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Abstract

Among all the emerging markets, the cryptocurrency market is considered the most
controversial and simultaneously the most interesting one. The visibly significant mar-
ket capitalization of cryptos motivates modern financial instruments such as futures and
options. Those will depend on the dynamics, volatility, or even the jumps of cryptos. In
this paper, the risk characteristics for Bitcoin are analyzed from a realized volatility dy-
namics view. The realized variance RV is estimated with (threshold-)jump components
(T )J , semivariance RSV +(−), and signed jumps (T )J+(−). Our empirical results show
that the Bitcoin market is far riskier than any other developed financial market. Up to
68% of the sample days are identified to entangle jumps. However, the discontinuities
do not contribute to the variance significantly. By employing a 90-day rolling-window
method, the in-sample evidence suggests that the impacts of predictors change over
time systematically under HAR-type models. The out-of-sample forecasting results re-
veal that the forecasting horizon plays an important role in choosing forecasting models.
For long-horizon risk forecast, a finer model calibrated with jumps gives extra utility
up to 20 basis points annually, while an approach based on the roughest estimators
suits the short-horizon risk forecast best. Last but not least, a simple equal-weighted
portfolio not only significantly reduces the size and quantity of jumps but also gives
investors higher utility in short-horizon risk forecast case.
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1. Introduction

Understanding and managing risk of Bitcoin, an emerging cryptocurrency, is crucial for
financial investment and construction of contingent claims. Typically, risk is decomposed into
variance and jumps. The variance describes the intensity of price changing, while the jumps
indicate discontinuities points of price. Different assets may have similar risk characteristics,
however, for the Bitcoin market, it can be viewed to be one of the outliers in the sense of
increased volatility and more frequent jumps.

The inherent risk of Bitcoin (BTC) comes from its unregulated technologic nature. Dif-
ferent from fiat currencies issued and endorsed by governments, BTC is an unprecedented
"currency" that thrives without being supervised or regulated. BTC was first proposed
by Nakamoto (2008) and then initialized in 2009. For the first few years after being cre-
ated, it was unknown to most people but some of the technology enthusiasts. It is built on
the blockchain technology which decentralizes and distributes information through networks
worldwide. This decentralized system is controlled by an algorithm that adds new blocks on
the blockchain-based on consensus from the whole network. BTC is essentially a derivative
or incentive that the algorithm rewards the person who spends computation power and wins
the authority to write a new block. Hence, BTC is a naturally decentralized currency as
being part of blockchain. Nevertheless, regulations can be enforced to the exchanges in which
BTC and any other cryptocurrencies are traded. We conduct this research by using the data
from some of the regulated exchanges.

A series of literature discusses the function of cryptocurrencies. On one hand, Yermack
(2015) argues that BTC is rather a speculative investment than a "currency" because of
reasons such as its price is too volatile for users, low acceptance from common merchants,
etc. Some articles find evidence that BTC has strong speculative bubble properties by
using bubble testing methods, such as Hafner (2018) and Gerlach, Demos, and Sornette
(2019). Griffin and Shams (2018) document possible price manipulations. Due to lack to
fundamental value, papers find that the latent drivers of BTC price and volatility could
be the sentiment, a series of social signals such as opinions and trading volume (Bukovina,
Martiček, et al. (2016); Garcia and Schweitzer (2015); Balcilar, Bouri, Gupta, and Roubaud
(2017)). On the other hand, BTC is considered from the aspect of portfolio management.
BTC is found to function as a hedging or risk haven asset (Bouri, Molnár, Azzi, Roubaud, and
Hagfors (2017); Urquhart and Zhang (2019)) and it has similar properties like gold under the
assymmetric GARCH models (Gronwald (2014); Dyhrberg (2016)). Glaser, Zimmermann,
Haferkorn, Weber, and Siering (2014) argue that people use BTC not for transactions but
as an alternative investment. Other than the discussions on the economic role of BTC,
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researchers also study BTC from the econometrics angle, starting from the construction of
cryptocurrencies index (Trimborn and Härdle (2018)) and preliminary econometric modelling
(Chen, Chen, Härdle, Lee, and Ong (2018)). A recent paper of Traian Pele, Niels, Härdle,
Kolossiatis, and Yatracos (2019) classify cryptocurrency as a new asset class by its statistical
feature.

Figure 1: Q-Q plot on 5-minute logarithmic returns of BTC-D (left panel) and BTC-G (right panel).
Any of the observations has trading volume located below 50% quantile is filtered out. Sample period starts
from January 2017 to May 2019

RiskBTC_Plot

BTC has frequently experienced extreme variance and jumps on price since 2013. The
Bitcoin market started to draw attention in 2013 when the unit price exceeded 100 U.S.
dollars. 4 years later, in January 2017, the unit price hit 1000 U.S. dollars and reached
almost 20,000 U.S. dollars by the end of 2017. The bubble burst in 2018, its price dropped
around 80% from the peak in one year and it is again climbing up in 2019. The high volatility
entangled with jumps phenomenon of the Bitcoin market is evidenced by the Q-Q plot on
5-minute logarithmic returns shown in Figure 1. One can observe the fat-tail effect on BTC
logarithmic return distribution.

Apart from many of the online exchanges offering BTC futures and options, the strictly
regulated exchange CME launched futures on BTC in 2017. More and more investors/speculators
enter the cryptocurrency markets and its derivatives markets demanding studies on BTC
risk from an academic point of view. Conrad, Custovic, and Ghysels (2018) decomposes
the volatility into short term and long term components by GARCH-MIDAS analysis, and
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study the volatility correlation between BTC and some other indices, for example, Baltic
dry index. Other papers focus on the forecasting side, for example, Pichl and Kaizoji (2017).
One recent paper of Scaillet, Treccani, and Trevisan (2018) analyze the jump behavior using
the dataset from Mt. Gox exchange on the sample period from 2011 to 2013. And papers,
for example, Hou, Wang, Chen, and Härdle (2018) attempt to calibrate an option pricing
model adapting the high volatility and jump properties.

Table 1: Summary Statistics of BTC Annualized Realized Variance Against Global Exchange Indices

AEX† DJI† FTSE† HSI† SPX† SSEC† BTC-D BTC-G

count 4 842 4 704 4 769 4 645 4 709 4 508 864 883
mean 0.16 0.12 0.14 0.15 0.13 0.23 1.16 0.93
std 0.38 0.30 0.32 0.41 0.32 0.46 2.05 1.76
min 0.10% 0.08% 0.16% 0.35% 0.04% 0.23% 0.02 0.76%
25% 0.02 0.02 0.02 0.03 0.02 0.03 0.08 0.04
50% 0.05 0.04 0.05 0.06 0.05 0.09 0.56 0.40
75% 0.14 0.11 0.13 0.14 0.12 0.23 3.70 3.17
max 7.04 5.55 7.74 16.46 7.18 7.71 26.07 21.99

†: Selected global indices from developed markets and emerging markets. Trading hours in different global exchanges
could be different which introduce bias of RV . We correct such bias by accounting the overnight price change (Bollerslev,
Hood, Huss, and Pedersen (2018)) to allow those RV estimators to be comparable.
Datasource from Realized Library, Oxford-Man Institute of Quantitative Finance.

Volatility plays a key role in observing market uncertainty and modeling dynamics of
financial assets. As the second moment of a random process, it is also the core element
of pricing financial derivatives, optimizing portfolios and risk management(Fleming, Kirby,
and Ostdiek (2001)). The Realized Variance RV which accounts intraday information from
high-frequency data, essentially the sum of squared returns over the period, was advocated
by previous literature (see e.g Andersen, Bollerslev, Diebold, and Labys (2001); Barndorff-
Nielsen and Shephard (2002a)). Andersen, Bollerslev, Diebold, and Ebens (2001) document
that this model-free estimate is highly right-skewed, logarithmic normal distributed and
characterized by a strong temporal dependency property.

We start with constructing RV by using the 5-minute high-frequency BTC price data
from two data sources named BTC-D and BTC-G. Due to Bitcoin market liquidity constraint
before 2017, we fix the sample period from January 2017 until May and July 2019. The
extraordinary higher risk level of BTC stands out immediately comparing with any other
developed financial markets, as shown in Tab.1.

In practice, a continuous diffusion sample path assumption rarely holds and discontinu-
ity should be accounted in. We separate jump components J based on model provided by
Barndorff-Nielsen and Shephard (2004). However, this estimator is biased for BTC which
suffers from consecutive jumps. Hence the Thresholded Jump TJ estimator from Corsi,
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Pirino, and Reno (2010) is employed. TJ detects more jumps than J does, and both estima-
tors indicate that jumps happened in Bitcoin market much more frequently compared with
results on other traditional assets. Surprisingly, despite the large size and quantity of jumps
detected in BTC, the discontinuities do not contribute much to risk. Further, we decompose
RV into upside/downside variance RSV +(−) (Barndorff-Nielsen, Kinnebrock, and Shephard
(2008)) and yield the positive/negative jump components (T )J+(−). Contrary to the result
from Scaillet, Treccani, and Trevisan (2018), we find approximately the same number of
positive and negative jumps. This finding may be attributed to the longer sample period.

We develop 8 forecasting models accounting different jump estimators which are moti-
vated by Heterogeneous AutoRegression (HAR) model introduced in Corsi (2009). First, the
full-sample fitting gives inconsistent results estimating the average effect of each estimators
impacting on RV . Then we allow the parameters changing over time by employing a 90-day
rolling window forecasting method. The performance of forecasting models heavily rely on
forecasting horizon, i.e the finer calibrated models outperform in the long horizon forecast
while the roughest model HAR performs best in the short-horizon forecast. Such a finding
is further confirmed by a utility-based framework (Bollerslev, Hood, Huss, and Pedersen
(2018)). A finer model outperforms HAR up to 20 basis points for in the 30-day horizon
forecast but underperforms in the 1-day horizon forecast. Last but not least, the simple
equal-weighted portfolio BTC-D not only reduces the idiosyncratic jump risk significantly
but also provides extra utility in the short-horizon risk forecasting case.

We will proceed with the article as follows. In section 2, we briefly describe theoretical
models used in this article including realized variance, jumps, thresholded jumps, realized
semivariance, and signed jumps. Then, in section 3, we present the data we use, followed by
a discussion on BTC price processes and the liquidity of BTC Market, and summary statis-
tics on realized variance and jumps. Section 4 discuss the construction and comparison of
forecasting models and the forecasts are evaluated under a utility-based framework. Finally,
we conclude our findings and remarks in section 5.

