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Abstract

The integration of social media characteristics into an econometric
framework requires modeling a high dimensional dynamic network with
dimensions of parameter Θ typically much larger than the number of
observations. To cope with this problem, we introduce a new struc-
tural model — SONIC which assumes that (1) a few influencers drive
the network dynamics; (2) the community structure of the network is
characterized as the homogeneity of response to the specific influencer,
implying their underlying similarity. An estimation procedure is pro-
posed based on a greedy algorithm and LASSO regularization. Through
theoretical study and simulations, we show that the matrix parameter
can be estimated even when the observed time interval is smaller than
the size of the network. Using a novel dataset retrieved from a leading
social media platform– StockTwits and quantifying their opinions via
natural language processing, we model the opinions network dynamics
among a select group of users and further detect the latent communities.
With a sparsity regularization, we can identify important nodes in the
network.
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1 Introduction
A network is defined through a set of nodes and edges with a given adjacency structure.
In a social, financial, or econometric context, such networks are often dynamic and nodes,
such as individuals or firms, are changing their activities over time. An analysis of such
network dynamics is often based on vector autoregression. Consider a network that
produces a time series Yt ∈ RN , t = 1, . . . , T and dependencies between its elements are
modeled through the equation

Yt = ΘYt−1 +Wt, (1.1)

whereWt are innovations that satisfy E[Wt| Ft−1] = 0, Ft = σ{Yt−1, Yt−2, . . . }, so that the
interactions between the nodes are described by an autoregression operator Θ ∈ RN×N .
In terms of the network connections we say that a node i is connected to the node j if

Θij 6= 0,

so that the nonzero coefficients represent the adjacency matrix of such network, and the
sparsity of Θ represents the number of edges. For large-scale time series, one encounters
the curse of dimension, as estimating the matrix-parameter Θ with N2 elements requires
a significantly large number of observations T .

Several attempts to reduce the dimensionality have been made in the past literature.
Assuming that the elements of a time series form a connected network, Zhu et al. (2017)
introduce a Network Autoregression (NAR) with Θij = βAij/

∑N
k=1Aik, provided that

the adjacency matrix A ∈ RN×N is known. Here, the regression operator, defined up
to a single parameter β, which is called the network effect, can be estimated through
simple least squares. Zhu et al. (2019) also extend this model for conditional quantiles.
Furthermore, Zhu and Pan (2018) argue that a single network parameter may not be
satisfactory as it treats all nodes of the network homogeneously. In particular, the NAR
implies that each node is affected by its neighbors in the same extent, while in reality,
we may have, e.g., financial institutions that are affected less or more than the others
(see Mihoci et al. (2019)). Hence they propose to detect communities in a network based
on the given adjacency matrix and suggest that the nodes in each community share a
separate network effect parameter. Gudmundsson and Brownlees (2018) take a somewhat
opposite direction: their BlockBuster algorithm determines the communities through
the estimated autoregressive model, which, however, does not solve the dimensionality
problem. Apart from this line of work, sparse regularisations have been extensively used,
see Fan et al. (2009); Han et al. (2015); Melnyk and Banerjee (2016).

To sum up, we point out the following problems that one may encounter while dealing
with vector autoregression:

• The VAR parameter dimension is significant; one requires even larger time intervals
for consistent estimation. Even if one can afford such a dataset, in the long run,
autoregressive parametric models tend to be violated, see e.g., Čížek et al. (2009).
We, therefore, impose some structural assumptions on the operator Θ, so that
estimation through moderate sample sizes is possible.

• The NAR model assumes that the adjacency matrix is known. In particular, this is
justified for social networks with a stable and natural friendship/follower-followee
relationship. For a network of financial institutions, there is no explicitly defined
adjacency matrix, and one has to heuristically evaluate it using additional infor-



C. Y.-H. Chen, W.K. Härdle, and Y. Klochkov 3

mation (identical shareholders, trading volumes) or through analyzing correlations
and lagged cross-correlations between returns or risk profiles, see Diebold and Yıl-
maz (2014) and Chen et al. (2019b). However, there is no rigorous reason to believe
that the operator in (1.1) depends explicitly on such an adjacency matrix, see also
Cha et al. (2010).

Our main contribution is to propose a new method for modeling social network dy-
namics, which is a challenging task in the presence of the curse of dimensionality and the
absence of knowledge of adjacency. The proposed SONIC — SOcial Network analysis
with Influencers and Communities has the following advantages. First, it allows us to
identify the hidden figures who mainly drive the opinion generating process on social
media. Second, it discovers the hidden community structure. The proposed estimation
algorithm uncovers the hidden figures and communities simultaneously until the minimal
empirical risk is attained. Third, we discuss the theoretical properties and underpinnings
to ensure estimation efficiency. We stress that SONIC does not require the imputation
of missing data. We demonstrate the applicability of SONIC on a novel social media
dataset.

In more detail, the heuristics about the structural assumptions on SONIC are from
a realistic view of known facts. Based on well-known user experience on platforms like
facebook, twitter, etc., one can assume that some alpha users have significantly more
followers than others. Take, for example, celebrities, athletes, analysts, politicians, or
Instagram divas. In a network view, these users are the nodes that have much more
influence than the rest of the nodes: these nodes are defined as influencers. In the
framework of autoregression, a node j is an influencer if there is a significant amount of
other nodes i such that Θij 6= 0. Assuming that the number of influencers is limited,
we fix only a few columns of matrix Θ to be significant. This allows us to concentrate
on the connections to the influencers, significantly reducing the number of parameters
to be estimated. A similar idea is used in Chen et al. (2018), with a group-LASSO
regularisation imposed, yielding a solution with few active columns. Notice, however,
that relying on the sparsity alone still requires T > N , see e.g., Fan et al. (2009);
Chernozhukov et al. (2018).

It is also well-known that social networks have small communities, with the nodes
exhibiting higher connection density or similar behavior inside communities. Zhu and Pan
(2018) make one step to extend the NAR model into a more realistic set-up by allowing
separate parameters for each community instead of a single network effect parameter. In
our notation, the conditional mean of the response of the node i satisfies

E[Yit| Ft−1] = Θi1Yit−1 + · · ·+ΘiNYNt−1.

Therefore, the behavior of the node i is characterized by the coefficients Θi1, . . . ,ΘiN i.e.,
the nodes it depends upon. We assume that the nodes are separated into a few clusters
such that the nodes from the same cluster share the same dependency structure, which
brings a bigger picture into the view: instead of saying that two nodes from the same
cluster are more likely to be connected, we say that they connect to the same influencers.

Our primary focus is an application to the opinion dynamics extracted from a mi-
croblogging platform dedicated to stock trading, StockTwits (available at https://
stocktwits.com.) For each user, one can extract the average sentiment score over the
messages he posts during the day. Analyzing the resulting high-dimensional time series,
on the one hand, we can identify influencers — the users whose opinions are overwhelm-

https://stocktwits.com
https://stocktwits.com
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ingly important, and on the other hand, we determine the community structure. One
challenge emerges here: the presence of missing observations since sometimes users do
not leave any message. We treat this as follows: assume there is an underlying opinion
process that follows network dynamics (1.1). However, such an opinion process might be
partially observed, given the random arrival of messages from each user, which results
in a commonly used model for missing observations that involve masked Bernoulli ran-
dom variables. The proposed SONIC accommodates this situation, which seems to have
partaken in nowadays social media. We return to it in detail in Section 3.3.

The rest of the paper is organized as follows. Section 2 introduces the readers to the
StockTwits platform, describes in detail the available dataset and the process of users’
sentiment scores extraction. In Section 3, we first introduce our SONIC model, then
describe the estimation procedure and provide a consistency result. In Section 4, we
provide simulation results that support the theoretical properties of our estimator. Next,
in Section 5, we present and discuss the results of the application of our model to the
datasets retrieved from StockTwits. Section 6 concludes. We dedicate Section 7 to
the proofs, as well as Sections A, B in the appendix. The reader can find all numerical
examples and the SONIC quantlets on www.quantlet.de.

2 StockTwits
Social media are an ideal platform where users can easily communicate with each other,
exchange information, and share opinions. The increasing popularity of social media is
clear evidence of such demand for exchanging opinions and information among granular
users in a cyber world. Among social media platforms, we are particularly interested in
StockTwits for several reasons. Firstly, it becomes predominantly popular and stands
for a leading social network for investors and traders. Secondly, it is similar to Twitter
but dedicated to financial discussion. One of the features that lead to its popularity is
a well-designed reference between the message content and the referring stock symbols.
Conversations are organized around ‘cashtags’ (e.g., ‘$AAPL’ for APPLE; ‘$BTC.X’ for
BITCOIN) that allow to narrow down streams on specific assets. Thirdly and most
importantly, users can also express their sentiment/opinions by labeling their messages
as ‘Bearish’ (negative) or ‘Bullish’ (positive) via a toggle button. These are so-called self-
report sentiments. The available labeled data constitutes an advance on textual analysis
that typically relies on the available training dataset. We use this convention and the
StockTwits Application Programming Interface (API) to retrieve all messages containing
the preferred cashtags. StockTwits API also provides for each message its unique user
identifier, the time it was posted within one-second precision and the sentiment associated
by the user (‘Bullish,’ ‘Bearish,’ or unclassified).

Among over thousand tickers/symbols, we particularly pick up two symbols, $AAPL
for APPLE; $BTC.X for BITCOIN, which represents the most popular security and
cryptocurrency, respectively. Because they attract investors/users who may possess dis-
tinct risk preference, we conjecture that the resulting opinion network and its dynamics
may exhibit different structures. In Table 1, we summarize the messages’ statistics con-
cerning AAPL and BTC. Even though we exclusively consider these two symbols, the
message volume and number of users associated with these two symbols are tremendous.
A glimpse of Table 1 reveals different profiles between two symbols. Firstly, the users
interested in BTC tend to disclose their sentiment, evident by 44% of labeled messages,
while in AAPL only 28% of messages are labeled. It may lead to better training accuracy

www.quantlet.de
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in the case of BTC messages relative to the training model based on AAPL. Secondly,
there is a clear imbalance between the numbers of positive and negative messages, show-
ing that online investors tend to be optimistic on average, as previously found by Kim
and Kim (2014) and Avery et al. (2016). It seems that the imbalance is more evident in
the case of AAPL. Judging by the reported average message volume per day, there is no
doubt that AAPL can attract more attention than BTC.

Symbols AAPL BTC
message volume 449,761 644,597
number of distinct users 26,521 25,492
number of bullish messages 133,316 196,555
number of bearish messages 48,186 90,677
percentage of bullish messages 20.6% 30.4%
percentage of bearish messages 7.4% 14.0%
percentage of labeled messages 28.0% 44.4%
size of positive training dataset 99,985 147,759
size of negative training dataset 36,100 67,752
message volume per day 730 305
number of positive terms in lexicon 4,000 3,775
number of negative terms in lexicon 4,000 3,759
sample period 2017-05-22 2013-03-21

2019-01-27 2018-12-27

Table 1: Summary statistics of social media messages

2.1 Quantifying message content

There exist two techniques that can converse text data into a quantitative sentiment vari-
able, namely dictionary-based and machine learning-based analysis. Although a machine
learning technique has many advantages compared to a dictionary-based approach, the
latter offers better transparency, explication, and less computational burden. Loughran
and McDonald (2016) recommend that one should consider sophisticated alternative
methods only when they add substantive value beyond more straightforward and more
transparent approaches, such as the bag-of-word technique. We, therefore, opt for the
lexicon approach in the task of sentiment quantification.

A dictionary, or lexicon, is a list of words labeled as positive, negative, or neutral.
Given such a list, the bag-of-words approach consists of counting the number of positive
and negative words in a document in order to assign it a sentiment value or a tone. For
example, a simple dictionary containing only the words ‘good’ and ‘bad’ with positive and
negative labels, respectively, would classify the sentence ‘Bitcoin is a good investment’
as positive with a tone +1. As the literature (Loughran and McDonald, 2011; Chen
et al., 2019a) points out, the simplicity of the dictionary-based approach guarantees
transparency and replicability, on the cons side, it comes with limitations associated
with natural language analysis. First, referring to Deng et al. (2017) to the ‘context of
discourse,’ one needs to be aware of the content domain, to which language interpretation
is sensitive. For example, Loughran and McDonald (2011) point out that words like
‘tax’ or ‘cost’ are classified as negative by Harvard General Inquirer lexicon, whereas
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they should be considered neutral in the financial context. Another example is about
quantifying sentiment toward cryptocurrency, playing the role of non-standard assets
and embracing new technologies as part of their characteristics. Chen et al. (2019a)
point out that in many domain-specific terms, such as ‘blockchain,’ ‘ICO,’ ‘hackers,’
‘wallet,’ ‘shitcoin’ and ‘binance,’ ‘hodl,’ are not covered in the existing financial and
psychological dictionaries. They construct a new cryptocurrency lexicon in response to
the need of adopting a specific approach to measure sentiment about cryptocurrencies.
The second limitation is about the language domain, which Deng et al. (2017) define as
the ‘lexical and syntactical choices of language.’ One example would be the difference
between newspapers where one mostly finds a formal and standardized tone, and social
media, where slang and emojis prevail (Loughran and McDonald, 2016). As shown by
Chen et al. (2019a), online investors also use new ‘emojis’ such as 🚀 (positive) and 💩
(negative) when talking about cryptocurrencies. These are missing in the traditional
dictionary.

