visualizes the variable importance rank calculated as the marginal
effect of the respective firm on Morgan Stanley (yellow implies low importance, red implies
high importance).
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As explained in section 3, the analysis is carried out in four steps. In the
first two steps, VaR and CoVaR are estimated for each firm, using linear
quantile regression and neural network quantile regression, respectively. To
account for potential non-stationarity, we employ a sliding window estimation
framework for both measures. The window size is chosen to be 250 observations
(representing one year of daily stock returns). We choose a quantile level of
τ = 5%, which is the standard in the related literature, see Hautsch et al.
(2014) and Härdle et al. (2016). A lower value for the quantile level leads
to less reliable estimates, due to the inverse relation of the variance and the
density of the error term. As a sensitivity analysis, we also report the results
for τ = 1%, see Figure 13 and 14 in Appendix B. The results are robust with
respect to the choice of the quantile level.

The estimation results for Wells Fargo are visualized in Figure 4. The esti-
mated VaR and CoVaR follow a similar pattern. In the course of the financial
crisis and the bankruptcy of Lehman Brothers and Bear Stearns in 2008, both
risk measures explode, indicating an increase in systemic risk during this pe-
riod. A second persistent spike appears in the second half of 2011 caused by
the European debt crisis. In the following, both VaR and CoVaR stabilize with
a few non-persistent spikes. Similar patterns can be found in the estimation
results for the other financial institutions (see Figure 15 in Appendix B). An
example of a fitted neural network is visualized in Figure 5.

4.3.2 Risk Spillover Network

Based on the estimation results of the neural network quantile regression proce-
dure and on the fitted VaRs and CoVaRs, we calculate the directional spillover
effects for each pair of banks over our prediction horizon. The result is a time-
varying weighted adjusted adjacency matrix (as defined in equation 25). This
risk spillover network provides insights into the cross-section and the time dy-
namics of systemic risk. Figure 7 visualizes the evolution of the network in
the course of the financial crisis. The first half of 2008 shows a moderate level
of lower tail connectedness. This setting changes dramatically in the second
half of 2008 with the bankruptcy of Lehman Brothers. As a consequence, the
United States Department of the Treasury was compelled to bail out financial
institutions to avoid a total collapse of the financial system. Also, the Federal
Reserve Bank had to adjust its monetary policy. The time average of the adja-
cency matrix for 2009 shows a continuing state of financial distress. However,
compared to the previous periods one can visually identify a risk cluster in the
lower left part of the adjacency matrix. Finally, 2010 shows a decline in sys-
temic risk spillover effects caused by a regained trust in the financial system.
Figure 9 restricts the visualization to the largest edges of the financial risk
network. As a first observation, spillover effects across banks tend to be sym-
metric. If bank i has a large impact on bank j, the converse is also very likely.
A second observation is the identification of the risk cluster mentioned above.
This cluster includes four financial institutions, Citigroup, Bank of America,
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Fig. 7: Time average of risk spillover effects across banks for different time periods.

JP Morgan and Wells Fargo. This cluster coincides with the list of the largest
beneficiaries of the bailout program in 2008 and 2009.

4.3.3 Network Risk Measures

Finally, we estimate the systemic risk measures using the results from the
previous steps. First, we consider the Systemic Network Risk Index (SNRI),
as a measure for total systemic risk in the financial system. Figure 10 shows the
development over time. As expected, we see a sharp increase in systemic risk
during the financial crisis in the second half of 2008. A second peak appears
in the second half of 2011 as a result of the uncertainties associated with the
European debt crisis. After a short period of stabilization, we see another
rise in systemic risk from 2014 till 2016. In contrast to the previous peaks,
this increase appears to be more gradual. When comparing the SNRI to the
aggregated SRISK of Brownlees and Engle (2016), one can identify a co-
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Fig. 9: Time average of risk spillover effects across banks after thresholding (ãji > 0.4) for
different time periods.

movement of both indices, see Figure 10. In particular, both the financial crisis
and the European debt crisis lead to a sharp increase in both risk measures.
However, the aggregated SRISK already detects vulnerabilities in the financial
system as early as the beginning of 2008. The reason for this is that the SRISK
incorporates additional information on micro-prudential variables, namely the
book value of debt and the quasi value of assets. In a sense, it is constructed and
calibrated to predict the financial crisis ”ex-ante”, as a high leverage ratio of
financial firms proved to be one of the most important factors in hindsight. The
second systemically relevant event, namely the European debt crisis, was not
primarily caused by high leveraged financial firms. Consequently, we observe
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a simultaneous spike of SNRI and aggregated SRISK at the end of 2011. An
advantage of the SNRI is that it is entirely based on market data.