2. Theoretical Framework

Realized variance and jumps have been developed in the recent two decades. In this
section, we present the construction of the estimators used in this article. Starting with
the Realized Variance RV , we introduce the Jump component J separated from RV by the
BiPower Variance BPV . To overcome the bias caused by consecutive jumps, the corrected
Thresholded BiPower Variance TBPV is used to separate it from Thresholded Jump TJ .
Furthermore, in order to decompose the jump component into positive and negative J+(−),
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we employ the Realized SemiVariance RSV +(−).
All estimators are constricted in a continuous-time jump diffusion process framework, i.e

for a logarithmic asset price p(t):

d p(t) = µ(t) d t+ σ(t) dW (t) + κ(t) d q(t), 0 ≤ t ≤ T (1)

where µ(t) is a continuous process with bounded local variation, σ(t) is a càdlàg process,
W (t) is Brownian motion. The third term on the right-hand side is the jump process, where
q counts the number of jumps with time-varying intensity denoted by κ.

This article uses logarithmic returns rt+j∆
def
= p (t+ j∆)−p (t+ (j − 1)∆) which denotes

the j-th observed value in day t, the given sampling step ∆ will be introduced latter.

2.1. Realized Variance and Jumps

Realized variance RVt,t+1 is simply the cumulative squared logarithmic returns over time
period [t, t+ 1]: (For convenience, we omit one t, i.e RVt+1 = RVt,t+1)

RVt+1(∆)
def
=

1/∆∑
j=1

r2
t+j∆ (2)

To calculate 2, [t, t + 1] is partitioned into N intervals evenly. The sampling step is
∆ = 1/N , for example, with 288 observations each day, ∆ = 1/288. By the theory of
quadratic variation, the increment of Quadratic Variation QV of p(t) can be expressed as:

QVt+1 = p-lim
∆→0

1/∆∑
j=1

r2
t+j∆

=

∫ t+1

t

σ2(s)ds+
∑

t<s≤t+1

κ2(s)

(3)

The variation of p(t) measured by QV comes from two sources, one is driven by the càdlàg
process and one is caused by the jump process. A series of literature discuss the convergence
properties of RV . Andersen, Bollerslev, Diebold, and Labys (2001), Barndorff-Nielsen and
Shephard (2002a), Barndorff-Nielsen and Shephard (2002b) document the absence of jumps.
Later, Barndorff-Nielsen and Shephard (2004), Barndorff-Nielsen and Shephard (2006), An-
dersen, Bollerslev, and Diebold (2007) generalize to possible jumps. RV converges in prob-
ability to QV as ∆ goes to 0:
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RVt+1(∆)
p→
∫ t+1

t

σ2(s)ds︸ ︷︷ ︸
IVt+1

+
∑

t<s≤t+1

κ2(s)︸ ︷︷ ︸
Jt+1

(4)

Hence, RV consists of two components: The continuous IV component, and the Jump
component J . The BiPower Variation BPV measuring the continuous process allows to
separate the components

BPVt+1(∆) = µ−2
1

1/∆∑
j=2

|rt+j∆| · |rt+(j−1)∆|, (5)

where µ1 =
√

2/π. BPV converges in probability to IV in (4) as ∆ goes to 0. A general
form of BPV is the MultiPower Variance, see Appendix A.1.

Intuitively, BPV is robust to an infrequent jump process as the variation process is
smoothed by cumulating the adjacent logarithmic returns. J can therefore be isolated by
taking the difference of RV and BPV . And then the difference is truncated to guarantee
that J is non-negative, see 6.

BPVt+1(∆)
p→
∫ t+1

t

σ2(s)ds

RVt+1(∆)−BPVt+1(∆)
p→

∑
t<s≤t+1

κ2(s)

Jt+1
def
= max {RVt+1(∆)−BPVt+1(∆), 0}

(6)

2.2. Threshold Bipower Variance and Jumps

BPV is effective in the sense of smoothing a variation process when both size and quan-
tity in the jump process are relatively small, in other words, BPV is biased to large and
consecutive jumps which are not evidently appropriated for investigating cryptocurrencies.
For example, Fig.2 shows that consecutive jumps occurred in case the variation process is not
smoothed by BPV . Empirical evidence shown in Fig.3 indicates that the BPV 1/2 process
is very similar to the RV 1/2 process which in turn cause the J1/2 estimator biased.

To alleviate such bias, we implement the threshold variation model of Corsi, Pirino, and
Reno (2010). The main idea of Thresholded MultiPower Variation TMPV is documented in
Mancini (2009) which essentially truncates any logarithmic return when it exceeds a certain
level θ, see more details in Appendix A.2.

At time point t+ j∆, the threshold value θt+j∆ is varying along with local variance V̂t+j∆
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Figure 2: A trajactory of the intraday behavior of BTC-G, 10th Mar. 2017. Upper panel shows the
logarithmic return process and the bottom panel is the corresponding trading volume. Both in 5-minute
sampling frequency.

for given constant coefficient, i.e θt+j∆ = c2
θ · V̂t+j∆

Corsi, Pirino, and Reno (2010) shows that any unbiased estimator for realized local
variance σ2 can be implemented, e.g the Fan and Yao (2008) estimator we use detailed in
Appendix A.3 which is essentially a kernel smoothing estimator.

Given the local variation estimate V̂t+j∆, the constant cθ also impacts TMPV . As cθ goes
larger TMPV truncates less values, hence TMPV goes to MPV . In our main empirical
results, we follow the literature and choose cθ = 3.

Given the estimation of threshold value θt+j∆, Mancini and Renò (2011) proposes the
way of directly truncating the returns exceeded the threshold. However, this could also
annihilate some of the price changes for TBPV that are not "real" jumps which in turn
cause more "fake" jumps been detected. Hence, we implement the corrected version of
TMPV that relieve such "double-sword" bias (Corsi, Pirino, and Reno (2010)). To avoid
confusion, TMPV is short for the corrected version of TMPV hereafter.

Essentially, instead of eliminating every of the points that has square-returns r2
t+j∆ larger

than certain threshold value θt+j∆, the corrected TMPV replaces the η-th power logarithmic
return |r|ηt+j∆ with re(θt+j∆, η) which is the expected value under assumption that rt+j∆ ∼
N(0, σ2). The conditional replacement logarithmic return Cη(rt+j∆, θ) can be written as:
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(a) Jump of BTC-D separated from BPV. From 1st January 2017 to 31st May 2019

(b) Jump of BTC-G separated from BPV. From 1st January 2017 to 31st July 2019

Figure 3: Jump Separation by BPV estimator. The panels from top to bottom are the 5-minute loga-
rithmic returns, realized volatility (RV 1/2), bipower volatility (BPV 1/2) and separated significant jump in
square root form (J1/2) under confidence level α = 99.99%. Test for significant J is detailed in AppendixA.6

Cη(rt+j∆, θt+j∆) =

{
|rt+j∆|η , r2

t+j∆ ≤ θ

ret+j∆ (θt+j∆, η) , r2
t+j∆ > θ

(7)

More details about expected logarithmic return ret (θt, η) is documented in Appendix A.4.
Similar to procedure for detecting J , two special cases of TMPV are used here. TBPV

estimates
∫ t+1

t
σ2(s)ds and TTPV estimates

∫ t+1

t
σ4(s)ds. Two estimators are defined as

follows. The general form of corrected TMPV is detailed in the Appendix A.5.
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TBPVt+1(∆) = µ−2
1 ·

1/∆∑
j=2

C1(rt+j∆, θt+j∆)C1(rt+(j−1)∆, θt+(j−1)∆) (8)

TTPVt+1(∆) = µ−3
4
3

·∆−1 ·
1/∆∑
j=3

C 4
3

(rt+j∆, θt+j∆) (9)

· C 4
3

(
rt+(j−1)∆, θt+(j−1)∆

)
· C 4

3

(
rt+(j−2)∆, θt+(j−2)∆

)
Test for thresholded jumps t-z is given by (10), provided by Corsi, Pirino, and Reno (2010)

which is based on the ratio statistic from Huang and Tauchen (2005), detailed by Andersen,
Bollerslev, and Diebold (2007)(z, see Appendix A.6) under continuous jump diffusion model.
Where ζ = π2

4
+ π − 5. Under a series assumptions, for the null hypothesis that no jump

exists, t-z converges to standard normal distribution as ∆ goes to 0, i.e t-z L→ N(0, 1).

t-zt+1 =
{RVt+1(∆)− TBPVt+1(∆)}RV −1

t+1(∆)√
∆ · ζ ·max

{
1, TTPVt+1(∆)
{TBPVt+1(∆)}2

} (10)

Then, we can calculate the Threshold realized Jumps TJ , taking account only the signif-
icant jumps by t-z test. Likewise, we also use the z test to retain only the significant jumps
J in (6)

TJt+1(∆) = max {RVt+1(∆)− TBPVt+1(∆), 0} · I {t-zt+1 > Φα} (11)

Consequently, we can enforce the RV = (T )C + (T )J , thus the continuous component
(T )Ct+1(∆) = RVt+1(∆)− (T )Jt+1(∆).

By the comparison between Fig.(4) with Fig.(3), under confidence level α = 99.99%,
the threshold method TBPV detects more significant jumps than BPV method. We will
further discuss the dynamics of those two estimators and compare the performance under
forecasting models.

2.3. Realized Semivariance and Signed Jumps

In the subsection, we go further to discuss the detection of positive and negative jumps.
Recall that under the continuous jump diffusion model assumption, the jump component of
quadratic variation QVt+1 is the accumulated sum of squared infinitesimal changes ∆ps =

ps−ps− , i.e
∑

t<s≤t+1(∆p)2(s). Hence, the jump component is guaranteed to be non-negative

9



(a) BTC-D Jump separation from 1st January 2017 to 31st May 2019

(b) BTC-G Jump separation from 1st January 2017 to 31st July 2019

Figure 4: The panels from top to bottom are logarithmic return, square-root form of realized volatility
(RV 1/2), square-root form of threshold bipower variance (TBPV 1/2) with cθ = 3 and separated significant
jump process in square-root form (TJ1/2) under confidence level α = 99.99%

as defined in (11). On the other hand, from the finance perspective, investors are keen to
understand the dynamics of the positive and negative jump, especially how those estimators
impact the market of their interests. For example, the asymmetric effect of positive and
negative risk on asset returns are well investigated in previous literature.

Realized semivariance RSV (Barndorff-Nielsen, Kinnebrock, and Shephard (2008)) pro-
vides us one way to separate positive and negative jumps from the realized variance process.
The definition of positive (negative) RSV +(−) shown in (12) is essentially the the sum of the
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squared positive (negative) logarithmic returns.

RSV
+(−)
t+1 =

1/∆∑
j=1

r2
t+j∆ · I{rtj∆ > (<)0} (12)

It is straight forward that RV can be decomposed into RSV + and RSV − completely, i.e
RV = RSV + +RSV −, for both finite sample and large sample cases. As sampling frequency
1/∆ goes infinite, the limiting behavior of RSV given by (13) under infill asymptotics shows
that RSV +(−) converges to one-half of the integrated variance and positive (negative) sum
of squared jumps. Such decomposition is also evidenced by our empirical result that the sum
of the average value of RSV + and RSV − is almost the average value of RV .