To balance the complexity and transparency and also to take into account the domain-
specific terms in social media while applying a lexicon approach, in the sentiment quan-
tification for the messages of AAPL we employ the social media lexicon developed by
Renault (2017) while in the quantification of BTC messages we advocate the lexicon tai-
lored for cryptocurrency asset by Chen et al. (2019a). Renault (2017) demonstrates that
his constructed lexicon significantly outperforms the benchmark dictionaries (Loughran
and McDonald, 2016) used in the literature while remaining competitive with more high-
level machine learning algorithms. Based on 125,000 bullish and another 125,000 bearish
messages published on StockTwits, using the lexicon for social media achieves 90% of
classified messages and 75.24% of correct classifications.1 With a collection of 1,533,975
messages from 38,812 distinct users, posted between March 2013 and December 2018,
and related to 465 cryptocurrencies listed in StockTwits2, Chen et al. (2019a) documents
that implementing the crypto lexicon can classify 83% of messages, with 86% of them
correctly classified.

The natural language processing (NLP) is a prerequisite for implementing the textual
analysis. Following Sprenger et al. (2014) and Renault (2017), we convert unstructured
text into clean and manageable textual content as the grounding base throughout the
textual analysis. First, all messages are lowercased. To account for lengthening of words,
which has been shown to be a critical feature of sentiment expression on microblogs
(Brody and Diakopoulos, 2011), but avoid noise in the lexicon, we shrink sequences of
repeated letters to a maximum length of 3. Tickers (‘$BTC.X,’ ‘$LTC.X,’ ...), dollar or
euro values, hyperlinks, numbers, and mentions of users are respectively replaced by the
words ‘cashtag,’ ‘moneytag,’ ‘linktag,’ ‘numbertag,’ and ‘usertag’. The prefix “negtag_”
is added to any word consecutive to ‘not,’ ‘no,’ ‘none,’ ‘neither,’ ‘never,’ or ‘nobody’.
Finally, the three stopwords ‘the,’ ‘a,’ ‘an’ and all punctuation except the characters ‘?’
and ‘!’ are removed. We keep the exclamation and interrogation marks since it has been
previously shown that they are often part of significant bigrams that improve lexicon
accuracy (Renault, 2017).

The next step is to undertake a lexicon-based approach in order to extract the seman-
tic expression, sentiment, or opinions. For any individual message in Table 1 we filter

1The percentage of correct classification is defined as the proportion of correct classifications among all
classified messages, while the percentage of classified messages is denoted as the proportion of classified
messages among all messages.

2This list can be found at https://api.stocktwits.com/symbol-sync/symbols.csv

https://api.stocktwits.com/symbol-sync/symbols.csv
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the terms we collect in the designated lexicon, and equally weight the filtered terms to
generate the sentiment score, which also means that the sentiment score of a message
is estimated as the average over the weights of the lexicon terms it contains. Recall,
that weights of the terms lexicon are in the range of −1 and +1. The sentiment score is
automatically in the same range.

To visualize the quantified sentiment scores from individuals over time, we select the
most active users and display their daily sentiment from 2018-11-01 to 2018-12-27. The
heatmap shown in Figure 2.1 is a 2-dimensional matrix with y-axis for user’s ID, and
x-axis for message posting date, the cell of the heatmap is the quantified sentiment score
whose magnitude represented by a color shown in the adjunct color bar. The evolution
and dynamics of sentiment among users can be read in such a heatmap presentation.
From either Figure 2.1a (AAPL) or Figure 2.1b (BTC), one observes the similar color
codes among a subset of users at particular date or period, indicating a contemporane-
ous common opinion/sentiment and an intertemporal opinion flow among users. Worth
noting that some heterogeneity may exist as some users possess optimistic opinions and
others are persistently pessimistic.

3 The SONIC model

3.1 Notation

Let us first introduce some basic notations. Through the whole paper, N always denotes
the size of the network. Denote by [N ] the set of integers from 1 to N , i.e., [N ] =
{1, . . . , N}. For a subset of indices Λ ⊂ [N ] we denote its complement Λc = [N ] \ Λ.
Moreover, if A is a N ×N matrix and Λ1,Λ2 ⊂ [N ] are two subsets of indices, we
denote the submatrix AΛ1,Λ2 = (Aij)i∈Λ1,j∈Λ2 . We also write for short AΛ,· = AΛ,[N ] and
A·,Λ = A[N ],Λ.

Furthermore, for a vector a ∈ Rd denote a square matrix diag(a) ∈ Rd×d that has
the values a1, . . . , ad on the diagonal and zeros elsewhere. For a square matrix A ∈ Rd×d
we denote Diag(A) ∈ Rd×d as a diagonal matrix of the same size that coincides with A
on the diagonal, i.e., Diag(A) = diag(A11, . . . , Add). For the off-diagonal part we use the
notation Off(A) = A−Diag(A).

For a real vector x ∈ Rd and q ≥ 1 or q = ∞ denote the `q-norm ‖x‖q = (|x1|q +
· · ·+ |xd|q)1/q; for q = 2 we ignore the index, i.e., ‖x‖ = ‖x‖2; we also denote a pseudo-
norm ‖x‖0 =

∑
i 1(xi 6= 0). For A ∈ Rd1×d2 , σ1(A) ≥ σ2(A) ≥ · · · ≥ σmin(d1,d2)(A)

denote the non-trivial singular values of A. We will also refer to σmin(A) as the least
nontrivial eigenvalue, i.e., σmin(A) = σmin(d1,d2)(A). Furthermore, we write |||A|||op =

maxj σj(A) for the spectral norm and |||A|||F = Tr1/2(A>A) =
(∑min(p,q)

j=1 σj(A)
2
)1/2

for
the Frobenius norm. Additionally, we introduce element-wise norms ‖A‖p,q for p, q ≥ 1
(including ∞) denotes `q norm of a vector composed of `p norms of rows of A, i.e.,

‖A‖p,q =
(∑

i

(∑
j |Aij |p

)q/p)1/q

. Notice that ‖A‖2,2 = |||A|||F.

3.2 Structural assumptions: Influencers & communities

In our set-up, the behavior of each node i ∈ [N ] is characterized by the coefficients
Θi1, . . . ,ΘiN , and when we group the nodes using their characteristics the notion of
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(a) AAPL users

(b) BTC users

Figure 2.1: Social media users’ sentiment over time
y-axis is the user’s id, while x-axis is time stamp from 2018-11-01 — 2018-12-27.
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community is merged with the notion of cluster. We assume that the nodes are separated
into clusters, such that these coefficients remain quantitatively comparable for the nodes
within each cluster. Let us first give a precise definition of a clustering.

Definition 3.1. A K-clustering of the set of the nodes [N ] is called a sequence C =
(C1, . . . , CK) of K subsets of [N ], such that

• any two subsets are disjoint Ci ∩ Cj = ∅ for i 6= j;

• the union of subsets Cj gives all nodes,

C1 ∪ · · · ∪ CK = {1, . . . , N}.

Two clusterings C and C′ are equivalent if the corresponding clusters are equal up to a
relabelling, i.e., there is a permutation π on {1, . . . ,K}, such that Cj = C ′

π(j) for every
j = 1, . . . ,K.

Furthermore, define a distance between two clusterings as

d(C, C′) = min
π

K∑
j=1

|Cj \ C ′
π(j)|.

Remark 3.1. The distance between clusterings is, in fact, the minimal amount of node
transferring from one cluster to another, that is required to make the clusterings equiva-
lent. To see this, notice that each clustering can be defined as a sequence (l1, . . . , lN ) of
N labels taking values in {1, . . . ,K}, so that each cluster is defined as Cj = {i : li = j}.
Then, if the clustering C′ corresponds to the labels l′1, . . . , l′N , the distance between them
equals to

d(C, C′) = min
π

N∑
i=1

1(li 6= π(l′i)).

We specify our model by imposing structural assumptions concerning the communities
and the presence of influencers.

Definition 3.2. We say that Θ ∈ SONIC(s,K) (SOcial Network with Influencers and
Communities) if

• each user is influenced by at most s influencers, i.e.,

max
i

N∑
j=1

1(Θij 6= 0) ≤ s;

• there is a K-clustering C = (C1, . . . , CK) such that

Θij = Θi′j , j = 1, . . . , N

whenever i, i′ are from the same cluster Cl, l = 1, . . . ,K.

We will also say that Θ has clustering C.
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Figure 3.1: Example of a network with influencers for K = 3 and s = 1.

Once Θ ∈ SONIC(s,K) has clustering C = (C1, . . . , CK), the following factor repre-
sentation takes place

Θ = ZCV
>, (3.1)

where ZC , V are N ×K matrices such that

• ZC = [zC1 , . . . , zCK
] is a normalized index matrix of clustering C, where for any

C ⊂ [N ] we denote

zC =
1√
|C|

(1(1 ∈ C), . . . ,1(N ∈ C)) ∈ RN

— a normalized index vector for the cluster C and Z>
C ZC = IK ;

• V = [v1, . . . ,vK ] has sparse columns,

‖vj‖0 ≤ s,

i.e., only a few nodes are active and carrying information;

We present a schematic picture of what we expect in Figure 3.1. Here, the nodes
from the same clusters are subject to the same influencers (the grey nodes may be in any
of the clusters), which also coincides with the idea of Rohe et al. (2016), who look for
the right-hand side singular vectors of the Lagrangian in a directed network, grouping
the nodes affected by the same group of nodes.

The equation (3.1) is akin to bilinear factor models, which appear in the econometric
literature as a model with factor loadings, see e.g., Moon and Weidner (2018) and the
references therein. It is also a popular machine learning technique for low-rank approxi-
mation, see a thorough review in Udell et al. (2016). Chen and Schienle (2019) use sparse
factors for a closely related model.

3.3 Missing observations

A network of size N represents a multivariate time series Yt = (Y1t, . . . , YNt)
> ∈ RN ,

where Yit is the response of a node i = 1, . . . , N at a time t = 1, . . . , T and contami-
nated with missing observations. Instead of specifying the exact distribution under the
parametric model (1.1), we assume there is the a true parameter Θ∗ ∈ RN×N and some



C. Y.-H. Chen, W.K. Härdle, and Y. Klochkov 11

unknown probability measure P with the expectation E, such that under this measure
the time series follows the autoregressive equation

Yt = Θ∗Yt−1 +Wt, (3.2)

with E[Wt| Ft−1] = 0 for Ft−1 = σ(Wt−1,Wt−2, . . . ). For the sake of simplicity, we
additionally assume that Wt are independent and have Var(Wt) = S under P. Once
|||Θ∗|||op < 1 the process exists as a converging series

Yt =
∑
k≥0

(Θ∗)kWt−k, (3.3)

and the covariance of the process reads as

Σ = Var(Yt) =
∑
k≥0

(Θ∗)kS{(Θ∗)k}>.

For simplicity, we consider subgaussian vectors Wt, as it allows us to have deviation
bounds for covariance estimation with exponential probabilities. Recall the following
definition, that appears, e.g., in Vershynin (2018).

Definition 3.3. A random vector W ∈ Rd is called L-subgaussian if for every u ∈ Rd it
holds

‖u>W‖ψ2 ≤ L‖u>X‖L2 ,

where for a random variable X ∈ R we denote

‖X‖ψ2 = inf

{
C > 0 : E exp

{(
|X|
C

)2
}
≤ 2

}
,

‖X‖L2 = E1/2|X|2.

Implementing SONIC is not impeded by the presence of missing data that appear to
be one of the features of social media data. We adopt the framework of Lounici (2014)
for vectors with missing observations, assuming that each variable Yit is independent and
only partially observed with some probability. Formally speaking, instead of having a
realization of the whole vector Yt, we only observe the masked process Zt defined as

Zt = (δ1tY1t, . . . , δNtYNt)
>, t = 1, . . . , T, (3.4)

where δit ∼ Be(pi) are independent Bernoulli random variables for every i = 1, . . . , N
and t = 1, . . . , T and some pi ∈ (0, 1], which means that each variable Yit is only observed
with probability pi independently from the other variables, with δit = 1 corresponding
to the observed Yit and δit = 0 to the masked Yit. Obviously, the case pi = 1 for every
i = 1, . . . , N corresponds to the process without missing observations. Therefore, the
framework constituted by (3.4) serves as a generalization of dynamic network models.