While the SNRI is an index for total systemic risk, we also consider firm-
specific measures. Table 5 ranks financial firms according to their Systemic
Fragility Index (SFI). A large SFI indicates high systemic exposure to the
financial system. Our findings suggest that Bank of America and Citigroup
are among the most fragile banks during the height of the financial crisis.
These results are in line with the findings in Brownlees and Engle (2016). An
interesting observation is the ranking of State Street Corporation, which was
the first major financial institution to pay back its funds to the US Treasury in
July 2009. State Street is ranked on top in 2008 but is among the least fragile
banks in 2009 and 2010. Figure 11 shows the time dynamics of the SFI for
Citigroup.

We conduct a similar ranking with respect to the Systemic Hazard Index
(SHI), which ranks the financial institutions according to the risk they impose
on the financial system. In each of the time periods we consider, Bank of
America and JP Morgan are listed in the top three. In the aftermath of the
crisis in 2009 and 2010 Wells Fargo also emerges as a systemic risk factor to the
financial system. Figure 12 visualizes the time dynamics of the SHI for Bank
of America. An advantage of our approach is that we are able to differentiate
between firms, which affect systemic risk, and firms, which are affected by
systemic risk. By doing this we capture the asymmetric nature of systemic
risk. As an example, Wells Fargo is ranked high according to the SHI in 2009
and 2010, but at the same time relatively low in SFI. The opposite can be
observed for Citigroup, which is ranked low in SHI and high in SFI during
the same time periods.
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Fig. 10: The figure shows the co-movement of the SNRI (black line) and the SRISK
(Brownlees and Engle (2016), red line).
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2008 Q1-Q2 2008 Q3-Q4 2009 2010
Rank Ticker SFI Ticker SFI Ticker SFI Ticker SFI
1 GS 1.998 STT 2.174 C 2.276 BAC 1.883
2 STT 1.871 BK 2.168 BAC 2.219 JPM 1.799
3 BAC 1.861 BAC 2.083 MS 2.180 C 1.738
4 C 1.805 MS 2.035 JPM 2.107 GS 1.727
5 BK 1.804 C 2.029 GS 1.993 BK 1.705
6 WCF 1.741 GS 1,997 BK 1.981 WCF 1.698
7 MS 1.671 JPM 1.962 WCF 1.895 MS 1.696
8 JPM 1.649 WCF 1.849 STT 1.856 STT 1.693

Table 5: The table reports the ranking of financial institutions according to their SFI
averaged over different time intervals.

2008 Q1-Q2 2008 Q3-Q4 2009 2010
Rank Ticker SHI Ticker SHI Ticker SHI Ticker SHI
1 JPM 2.241 BAC 2.317 WCF 2.663 JPM 2.389
2 BAC 2.234 GS 2.239 BAC 2.314 BAC 2.041
3 MS 1.998 JPM 2.204 JPM 2.262 WCF 1.861
4 C 1.906 BK 2.194 GS 2.244 STT 1.738
5 GS 1.789 MS 2.160 BK 2.122 BK 1.730
6 BK 1.679 WCF 2.086 C 2.005 GS 1.653
7 WCF 1.590 C 2.035 STT 1.941 MS 1.447
8 STT 1.341 STT 1.827 MS 1.924 C 1.250

Table 6: The table reports the ranking of financial institutions according to their SHI
averaged over different time intervals.
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Fig. 11: Time series of the SFI for Citi-
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Fig. 12: Time series of the SHI for Bank of
America.

5 Conclusion

This paper proposes a novel approach to estimate the conditional value-at-risk
(CoVaR) of financial institutions based on neural network quantile regression.
Our methodology allows for the identification of risk spillover effects across
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banks. We also define three measures for systemic risk, the Systemic Fragility
Index and the Systemic Hazard Index as firm-specific measures and the Sys-
temic Network Risk Index as a measure for the overall risk in the financial
system. The neural network framework allows us to model systemic risk in a
highly nonlinear setting. A comparison to a linear baseline model shows the
predictive superiority of our approach in terms of the out-of-sample perfor-
mance.