RSV +
t+1

p→ 1

2

∫ t+1

t

σ2(s)ds︸ ︷︷ ︸
1
2
IVt+1

+
∑

t<s≤t+1

(∆ps)
2 · I{∆ps > 0}︸ ︷︷ ︸
J+
t+1

(13)

With this convergence property above and the property of BPV described in (6), one can
easily separate the (Thresholded) Positive Jumps (T )J+ or (Thresholded) Negative Jumps
(T )J− by subtracting RSV + or RSV − by (T )BPV . As defined in (14), we will have four
signed jump estimators, J+, J−, TJ+, TJ−.

(T )J
+(−)
t+1 = max

{
RSV

+(−)
t+1 − 1

2
(T )BPVt+1, 0

}
(14)

3. Data and Preliminary Analysis

We construct two price processes from two data sources to highlight the robustness of
our empirical results on the risk of Bitcoin which is traded among many online exchanges.
This section can be roughly divided into 3 parts. We start with introducing our dataset,
followed by the discussion on the characteristics of the two price processes and liquidity of
Bitcoin market. Finally, we present the summary statistics of realized variance and jump
components.

3.1. Data Source

There are 2541 online exchanges trading various types of cryptocurrencies and each of
them is traded in different exchanges globally. Among all crypto markets, Bitcoin market is
dominant with more than 70% market share. We focus only on Bitcoin market, two price

1Until July 2019, https://coin.market/exchanges-info.php
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processes constructed from two different data sources are studied. One process is from a
private data source called DYOS2, hereafter BTC-D, and the other one is an online free
provider 3, hereafter BTC-G. BTC-D price is equal-weighted prices from three actively
trading exchanges, Poloniex, Bittrex, and Bitfinex4. Such construction can be viewed as a
portfolio-type price which allows investors to avoid idiosyncratic risk from exchanges. And
BTC-G price comes from only one exchange, Gemini5, which is one of the largest digital
exchanges regulated by NYDFS6.

The full dataset can be dated back to 2014, however, the trading was inactive and prices
were not efficient until 2017, thus we truncate both datasets and start them from January
2017. The BTC-D process lasts until May 2019, and BTC-G process goes to July 2019.
After cleaning and removing the trading days that have the incomplete number of samples,
the dataset has totally 864-day samples for BTC-D and 883-day samples for BTC-G. Both
two data sources are sampled every 5-min, thus every day has 288 samples.

3.2. Price Process of BTC

A series of literature have discussed sampling frequency issues regarding realized variance
estimator impaired by microstructure noise, e.g Ait-Sahalia, Mykland, and Zhang (2005) and
Bandi and Russell (2008) attempt to derive optimal sampling frequency by explicitly assum-
ing noise structure, Zhang, Mykland, and Aït-Sahalia (2005) Zhang (2006) document the
efficient estimator by subsampling schemes, and kernel methods are introduced to handle the
noise (Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008); Hansen and Lunde (2006)).
Liu, Patton, and Sheppard (2015) tests estimators constructed with different sampling fre-
quency and finds no evidence against 5-minute sampling strategy. For simplicity, following
most of the empirical literature such as Andersen, Bollerslev, Diebold, and Ebens (2001);
Andersen, Bollerslev, and Diebold (2007), this paper employs the 5-minute high-frequency
sampling strategy for both BTC-D and BTC-G, i.e taking the close price of each 5-minute
interval.

Like fiat currencies, the price of BTC is essentially an exchange rate against another
currency. In most of the exchanges, there are two notions of BTC price. BTC price can be
denoted by either U.S dollars or another cryptocurrency named USDT.

Here we have some introduction of USDT regarding its reliability. The USDT is an
innovative cryptocurrency that claims to tether U.S. dollar with a 1:1 exchange rate. Such

2Dyos solutions GmbH, Berlin, Germany
3https://www.cryptodatadownload.com/
4Poloniex and Bittrex are U.S based companies, and Bitfinex located in Hongkong
5https://gemini.com/about/
6New York State Department of Financial Services
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Figure 5: Price trajectory of BTC-D (dash line) and BTC-G (solid line) in the highest accumulated
logreturn day, 20th July, 2017.

RiskBTC_Plot

equivalence is generated by so-called "1 USDT token is backed up by 1 U.S dollar" strategy.
One of the pros of trading USDT is that all cryptocurrencies can be exchanged via USDT
which results in better liquidity and more efficient prices, however, the USDT can be one of
the risk factors for BTC. As Griffin and Shams (2018) discusses more about the functions of
USDT.

The price in BTC-D is denoted by USDT, while the prices of BTC-G come from U.S.
dollars trades. Price efficiency of those two exchanges can be evidenced by Fig.5 which
shows the realized sample trajectory of BTC-D and BTC-G evolving closely in an extremely
volatile day. Here we do not discuss more the risk from USDT but focus on characteristics
of each of the processes.

3.3. Liquidity of Bitcoin Market

Bitcoin market is trading all-day and all-year globally akin to the foreign exchange market
which prompt two issues that will be discussed below.

The first issue is the "calendar" effect which suggests that in some of the trading days
when there are not enough trading activities, such as weekends or some national holidays, in-
formation can only be incorporated into prices in the very next "real" trading day. Removing
those inactive days could reduce the "calender" effect but might also introduce biases.

We do not remove any trading days because many of the non-institutional investors who
trade during non-business days in the cryptocurrency market. Also, program trading is
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common in such "high-tech" centered market evidenced by Fig.6 in which we show that the
very same logarithmic returns (rounded to 19 decimals) appears over 100 times in 2016 and
it appears 7 times on March 3rd, 2016.

Figure 6: Same logarithmic return appears multiple times on March 3rd, 2016.
RiskBTC_Plot

The second issue comes from the definition of "day". As documented in previous lit-
erature, one could define a day as "21:05 GMT one night to 21:00 GMT next evening"
(Andersen, Bollerslev, Diebold, and Labys (2001)). Truncating the "night periods" is also
commonly seen in the literature.

The answer relies on whether Bitcoin market is a truly global market which has the same
liquidity over the day or it is liquidity restricted for certain periods of the day. We justify
the problem by investigating the trading volume pattern regarding BTC-D and BTC-G price
processes. First, we define the Average Relative Trading Intensity ARTIj∆ for each 5-minute
interval [(j − 1)∆, j∆] to compare liquidity differences over time periods in Bitcoin market.

ARTIj∆
def
=

1

N

N∑
t=1

RTIt+j∆

RTIt+j∆
def
=

volt+j∆ −Minvolt+j∆,K
Maxvolt+j∆,K −Minvolt+j∆,K

(15)

Where Minvolt+j∆,K = mink=−K...,0,...K volt+(j+k)∆ is the local minimum trading volume
around t+ j∆, Likewise Maxvolt+j∆,K is the local maximum trading volume value. Here we
fix the window length K = 288 which can be referred to 48-hour (∆ = 5-minute) relative
trading intensity. And the N is the number of days in our sample.

RTIt+j∆ ∈ [0, 1] is essentially a rolling-window min-max transformation which assigns

14

https://github.com/QuantLet/RCVJ_Forecasting


Figure 7: Average Relative Trading Intensity of BTC-D (left) and BTC-G (right) in 5-minute interval.
Year of 2016, 2017, and 2019.

RiskBTC_Plot

the maximum values to 1 and the minimum values to 0. If the liquidity is almost equally
distributed over time in day t, then ARTIj∆ should evolve stably.

In this article, we define the day as 0:00 GMT to 23:55 GMT. Fig.7 shows theARTIj∆, j =

1, . . . , 288 for BTC-D and BTC-G. As stated in the previous section, three out of four ex-
changes in our dataset are based on the U.S. Consistently, the active trading time period for
both BTC-D and BTC-G are both around 15:00 GMT which is the likely the trading hour of
the U.S market. However, in our dataset, one can see that many trades were also generated
during European, Asian market trading hours. It would be biased if one takes account only
the U.S. market trading hours. Despite the fact that some ARTI extreme outliers exist for
BTC-G, we still see similar trading volume pattern between those two prices processes.

3.4. Dynamics of Realized Variance

The subsection discusses the dynamics of variance estimates in 3 aspects including de-
scriptive statistics, empirical distribution, and series autocorrelation.

The descriptive statistics of continuous component C and TC suggest that the discon-
tinuities do not contribute to the risk too much. As definition in section 2.2, (T )C are
the differences between RV and (T )J . Closer (T )C to RV , lower contribution from (T )J .
Averagely, jumps contribute to risk up to 6.8% for BTC-D, and up to 17.2% for BTC-G.
Percentile statistics give consistent results.

As discussed previously, RV can be decomposed into positive and negative estima-
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tors RSV +(−), one can see that mean(RV ) ≈ mean(RSV +) + mean(RSV −) from Tab.2.
Take BTC-D for example, the mean value of those estimators are mean(RV ) ≈ 1.16,
mean(RSV +) ≈ 0.57, and mean(RSV −) ≈ 0.59. And ADF unit root test suggests that
most estimators do not contain unit root at 5% significant level.