Remark 3.2. In terms of the StockTwits world, we interpret the process Yt as an unob-
served underlying opinion process. Such an opinion process quantified from the messages
is subject to the random arrival of messages, as users disclose their opinions randomly on
social media. Although one may restrict the sample to the case of full observation, the
statistical inference may be questionable. Also, discarding nodes with very few missing
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observations is a waste of available information. Given the fact that some users are more
active than others, we need to account for different probabilities pi.

Suppose that the probabilities pi are given (otherwise they can easily be estimated)
and set p = (p1, . . . , pN )

>. Following Lounici (2014), we set the observed empirical
covariance Σ∗ = 1

T

∑T
t=1 ZtZ

>
t and consider the following covariance estimator,

Σ̂ = diag{p}−1Diag(Σ∗) + diag{p}−1Off(Σ∗)diag{p}−1.

It is straightforward to assert an unbiased estimator, i.e.,

EΣ̂ = Σ.

The state-of-the-art bound for the error of such covariance estimator is inspired by
Klochkov and Zhivotovskiy (2018), Theorem 4.2. In the case of independent vectors
Yt and equal probabilities of observations p1 = · · · = pN = p they show that for any
u ≥ 1 with probability at least 1− e−u it holds

|||Σ̂− Σ|||op ≤ C|||Σ|||op

(√
r̃(Σ) log r̃(Σ)

Tp2

∨√
u

Tp2

∨ r̃(Σ){log r̃(Σ) + u} logT
Tp2

)
,

where r̃(Σ) = Tr(Σ)
|||Σ|||op

denotes the effective rank of the covariance Σ. Similarly, the effective
rank appears as well in the classic covariance estimation problem (i.e., p = 1), see, e.g.,
Koltchinskii and Lounici (2017) who even provide a matching lower bound. Notice that
the effective rank takes values between 1 and the rank of Σ. However, if there is no specific
restriction on the spectrum of Σ, the effective rank can grow as large as the full dimension
N , which means that the bound above can only guarantee the error of order

√
N
Tp2

, not
taking into account the logarithms. On the other hand, one only needs to bound the error
within specific low-dimensional subspaces. The following theorem provides such deviation
bound for the autoregressive process (3.2), and in its turn accounts for possibly distinct
probabilities pi.

Theorem 3.4. Assume the vectors Wt are independent L-subgaussian and also

|||Θ∗|||op ≤ γ < 1, pi ≥ pmin > 0.

Let P,Q ∈ RN×N be two arbitrary orthogonal projectors of rank M1,M2, respectively.
Then, for any u ≥ 1 it holds with probability at least 1− e−u,

|||P (Σ̂− Σ)Q|||op ≤ C|||S|||op

(√
M1 ∨M2(logN + u)

Tp2min

∨ √M1M2(logN + u) logT
Tp2min

)
,

where C = C(γ, L) only depends on L and γ.

See proof of this result in Section A.
Additionally, we are interested in estimating lag-1 cross-covariance under the same

scenario. Namely, based on the sample Z1, . . . , ZT and given the probabilities p1, . . . , pN
we wish to estimate the matrix A = EYtY >

t+1. Since E[Yt+1| Ft] = Θ∗Yt for the linear
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process (3.3), the corresponding cross-covariance reads as

A = Σ(Θ∗)>.

Consider the following estimator

Â = diag{p}−1A∗diag{p}−1,

where A∗ is the observed empirical cross-covariance

A∗ =
1

T − 1

T−1∑
t=1

ZtZ
>
t+1.

For this estimator, we provide an upper-bound, again with a restriction to some low-
dimensional subspaces.

Theorem 3.5. Let P,Q be two projectors of rank M1 and M2, respectively. Assume the
independent vectors Wt are L-subgaussian and also

|||Θ∗|||op ≤ γ < 1, pi ≥ pmin > 0.

Then, for any u ≥ 1 it holds with probability at least 1− e−u

|||P (Â−A)Q|||op ≤ C|||S|||op

(√
(M1 ∨M2)(logN + u)

Tp2min

∨ √M1M2(logN + u) logT
Tp2min

)
,

where C = C(γ, L) only depends on γ and L.

We postpone the proof to Section A.

3.4 Alternating minimization algorithm

In order to estimate the matrix Θ = ZCV
>, we need to estimate both C and V simul-

taneously. Suppose that we have some clustering C at hand and we aim to estimate the
corresponding V . The mean squared loss from the fully observed sample would look like

R∗(V ; C) = 1

2(T − 1)

T−1∑
t=1

‖Yt+1 − ZCV
>Yt‖2 (3.5)

=
1

2
Tr(V >Σ̃V )− Tr(V >ÃZC) +

1

2(T − 1)

T−1∑
t=1

‖Yt+1‖2, (3.6)

where we used the fact that Z>
C ZC = IK and the trace of a matrix product is invariant

with respect to transition Tr(AB) = Tr(BA). Here, we also denote

Σ̃ =
1

T − 1

T−1∑
t=1

YtY
>
t , Ã =

1

T − 1

T−1∑
t=1

YtY
>
t+1,

to be empirical covariance and empirical lag-1 covariance built on a sample Y1, . . . , YT ,
respectively, which we observe only partially. In reality, the feasible estimators are Σ̂ and
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Â, which we have introduced in the previous section. A natural solution is to plug-in
these estimators into the expression (3.5) instead of the unobserved Σ̃ and Ã. The last
term 1

2(T−1)

∑T−1
t=1 ‖Yt+1‖2 does not depend on the parameters C and V at all; therefore,

we can drop it. We end up with the following risk function that we need to minimize,

R(V ; C) = 1

2
Tr(V >Σ̂V )− Tr(V >ÂZC).

In particular, it is not hard to derive from Theorems 3.4 and 3.5 that for any fixed pair
C, V the values of R(V ;C) and R∗(V ; C) − 1

2(T − 1)

∑T−1
t=1 ‖Yt+1‖2 are close with high

probability.
As we are searching for a sparse matrix V , we additionally impose a LASSO regular-

ization and end up with the following convex optimization,

V̂C,λ = arg minRλ(V ; C), Rλ(V ; C) =R(V ; C) + λ‖V ‖1,1

=
1

2
Tr(V >Σ̂V )− Tr(V >ÂZC) + λ‖V ‖1,1,

where ‖V ‖1,1 =
∑

ij |Vij |, and tuning parameter λ > 0 depends on the dimension N and
number of observations T . Concerning this minimization problem, we have the following
observations:

• the problem reduces to simple quadratic programming and therefore can be effi-
ciently solved;

• since ‖V ‖1,1 =
∑K

j=1 ‖vj‖1 we can rewrite

Rλ(V ; C) =1

2
Tr
(
V >Σ̂V

)
− Tr

(
V >ÂZ

)
+ λ‖V ‖1,1

=

K∑
j=1

1

2
v>
j Σ̂vj − v>

j Âzj + λ‖vj‖1.

Therefore, we need to solve K independent problems of size N , which reduces
computational complexity, and one may also be implement it in parallel.

Ideally, we want to solve the following problem (note that the number of clusters K and
the tuning parameter λ are fixed)

Fλ(C)→ min
C
, Fλ(C) = min

V
Rλ(V ; C).

We can employ a simple greedy procedure. In the beginning, we initialize C(0) =
(l1, . . . , lN ) randomly; each label takes values 1, . . . ,K. Then, at a step t, we try to
change one label of a node that reduces the risk the most, in other words, we try all the
clusterings in the nearest vicinity of the current solution C(t), i.e.,

C(t+1) = arg min
d(C,C(t))≤1

Fλ(C).

At each such step, we would need to calculate Fλ(C) forO{N(K−1)} different candidates.

Remark 3.3. In general, it is impossible to optimize arbitrary function f(C) with respect



C. Y.-H. Chen, W.K. Härdle, and Y. Klochkov 15

to a clustering. The K-means is well-known to be NP-hard, however, different solutions
are widely used in practice, see Shindler et al. (2011) and Likas et al. (2003).

To speed up the trials of the greedy procedure, we utilize an alternating minimization
strategy. Suppose, in the beginning, we initialize the clustering by C(0) and compute the
LASSO solution V (0) = VC(0),t. When updating the clustering, we fix the matrix V = V (t)

and solve the problem

Rλ(V ; C) = 1

2
Tr(V >Σ̂V )− Tr(V >ÂZC) + λ‖V ‖1,1 → min

C
,

where only the term −Tr(V >ÂZC) depends on C. Minimizing by conducting a few steps
of the greedy procedure we obtain the next clustering update C(t+1). Then, we again
update the V -factor by setting V (t+1) = VC(t+1),λ. We continue so until the clustering
does not change or the number of iterations exceeds a specific limit. The pseudo-code in
Algorithm 1 summarizes this procedure.

Result: a pair (Ĉ, V̂ )

initialize C(0) = (l
(0)
1 , . . . , l

(0)
N ) randomly;

t← 0;
while t < max_iter do

update V̂ (t) ← arg minRC(t),λ(V );
for i = 1, . . . , N do

for l = 1, . . . , N do
consider candidate C′ = (l

(t)
1 , . . . , l

(t)
i−1, l, l

(t)
i+1, . . . , l

(t)
N );

ril ← −Tr(V (t)ÂZC′);
end

end
(i∗, l∗) = arg min ril;
update C(t+1) ← (l

(t)
1 , . . . , l

(t)
i∗−1, l

∗, l
(t)
i∗+1, . . . , l

(t)
N );

if C(t+1) = C(t) then
return (C(t), V (t));

else
t← t+ 1;

end
end

Algorithm 1: Alternating greedy clustering procedure.

3.5 Local consistency result

In this section, we show the existence of a locally optimal solution in the neighborhood of
the true parameter with high probability. We call a clustering solution Ĉ locally optimal
if the functional Fλ(·) has the minimum value at point Ĉ among its nearest neighbours
d(C, Ĉ) ≤ 1. In particular, Algorithm 1 stops at such a solution.

Conditions

Here we describe the conditions that we need for the consistency result. The first condi-
tion concludes the requirements of Theorems 3.4 and 3.5.
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Assumption 1. There is some Θ∗ ∈ RN×N such that |||Θ∗|||op ≤ γ for some γ < 1 and
the time series Yt follows (3.3). The innovations Wt are independent with EWt = 0 and
Var(Wt) = S. Moreover, each Wt is L-subgaussian.

Furthermore, we impose structural assumptions on the true parameter Θ∗ described
in Section 3.2.

Assumption 2. The true VAR operator admits decomposition with K-clustering C∗

Θ∗ = ZC∗V ∗,

and meets the following conditions:

1. |||Θ∗|||op = |||V ∗|||op ≤ γ < 1 for some constant γ ∈ (0, 1);

2. cluster separation
σmin([V

∗]>ΣV ∗) ≥ a0 (3.7)

for some a0 > 0;

3. sparsity: for every j = 1, . . . ,K the active set Λj = supp(v∗
j ) satisfies

|Λj | ≤ s;

4. significant active coefficients: there is τ0 > 0 such that

|v∗ij | ≥ τ0s−1/2, i ∈ Λj , j = 1, . . . ,K . (3.8)

Here each ‖v∗
j‖ ≤ 1 has at most s nonzero values, hence the normalization;

5. significant cluster sizes: for some α ∈ (0, 1) it holds

minj |C∗
j |

maxj |C∗
j |
≥ α.

Notice that the condition (3.7) requires that the clusters are appropriately separated,
i.e., each v∗

j is far enough from a linear combination of the rest. Another assumption is
concerned with the population covariance Σ.

Assumption 3. The covariance of Yt reads as

Σ =

∞∑
k=0

(Θ∗)kS[(Θ∗)k]>,

where S = Var(Wt). We impose the following assumptions on this matrix.

1. bounded operator norm
|||Σ|||op ≤ σmax;

2. restricted least eigenvalue

σmin(ΣΛj ,Λj ) ≥ σmin, j = 1, . . . ,K .
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Note that we do not assume that the smallest eigenvalue of Σ is bounded away from
zero, but only those corresponding to the small subsets of indices are. For the sake of
simplicity, we additionally assume that the ratio

σmax
σmin

≤ κ,

is bounded by some constant κ ≥ 1. Additionally, we can treat the values L, γ, a0, τ0, and
α as constants. Below we focus on to what extent the relationship between N,T, s,K,
and the probabilities of the observations pi, i = 1, . . . , N allows consistent estimation of
the parameter Θ.

Finally, we present the assumption that allows controlling the exact recovery of spar-
sity patterns for the LASSO estimator.

Assumption 4. For every j = 1, . . . ,K it holds

‖ΣΛc
j ,ΛjΣ

−1
Λj ,Λj

‖1,∞ ≤
1

4
.

Recall that Λc is the complement of Λ ⊂ [N ] in [N ].

Remark 3.4. The inequality ‖ΣΛc
j ,ΛjΣ

−1
Λj ,Λj

‖1,∞ < 1 allows us to derive the exact recov-
ery of the sparsity pattern at the LASSO procedure-step described above. In Section B
we show a straightforward extension of the results from Tropp (2006) to the case with
the presence of missing observations.