We apply our methodology to global systemically important banks from
the United States in the period 2007 - 2018. Our results are consistent with
previous findings in the literature. We observe the Systemic Network Risk
Index increasing sharply during the financial crisis and during the European
debt crisis. Furthermore, our approach allows to identify a risk cluster of banks
which corresponds to the list of banks that receive the largest amount of
funding from the US Department of Treasury. By ranking the financial firms
according to their Systemic Fragility Index and their Systemic Hazard Index
we are able to identify those firms which bear significant exposure to the
financial system and those firms which impose the greatest risk to the financial
system.

Appendix A. Consistency of neural network sieve estimator for the
conditional quantile

White (1992) shows the consistency of the neural network quantile regression
estimator.

Assumption A.1: The data Zt = (Xτ
t , Y

τ
t )τ is generated from a bounded

stochastic process defined on a complete probability space (Ω,F , P ), Xt is a
random r × 1 vector, Yt is a random scalar and

(i) Zt is an i.i.d. process or
(ii) Zt is a stationary φ− or α−mixing process with such that the mixing

coefficients φ(k) = φ0ξ
k or α(k) = α0ξ

k, 0 < ξk < 1, φ0, α0, k > 0.

Without loss of generality, we may assume Zt : Ω → Ir+1 def
= [0, 1]r+1.

Let ψ : R → R be a bounded function and let (Θ, ρ) be a metric space,
where ρ is the L1-metric. For any q ∈ N and ∆ ∈ R+ define T (ψ, q,∆) =
{θ ∈ Θ : θ(x) = β0 +

∑q
j=1 βjψ(x>γj) for all x in Ir,

∑q
j=0 |βj | ≤ ∆,∑q

j=1

∑r
i=1 |γji| ≤ q∆}. Further let Qn(θ) = n−1

∑n
t=1 |Yt− θ(Xt)||τ − I(Yt <

θ(Xt))|.
Assumption A.2:Θn(ψ) = T (ψ, qn,∆n), n = 1, 2, . . ., where ψ is bounded,

satisfies a Lipschitz condition and is either a cdf or is l-finite. qn and ∆n are
such that qn → ∞ and ∆n → ∞ as n → ∞. ∆n = o(n1/2) and either (i)
qn∆

2
n log qn∆n = o(n) or (ii) qn∆n log qn∆n = o(n1/2).

Assumption A.3: For given quantile level τ ∈ (0, 1), θτ : Ir → I is a
measurable function such that P {Yt ≤ θτ (Xt)|Xt} = τ and for every θ ∈ Θ
and all ε > 0 sufficiently small E {θ(Xt)− θτ (Xt)} > ε implies that for some
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δε > 0,

E [I {(θτ (Xt) + θ(Xt))/2 ≤ Yt < θτ (Xt)} |θ(Xt) < θτ (Xt)] > δε

and

E [I {θτ (Xt) ≤ Yt < (θτ (Xt) + θ(Xt)) /2} |θ(Xt) ≥ θτ (Xt] > δε.

Theorem 2.5 White (1992): Given assumptions A.1(i), A.2(i) and A.3 or
A.1(ii), A.2(ii) and A.3, there exists a measurable connectionist sieve estimator

θ̂n : Ω → Θ such that Qn(θ̂n) ≤ Qn(θ), θ ∈ Θn(ψ), n = 1, 2, . . .. Further,

ρ(θ̂n, θτ )
p→ 0.

Appendix B. Estimation Results
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Fig. 13: Plot of Returns (black dots), VaR (blue line) and CoVaR estimated by neural
network quantile regression (red line) for Wells Fargo, τ = 1%.
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Fig. 14: The figure shows the co-movement of the SNRI (black line) and the SRISK
(Brownlees and Engle (2016), red line), τ = 1%.
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Fig. 15: Plot of Returns (black dots), VaR (blue line) and CoVaR estimated by neural
network quantile regression (red line), τ = 5%.



Modelling Systemic Risk Using Neural Network Quantile Regression 25

References

Acharya VV, Pedersen LH, Philippon T, Richardson M (2017) Measuring
systemic risk. The Review of Financial Studies 30(1):2–47

Adrian T, Brunnermeier MK (2016) Covar. The American Economic Review
106(7):1705

Brownlees C, Engle RF (2016) Srisk: A conditional capital shortfall measure
of systemic risk. The Review of Financial Studies 30(1):48–79

Brownlees CT, Engle R, et al. (2012) Volatility, correlation and tails for sys-
temic risk measurement. Available at SSRN 1611229

Cannon AJ (2011) Quantile regression neural networks: Implementation in
r and application to precipitation downscaling. Computers & geosciences
37(9):1277–1284
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