Table 2: Summary Statistics For Bitcoin Annualized Daily (Semi-)Realized Variance

Panel A: BTC-D
RV RSV + RSV − log(RV ) log(RSV +) log(RSV −) C TC

mean 1.16 0.57 0.59 −0.60 −1.32 −1.30 1.12 1.08
std 2.05 1.02 1.05 1.20 1.22 1.23 2.06 2.01
min 0.02 0.01 0.01 −3.98 −4.88 −4.51 0.01 0.01
5% 0.08 0.04 0.04 −2.54 −3.29 −3.27 0.06 0.05
50% 0.56 0.27 0.26 −0.58 −1.31 −1.33 0.51 0.47
95% 3.70 1.81 2.06 1.31 0.59 0.72 3.70 3.69
max 26.07 13.28 12.80 3.26 2.59 2.55 26.07 26.07
skewness 5.59 5.78 5.41 0.06 0.04 0.10 5.60 5.73
kurtosis 43.38 46.24 40.12 −0.04 −0.03 −0.15 43.40 45.86
acf(1) 0.53 0.51 0.52 0.79 0.78 0.77 0.53 0.56
acf(7) 0.17 0.16 0.17 0.58 0.58 0.57 0.17 0.18
acf(30) 0.11 0.10 0.11 0.38 0.37 0.38 0.12 0.13
acf(100) 0.06 0.06 0.06 0.23 0.23 0.23 0.06 0.07
ADF −3.16∗∗ −3.22∗∗ −3.12∗∗ −4.36∗∗∗ −4.34∗∗∗ −4.42∗∗∗ −3.12∗∗ −3.10∗∗
Panel B: BTC-G

RV RSV + RSV − log(RV ) log(RSV +) log(RSV −) C TC

mean 0.93 0.45 0.49 −0.92 −1.66 −1.64 0.85 0.77
std 1.76 0.84 0.98 1.32 1.32 1.37 1.64 1.55
min 0.01 0.00 0.00 −4.88 −5.51 −5.63 0.00 0.00
5% 0.04 0.02 0.02 −3.15 −3.90 −4.00 0.03 0.02
50% 0.40 0.19 0.19 −0.91 −1.65 −1.64 0.33 0.28
95% 3.17 1.53 1.73 1.15 0.42 0.55 3.09 2.95
max 21.99 11.78 14.52 3.09 2.47 2.68 21.99 21.99
skewness 5.86 6.32 6.85 −0.04 −0.04 −0.01 5.73 6.21
kurtosis 47.28 59.42 68.92 −0.10 −0.14 −0.19 48.03 57.88
acf(1) 0.42 0.45 0.35 0.74 0.73 0.71 0.47 0.50
acf(7) 0.13 0.14 0.11 0.49 0.51 0.47 0.16 0.19
acf(30) 0.09 0.09 0.07 0.26 0.26 0.25 0.12 0.14
acf(100) 0.03 0.04 0.02 0.11 0.11 0.11 0.03 0.04
ADF −3.03∗∗ −3.12∗∗ −4.89∗∗∗ −5.06∗∗∗ −3.61∗∗∗ −5.27∗∗∗ −2.95∗∗ −2.77∗

∗∗∗: 1% significance, ∗∗: 5% significance, ∗: 10% significance

The empirical kernel density estimation of log(RV ), log(RSV +(−)) and log((T )C) are
shown in Fig.8. Each subfigure in Fig.8 has normal distribution probability density func-
tion, normal PDF, shadowed in the background to contrast the empirical density. The two
parameters, µ, σ, for normal PDF are taken from the mean and standard deviation values
of the corresponding estimator. For example, the BTC-D has mean(log(RV )) = −0.12,
std(log(RV )) = 0.96, the normal PDF is ϕ(x| − 0.12, 0.96) = (2π ∗ 0.96)−1/2 exp(− (x+0.12)2

2∗0.962
).

Consistent with the results that skewness and excessive kurtosis of those logarithmic
forms are all close to 0 shown in Tab.2, we can see the empirical density of those estimators
are very close to the normal distribution in the background. Consistent with Andersen,
Bollerslev, Diebold, and Ebens (2001) and Bollerslev, Hood, Huss, and Pedersen (2018), all
the RV -type estimators are likely log-normally distributed .
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Figure 8: Kernel density estimation on annualized unconditional daily logarithmic estimators for BTC-D
(left column) and BTC-G (right column). Shadows in the background represent normal probability density
function with corresponding empirical local and scale parameters of estimators

RiskBTC_Plot

Autocorrelation is the key for time series forecasting, particularly, log(RV ) is character-
ized as long memory in previous literature. In Tab.2, the autocorrelation function is com-
puted with lags = 1-day, 7-days, 30-days, 100-days, noted as acf(1), acf(7), acf(30), acf(100).
On one hand, we see strong autocorrelation of all the RV -type estimators at lags of 1-day and
7-days for both BTC-D and BTC-G. On the other hand, the decay rates on autocorrelation
may vary between different exchanges for the same crypto asset. One can see quite different
decay rate between of BTC-D and BTC-G. BTC-G has a stronger and more sustained long-
memory effect which is aligned with ACF results in Tab.2. Furthermore, the logarithmic
form of those processes shows a clearly stronger serial dependency structure. Each subfigure
in Fig.9 shows that the dynamics of dependencies behave in a similar pattern.

3.5. Dynamics of Jumps

Recall that we construct six estimators to measure jumps, J , TJ , and (T )J+(−) in Sec.2.
Summary statistics of those estimators are described in Tab.3 and Fig.10 depicts how their
intensity evolve over time. J(α) and TJ(α) are evaluated under α = 99.99% confidence
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Figure 9: Autocorrelation function of estimators in square and logarithmic forms for BTC-D (left column)
and BTC-G (right column)

RiskBTC_Plot

level. The average intensity of jump components is approximate (T )J(α) ≈ (T )J+ + (T )J−,
the error is partially caused by the lack of significance test on signed jumps (T )J+(−). The
size and quantity of negative jumps (T )J− are almost equal to that of positive jump (T )J+.

Jumps appear far more frequently in Bitcoin market than in any other developed markets
comparing the results documented by pervious researches using similar approaches. From our
empirical results in Tab.3, 25% and 51% of days are detected with jumps using J estimator
for BTC-D and BTC-G, respectively. And those numbers are up to 39% and 68% by TJ
estimator. Corsi, Pirino, and Reno (2010) shows that for the most liquid six stocks of S&P500
8.3% of the 1256 sample days are with jumps by TJ(α = 99.9%). Andersen, Bollerslev, and
Diebold (2007) does experiments on various financial assets including DM/$, S&P 500 and
U.S T-Bond by using J estimator and 8.3%, 5.1% and 7.6% of all days are been detected
with jumps, correspondingly.

Nevertheless, the simple equal-weighted portfolio, BTC-D, reduces the size and quan-
tity of jumps significantly. Comparing the two panels in Tab.3, more jumps are detected in
BTC-G than in BTC-D. The price process of BTC-D is constructed by weighting prices from
multiple exchanges equally, thus jumps detected by high-frequency data can be canceled out
from such construction. For example, a market event happened, exchanges prices react at a
different speed, say one exchange’s price reacts simultaneously and another exchange reacts
a few minutes later, then such jump in synthetic price is "smoothed out". Hence, one can see
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Figure 10: Jump components decomposed from realized variance of BTC-D (left column) and BTC-G
(right column). Panels from top to bottom are J(α), TJ(α), J+(−), and TJ+(−) defined in Sec.2. α = 99.99%
is the confidence level.

RiskBTC_Plot

that, by TJ estimator, 39% of days in BTC-D sample are entangled with jumps while 68% of
days are found with jumps in BTC-G. Furthermore, more extreme jumps appear in BTC-G
than in BTC-D by percentile statistics. BTC-G is more positive skewed and leptokurtic than
BTC-D in terms of all jump estimators, for example, skewness(BTC-D, J) = 1.69 versus
skewness(BTC-G, J) = 15.90 and kurtosis(BTC-D, J) = 2.55 versus kurtosis(BTC-G, J) =

290.20.
By the threshold smoothing method TBPV , much more jumps can be detected from

TJ(α) estimator, or in other words, the threshold method has a stronger detection ability
on the jumps in Bitcoin market. In BTC-D, 39% of all days with jumps by TJ comparing
25% by J , and the statistics are 68% against 51% in BTC-G. Also, TJ component is more
intensive than J component. Especially, we can see TJ has much larger value at 95-percentile
and maximum, this may suggest that some of the large size jumps or consecutive jumps are
missed in J .
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Table 3: Summary Statistics For Bitcoin Jump Components

Panel A: BTC-D
J(α) TJ(α) J+ J− TJ+ TJ−

prop.† 0.25 0.39 0.68 0.73 0.76 0.79
mean 0.12 0.20 0.08 0.09 0.09 0.11
std 0.14 0.40 0.17 0.17 0.21 0.25
min(%) 0.83 0.92 0.01 0.01 0.02 0.03
5%(%) 1.00 1.00 0.30 0.35 0.36 0.46
50% 0.07 0.09 0.03 0.03 0.03 0.04
95% 0.40 0.64 0.3 0.32 0.34 0.39
max 0.66 5.09 2.22 1.81 2.36 4.39
skewness 1.69 7.28 6.37 5.28 5.80 9.46
kurtosis 2.55 73.22 56.2 40.47 43.31 131.43
Panel B: BTC-G

J(α) TJ(α) J+ J− TJ+ TJ−

prop. 0.51 0.68 0.75 0.81 0.83 0.87
mean 0.17 0.24 0.08 0.12 0.11 0.15
std 0.56 0.76 0.16 0.45 0.23 0.56
min 0.30% 0.34% 0.01% 0.00% 0.00% 0.02%
5% 0.90% 1.00% 0.24% 0.33% 0.32% 0.38%
50% 0.08 0.11 0.04 0.04 0.04 0.05
95% 0.44 0.65 0.34 0.37 0.38 0.44
max 10.82 15.14 2.16 10.71 2.86 12.87
skewness 15.90 14.40 6.45 19.27 6.77 17.33
kurtosis 290.20 259.24 61.08 437.7 62.06 368.50

Confidence level α = 99.99%, threshold coefficient constant cθ = 3. All statistics exclude zero or insignificant
observations.

4. Accounting Separated Jumps in Realized Variance Mod-

elling

4.1. Conditional Distribution of Realized Variance

One of the motivations of jump detection is observing how jump shocks the distribution
of future RV , i.e the conditional distribution of RV . Each subfigure in Fig.11 shows the
distribution of RV unconditional, conditional on having (T)J, and conditional on having
no-(T)J. Figures in Fig.11 show consistently that if a jump being detected at day t, the
distribution of next day’s log(RVt+1) would shift negatively implying that jump possibly
reduce risk on the next day. On the other hand, if there is no jump being detected, the
bitcoin market is, on average, more volatile in the next day.[add figures for h=7,30 in
appendix] In this article, by inserting the jump measures into the HAR model, we will
further discuss how jumps impact realized volatility in the future.

4.2. Realized Variance and Jump Estimators Construction

In the section2, we briefly illustrate the estimators used in this article including the
realized (semi-)variance RV , RSV +(−) and the jump estimators (T )J+(−). Here we would
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Figure 11: Distribution of BTC-D and BTC-G log(RVt+1) conditioning on jumps/no-jumps appear
on day t.

Figure 12: Distribution of BTC-D and BTC-G log(RVt+1) conditioning on signed-jumps/no-signed-
jumps appear on day t.

like to clarify the notation of each estimator in different forms and over different periods.
For simplicity, any of the estimators over a longer period is computed by averaging its

daily estimate over the period. The averaging method not only has incorporated information
included in different periods but also ensure estimates over different periods having the same
scale. Given an daily estimator Ŷτ , its corresponding average estimator is defined as:

Ŷτ1,τ2 =
1

τ2 − τ1

τ2∑
τ=τ1+1

Ŷτ (16)

Take RV for example, all the empirical results are based on the annualized unconditional
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daily realized variance RVt+1 in (2). The longer horizon estimator, RVt,t+7, is average of
annualized daily estimates RVt,t+7 = 1

6

∑t+7
τ=t+1RVτ .

We specially denote the daily lagged, weekly lagged and monthly lagged estimators for
further use as follows.