Theorem 3.6. Suppose that Assumptions 1-4 hold. There are constants c, C > 0 that
depend on L, γ such that the following holds. Suppose,√

sn∗ logN
Tp2min

∨√
s logN log2 T

Tp2min
≤ c, (3.9)

where n∗ = maxj≤K |C∗
j | and, additionally, N ≥ (Cα2 ∨ κ)K. Then, with probability at

least 1− 1/N for any λ in the range

Cσmax

√
logN
Tp2min

≤ λ ≤ c
{
κ−4(a20/σmax)K

−2s−1
∧
σminτ0s

−1
}
, (3.10)

and, additionally, λ ≥ Cα2K/N , there is a locally optimal solution Ĉ satisfying

|||ZĈV̂
>
Ĉ,λ −Θ∗|||F ≤

{
3σ−1

min
√
Ks+

Cγ

a0

(
σmax
σmin

)2

K
√
s

}
λ .

Moreover, the exact support recovery takes place, i.e., supp(V̂Ĉ,λ) = supp(V ∗).

Let us discuss this result. According to the theorem, a greater λ gives greater error
once it is in the required range. This comes naturally, as the result is based on the exact
recovery, see e.g., Tropp (2006). Ideally, we want to choose the smallest available value,

λ∗ = Cσmax

√
logN
Tp2min

. (3.11)
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In this case, the error of the estimator reads as

|||Θ̂λ∗ −Θ∗|||F ≤ C ′K

√
s logN
Tp2min

,

where C ′ does not depend on N,T,K, s. Notice that in the case of precisely known
clustering C∗ we only need to estimate the matrix V that consists of at most Ks nonzero
parameters. Therefore according to Lemma 7.7, the LASSO estimator must give us

|||ZC∗ V̂ >
C∗,λ∗ −Θ∗|||F = |||V̂C∗,λ∗ − V ∗|||F ≤ C ′

√
Ks logN
Tp2min

,

where we used the fact that ZC∗ has orthonormal columns; see also Melnyk and Banerjee
(2016) and Han et al. (2015). We conclude that not knowing the exact clustering provides
the estimator that is at most

√
K times worse.

Let us take a closer look at the condition (3.9). Under the cluster size restriction
from Assumption 2, we have that all clusters have the size of order N/K, since

α
N

K
≤ |C∗

j | ≤ α−1N

K
, j = 1, . . . ,K.

Therefore, say if we ignore missing observations, we only need

(sN/K) logN
T

≤ c, (3.12)

with some constant c depending on α, enabling the estimation toward the parameters.
Therefore, once K is large enough, the estimator works with the corresponding error.
Notice that the `1-regularisation alone requires the number of the observations to be at
least the number of edges times logN , see Fan et al. (2009). In our setting, the number
of connections is up to Ns, so such condition reads as√

sN logN
T

≤ 1.

Therefore the SONIC model is an improvement in this regard. Finally, we point out
that the conditions of Theorem 3.6 imply some limitations on the size of the network
concerning the number of observations. Indeed, using the first part of the condition (3.9)
and comparing the lower- and upper-bounds of the condition (3.10), we can easily derive

N
4
5 s

6
5 logN

Tp2min
≤ c,

where c > 0 is a constant that only depends on L, γ, a0, τ0, and α. Though we do
not state that this condition is necesarry, it is clear that in some cases the estimation is
possible even when N > T .
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4 Simulation study
Take N = T = 100 and s = 1, while K will vary in a range 2...30. As noted above,
e.g., by equation (3.12), a larger amount of the clusters leads to better estimation, and
we are particularly interested in capturing this effect through simulations. For every
K = 2, . . . , 30 we construct the following matrix Θ∗,

• pick clusters C∗
j having approximately the same size N

K ± 1;

• for every j = 1, . . . ,K set

v∗
j = 0.5ej = (0, . . . , 0.5, . . . , 0)>,

with a single nonzero value at the place j, so that s = 1.

• by construction we have,

|||Θ∗|||op = |||V ∗|||op = 0.5, |||Θ∗|||F = |||V ∗|||F = 0.5
√
K.

Furthermore we generate i.i.d. W−19,W−18, . . . ,WT ∼ N(0, I) and set

Yt =

20∑
k=0

(Θ∗)kWt−k, t = 1, . . . T,

where due to 0.5−20 ≈ 10−6 the terms for k > 20 can be neglected. In Figure 4.1a
we show the relative error E|||Θ̂ − Θ∗|||F/|||Θ∗|||F along regularization paths for different
choices of K. Picking the best λ we show the relative error against the number of clusters
in Figure 4.1b. We also show that the clustering error Ed(Ĉ, C∗) in Figure 4.1c is subject
to the choice of K. All expectations are estimated based on 20 simulations. We conclude
that the simulations confirm the following theoretical property of our estimator: the
smaller the size of the largest cluster (or equivalent to the case with larger K), the better
estimation, while the total size of the network can be even as large as the number of
observations.

Choice of the regularization parameter λ

It is often suggested to use regularisation λ = σ
√

logN/T in the LASSO literature, where
σ stands for a noise level (Belloni and Chernozhukov, 2013; Van de Geer, 2008; Bickel
et al., 2009; Van de Geer et al., 2014). In the example above, we have σ = 1. In our case
of missing observations, the value T must be replaced by Tp2min, which plays the role of
“effective” number of observations according to the results of Section 3.3. Furthermore,
Wang and Samworth (2018) recommend to disregard multiplicative constants that appear
in theory in front of σ

√
logN/(Tp2min) (see equation (3.11)) since it leads to consistent,

but rather conservative estimation.
The simulation results support this choice. Let us take a look at the regularisation

paths at Figure 4.1a for different values of K. All of the graphs that we show exhibit
similar behavior: with λ increasing, the evaluated expected relative loss drops until
it reaches its minimum, then it starts to increase until it reaches the constant value
that corresponds to Θ̂λ = 0, which obviously happens once the regularization is big
enough. Typically, the “oracle” choice corresponds to the minimizer of the expected loss
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(a) Expected relative loss E |||Θ̂−Θ∗|||F
|||Θ∗|||F for different λ and K = 4, 8, 12, 16, 20.

(b) Expected relative loss E |||Θ̂λ−Θ∗|||F
|||Θ∗|||F for the best λ and K = 2, . . . , 30.

(c) Expected clustering error Ed(Ĉ, C∗) for the best λ and K = 2, . . . , 30.

Figure 4.1: Simulation results for N = T = 100 and s = 1.
SoNIC_simulation_study

https://github.com/QuantLet/SoNIC/tree/master/SoNIC_simulation_study
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Figure 4.2: The optimal value of λ for K = 2, . . . , 30.
SoNIC_simulation_study

E|||Θ̂λ − Θ∗|||F. In order to compare it with the recommended choice above, we pick for
each K = 2, . . . , 30 the tuning parameter — among the available choices on the graph
— that delivers the minimum to the evaluated expected loss. In Figure 4.2 we show the
values of best λ for each K = 2, . . . , 30 (blue line) and compare it to the theoretical value√

logN
T (red line). We can see that once the number of clusters is large enough (K ≥ 13)

the corresponding optimal choice of λ approximately equals to
√

logN
T . On the other

hand, as the graph in Figure 4.1c suggests, for K ≤ 12 the number of nodes assigned to
a wrong cluster grows significantly, and one cannot estimate the model with any given
regularization parameter.

Remark 4.1. Note that in practice, one must estimate the noise level σ in a data-driven
way (Belloni and Chernozhukov, 2013). We suggest to evaluate it using the spectrum
of the covariance estimator Σ̂. One obvious choice can be σ̂ = ‖Σ̂‖. However, this may
lead to an overestimated noise level. We suggest using the following strategy. Since
Σ = Θ∗Σ(Θ∗)> + S, we expect the original covariance to have either K or K − 1 spikes
(one cluster could be zero). In particular, this is true whenever S = σI. We, therefore,
suggest using the singular value σ̂ = σK(Σ̂), which means that we avoid the first K − 1
components. The resulting regularisation parameter reads as

λ = σK(Σ̂)

√
logN
Tp2min

.

In the next section, we stick to this strategy.

5 Application to StockTwits sentiment
Here we present the applicability of SONIC to the dataset described in Section 2. We

https://github.com/QuantLet/SoNIC/tree/master/SoNIC_simulation_study
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concentrate on two network structures comprising the users’ tone of messages pointing to
AAPL and BTC, respectively. These two symbols, representing the most popular secu-
rity and cryptocurrency, respectively, may reveal different characteristics that ultimately
determine network dynamics. In a sense, two networks may display different communities
and influencers, given the symbol’s characteristics and the involved users.

Table 1 summarizes the messages’ statistics with respect to AAPL and BTC, but fur-
ther filtering for users and messages ensures the model applicability. Considering missing
observations discussed in Section 3.3, we require that the observations are persistent with
the same probability pi over a time period under consideration. Moreover, since in The-
orems 3.4 and 3.5 the amount of observations scales with the factor p2min, we need to
avoid the users whose pi is too small. Based on these remarks, we suggest the following
preprocessing steps:

1. pick users with estimated probability p̂i ≥ 0.5;

2. select the most extended historical interval over which the user exhibits persistent
probability of observation. One can look at a moving average estimation and ensure
that for any window it remains within the appropriate confidence interval;

3. take only the users whose historical interval from step 2 is at least 50 days.

With these criteria, for the AAPL dataset, we are left with 46 users and 72 days, while for
BTC, we have 68 users and 52 days. The two datasets are visualized using the heatmap
in Figure 2.1.

We apply our SONIC model to AAPL dataset with λ = 0.08 and K = 2. Note that
λ is chosen following Remark 4.1, while the stability of the clustering algorithm may
guide us the choice of the number of clusters K, which we discuss later. We present a
heatmap visualization for the estimated matrix Θ̂ in Figure 5.1a, where we can identify
the key users with identification number 47688, 619769, 850976, and 1438287, 547349,
6106783. These active nodes are the detected influencers. Looking at their profiles, we
end up with the users who have attracted lots of followers, which supports the capability
of SONIC. The first four influencers represent trading companies that offer technical and
fundamental analysis for the symbols of interest. It shows that investment companies
target their potential traders who emerge on the social media platform and influence them
strategically. The latter two are individuals who actively post messages. They joined the
StockTwits in an early phase, and have successfully collected tremendous “liked” tagged
on their messages.

For the BTC dataset, we use λ = 0.1 and K = 2 following the proposed theo-
rems. Figure 5.1b displays the estimated matrix Θ̂ and identifies influencers 1171931
and 1254166. The first one offers the breaking news related to cryptocurrency, while
the second one produces the technical analytics to cryptocurrency speculators. Different
from what has been identified on AAPL, the influencers on BTC are relatively few but
have more dominant power in terms of the magnitude of estimates. Besides, identifying
the influencers as individuals seems exceptional.

Interestingly, in both networks we detect two communities, one corresponds to the
coefficients Θij = 0, simply implying a community comprising of “individualized” users
who are neither influencing others nor being influenced by others. They, for instance,

3To access a page via identification number type, for example, https://stocktwits.com/123456 in a
browser address line.

http://stocktwits.com/47688
http://stocktwits.com/619769
http://stocktwits.com/850976
http://stocktwits.com/1438287
http://stocktwits.com/547349
http://stocktwits.com/610678
http://stocktwits.com/1171931
http://stocktwits.com/1254166
https://stocktwits.com/123456
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(a) AAPL dataset with N = 46, T = 72 and K = 2.

(b) BTC dataset with N = 68, T = 52 and K = 2.

Figure 5.1: Estimated Θ̂ for AAPL and BTC datasets. The axes correspond to user id’s
and are rearranged with respect to the estimated clusterings.

SoNIC_AAPL_BTC

merely react to price changes. On the contrary, the users in the second cluster are more
vulnerable to opinion leaders, investment companies spreading the news, and technical
reports.