Daily estimator, ŶD
def
= Ŷt−1,t

Weekly estimator, ŶW
def
= Ŷt−7,t−1 (17)

monthly estimator, ŶM
def
= Ŷt−30,t−7

Those three stepwise estimators will be employed in the latter HAR model which captures
the footprint of RV ′s long memory property.

To incorporate nonlineararity, we also use estimators in logarithmic form log(Ŷ ), for
example log(RV ), log(J + 1). Economically, the squared form RV (realized variance) is of
our interest, thus any forecasting result computed from the logarithmic form is transformed
back to squared form for comparison purpose.

4.3. HAR Models

The long-memory dependency structure of the variance process is crucial in forecast-
ing according to the previous literature in which people use different ARCH, ARMA, and
stochastic volatility models to capture such property. As the forecasting models are devel-
oped more and more complicated, Corsi (2009) introduce the Heterogenous AutoRegression
model, namely HAR, which has advantages in three folds. First, it is a parameter parsi-
monious volatility regression model that can be constructed easily with lagged regressors
over different horizons. And it captures the long-memory effect and shows good forecasting
performance comparing with those complicated models. Finally, HAR can be extended by
using any other relevant estimators, for example, the jump components. Such extensibility
allows one to investigate a wide range of effects on RV .

Here we would study the improvement of forecast accuracy from different models in-
stead of absolute forecast accuracy, hence follow many of the literature on realized volatility
forecasting, HAR-RV and its extensive models are used.

The general form of HAR is shown in (18). The dependent variable RVt,t+h is estimated
over three different horizons, h = 1, 3, 7. There are two sets of explanatory variables, X ˙RV

and XJ̇ , which represent multiperiod lagged realized (semi-)variance estimators and jump
estimators, respectively. Economic intuitively, we focus on daily, weekly and monthly lagged
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estimators which are defined in 17. Hence, the explanatory variables, for example, can
be written explicitly using estimators in Sec.4.2, X>˙RV =

(
˙RV D, ˙RV W , ˙RV M

)
and X>

J̇
=(

J̇D, J̇W , J̇M

)
.

All coefficients, β ˙RV = (βD, βW , βM)> and βJ = (βJD, βJW , βJM)>, are estimated by
OLS. To adjust the possible serial correlation and heteroskedasticity of the error term, we
use Newey-West covariance matrix estimator with 7, 14 and 60 lags for daily, weekly and
monthly forecast horizon, respectively. Note that all the jump estimators are relied on
α = 0.9999 and cθ = 3.

RVt,t+h = α +X>˙RV β ˙RV +X>
J̇
βJ̇ + εt,t+h, t = 1, . . . , T (18)

The basic version HAR model is formulated by letting ˙RV = RV , and removing J̇

components in (18), i.e RVt,t+h = α + X>RV βRV + εt,t+h. HAR model is the simplest and
roughest model in this article.

Based on the HAR model, one could construct model that accounts jump components by
simply adding jump component by which the method we have discussed in section 2, i.e let

˙RV = RV and J̇ = J , thus RVt,t+h = α + X>RV βRV + X>J βJ + εt,t+h. We call this Realized
Variance Jump model RVJ.

Similarly, the Realized Variance Thresholded Jump model RVTJ accounts the thresh-
olded jump components that can be expressed by having ˙RV = RV and J̇ = TJ , i.e
RVt,t+h = α +X>RV βRV +X>TJβTJ + εt,t+h.

Furthermore, one can construct the Realized Variance Signed Jump model RVSJ and
the Realized Variance Signed Thresholded Jump model RVSTJ by decomposing the jump
components in RVJ and RVTJ model into signed jump components. To be more specifically,
RVSJ can be formulated as RVt,t+h = α + X>RV βRV + X>J+βJ+ + X>J−βJ− + εt,t+h. And
RVSTJ is RVt,t+h = α + X>RV βRV + X>TJ+βTJ+ + X>TJ−βTJ− + εt,t+h. Those two models are
finer calibrated and allow different impacts of positive and negative jumps on future realized
variance.

On the other hand, one can also decompose the realized variance estimators. The Realized
SemiVariance model RSV is constructed by decomposing RV in HAR model with RSV , i.e
RVt,t+h = α +X>RSV +βRSV + +X>RSV −βRSV − + εt,t+h.

With analogous arguments, two finest models, the Realized SemiVariance Signed Jump
model RSVSJ, and the Realized SemiVariance Signed Thresholded Jump model RSVSTJ
are constructed via the full decomposition method which accounts both the positive/negative
variance and jumps. i.e
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RVt,t+h = α +X>RSV +βRSV + +X>RSV −βRSV − +X>J+βJ+ +X>J−βJ− + εt,t+h

RVt,t+h = α +X>RSV +βRSV + +X>RSV −βRSV − +X>TJ+βTJ+ +X>TJ−βTJ− + εt,t+h (19)

As stated in Sec.4.2, those estimators can be transformed into logarithmic form and then
used to construct logarithmic HAR-type models which capture the nonlinearity. Also, the
logarithmic forecasting model ensures forecasts values RV to be positive. Here we simply
define the logarithmic HAR-type models by replacing all estimators with the logarithmic
form.

log (RVt,t+h) = α + log (X ˙RV )> β ˙RV + log (XJ̇)> βJ̇ + εt,t+h, t = 1, . . . , T (20)

Where, for example, log (X ˙RV )> =
(

log( ˙RV D), log( ˙RV W ), log( ˙RV M)
)
.

Note that here we ensure the logarithmic form of jump estimators to be positive by
log (XJ̇)> =

(
log(J̇D + 1), log(J̇W + 1), log(J̇M + 1)

)
.

To summarize it up, we have 8 forecasting models including HAR, RVJ, RVTJ, RSV,
RSVSJ, RSVSTJ. Also, we will test 2 forms of each model, namely square form and
logarithmic form.

4.4. In-Sample Fitting Analysis of HAR-Type Models

This subsection discusses the results of the full-sample fitting. To analyze how each
explanatory variable affects future RV , we fit each of the HAR models with full sample,
i.e from the start of 2017 until the Middle of 20197, named as full-sample fitting. For the
roughest estimators, realized variance RV , all models show consistently that the one-day
lagged estimator RVD have a significant positive impact on RVt+1 which is the short horizon
forecasting case. And the significance of such effect decreases as the estimator lagged more,
i.e for RVW and RVM . As the logarithmic form of that regression would capture certain
nonlinearity between predictors and dependent variable, it is no surprise to find that the
coefficients in logarithmic form results are likely to be more significant than of those in
square form.

The regression results get controversial and obscured after the decomposition of estima-
tors. As RV is decomposed into upside risks RSV +

D (good volatility) and downside risks
RSV −D (bad volatility), the BTC-D results in Tab.4 indicate that the bad volatility increases
risk of the next day and the good volatility shows much less significant impact. However,

7The sample date lasts until July 2019 for BTC-D and May 2019 for BTC-G
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results of BTC-G in Tab.5 show otherwise. In the cases of modelling the decomposed jumps
(good jumps and bad jumps) with RV and RSV estimators, the higher good jumps more
likely to reduce risk of the next day. While it is ambiguous to draw any robust conclusion
on the impact of bad jumps. More puzzling results would be found in the sample period is
changed.

Despite the parameter estimations changing over time using rolling window described in
the next subsection, it is worth looking into the average impacts of those predictors as some
of the contrary facts motivate us to implement the rolling window method.

The fast-changing Bitcoin market is not only characterized by high volatility but also
observed with market structure changes. When market structure changes intensively, any
conclusion could be ambiguous and confusing if it is drawn only by comparing models using
the out-of-sample forecast as the forecasting period could deviate from the fitting period
substantially. By allowing parameters changing over time, more reasonable comparisons can
be obtained.

The adaptive method used mimics an investor who updates the forecasting model based
on the most recent information. A simple situation is assuming that such updates are based
on a fixed amount of lagged information. The window size T of the adaptive HAR models
employed here is 90-days, i.e models are estimated by using past 90-days samples. And
all the models are re-estimated every day. After re-estimation of each day, out-of-sample
forecasts are performed in horizons h = 1, 7, 30, spontaneously. As a result, we re-estimate
each model 744-times for BTC-D and 763-times for BTC-G.

The left subfigure of each panel in Fig.13 shows that RVD has significant positive impact
on RVt,t+1 consistent with results in Tab.4 and 5. One can predict that the next trading day
t+ 1 would be riskier after experiencing high volatility in day t.

The upside and downside risk estimators play two different roles in forecasting over time.
Recall that the RSV model is constructed based on the HAR model by decomposing RV
into upside/downside risk RSV + and RSV −. Each panel in Fig.13 shows the how β+

D and
β−D evolve corresponding with the t-values denoted by blue dots. Over the 2 years, the upside
risk coefficients β+

D evolve as a u-shape curve, and oppositely the pattern of the downside
risk coefficients β−D are similar to an n-shape curve.

Obviously, the impact of upside/downside risk links to the market status. Specifically,
the downside risk plays a more important role in forecasting RV during volatile periods. For
example in the period from late-2017 to mid-2018 when Bitcoin price reached the peak price
around 20,000 U.S. dollars in December 2017 and then was plunged more than 50%. During
the volatile period, on one hand, RSV −D has a significant positive impact on the next day
realized variance which implies that the downside risks would cause higher volatility. On the
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Table 4: Regression Results of Full-Sample Fitting, BTC-D

h=1 Square form Logarithmic form

α β
(+/−)
D β

(+/−)
W β

(+/−)
M β

(+/−)
JD β

(+/−)
JW β

(+/−)
JM α β

(+/−)
D β

(+/−)
W β

(+/−)
M β

(+/−)
JD β

(+/−)
JW β

(+/−)
JM

HAR 0.175 0.437 0.100 0.311 −0.122 0.568 0.236 0.132
(2.460) (6.284) (2.119) (2.722) (−4.341) (15.758) (5.387) (2.797)

RVJ 0.335 0.430 0.089 0.292 0.680 −0.179 −4.216 −0.053 0.570 0.227 0.116 −0.426 −0.595 −1.500
(2.953) (6.466) (1.862) (2.523) (0.781) (−0.195) (−2.494) (−1.335) (15.879) (5.002) (2.434) (−1.094) (−1.151) (−1.789)

RVTJ 0.271 0.457 0.089 0.292 −0.476 −0.046 −0.538 −0.006 0.600 0.225 0.096 −0.574 −0.534 −0.489
(1.696) (6.470) (1.743) (2.452) (−2.303) (−0.112) (−0.489) (−0.147) (17.108) (4.745) (2.164) (−3.053) (−1.932) (−1.35)

RVSJ†
−1.071 −0.647 −3.063 −0.514 −1.308 0.299

0.382 0.431 0.065 0.521 (−1.958) (−0.572) (−2.095) 0.115 0.581 0.315 0.133 (−2.139) (−2.503) (0.448)
(2.464) (3.785) (0.765) (3.224) 0.800 1.126 −4.111 (1.171) (13.658) (4.817) (1.792) −0.134 −0.91 −0.943

(0.515) (0.683) (−1.803) (−0.418) (−1.301) (−0.855)

RVTSJ†
−1.357 −0.925 −1.547 −0.602 −1.245 0.312

0.305 0.495 0.089 0.363 (−3.593) (−1.063) (−1.210) 0.097 0.605 0.301 0.103 (−3.211) (−3.225) (0.555)
(1.994) (5.193) (1.134) (3.141) −0.086 0.798 −0.303 (1.195) (13.871) (4.841) (1.778) −0.223 −0.334 −0.455

(−0.138) (1.085) (−0.198) (−0.98) (−0.768) (−0.746)

RSV†
−0.161 −0.803 −0.217 0.202 0.045 0.069

0.170 (−0.379) (−1.599) (−0.27) 0.534 (2.999) (0.434) (0.519)
(2.257) 1.008 0.986 0.834 (14.328) 0.375 0.182 0.057

(2.417) (1.877) (0.989) (5.939) (1.719) (0.421)

RSVSJ†
0.839 −1.858 0.094 −1.608 2.091 −2.449 0.233 0.126 −0.005 −0.319 −1.228 0.574

0.407 (0.615) (−1.069) (0.023) (−0.909) (0.883) (−0.41) 0.833 (3.025) (1.027) (−0.027) (−1.284) (−2.255) (0.728)
(2.364) 0.023 1.979 0.948 1.381 −1.968 −4.853 (6.268) 0.349 0.182 0.137 −0.157 −0.989 −1.279

(0.015) (1.084) (0.231) (0.473) (−0.471) (−0.682) (4.473) (1.379) (0.671) (−0.456) (−1.23) (−0.902)

RSVSTJ†
−1.603 −1.049 3.722 1.095 0.623 −5.764 0.255 0.212 −0.005 −0.454 −1.367 0.542

0.317 (−1.376) (−0.629) (0.656) (0.827) (0.399) (−0.874) 0.786 (3.299) (1.713) (−0.029) (−2.164) (−3.09) (0.755)
(2.14) 2.568 1.176 −2.905 −2.307 −0.446 3.128 (7.646) 0.353 0.079 0.104 −0.264 −0.178 −0.586

(2.161) (0.682) (−0.52) (−1.657) (−0.228) (0.482) (4.557) (0.624) (0.54) (−1.106) (−0.363) (−0.746)

†: Results from positive (above) and Negative (below) estimators are separated by horizontal lines.
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Table 5: Regression Results of Full-Sample Fitting, BTC-G

h=1 Square form Logarithmic form

α β
(+/−)
D β

(+/−)
W β

(+/−)
M β

(+/−)
JD β

(+/−)
JW β

(+/−)
JM α β

(+/−)
D β

(+/−)
W β

(+/−)
M β

(+/−)
JD β

(+/−)
JW β

(+/−)
JM

HAR 0.178 0.333 0.163 0.326 −0.182 0.532 0.262 0.127
(2.315) (4.560) (3.016) (2.654) (−5.267) (16.773) (6.793) (2.856)

RVJ 0.278 0.379 0.175 0.273 −0.493 −0.500 −0.372 −0.048 0.528 0.301 0.107 −0.436 −0.863 −0.51
(3.591) (5.110) (2.677) (2.251) (−2.676) (−1.977) (−0.824) (−0.981) (16.499) (7.329) (2.462) (−2.17) (−3.112) (−1.425)

RVTJ 0.302 0.393 0.171 0.259 −0.333 −0.241 −0.266 −0.002 0.55 0.313 0.071 −0.412 −0.643 −0.232
(3.94) (4.732) (2.446) (2.045) (−2.106) (−1.596) (−0.877) (−0.032) (16.423) (7.01) (1.525) (−2.452) (−3.275) (−0.835)

RVSJ†
−1.347 −3.877 −3.297 −0.584 −1.875 −0.954

0.513 0.424 0.343 0.414 (−2.356) (−2.565) (−1.467) 0.254 0.543 0.376 0.158 (−1.828) (−3.856) (−0.896)
(4.279) (4.243) (2.858) (2.21) −0.502 −0.434 −0.605 (1.828) (13.176) (6.949) (2.351) −0.252 −0.805 −0.673

(−1.769) (−1.771) (−1.300) (−0.872) (−2.862) (−1.553)

RVTSJ†
−1.211 −2.857 −2.372 −0.658 −1.64 −0.52

0.519 0.437 0.304 0.348 (−2.857) (−2.593) (−1.631) 0.226 0.555 0.373 0.113 (−2.615) (−3.839) (−0.661)
(5.051) (4.347) (2.745) (2.199) −0.219 0.173 −0.194 (1.968) (13.653) (6.69) (1.873) −0.141 −0.349 −0.445

(−0.941) (1.022) (−0.526) (−0.673) (−1.473) (−1.303)

RSV†
0.406 −0.216 0.382 0.238 0.103 0.235

0.169 (1.289) (−0.619) (0.719) 0.485 (4.129) (1.032) (2.205)
(2.048) 0.267 0.501 0.302 (10.05) 0.303 0.146 −0.109

(0.856) (1.45) (0.621) (5.47) (1.566) (−0.98)

RSVSJ†
−0.862 −0.883 −2.210 0.640 −2.097 0.582 0.268 0.229 0.218 −0.490 −1.969 −1.422

0.421 (−1.544) (−0.526) (−0.830) (0.634) (−0.752) (0.136) 1.009 (3.665) (1.768) (1.101) (−1.413) (−3.457) (−1.124)
(3.819) 1.633 1.512 3.027 −1.761 −1.75 −3.478 (5.733) 0.279 0.132 −0.063 −0.21 −0.648 −0.362

(3.089) (0.934) (1.155) (−2.949) (−1.035) (−1.254) (3.848) (1.163) (−0.324) (−0.698) (−2.16) (−0.594)

RSVSTJ†
−0.671 −3.545 −7.760 0.085 1.586 7.011 0.317 0.259 0.150 −0.689 −1.799 −0.710

0.443 (−0.574) (−1.207) (−1.058) (0.058) (0.541) (0.861) 0.949 (4.115) (1.883) (0.715) (−2.241) (−3.397) (−0.689)
(4.441) 1.511 4.076 8.361 −1.329 −3.779 −8.551 (6.580) 0.247 0.100 −0.044 −0.06 −0.152 −0.228

(1.289) (1.359) (1.123) (−1.044) (−1.251) (−1.109) (3.271) (0.84) (−0.213) (−0.258) (−0.557) (−0.385)

†: Results from positive (above) and Negative (below) estimators are separated by horizontal lines.
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(a) BTC-D Coefficients and t-values of evolving. From Feb. 2017 to Feb. 2019

(b) BTC-G Coefficients and t-values of evolving. From Feb. 2017 to Apr. 2019

Figure 13: Parameter (in red line, left-axis) and its corresponding t-value (blue dots, right-axis) changes over time. For each panel, figures from
left to right are coefficients of RVD from HAR model, RSV +

D from HAR-RSV model, and RSV −D from HAR-RSV model, respectively. The dash line
represents t-value = ±1.987. All models are in logarithmic form and horizon h = 1

RiskBTC_Plot
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(a) BTC-D Coefficients and t-values of evolving. From Feb. 2017 to Feb. 2019

(b) BTC-G Coefficients and t-values of evolving. From Feb. 2017 to Apr. 2019

Figure 14: Parameter (in red line) and its corresponding t-value (blue dots) changes over time. For each
panel, figures from (lower) upper left to (lower) upper right are coefficients of (T )JD from RV(T)J model,
of (T )J+

D from RVS(T)J model, and (T )J−D from RVS(T)J model, respectively. The dash line represents
t-value = ±1.987. All models are in logarithmic form and horizon h = 1

RiskBTC_Plot

other hand, the upside risk RSV +
D tends to reduce market volatility during the same sample

period, however, such an effect is not significant. Such finding is consistent with conclusion
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in Patton and Sheppard (2015) which shows that RSV − has stronger impact on future RV .
The downside risk is more informative than upside risk for those more volatile periods, in

the meanwhile, positive jump (T )J+ plays a quite significant role in reducing risk on the next
day (Similar finding in Patton and Sheppard (2015)). Fig.14 compares the positive/negative
jumps affect next day market risk. The positive jump coefficients β+

JD incline to be significant
negative during those risky periods.

Noted that all results are drawn from models in logarithmic form, nevertheless, results
from square form models show consistent results.

4.5. Out-of-Sample Forecasts Comparison

In this subsection, we further discuss the out-of-sample forecasting results aiming for
comparing different models. All out-of-sample forecasts are computed using 90-days rolling-
window HAR regressions as described in the previous sections. Parameters are re-estimated
daily.

Negative forecasts occurred occasionally for square form models where the parameters
have no restriction. Here the "insanity filter" is applied in which we ensure that any forecast
is no smaller (larger) than the minimum (maximum) realization of the past (Patton and
Sheppard (2015), Swanson and White (1997) and Bollerslev, Hood, Huss, and Pedersen
(2018)).

All the out-of-sample performance evaluations are based on the square form, i.e RV .
Results from the logarithmic form are transformed back to square form for a fair comparison.
The comparison is based on the following metrics. First one is the adj-R2 from Mincer-
Zarnowitz regression, named MZ-R2. The following three metrics named MSE, HRMSE, and
QLIKE are computed from corresponding loss functions. And then the D-M test (Diebold
and Mariano (2002)) is used to test the significance by embedding all the three loss functions.