Choosing the number of clusters K

One possible way to decide the number K is to analyze the stability of the clustering
algorithm (Rakhlin and Caponnetto, 2007; Le Gouic and Paris, 2018). We propose the
following procedure. Consider a sequence of intervals I1, . . . , Il ⊂ {1, . . . , T} of the same
length and let us estimate the clusterings ĈIj using the observations (Yt)t∈Ij for each
j = 1, . . . , l. If the number of clusters is correct, we expect that the pairwise distances

https://github.com/QuantLet/SoNIC/tree/master/SoNIC_AAPL_BTC
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(a) APPLE dataset

(b) BITCOIN dataset

Figure 5.2: Differences d(ĈI1 , ĈIj ) for j = 2, . . . , 6 and for K = 2, 3, 4, 5, 6.
SoNIC_AAPL_BTC_stability

Ĉj are small. We take l = 6 intervals of length 3T/4± 1, each of the form

Ij =

[
j

20
T + 1,

j + 14

20
T

]
, j = 1, . . . , 6,

so that we include all available observations. We then calculate the distances d(ĈI1 , ĈIj )
for each j = 2, . . . , l and for different choices of K. The results for both APPLE and
BITCOIN are presented in Figure 5.2. The graph demonstrates that the only adequate
choice is K = 2; for others, the clustering distance reaches the value comparable with
the size of the network.

https://github.com/QuantLet/SoNIC/tree/master/SoNIC_AAPL_BTC_stability
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6 Conclusion
Nowadays the interest in dynamics of interaction among the users emerging in social
media is dramatically growing as social media becomes an attractive venue where users
are allowed to interact with others instantly and intended influencers aggressively show
their predominance. The research in this strand is, however, challenging. From an econo-
metric point of view, these dynamics require effective state-of-the-art methodologies that
cope with the curse of dimensionality, as well as to characterize psychological interdepen-
dence. From a quantitative perspective on, e.g., text-based source channels, like Twitter
or StockTwits, the activities, and opinions distilled from social networks boil down to
a numerical expression of tone, sentiment or emojis. The joint involvement of these
variables constitutes a dynamic network with a possibly growing dimension.

In order to cope with dimensionality in a limited observation setting, we propose
SONIC (SOcial Network with Influencers and Communities). SONIC reflects naturally
the known facts from social networks: a few influencers and the characterizable homo-
geneous communities. We provided and discussed several theoretical remarks on the
asymptotic consistency of the network parameters. SONIC is based on LASSO regu-
larization with consideration of computational complexity, and we extensively test it in
simulations.

Using StockTwits data and their derived sentiments, we deploy a SONIC analysis and
display an opinion network for Apple and Bitcoin users (nodes). We detect K = 2 com-
munities using stability analysis and discuss the choice of the regularization parameter
λ of LASSO.

7 Proof of the main result
This section is devoted to the proof of Theorem 3.6. We start with some preliminary
lemmas and then proceed with the proof that consists of several steps. Following the
ideas in Gribonval et al. (2015), the proof relies on explicit representation of the loss
function.

We exploit the following simplified notation. Denote, z∗j = zC∗
j

to be the columns of
Z∗ = ZC∗ and we also denote n∗j = |C∗

j | for every j = 1, . . . ,K. When the clustering
C = (C1, . . . , CK) is clear from the context we will also write Z for ZC , zj for zCj , and
nj = |Cj | for every j = 1, . . . ,K.

7.1 Preliminary lemmas

Lemma 7.1. Suppose that Cj is such that ‖zCj − z∗j‖ ≤ 0.3. Then,

1

1.1
|C∗
j | ≤ |Cj | ≤ 1.1|C∗

j |.

Proof. Suppose, nj = |Cj | > n∗j = |C∗
j |, then

r2 = ‖zj − z∗j‖2 = 2− 2√
njn∗j

|Cj ∩ C∗
j | ≥ 2− 2

√
n∗j
nj
,

since |Cj ∩ C∗
j | ≤ n∗j . Thus, √nj −

√
n∗j ≤ (r2/2)

√
nj , which due to r ≤ 0.3 implies by
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rearranging and taking square nj ≤ 1.1n∗j .
If nj < n∗j we have,

r2 ≥ ‖zj − z∗j‖2 = 2−
2|Cj ∩ C ′

j |√
njn∗j

≥ 2− 2

√
nj
n∗j
,

and the fact that r ≤ 0.3 implies n∗j ≤ 1.1nj .

Lemma 7.2. Let ‖zC1 − zC2‖ ≤ 0.3. Then,

‖zC1 − zC2‖1 ≤ 1.65
√
N1‖zC1 − zC2‖2 .

Proof. Let Nj = |Cj | and a = |C1 ∩C2|, b = |C1 \C2|, c = |C2 \C1|, so that N1 = a+ b,
N2 = a+ c, and |C14C2| = b+ c. We have,

‖zC1 − zC2‖2 =
(

1√
N1
− 1√

N2

)2

a+
b

N1
+

c

N2
≥ b

N1
+

c

N2
.

On the other hand,

‖zC1 − zC2‖1 =
∣∣∣∣ 1√
N1
− 1√

N2

∣∣∣∣ a+ b√
N1

+
c√
N2

≤
∣∣∣∣ 1√
N1
− 1√

N2

∣∣∣∣ a+√N1 ∨N2‖zC1 − zC2‖2 .

Since |N1 −N2| ≤ b+ c we obviously have,∣∣∣∣ 1√
N1
− 1√

N2

∣∣∣∣ a =
|N1 −N2|a√

(a+ b)(a+ c)(
√
a+ b+

√
a+ c)

≤ (b+ c)a√
N1 ∨N2

√
a(2
√
a)

≤
√
N1 ∨N2‖zC1 − zC2‖2/2,

and it is left to apply Lemma 7.1.

Lemma 7.3. Suppose, minj n∗
j

maxj n∗
j
≥ α for some α ∈ (0, 1] and let ‖zj − z∗j‖ ≤ r. Suppose,

r ≤ 0.3. Then,
‖[Z∗]>(zj − z∗j )‖1 ≤ 3.05α−1/2r2.

Proof. 1) We first consider the case |Cj | = n∗j . It holds then

[z∗j ]>(z∗j − zj) =
1

n∗j
(n∗j − |Cj ∩ C∗

j |) =
1

n∗j
|C∗
j \ Cj |.

Moreover, for every k 6= j it holds

|[z∗k]>(z∗j − zj)| = |[z∗k]>zj | =
1√
n∗kn

∗
j

|C∗
k ∩ Cj | ≤

α−1/2

n∗j
|C∗
k ∩ Cj |.
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Summing up, we get

‖[Z∗]>(zj − z∗j )‖1 ≤
α−1/2

n∗j

|C∗
j \ Cj |+

∑
k 6=j
|C∗
k ∩ Cj |


≤ α−1/2

n∗j

(
|C∗
j \ Cj |+ |Cj \ C∗

j |
)

=
α−1/2

n∗j
|Cj4C∗

j |.

It is left to notice that in the case |Cj | = |C∗
j | = n∗j we have exactly ‖zj − z∗j‖2 =

1
n∗
j
|Cj4C∗

j |.
2) Suppose, nj = |Cj | > n∗j . Obviously, we can decompose Cj = C ′

j ∪ B such that
|C ′
j | = n∗j and B ∩ C∗

j = ∅. Setting z′j = zC′
j

we get by the above derivations that
‖[Z∗]>(z′j − z∗j )‖1 ≤ α−1/2‖z′j − z∗j‖2. Since C ′

j ∩ C∗
j = Cj ∩ C∗

j we can compare the
distances

‖zj − z∗j‖2 = 2− 2√
njn∗j

|Cj ∩ C∗
j | > 2− 2

n∗j
|Cj ∩ C∗

j | = ‖z′j − z∗j‖2.

Taking the remainder b = zj − z′j we have,

bi =


nj

−1/2 − (n∗j )
−1/2, i ∈ C ′

j ,

nj
−1/2, i ∈ B,

0 otherwise.

Setting d = nj −n∗j = |B| it is easy to obtain |nj−1/2− (n∗j )
−1/2| ≤ d

nj

1√
n∗
j

. Thus, we get

K∑
k=1

|[z∗k]>b| ≤
k∑
i=1

1√
n∗k

 d

nj

1√
n∗j

|C ′
j ∩ C∗

k |+ |B ∩ C∗
k |

1
√
nj


≤ α−1/2d

n∗jnj
|C ′
j |+

α−1/2√
n∗jnj

d

<
2α−1/2d√
njn∗j

.

We show that the latter is at most 2.05α−1/2r2. Indeed, it is not hard to show that from
nj ≤ 1.1n∗j (see Lemma 7.1) it follows

nj − n∗j√
njn∗j

≤ 2.05

1−
n∗j√
njn∗j

 ≤ 2.05× r2

2
,

thus ‖[Z∗]>(zj − z∗j )‖1 ≤ 3.05α−1/2r2 and the result follows.
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3) The case nj < n∗j can be resolved similarly to the previous one. Since |C∗
j \ Cj | ≥

n∗j − nj we can pick a subset B ⊂ C∗
j \ Cj of size d = n∗j − nj and set C ′

j = B ∪ Cj with
|C ′
j | = n∗j ; set also z′j = zC′

j
. Then, we have

‖z′j − z∗j‖2 = 2− 2
|C ′
j ∩ C∗

j |
n∗j

≤ 2−
2|Cj ∩ C ′

j |√
njn∗j

= ‖zj − z∗j‖2.

Thus, by the first part of this proof it holds ‖[Z∗]>(z′j − z∗j )‖1 ≤ α−1/2r2 . Setting
b = z′j − zj we have,

bi =


(n∗j )

−1/2 − nj−1/2, i ∈ Cj ,

n∗j
−1/2, i ∈ B,

0 otherwise.

Since |nj−1/2 − (n∗j )
−1/2| ≤ d

n∗
j

1√
nj

we obtain,

K∑
k=1

|[z∗k]>b| ≤
k∑
i=1

1√
n∗k

 d

n∗j

1
√
nj
|Cj ∩ C∗

k |+ |B ∩ C∗
k |

1√
n∗j


≤ α−1/2d

(n∗j )
3/2n

1/2
j

|Cj |+
α−1/2

n∗j
d

<
2α−1/2d

n∗j
.

It is left to notice that

r2 ≥ 2− 2nj√
njn∗j

=
2(
√
n∗j −

√
nj)

√
nj

=
2(n∗j − nj)

n∗j +
√
njn∗j

≥ 2d

2n∗j
,

therefore ‖[Z∗]>b‖1 ≤ 2α−1/2r2, thus ‖[Z∗]>(zj − z∗j )‖1 ≤ 3α−1/2r2.

Lemma 7.4. Let r = |||ZC − Z∗|||F and suppose that r ≤ 0.3. Then |||PC − PC∗ |||2F ≥
2r2(1− 10α−1r2).

Proof. Denote zj = zCj and rj = ‖zj − z∗j‖. It holds,

|||PC − PC∗ |||2F = 2K − 2Tr(PCPC∗) = 2K −
∑
j,k

(z>j z∗k)2.

Notice, that 2z>j z∗j = 2− ‖zj‖2 − ‖z∗j‖2 + 2z>j z∗j = 2− ‖zj − z∗j‖2, i.e., z>j z∗j = 1− r2j/2.
In particular, 1 − (z>j z∗j )2 = r2j − r4j/4, whereas ([z∗j ]>(zj − z∗j ))2 = r4j/4. Since we
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additionally have [z∗k]>(zj − z∗j ) = [z∗k]>zj for k 6= j, it holds

2K − 2
∑
j,k

(z>j z∗k)2 = 2
∑
j

r2j − r4j/4− 2
∑
j

∑
k 6=j

(
[z∗k]>(zj − z∗j )

)2
= 2r2 − 2

∑
j,k

(
[z∗k]>(zj − z∗j )

)2
= 2r2 − 2

∑
j

‖[Z∗]>(zj − z∗j )‖2

By Lemma 7.3 we have for every j = 1, . . . ,K

‖[Z∗]>(zj − z∗j )‖ ≤ ‖[Z∗]>(zj − z∗j )‖1 ≤ 3.05α−1/2r2j ,

therefore ∑
j

‖[Z∗]>(zj − z∗j )‖2 ≤ 10α−1
∑
j

r4j ≤ 10α−1r4,

thus inequality follows.

Lemma 7.5. Let C,C ′ be such that |C4C ′| = 1. Then ‖zC − zC′‖2 ≤ 2
|C|∨|C′| .

Proof. Suppose, |C ′| > |C| then C ′ = C ∪ {a} and denoting n = |C| we have

‖zC − zC′‖2 =n

(√
1

n+ 1
−
√

1

n

)2

+
1

n+ 1
=

(
√
n+ 1−

√
n)2 + 1

n+ 1
≤ 2

n+ 1
.

7.2 Proof of Theorem 3.6

The proof consists of several steps, each represented by a separate lemma.