LMSE =
(
RVt,t+h − R̂V t,t+h

)2

(21)

LHRMSE =

(
RVt,t+h − R̂V t,t+h

RVt,t+h

)2

(22)

LQLIKE = log R̂V t,t+h +
RVt,t+h

R̂V t,t+h

(23)

The mean square error (MSE) is the mean value of quadratic loss function LMSE which
measures the Euclidean distance between the ex-post realized variance RV and forecast
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Table 6: Adaptive HAR Model Out-of-Sample Forecasts Performance Evaluation

BTC-D BTC-G

HAR RVJ RVTJ RVSJ RVSTJ RSV RSVSJ RSVSTJ HAR RVJ RVTJ RVSJ RVSTJ RSV RSVSJ RSVSTJ

Square form
h=1

MZ-R2 0.267 0.227 0.248 0.228 0.219 0.285 0.215 0.165 0.213 0.179 0.182 0.182 0.190 0.226 0.144 0.151
MSE 3.636 4.023† 3.850 4.032 3.984 3.676 4.414† 4.812† 2.437 2.537 2.508 2.682 2.580 2.411 2.943 2.872
HRMSE 1.569 2.031† 1.576 1.792† 1.737† 1.767† 1.841† 1.756† 1.976 2.251† 2.080 2.497† 2.385† 2.022 2.762† 2.583†

QLIKE 0.846 1.151† 1.100† 1.000† 1.172† 0.988† 1.176† 1.545† 0.749 1.418† 1.636† 3.367† 2.406† 1.139† 3.548† 4.706†

h=7
MZ-R2 0.365 0.360 0.416 0.440 0.470 0.431 0.508 0.458 0.355 0.349 0.360 0.420 0.425 0.424 0.481 0.435
MSE 1.643 1.789† 1.437 1.552 1.285∗ 1.573 1.328∗ 1.272∗ 0.990 0.905 0.888 0.889 0.830∗ 0.875∗ 0.812∗ 0.818∗
HRMSE 1.359 1.646† 1.278 1.358 1.303 1.455 1.243 1.279 1.278 1.433† 1.366† 1.247 1.305 1.050∗ 1.232 1.624
QLIKE 0.984 1.146† 0.997 1.026 0.996 1.037 0.880∗ 1.043 0.797 1.152† 1.341† 1.818† 1.618† 0.878 1.679† 1.738†

h=30
MZ-R2 0.543 0.583 0.682 0.717 0.623 0.628 0.743 0.677 0.635 0.667 0.682 0.702 0.693 0.707 0.791 0.813
MSE 0.673 0.649 0.462∗ 0.398∗ 0.558∗ 0.514∗ 0.357∗ 0.440∗ 0.314 0.261∗ 0.256∗ 0.243∗ 0.239∗ 0.235∗ 0.178∗ 0.147∗
HRMSE 0.779 0.637∗ 0.614∗ 0.525∗ 0.528∗ 0.698∗ 0.483∗ 0.444∗ 0.696 0.611∗ 0.554∗ 0.490∗ 0.487∗ 0.529∗ 0.456∗ 0.404∗
QLIKE 0.937 0.943 0.898∗ 0.847∗ 0.883∗ 0.877∗ 0.842∗ 0.874∗ 0.770 0.725∗ 0.743∗ 0.727∗ 0.754 0.722∗ 0.715∗ 0.741

Logarithmic form
h=1

MZ-R2 0.299 0.264 0.287 0.239 0.265 0.289 0.236 0.241 0.261 0.221 0.218 0.238 0.249 0.266 0.243 0.235
MSE 3.260 3.419† 3.356 3.657 3.501 3.313 3.773 3.680 2.217 2.329 2.353 2.284 2.260 2.209 2.262 2.298
HRMSE 0.760 0.893† 0.822† 0.963† 0.898† 0.807† 1.022† 0.937† 0.979 0.986 1.004 1.167 1.118 0.985 1.161 1.143
QLIKE 0.902 0.950 0.972 0.902 0.956 0.920 0.985 1.085† 0.906 0.998† 1.017 1.056† 1.074† 0.945 1.112† 1.170†

h=7
MZ-R2 0.327 0.330 0.366 0.381 0.443 0.333 0.374 0.392 0.329 0.281 0.277 0.344 0.377 0.352 0.352 0.406
MSE 1.576 1.642 1.514 1.530 1.459 1.691 1.657 1.588 0.949 1.014 1.016 0.968 0.912 0.955 1.082 0.931
HRMSE 0.881 1.209 0.903 1.027 1.080 1.091† 0.986 0.969 0.908 0.906 0.989† 0.865 0.862 0.888 1.022 0.971
QLIKE 0.946 1.008† 0.947 0.917 0.904 0.946 0.907 0.930 0.906 0.909 1.001† 1.000 1.009† 0.929 0.945 0.978

h=30
MZ-R2 0.504 0.549 0.680 0.604 0.591 0.569 0.639 0.604 0.591 0.626 0.635 0.651 0.671 0.632 0.678 0.708
MSE 0.729 0.681∗ 0.488∗ 0.531∗ 0.616∗ 0.611∗ 0.489∗ 0.584∗ 0.348 0.303∗ 0.305∗ 0.288∗ 0.276∗ 0.307∗ 0.267∗ 0.247∗
HRMSE 0.628 0.493∗ 0.488∗ 0.691 0.654 0.543∗ 0.459∗ 0.451∗ 0.582 0.514∗ 0.549∗ 0.481∗ 0.461∗ 0.509∗ 0.397∗ 0.384∗
QLIKE 0.965 0.936∗ 0.910∗ 0.900∗ 0.891∗ 0.885∗ 0.872∗ 0.878∗ 0.773 0.731∗ 0.746∗ 0.726∗ 0.736∗ 0.744∗ 0.715∗ 0.725∗

All jumps are estimated under confidence level α = 99.99%.
†: Better forecasts from HAR model against of any other models by D-M test at 5% significant level.
∗: Worse forecasts from HAR model against of any other models by D-M test at 5% significant level.
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result R̂V . The heteroskedasticity adjusted root mean square error (HRMSE) defined as
the square root mean of LHRMSE (Bollerslev and Ghysels (1996)) is a more robust metric to
the scale changing of realized variance. The third metric QLIKE is the mean of a gaussian
quasi-likelihood loss function LQLIKE (Patton (2011)) which gives consistent evaluation from
different imperfect volatility proxies.

Out-of-sample forecasting evaluations reported in Tab.6 show consistently that the model
performance comparison heavily relies on the choice of the forecasting horizon. First of all, it
is obvious that most of the models perform better when they are in longer forecasting horizon
setting, the MZ-R2 are larger and the three metrics values are smaller. Those models that
do not put jump components as explanatory variables separately, HAR and RSV models,
tend to outperform any other models in short forecasting horizon cases. As shown by the
D-M test evaluated at 5% significance level, forecasting errors generated by the HAR model
are likely to be significantly smaller by the three loss functions when h = 1. However, the
superiority of the HAR model vanishes as the forecasting horizon h increases. And when
h = 30, HAR underperforms any other finer calibrated models.

4.6. Economic Value

The model performance is heavily influenced by the choice of metrics. An example being
the upper-left panel of Tab.6 (square form, BTC-D when h = 1) which indicates that the
HAR model performs worse than the RSV model by MZ-R2, however, one can find that
HAR has smaller forecasting errors than that of RSV by QLIKE.

As the validity of forecasting is to be tested by the market, we employ the approach of
Bollerslev, Hood, Huss, and Pedersen (2018). Advantages of this approach relative to the
framework of Fleming, Kirby, and Ostdiek (2001) are twofold. This so called RU-framework
evaluates utility without requiring forecasts on asset returns. Then, it mimics a trading
strategy when an investor targets at a constant Sharp ratio and adjust his/her risky asset
positions according to the RV forecasts. A first order expansion on expected utility yields
(for h = 1)

E [u(Wt+1)] = E(Wt+1)− 1

2
γA V(Wt+1), (24)

where γA is the absolute Pratt-Arrow risk aversion.
The Realized Utility RU (m)

t+1 at time t+ 1 by model m defined as utility per wealth with
optimal weights RU

(m)
t+1 = EU(ω

(m)
t )/Wt is given by (More details refer to Appendix B.1):
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RU
(m)
t+1 =

SR2

γ

√RVt+1

R̂V
(m)

t+1

− 1

2

RVt+1

R̂V
(m)

t+1

 (25)

Following Bollerslev, Hood, Huss, and Pedersen (2018), here all results are based on Sharp
ratio SR = 0.4 and relative risk aversion γ = 2. It is obvious that the RU

(m)
t+1 = SR2

2γ
= 4% if

one has perfect forecast, i.e R̂V
(m)

t+1 = RVt+1.
Clearly, given SR/γ, lower risk the investor expects for the next day, a higher proportion

of wealth should be allocated to risky asset. And in the case that
√
R̂V

(m)

t+1 < SR/γ, then
ω

(m)
t > 1 which implies a leverage investment. However, we restrict the weight as ωt ∈ [0, 1].

Consequently, when ω(m)
t > 1, the realized utility RU

(m)
t = SR ·

√
RVt+1 − γ

2
RVt+1.

RU
(m)
t =


SR2

γ

(√
RVt+1

R̂V
(m)

t+1

− 1
2
RVt+1

R̂V
(m)

t+1

)
, SR

γ
≤
√
R̂V

(m)

t+1

SR ·
√
RVt+1 − γ

2
RVt+1, otherwise

(26)

The realized utility RU (m) for each model m is averaging the RU (m)
t over time t.

RU (m) =
1

T

T∑
t=1

RU
(m)
t (27)

Table 7: Economic Values Evaluation of Out-of-Sample Forecasts (%)

HAR RVJ RVTJ RVSJ RVSTJ RSV RSVSJ RSVSTJ

BTC-D

Square form
h=1 2.938 2.403 2.496 2.613 2.268 2.626 2.356 1.421
h=7 3.071 2.614 3.048 2.935 3.024 2.916 3.339 2.874
h=30 3.569 3.522 3.642 3.760 3.667 3.708 3.769 3.678

Logarithmic form
h=1 2.619 2.486 2.404 2.660 2.486 2.583 2.403 2.146
h=7 3.133 2.969 3.128 3.196 3.234 3.140 3.204 3.143
h=30 3.479 3.527 3.591 3.619 3.641 3.671 3.676 3.665

BTC-G

Square form
h=1 2.650 1.364 1.330 −0.244 0.560 2.041 −0.421 −1.843
h=7 3.164 2.271 1.862 0.569 1.294 2.906 1.090 1.100
h=30 3.585 3.687 3.637 3.669 3.597 3.689 3.697 3.621

Logarithmic form
h=1 2.098 1.871 1.728 1.663 1.584 2.019 1.513 1.393
h=7 2.793 2.805 2.549 2.496 2.466 2.710 2.699 2.631
h=30 3.576 3.668 3.633 3.672 3.647 3.635 3.690 3.662

All jumps are estimated under confidence level α = 99.99. The highest utility number in each row is bolded.

The realized utility provides another metric to compare forecasts from different models.
Clearly, the comparison almost solely depends on the forecasts R̂V

(m)

t+1 illustrated in (26).

33



And all evaluation results are shown in Tab.7. As explained above, better the forecast is,
closer the RU (m)

t+h to 4%. Note that the RUt+h metric could be negative as shown in Tab.7
where RSVSTJ model produces negative utility of -1.843 in the case of h = 1. Reason for
that is severe under-forecasting on RVt+1, i.e RVt+1/R̂V

(m)

t+1 > 4.
One investor can gain higher utility regardless of the choice of the model if one forecasts

a longer horizon risk, e.g h = 30. For example, the HAR model gives around 63 basis points
more utility in the case of h = 30 than that of h = 1. For short horizon risk forecasting,
h = 1, the roughest model HAR, however, performs the best which outperforms the second-
best model by up to 91 basis points. Modelling realized variance with the jump in short
horizon risk forecasting case would not add economic values. On the other hand, for the
longer horizon risk forecasting case, h = 30, accounting jump components does provide
extra utility, e.g RSVSJ model outperforms HAR model by 20 basis points utility. Since
the influence of separating jump components relies heavily on the forecasting horizon, given
the investment horizon, investors who target at a certain risk level are required to select the
forecasting model accordingly.

Last but not least, the investors can gain more utility by investing in BTC-D than on
BTC-G in the short horizon risk forecasting case. BTC-D is a simple equal-weighted price
portfolio which diversifies exchange idiosyncratic discontinuities changes risk (jumps) on
price. While BTC-G suffers from the extra risk inherent in the one specific exchange.

5. Conclusion

This paper studies the risk of the Bitcoin market based on two high-frequency intraday
data sources BTC-D and BTC-G for the sample period from January 2017 to Mid-2019.

First, we separate the risk sources of BTC in volatility and jumps employing the jump
component separation method discussed in Barndorff-Nielsen and Shephard (2004) Barndorff-
Nielsen and Shephard (2006) and Andersen, Bollerslev, and Diebold (2007). The BTC mar-
ket is much riskier than any other developed financial markets in terms of realized variance
and jumps. More than a quarter of the samples are identified as jump related.

However, we find that this separation method fails to display some of the obvious jumps
on price process caused by consecutive jumps. The thresholded jump estimator TJ (Corsi,
Pirino, and Reno (2010)) is further used to disentangle the jumps from RV . Empirically,
TJ captures much more jumps by both size and quantity. Surprisingly, despite the jumps
being detected frequently, the discontinuities do not contribute much to the risk compared
with the continuous path. Our regression results latter show that TJ estimator reduces the
market volatility on the next day more significant than J does.
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Moreover, RV is further decomposed into positive estimators including upside risk RSV +,
positive jump (T )J+, and negative estimators including downside risk RSV −, negative jump
(T )J− (Barndorff-Nielsen, Kinnebrock, and Shephard (2008), Patton and Sheppard (2015)).
During our sample period, the number of positive jumps approximately equals to the num-
ber of negative jumps suggesting that jump is not a necessary crash event. Such finding
is contrary to the empirical results in Scaillet, Treccani, and Trevisan (2018) concluding
that most jumps in BTC are positive from June 2011 to November 2013. Note that the
simple 3-exchange equal-weighted portfolio, BTC-D, can reduce the idiosyncratic jump risk
significantly.

Then, 8 HAR-type models are developed to investigate how lagged RVt−l,t, detected
jumps (T )J and signed estimators impact RVt+h, h = 1, 7, 30. We first conduct a full in-
sample regression and then proceed with a 90-day rolling window out-of-sample forecast in
which parameters update daily. The in-sample evidence suggests that the higher downside
risk RSV −D induces higher risk on the next day, while the higher positive jump (T )J+

D tends
to reduce the risk on the next day. Those effects appear even more strongly during the
volatile periods.

The comparison of out-of-sample forecasts between models heavily depends on the fore-
casting horizon h. For short-horizon forecasting, h = 1, both adding jump components to
the basic HAR model and decomposing RV into RSV reduce forecasting accuracy surpris-
ingly. This is likely caused by the overreaction on jumps from models. However, in the
case of h = 30, the separation and decomposition models will outperform basic HAR model.
The significance of the comparisons is confirmed by the D-M test. Then the forecasts are
evaluated under the realized utility RU-framework (Bollerslev, Hood, Huss, and Pedersen
(2018)) which mimics an investor who targets at constant Sharp ratio and rebalances the
position according to the forecasts. Overall, an investor who forecasts longer horizon risk
gains more utility than the one who forecasts over short-horizon risk no matter which model
one selected. Significant result advocates that up to 20 basis points more utility can be
obtained by calibrating finer models with signed estimators in the case of longer horizon
forecast. Consistently, in a short-horizon forecast, modelling jumps do not provide extra
utility. Last but not least, an investor who forecasts short-horizon can employ BTC-D to
diversify idiosyncratic jump risk and gain higher utility.
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Appendix A.

A.1. MPV

We start with the general definition of the MultiPower Variation MPV , for time period
[t, t+ 1]:

MPVt+1(∆, η1, . . . , ηm)
def
=

(
m∏
k=1

µ−1
ηk

)
·∆1− 1

2
(η1+···+ηm) ·

1/∆∑
j=m

m∏
k=1

|rt+(j−k+1)∆|ηk (28)

Where µηk = 2
ηk
2

Γ{(ηk+1)/2}
Γ( 1

2
)

.
BPV in (5) is calculated by setting m = 2 and η1 = η2 = 1. And TPV is defined by

setting m = 3 and η1 = η2 = η3 = 4/3.
For given ηk ≥ 0, k = 1, 2, . . . the convergence property is given by:

MPVt+1(∆, η1, . . . , ηm)
p→
∫ t+1

t

ση1+···+ηm(s)ds (29)

A.2. TMPV

Thresholded MultiPower Variation TMPV documented in Mancini (2009) is formulated
as:

TMPVt+1(∆, η1, . . . , ηm) =

(
m∏
k=1

µ−1
ηk

)
·∆1− 1

2
(η1+···+ηm)

·
1/∆∑
j=m

m∏
k=1

|rt+(j−k+1)∆|ηk

· I
{
|rt+(j−k+1)∆|2 ≤ θt+(j−k+1)∆

}
(30)

A.3. Local Variance Estimation

We employ the nonparametric local variance estimate Fan and Yao (2008)

V̂
[n]
t =

∑l
i=−l,i 6=−1,0,1K( i

l
) · r2

t+i · I{r2
t+i ≤ c2

θ · V̂
[n−1]
t+i }∑l

i=−l,i6=−1,0,1K( i
l
) · I{r2

t+i ≤ c2
θ · V̂

[n−1]
t+i }

, n = 1, 2, 3... (31)

Where K is a Gaussian kernel with bandwidth value l = 25. To avoid using future
information and for computational simplicity, V̂t is estimated within each day. Thus, the
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first and last l-points of V̂t each day are smoothed by only partial Gaussian kernel. This
recursive computation stops when the change from last step is smaller than a given criterion.

A.4. Conditional Expected Return

The expected value of η-power returns conditioning on the square returns larger than
threshold

re(θ, η) = E

{
|r|η
∣∣∣∣r2 > θ

}
=

(2σ2)
η
2

2
√
πΦ
(
−
√
θ
σ

) · Γ(η + 1

2
,
θ

2σ2

) (32)

Given that the σ2 is approximated by V̂t, we have:

re(θt, η) =
1

2
√
πΦ (−cθ)

·
(

2θt
c2
θ

) η
2

· Γ
(
η + 1

2
,
c2
θ

2

)
(33)

Where Φ(x) is cdf of N(0,1) and Γ(α, x) =
∫ +∞
x

sα−1e−sds is the upper incomplete gamma
function.

A.5. Corrected TMPV

The Corrected version of TMPV is defined as:

TMPVt+1(∆, η1, . . . , ηm)
def
=

(
m∏
k=1

µ−1
ηk

)
·∆1− 1

2
(η1+···+ηm) ·

1/∆∑
j=m

m∏
k=1

Cηk
(
rt+(j−k+1)∆, θt+(j−k+1)∆

)
(34)

We specify m = 2, η1 = η2 = 1 for TBPV , and m = 3, η1 = η2 = η3 = 4
3
for estimating

TTPV .

A.6. Jump Test z-test

Based on the distribution results from Barndorff-Nielsen and Shephard (2004) and other
extensions in which the statistic goes to normal distribution given a series of conditions and
in the absence of jump. The z-test is the ratio-statistic provided by Huang and Tauchen
(2005).
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zt+1 =
{RVt+1(∆)−BPVt+1(∆)}RV −1

t+1(∆)√
∆ · ζ ·max

{
1, TPVt+1(∆)
{BPVt+1(∆)}2

} (35)

Where ζ = π2

4
+ π − 5,

Appendix B.

B.1. Realized Utility

A first order expansion on expected utility yields (for h = 1)

E [u(Wt+1)] = E(Wt+1)− 1

2
γA V(Wt+1), (36)

where γA is the absolute Pratt-Arrow risk aversion. The wealth function W is explicitly
given by (37) for allocating ωt proportion of whole wealth on the risky asset, and rt+1 − rf
is the unknown excess return.

Wt+1 = Wt{1 + (1− ωt)rf + ωtrt+1}

= Wt{1 + rf + ωt(rt+1 − rf )}
(37)

Assuming that the risk-free interest rate rf is constant, Wt and ωt are known, the expect
value and variance of Wt+1 is:

E(Wt+1) = Wt(1 + rf ) +Wtωt ( rt+1 − rf )

V(Wt+1) = W 2
t ω

2
t · V(rt+1 − rf )

(38)

Given a target Sharp ratio SR = E(rt+1)√
V(rt+1)

, (38) and (36) give the following expression of

expected utility EU(ωt) EU(ωt) with replacing V(rt+1) by RVt+1

EU(ωt) = Wt

[
ωt E(rt+1)− γ

2
ω2
t V(rt+1)

]
= Wt

[
ωt E(rt+1)− γ

2
ω2
tRVt+1

]
= Wt

[
ωt · SR ·

√
RVt+1 −

γ

2
ω2
tRVt+1

]
(39)
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Here the γ = γAWt represents the relative risk aversion. Based on the out-of-sample
forecasts R̂V

(m)

t+1 from model m, one can derive the optimal weight ω(m)
t targeting SR/γ.

ω
(m)
t =

SR/γ√
R̂V

(m)

t+1

(40)

The Realized Utility RU (m)
t+1 at time t+ 1 by model m defined as utility per wealth with

optimal weights RU
(m)
t+1 = EU(ω

(m)
t )/Wt can be obtained by (40) and (39).

RU
(m)
t+1 =

SR2

γ

√RVt+1

R̂V
(m)

t+1

− 1

2

RVt+1

R̂V
(m)

t+1

 (41)
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K. Härdle, April 2019.

010 ”Understanding the Role of Housing in Inequality and Social Mobility” by Yang
Tang, Xinwen Ni, April 2019.

011 ”The role of medical expenses in the saving decision of elderly: a life cycle model”
by Xinwen Ni, April 2019.

012 ”Voting for Health Insurance Policy: the U.S. versus Europe” by Xinwen Ni, April
2019.

013 ”Inference of Break-Points in High-Dimensional Time Series” by Likai Chen, Weining
Wang, Wei Biao Wu, May 2019.

014 ”Forecasting in Blockchain-based Local Energy Markets” by Michael Kostmann,
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