Lemma 7.6. Suppose, Assumption 1 holds and let N ≥ 2. There is a constant C =
C(γ, L), so that if

s logN log2 T
Tp2min

≤ 1

3
,

then with probability at least 1 − 1/N and for with ∆1 = Cσmax
√

logN
Tp2min

the following
inequalities take place for every j = 1, . . . ,K

•
‖Â−A‖∞,∞ ≤ ∆1, ‖Σ−1

Λj ,Λj
(ÂΛj ,· −AΛj ,·)‖∞,∞ ≤ σ−1

min∆1; (7.1)

•
‖(Â−A)z∗j‖∞ ≤ ∆1, ‖Σ−1

Λj ,Λj
(ÂΛj ,· −AΛj ,·)z∗j‖∞ ≤ σ

−1
min∆1; (7.2)

•
‖Σ̂− Σ‖∞,∞ ≤ ∆1, ‖(Σ̂Λj ,· − ΣΛj ,·)v∗

j‖∞ ≤ ∆1; (7.3)

•
‖Σ−1

Λj ,Λj
(Σ̂Λj ,· − ΣΛj ,·)v∗

j‖∞ ≤ σ−1
min∆1; (7.4)
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•
|||Σ̂Λj ,Λj − ΣΛj ,Λj |||op ≤

√
s∆1. (7.5)

Proof. By Theorem 3.5 for any pair a,b ∈ RN with ‖a‖ ≤ 1, ‖b‖ ≤ 1 it holds with
probability ≥ 1−N−m,

|a>(Â−A)b| ≤ Cσmax

{√
(m+ 1) logN

Tp2min

∨ (m+ 1) logN logT
Tp2min

}
.

Suppose for a moment that m is such that√
(m+ 1)s logN

Tp2min
logT ≤ 1, (7.6)

so that we can neglect the second term. Set,

A0 = {(ei, ei′) : i, i′ ≤ N}, B0 = {(ei, z∗l ) : i ≤ N, l ≤ K},

as well as for every j = 1, . . . ,K

Aj = {(σminΣ
−1
Λj ,Λj

ei, ei′) : i ∈ Λj , i
′ ≤ N},

Bj = {(σminΣ
−1
Λj ,Λj

ei, z∗l ) : i ∈ Λj , l ≤ K}.

We have |A0| ≤ N2, |B0| ≤ NK and |Aj | ≤ sN, |Bj | ≤ sK for j = 1, . . . , N , so since
s,K ≤ N together they have not more than 4N3 pairs of vectors (a,b), each having
norm bounded by one. Taking a union bound, we have that the inequalities (7.1) and
(7.2) hold with probability at least 1− 4N3−m. By analogy, we can show that (7.3) and
(7.4) hold with probability at least 1− 4N3−m.

As for the last inequality, for every j = 1, . . . ,K pick Pj =
∑

i∈Λj
eie>

i , i.e., projectors
onto the subspace of vectors supported on Λj . Then by Theorem 3.4 it holds with
probability at least 1−KN−m for every j = 1, . . . ,K (taking into account (7.6))

|||Σ̂Λj ,Λj − ΣΛj ,Λj |||op = |||Pj(Σ̂− Σ)Pj |||op ≤ Cσmax

√
s(m+ 1) logN

Tp2min
.

The total probability will be at least 1 − 8N3−m − KN−m, which is at least 1 − 1/N
whenever m ≥ 7 and N ≥ 2.

In the following, we apply the technique from Gribonval et al. (2015). Suppose that
the LASSO solution v̂j for a given clustering C is not only supported exactly on Λj , but
its signs are matching those of the true v∗

j . Then, ‖v̂j‖1 = s̄>j (v̂j)Λj . Therefore, we can
write

(v̂j)Λj = arg min
v∈RΛj

1

2
v>Σ̂Λj ,Λjv− v>ÂΛj ,·zj + λs̄>j v

= Σ̂−1
Λj ,Λj

(ÂΛj ,·zj − λs̄j),

and plugging this solution into the risk function we get that Fλ(C) = Φλ(C), where the
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latter is defined explicitly

Φλ(C) = −
1

2

K∑
j=1

(ÂΛj ,·zj − λs̄j)>Σ̂−1
Λj ,Λj

(ÂΛj ,·zj − λs̄j).

The next lemma shows that such representation takes place in the local vicinity of the
true clustering C∗.

Lemma 7.7. Suppose, the inequalities (7.1)–(7.5) take place. Assume,

s∆1 ≤ 1/16, 12∆1 ≤ λ ≤
σmin
4

τ0s
−1. (7.7)

Then, for any C = (C1, . . . , CK) satisfying

max
j
‖zCj − zC∗

j
‖ ≤ 0.3 ∧ 0.22

√(
2σmaxα−1/2 +

√
n∗∆1

)−1
λ (7.8)

it holds
|||V̂λ,C − V ∗|||F ≤ 3σ−1

min
√
Ksλ,

and the equality Fλ(C) = Φλ(C) takes place.

Proof. Taking into account Z>Z = IK , it holds

Rλ(V ; C) =1

2
Tr
(
V >Σ̂V

)
− Tr

(
V >ÂZ

)
+ λ‖V ‖1,1

=

K∑
j=1

1

2
v>
j Σ̂vj − v>

j Âzj + λ‖vj‖1,

so that the optimization problem separates into K independent subproblems. Solving
each of the problems

1

2
v>
j Σ̂vj − v>

j Âzj + λ‖vj‖1 → min
vj

corresponds to Corollary B.3 with D̂ = Σ̂ and ĉ = Âzj , whereas the “true” version of
the problem corresponds to D̄ = Σ and c̄ = Az∗j = Σ(Θ∗)>z∗j = Σv∗

j . We need to control
the differences between ĉ and c̄, and between D̂ and D̄. It holds,

‖Âzj −Az∗j‖∞ ≤‖A(zj − z∗j )‖∞ + ‖(Â−A)z∗j‖∞ + ‖(Â−A)(zj − z∗j )‖∞ .

Since A = ΣV ∗[Z∗]>, we bound the first term using Lemma 7.3

‖A(zj − z∗j )‖∞ ≤ ‖ΣV ∗‖∞,∞‖[Z∗]>(zj − z∗j )‖1 ≤ 3.05α−1/2‖ΣV ∗‖∞,∞r
2
j .

The second term is bounded by ∆1, whereas the fourth term satisfies

‖(Â−A)(zj − z∗j )‖∞ ≤ ‖Â−A‖∞,∞‖zj − z∗j‖1 ≤ 1.65∆1

√
n∗r2j ,

where we also used Lemma 7.2. Summing up,we get,

‖ĉ− c‖∞ ≤ 1.65(2σmaxα
−1/2 +

√
n∗j∆1)r

2
j +∆1 .
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Similarly, we bound ‖ΣΛj ,Λj (ĉΛj − c̄Λj )‖∞ as follows

‖Σ−1
Λj ,Λj

(ÂΛj ,·zj −AΛj ,·z∗j )‖∞ ≤‖Σ
−1
Λj ,Λj

A(zj − z∗j )‖∞ + ‖Σ−1
Λj ,Λj

(ÂΛj ,· −AΛj ,·)z∗j‖∞
+ ‖Σ−1

Λj ,Λj
(ÂΛj ,· −AΛj ,·)(zj − z∗j )‖∞

≤‖Σ−1
Λj ,Λj

A(zj − z∗j )‖∞ + 1.65σ−1
min∆1

√
n∗r2j + σ−1

min∆1

≤1.65σ−1
min(2σmaxα

−1/2 +
√
n∗j∆1)r

2
j + σ−1

min∆1

To sum up, Corollary B.3 is applied with

δc =1.65(2σmaxα
−1/2 +

√
n∗∆1)r

2
j +∆1,

δ′c =1.65σ−1
min(2σmaxα

−1/2 +
√
n∗∆1)r

2
j + σ−1

min∆1

δD =∆1, δ′D = ∆1, δ′′D = σ−1
min∆1.

It requires the conditions,

3{1.65(2σmaxα
−1/2 +

√
n∗∆1)r

2
j + 2∆1} ≤ λ, s∆1 ≤

1

16
,

and due to the fact that ‖D−1
Λj ,Λj

‖1,∞ ≤
√
s|||D−1

Λj ,Λj
|||op and Assumption 3.8,

2σ−1
min(1.65(2σmaxα

−1/2 +
√
n∗∆1)r

2
j + 2∆1 +

√
sλ) < τ0s

−1/2,

which are not hard to derive from the given inequalities. Together this yields that v̂j is
supported on Λj and the solution satisfies

(v̂j)Λj = Σ̂−1
Λj ,Λj

(
ÂΛj ,·zj − λs∗j

)
,

and the corresponding minimum is equal to

1

2
v̂>
j Σ̂v̂>

j − v̂>
j Âzj + λ(v̂j)>Λj

s∗j = −
1

2

(
ÂΛj ,·zj − λs∗j

)>
Σ̂−1
Λj ,Λj

(
ÂΛj ,·zj − λs∗j

)
.

Summing up, we get the corresponding expression for Fλ(C). Moreover, we have

‖v̂j − v∗
j‖ ≤2

√
s
{
2∆1 + 1.65(2σmaxα

−1 +
√
n∗∆1)r

2
j + λ

}
≤2σ−1

min
√
s

(
λ

6
+

1.65λ

20
+ λ

)
≤3σ−1

min
√
sλ,

and together it provides a bound on |||V̂λ,C − V ∗|||F.

Consider the function,

Φ̄λ(C) = −
1

2

k∑
j=1

(
AΛj ,·zj − λs∗j

)>
Σ−1
Λj ,Λj

(
AΛj ,·zj − λs∗j

)
.

The following lemma shows how this function grows with C retreating from the true
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clustering C∗.

Lemma 7.8. Suppose, C is a clustering such that r = |||ZC − Z∗|||F ≤ 0.3. Then,

Φ̄λ(C)− Φ̄λ(C∗) ≥
a0
2
r2(1− 10α−1r2)− λ

√
Ks|||V ∗|||Fr.

Proof. Denoting Φ̄0(C) = −1
2

∑k
j=1 z>j Â>

Λj ,·Σ̂
−1
Λj ,Λj

ÂΛj ,·zj (which indeed corresponds to
λ = 0), we have the decomposition

Φ̄λ(C)− Φ̄λ(C∗) = Φ̄0(C)− Φ̄0(C∗)− λ
K∑
j=1

[s∗j ]>Σ−1
Λj ,Λj

AΛj ,·(zj − z∗j ).

Let us first deal with the term Φ̄0(C) − Φ̄0(C∗). Note that since [v∗
j ]Λj = Σ−1

Λj ,Λj
AΛj ,·z∗j ,

we have

Φ̄0(C∗) = −
1

2

K∑
j=1

[v∗
j ]
>Σv∗

j = −
1

2
Tr([V ∗]>ΣV ∗) = −1

2
Tr(Θ∗Σ[Θ∗]>).

whereas
Φ̄0(C) = min

V=[v1,...,vk]

1

2
Tr(V >ΣV )− Tr(V >AZC)

where the minimum is taken s.t. the restrictions supp(vj) ⊂ Λj . Dropping the restrictions
we get,

Φ̄0(C)− Φ̄0(C∗) ≥ min
V

1

2
Tr(V >ΣV )− Tr(V >AZC) +

1

2
Tr(Θ∗Σ[Θ∗]>)

= min
V

1

2
|||ZCV

>Σ1/2|||2F − Tr(ZCV
>Σ[Θ∗]>) + |||Θ∗Σ1/2|||2F

= min
V

1

2
|||(ZCV

> −Θ∗)Σ1/2|||2F.

It is not hard to calculate that the minimum is attained for V = [Θ∗]>ZC and therefore

Φ̄0(C)− Φ̄0(C∗) ≥
1

2
|||(ZCZ

>
C − I)Θ∗Σ1/2|||2F ≥

a0
2
|||(ZCZ

>
C − I)Z∗|||2F,

where the latter follows using Θ∗ = Z∗[V ∗]> and from the fact that λmin([V
∗]>ΣV ∗) ≥ σ0.

Moreover,

|||(ZCZ
>
C − I)Z∗|||2F = Tr((PC − I)PC∗(PC − I)) = Tr(PC∗)− Tr(PCPC∗)

=
1

2
|||PC − PC∗ |||2F,

where we used the fact that Tr(PC) = Tr(PC∗) = K. It is left to recall the result of
Lemma 7.4, so that we get

Φ̄0(C)− Φ̄0(C∗) ≥
a0r

2

2
(1− 10α−1r2).
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As for the linear term, it holds K∑
j=1

[s∗j ]>Σ−1
Λj ,Λj

AΛj ,·(zj − z∗j )

2

≤

 K∑
j=1

‖[s∗j ]>Σ−1
Λj ,Λj

AΛj ,·‖2
 r2

Since A = Σ[Θ∗]>, we have A>
Λj ,·Σ

−1
Λj ,Λj

s∗j = Θ∗Σ·,ΛjΣ
−1
Λj ,Λj

s∗j . Denote, x = Σ·,ΛjΣ
−1
Λj ,Λj

s∗j ,
then we have xΛj = sj and ‖xΛj‖∞ = 1. Moreover, by the ERC property

‖xΛc
j
‖∞ = ‖ΣΛc

j ,ΛjΣ
−1
Λj ,Λj

sj‖∞ ≤ ‖ΣΛc
j ,ΛjΣ

−1
Λj ,Λj

‖1,∞ ≤ 1/2.

We have

‖A>
Λj ,·Σ

−1
Λj ,Λj

s∗j‖2 = ‖
∑

z∗j [v∗
j ]
>x‖2 =

K∑
k=1

|[v∗
k]

>x|2,

where, since v∗
k is supported on Λk of size at most s,

|[v∗
k]

>x| ≤ ‖v∗
k‖1‖x‖∞ ≤

√
s‖v∗

k‖.

Summing up, we get ‖A>
Λj ,·Σ

−1
Λj ,Λj

s∗j‖2 ≤ s|||V ∗|||2F, so that∣∣∣∣∣∣
K∑
j=1

[s∗j ]>Σ−1
Λj ,Λj

AΛj ,·(zj − z∗j )

∣∣∣∣∣∣ ≤ √Ks|||V ∗|||Fr.

The lemma now follows from the two terms put together.

The next step is to bound the difference Φλ(C)−Φ̄λ(C) uniformly in the neighbourhood
of C∗.

Lemma 7.9. Suppose that the inequalities (7.1)–(7.5) hold and let

∆1 ≤ σmin/(2
√
s) ∨ λ

12
, σmax/σmin ≤ n∗, λ ≤ σmins

−1

Let some r ≤ 0.3 satisfies
√
sn∗∆1r

2 ≤ σmax. Then,

sup
|||Z−Z∗|||F≤r

|Φλ(C)− Φ̄λ(C)− Φλ(C∗) + Φ̄λ(C∗)|

≤4

((
σmax
σmin

)2√
s|||V ∗|||F +

σmax
σmin

√
K

)
∆1r + 16

σmax
σmin

√
sn∗∆1r

2.

Proof. Denote,

Φ̃λ(C) = −
1

2

K∑
j=1

(
AΛj ,·zj − λs∗j

)>
Σ̂−1
Λj ,Λj

(
AΛj ,·zj − λs∗j

)
,
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so that we have

|Φ̃λ(C)− Φ̄λ(C)− Φ̃λ(C∗) + Φ̄λ(C∗)|

≤ 1

2

K∑
j=1

∣∣∣(AΛj ,·(zj + z∗j )− 2λs∗j
)>

(Σ̂−1
Λj ,Λj

− Σ−1
Λj ,Λj

)AΛj ,·(zj − z∗j )
∣∣∣

First of all, due to (7.5) it holds,

|||Σ̂−1
Λj ,Λj

− Σ−1
Λj ,Λj

|||op ≤
σ−2
min
√
s∆1

1− σ−1
min
√
s∆1

≤ 2σ−2
min
√
s∆1.

Since A = Σ[Θ∗]>, we have

‖AΛj ,·(zj − z∗j )‖ ≤ σmaxrj

‖AΛj ,·(zj + z∗j )− 2λs∗j‖ ≤ σmax(2‖v∗
j‖+ rj) + 2λ

√
s.

Then by Cauchy-Schwartz,

|Φ̃λ(C)− Φ̄λ(C)− Φ̃λ(C∗) + Φ̄λ(C∗)| ≤σ−2
min
√
s∆1

 K∑
j=1

σmaxrj
{
σmax(2‖vj‖+ rj) + 2λ

√
s
}

≤2
(
σmax
σmin

)2√
s|||V ∗|||F∆1r + 2

σmax
σ2min

λs
√
K∆1r

+

(
σmax
σmin

)2√
s∆1r

2.

Going further,

Φλ(C)− Φ̃λ(C) = −
1

2

K∑
j=1

(
(AΛj ,· + ÂΛj ,·)zj − 2λs∗j

)>
Σ̂−1
Λj ,Λj

(ÂΛj ,· −AΛj ,·)zj ,

which implies that

|Φλ(C)− Φ̃λ(C)− Φλ(C∗) + Φ̃λ(C∗)|

≤ 1

2

K∑
j=1

∣∣∣∣((AΛj ,· + ÂΛj ,·)(zj − z∗j )
)>

Σ̂−1
Λj ,Λj

(ÂΛj ,· −AΛj ,·)zj
∣∣∣∣

≤1

2

K∑
j=1

∣∣∣∣((AΛj ,· + ÂΛj ,·)z∗j − 2λs∗j
)>

Σ̂−1
Λj ,Λj

(ÂΛj ,· −AΛj ,·)(zj − z∗j )
∣∣∣∣

(7.9)

First notice, that due to Lemma 7.2 and (7.1) it holds,

‖(ÂΛj ,· −AΛj ,·)(zj − z∗j )‖ ≤
√
s‖ÂΛj ,· −AΛj ,·‖∞,∞‖zj − z∗j‖1

≤ 1.65
√
sn∗∆1r

2
j .
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Therefore, it follows

‖(ÂΛj ,· +AΛj ,·)(zj − z∗j )‖ ≤ 2σmaxrj + 1.65
√
sn∗∆1r

2
j .

Moreover, using (7.2) we get

‖(ÂΛj ,· −AΛj ,·)zj‖ ≤ ∆1 + 1.65
√
sn∗∆1r

2
j

‖(ÂΛj ,· +AΛj ,·)z∗j − 2λs∗j‖ ≤ 2σmax‖vj‖+∆1 + 2λ
√
s.

and we also have |||Σ̂−1
Λj ,Λj

|||op ≤ 2σ−1
min due to the condition σ−1

min
√
s∆1 ≤ 1/2. Thus we

get that the first sum of (7.9) is bounded by

σ−1
min

K∑
j=1

(
2σmaxrj + 1.65

√
sn∗∆1r

2
j

)(
∆1 + 1.65

√
sn∗∆1r

2
j

)
≤ 2

σmax
σmin

∆1

√
Kr + 1.65σ−1

min
√
sn∗∆2

1r
2 + 3.3

σmax
σmin

√
sn∗∆1r

3 + 2.8σ−1
minsn

∗∆2
1r

4,

while the second sum is bounded by

σ−1
min

K∑
j=1

(
2σmax‖v∗

j‖+∆1 + 2λ
√
s
) (

1.65
√
sn∗∆1r

2
j

)
≤ 1.65

σmin

(
σmax

√
sn∗ +

√
sn∗∆1 + 2λs

√
n∗
)
∆1r

2

≤ 3.3

σmin

(
σmax

√
sn∗ + λs

√
n∗
)
∆1r

2

where we used the fact that maxj ‖v∗
j‖ ≤ |||V ∗|||op = |||Θ∗|||op < 1 together with the

condition of the lemma ∆1 ≤ σmax. Combining all the bounds we get

|Φλ(C)− Φ̄λ(C)− Φλ(C∗) + Φ̄λ(C∗)|

≤2

{(
σmax
σmin

)2√
s|||V ∗|||F + 2

σmax
σ2min

λs
√
K + 2

σmax
σmin

√
K

}
∆1r

+

{
3.3

σmax
σmin

√
sn∗ + 3.3σ−1

minλs
√
n∗ + 1.65σ−1

min
√
sn∗∆1 +

(
σmax
σmin

)2√
s

}
∆1r

2

+ 3.3
σmax
σmin

√
sn∗∆1r

3

+ 2.8σ−1
minsn

∗∆2
1r

4,

where by r ≤ 0.3 and
√
sn∗∆1 ≤ σmax we can neglect the third and the fourth power,

respectively, and thus the required bound follows.

Lemma 7.10. There are numerical constants c, C > 0 such that the following holds.
Suppose, the inequalities take place:√

sn∗ logN
Tp2min

≤ ca0σmin
σ2max

, n∗ ≥ σmax/σmin. (7.10)
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Let Cσmax
√

logN
Tp2min

≤ λ ≤ cσminτ0s
−1, and set

r̄ = 0.3 ∧ 0.18
√
α ∧ 0.22

√(
2σmaxα−1/2 +

√
n∗∆1

)−1
λ.

Then under the inequalities (7.1)–(7.5) the clustering

Ĉ = arg min
|||ZC−Z∗|||F≤rmax

Fλ(C)

satisfies

|||ZĈ − Z
∗|||F ≤

C

a0

(
σmax
σmin

)2

λK
√
s .

Proof. It is not hard to see that for ∆1 =
√

logN
Tp2min

the inequalities required by Lem-
mas 7.7–7.9 are satisfied for r ≤ r̄ due to (7.10) and conditions on λ and r̄. Since
obviously Ĉ satisfies Fλ(Ĉ) ≤ Fλ(C∗), we have for r = |||ZĈ − ZC∗ |||F ≤ rmax

Fλ(Ĉ)− Fλ(C∗) ≥Φ̄λ(C)− Φ̄λ(C)− |Fλ(C)− Φ̄λ(C)− Fλ(C∗) + Φ̄λ(C∗)|

≥a0r
2

2

(
1− 10α−1r2

)
− λ
√
Ks|||V ∗|||Fr

− 4

{(
σmax
σmin

)2√
s|||V ∗|||F +

σmax
σmin

√
K

}
∆1r − 15

σmax
σmin

√
sn∗∆1r

2

=
a0r

2

2

(
1− 10α−1r2 − 30

a0

σmax
σmin

√
sn∗∆1

)
− λ
√
Ks|||V ∗|||Fr − 4

{(
σmax
σmin

)2√
s|||V ∗|||F +

σmax
σmin

√
K

}
∆1r .

Since r̄ ≤ 0.2
√
α implies 10α−1r2 ≤ 1

3 , it holds by (7.10)

1− 10α−1r2 − 30

a0

σmax
σmin

√
sn∗∆1 ≥

1

2
.

Therefore, after dividing by r, we get that such optimal clustering must satisfy

a0
4
r ≤ λ

√
Ks|||V ∗|||F + 4

{(
σmax
σmin

)2√
s|||V ∗|||F +

σmax
σmin

√
K

}
∆1.

Recalling that |||V ∗|||F ≤
√
K, ∆1 = Cσmax

√
logN
Tp2min

, and ∆2 = C
√

s logN
Tp2min

yields the result.

Now we are ready to finalize the proof of Theorem 3.6. Firstly, we need to show
that the clustering Ĉ from the lemma above is locally optimal. By Lemma 7.5, any
neighbouring to it clustering C′ satisfies |||ZC′ − ZĈ |||F ≤

2√
αN/K

. Therefore,

|||ZC′ − ZC∗ |||F ≤
C

a0

(
σmax
σmin

)2

λK
√
s+ 2α−1/2

√
K

N
,
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and it is enough to check that this value is at most r̄. We check that each of the terms
is at most r̄/2. For the first one, it is sufficient to have

C

a0

(
σmax
σmin

)2

α−1/2λK
√
s ≤ 0.09,

C2

a20

(
σmax
σmin

)4

λ
(
2σmaxα

−1/2 +
√
n∗∆1

)
K2s ≤ 0.012,

and both are satisfied due to the upper bound λ ≤ cκ−4(a20/σmax)K
−2s−1 and the re-

quirement
√

sn∗ logN
Tp2min

≤ c. For the second term we need

α−1K

N
≤ 0.008α, α−1

(
2σmaxα

−1/2 +
√
n∗∆1

) K
N
≤ λ,

both are satisfied once N ≥ Cα2K and λ ≥ Cσmaxα
−3/2K

N .
Moreover, by Lemma 7.7 we have for Θ̂ = ZĈV̂Ĉ,λ

|||Θ̂−Θ∗|||F ≤ |||ZĈ(V̂Ĉ,λ − V
∗)>|||F + |||(ZĈ − Z

∗)V ∗|||F

≤ 3σ−1
min
√
Ksλ+

C

a0

(
σmax
σmin

)2

γK
√
sλ,

which finishes the proof.
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A Proof of Theorems 3.4 and 3.5
Recall that we have a time series,

Yt =
∑
k≥0

ΘkWt−k, t ∈ Z, (A.1)

where Wt ∈ RN , t ∈ Z are independent vectors with EWt = 0 and Var(Wt) = S. We also
have |||Θ|||op ≤ γ for some γ < 1, and the covariance Σ = Var(Yt) reads as

Σ =
∑
k≥0

ΘkS[Θk]>.

We have the observations

Zt = (δ1tY1t, . . . , δNtYNt)
>, t = 1, . . . , T, (A.2)

where δit ∼ Be(pi) are independent Bernoulli random variables for every i = 1, . . . , N
and t = 1, . . . , T and some pi ∈ (0, 1].

The proofs of both statements are based on the following version of the Bernstein
matrix inequality, which does not require bounded summands. Recall, that for a random
variable X ∈ R the value

‖X‖ψj
= inf

{
C > 0 : E exp

(∣∣∣∣XC
∣∣∣∣j
)
≤ 2

}

denotes a ψj-norm. For j = 1 the norm is referred to as subexponential and for j = 2 as
subgaussian.

Theorem A.1 (Klochkov and Zhivotovskiy (2018), Proposition 4.1). Suppose, the ma-
trices At for t = 1, . . . , T are independent and let M = maxt

∥∥|||At|||op
∥∥
ψ1

is finite. Then,
ST =

∑T
t=1At satisfies for any u ≥ 1

P
[
|||ST − EST |||op > C

{√
σ2(logN + u) +M logT (logN + u)

}]
≤ e−u,

where σ2 = |||
∑T

t=1 EA>
t At|||op ∨ |||

∑T
t=1 EAtA>

t |||op and C is an absolute constant.
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Let δt = (δt1, . . . , δtN )
> denotes the vector with Bernoulli variables from above cor-

responding to the time point t. In what follows we consider the following matrices,

Ak,jt,t′ = diag{δt}ΘkWt−kW
>
t′−j [Θ

j ]>diag{δt′},

so that since Zt =
∑

k≥0 diag{δt}ΘkWt−k, we have

ZtZ
>
t =

∑
k,j≥0

diag{δt}ΘkWt−kW
>
t−j [Θ

j ]>diag{δt} =
∑
k,j≥0

Ak,jt,t .

Therefore, the decomposition takes place

Σ∗ =
∑
k,j≥0

Sk,j , Sk,j =
1

T

T∑
t=1

Ak,jt,t , (A.3)

and we shall analyze the sum Sk,j for every pair of k, j ≥ 0 separately. We first introduce
two technical lemmas. In what follows we assume w.l.o.g. that |||S|||op = 1, since if we
scale it, all the covariances and estimators scale correspondingly.

Lemma A.2. Under the assumptions of Theorem 3.4 it holds,

‖|||Pdiag{p}−1Diag(Ak,jt,t′)Q|||op‖ψ1 ≤ Cp
−1
min
√
M1M2γ

k+j ,

‖|||Pdiag{p}−1Off(Ak,jt,t′)diag{p}−1Q|||op‖ψ1 ≤ Cp
−2
min
√
M1M2γ

k+j ,

with some C = C(L) > 0.

Proof. Denote for simplicity x = ΘkWt−k, y = ΘjWt′−j , as well as xδ = diag{δt}x, yδ =
diag{δt}y, such that Ak,jt,t′ = xδ[yδ]>. Since Wt are subgaussian and |||ΘkSΘk|||op ≤ γ2k,
we have for any u ∈ RN

log E exp(u>x) ≤ C ′γ2k‖u‖2, (A.4)

and since δt takes values in [0, 1]N , same takes place for xδ. By Theorem 2.1 in Hsu et al.
(2012) it holds for any matrix A and vector u ∈ RN ,

‖‖Axδ‖‖ψ2 ≤ C ′′γk|||A|||F, ‖u>xδ‖ψ2 ≤ C ′′γk‖u‖, (A.5)

and, similarly,

‖‖Ayδ‖‖ψ2 ≤ C ′′γj |||A|||F, ‖u>yδ‖ψ2 ≤ C ′′γj‖u‖.

We first deal with the diagonal term. Let P =
∑M1

i=1 uju>
j be its eigen-decomposition

with ‖uj‖ = 1, then

‖|||Pdiag(xδ)|||op‖2ψ2
=‖|||diag(xδ)Pdiag(xδ)|||op‖ψ1 ≤

M1∑
j=1

‖|||diag(xδ)uju>
j diag(xδ)|||op‖ψ1

=

M1∑
j=1

‖‖diag(uj)xδ‖‖2ψ2
,

where each term in the latter is bounded by γ2k due the fact that |||diag(uj)|||F = 1.
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Summing up and taking square root, we arrive at
∥∥|||Pdiag(xδ)|||op

∥∥
ψ2
≤
√
C ′′M1γ

k.
Taking into account similar bound for Qdiag(yδ), we have by Hölder inequality

‖|||Pdiag{δ}−1diag(xδ)diag(yδ)Q|||op‖ψ1 ≤p
−1
min‖|||Pdiag(xδ)|||op

∥∥
ψ2
‖|||Qdiag(yδ)|||op‖ψ2

≤C ′′
√
M1M2γ

k+j ,

which yields the bound for the diagonal. As for the off-diagonal, consider first the whole
matrix,

‖|||Pxδ[yδ]>Q|||op‖ψ1 ≤ ‖‖Pxδ‖‖ψ2‖‖Qyδ‖‖ψ2 ≤ (C ′′)2
√
M1M2γ

j+k,

and since Off(Aj,kt,t′) = Aj,kt,t′−Diag(Aj,kt,t′), the bound follows from the triangular inequality.

The following technical lemma will help us to upper-bound σ2 in Theorem A.1.

Lemma A.3. Let δ1, . . . , δN consists of independent Bernoulli components with proba-
bilities of success p1, . . . , pN and set pmin = mini≤N pi. Let a,b ∈ RN be two arbitrary
vectors. It holds,

E
(∑

i

δi
pi
aibi

)2

≤p−1
min‖a‖

2‖b‖2,

E

∑
i 6=j

δiδj
pipj

aibj

2

≤32p−2
min‖a‖

2‖b‖2 + 4

(∑
i

ai

)2(∑
i

bi

)2

.

Additionally, if δ′1, . . . , δ′N are independent copies of δ1, . . . , δN , it holds

E

∑
i,j

δiδ
′
j

pipj
aibj

2

≤ 4p−2
min‖a‖

2‖b‖2 + 4

(∑
i

ai

)2(∑
i

bi

)2

.

Proof. It holds,

E
(∑

i

δi
pi
aibi

)2

=
∑
i,j

E δiδj
pipj

aibiajbj =
∑
i,j

{1 + 1(i = j)(p−1
i − 1)}aibiajbj

≤

(∑
i

aibi

)2

+ (p−1
min − 1)

∑
i

a2i b
2
i

≤‖a‖2‖b‖2 + (p−1
min − 1)‖a‖2‖b‖2.

To show the second inequality we use decoupling (Theorem 6.1.1 in Vershynin (2018))
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and the trivial inequality (x+ y)2 ≤ 2x2 + 2y2,

E

∑
i 6=j

δiδj
pipj

aibj

2

≤2

∑
i 6=j

aibj

2

+ 2E

∑
i 6=j

(δi − pi)(δj − pj)
pipj

aibj

2

≤2

∑
i 6=j

aibj

2

+ 32E

∑
i 6=j

(δi − pi)(δ′j − pj)
pipj

aibj

2

.

(A.6)

Denote for simplicity δi = δi − pi and δ′i = δ′i − pi. Since the latter are centered we have,

E

∑
i 6=j

δiδ
′
j

pipj
aibj

2

=
∑
i 6=j
k 6=l

Eδiδk
pipk

Eδ′jδ
′
l

pjpj
aiakbjbl (A.7)

note that the expectation Eδiδk is only non-vanishing when i = k, in which case it holds
Eδ2i = pi− p2i . Taking into account similar property of Eδ′jδ

′
l we have that the sum above

is equal to

∑
i 6=j

(pi − p2i )(pj − p2j )
p2i p

2
j

a2i b
2
j ≤ (p−1

min − 1)2
∑
i,j

a2i b
2
j ≤ (p−1

min − 1)2‖a‖2‖b‖2.

It is left to notice that∑
i 6=j

aibj

2

≤ 2

∑
i,j

aibj

2

+ 2

(∑
i

aibj

)2

≤ 2

(∑
i

ai

)2(∑
i

bi

)2

+ 2‖a‖2‖b‖2,

which recalling (A.6) and noting that 32(p−1
min−1)2+4 ≤ 32p−2

min for pmin ∈ [0, 1], completes
the proof.

Similarly to (A.7), we can show the third inequality.

Now we apply the Bernstein matrix inequality to the sum Skj defined in (A.3), dealing
separately with diagonal and off-diagonal parts. After that, we present the proof of
Theorem 3.4.

Lemma A.4. Under the assumptions of Theorem 3.4, it holds for any u ≥ 1 with
probability at least 1− e−u

|||Pdiag{p}−1(Diag(Sk,j)− EDiag(Sk,j))Q|||op

≤ Cγk+j
(√

M1 ∨M2(logN + u)

Tpmin

∨ √M1M2(logN + u)

Tpmin

)

where C = C(K) only depends on K.

Proof. Note that,

Pdiag{p}−1Diag(Skj)Q = T−1
T∑
t=1

At, At = Pdiag{p}−1Diag(Ak,jt,t )Q.



C. Y.-H. Chen, W.K. Härdle, and Y. Klochkov 45

By Lemma A.2 we have ‖|||At|||op‖ψ1 ≤ Cp−1
min
√
M1M2γ

k+j . Moreover, using decomposi-
tion Q =

∑M2
j=1 ujuj , we have

|||EAtA>
t |||op ≤|||Ediag{p}−1Diag(Ak,jt,t )QDiag(Ak,jt,t )diag{p}−1|||op

≤
M2∑
j=1

|||Ediag{p}−1Diag(Ak,jt,t )uju>
j Diag(Ak,jt,t )diag{p}−1|||op

≤
M2∑
j=1

sup
‖γ‖=1

E(γ>diag{p}−1Diag(Ak,jt,t )uj)2

By definition, Diag(Ak,jt,t ) = diag{δtixiyi}Ni=1 for x = ΘkWt−k, y = ΘjWt−j . Let Eδ de-
notes the expectation w.r.t. the Bernoulli variables and conditioned on everything else.
Setting a = (x1γ1, . . . , xNγN )

>) and b = (y1u1, . . . , yNuN )
>, we have by the first in-

equality of Lemma A.3,

E(γ>diag{p}−1Diag(Ak,jt,t )uj)2 = EEδ

(∑
i

γixi
δti
pi
yiui

)2

≤ p−1
minE‖a‖2‖b‖2

≤ p−1
minE1/2‖a‖4E1/4‖b‖4.

Observe that,
‖a‖2 =

∑
i

γ2i x
2
i = x>diag{γ}2x,

so since Tr(diag{γ}2) = 1 and due to (A.4) and by Theorem 2.1 Hsu et al. (2012), it
holds E1/2‖a‖4 ≤ ‖‖a‖2‖ψ1 ≤ C ′γ2k. Similarly, it holds E1/2‖a‖4 ≤ C ′γ2j , which together
implies

|||EAtA>
t |||op ∨ |||EA>

t A
>
t |||op ≤ C ′′M2 ∨M1γ

2k+2j .

Now notice that At is not necessary an independent sequence, as At depends directly
on (Wt−k,Wt−j , δt), which might intersect with t′ = t+ |j−k|. However, if we take a set
I ⊂ [1, T ] such that any two t, t′ ∈ I satisfy |t′ − t| 6= |j − k| then the sequence (At)t∈I is
independent. We separate the whole interval [1, T ] into two such independent sets,

I1 ={t ∈ [1, T ] : dt/|j − k|e is odd },
I2 ={t ∈ [1, T ] : dt/|j − k|e is even }

=[1, T ] \ I1.
(A.8)

Indeed, if for t, t′ ∈ I1 then dt/|j−k|e and dt′/|j−k|e are either equal or differ in at least
two, so that in the first case we have |t− t′| < |j − k| and in the second |t− t′| > |j − k|.
Since both intervals have at most T elements, it holds by Theorem A.1 with probability
at least 1− e−u for both j,

|||
∑
t∈Ij

At − EAt|||op

≤ Cγj+k
(√

p−1
min(M1 ∨M2)T (logN + u) ∨ p−1

min
√
M1M2(logN + u) logT

)
,
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so summing up the two and dividing by T , we get the result.

Lemma A.5. Under the assumptions of Theorem 3.4, it holds for any u ≥ 1 with
probability at least 1− e−u

|||Pdiag{p}−1(Off(Sk,j)− EOff(Sk,j))diag{p}−1Q|||op

≤ Cγk+j
(√

M1 ∨M2(logN + u)

Tp2min

∨ √M1M2(logN + u) logT
Tp2min

)

where C = C(K) only depends on K.

Proof. It holds,

Pdiag{p}−1Off(Skj)diag{p}−1Q = T−1
T∑
t=1

Bt,

Bt = Pdiag{p}−1Off(Ak,jt,t )diag{p}−1Q.

By Lemma A.2 we have ‖|||Bt|||op‖ψ1 ≤ Cp−2
min
√
M1M2γ

k+j . Using decomposition Q =∑M2
j=1 ujuj with ‖uj‖ = 1 we get that

|||EBtB>
t |||op ≤|||Ediag{p}−1Off(Ak,jt,t )diag{p}−1Qdiag{p}−1Off(Ak,jt,t )diag{p}−1|||op

≤
M2∑
j=1

|||Ediag{p}−1Off(Ak,jt,t )diag{p}−1uju>
j diag{p}−1Off(Ak,jt,t )diag{p}−1|||op

≤
M2∑
j=1

sup
‖γ‖=1

E(γ>diag{p}−1Off(Ak,jt,t )diag{p}−1uj)2

Again, using the notation x = ΘkWt−k, y = ΘjWt−j and a = diag{γ}x, b = diag{u}y,
we have Off(Aj,kt,t ) = Off(xy>). Therefore, by Lemma A.3

E(γ>diag{p}−1Off(Ak,jt,t )diag{p}−1uj)2 =EEδ

∑
i 6=j

γi
δit
pi
xiyj

δjt
δj
uj

2

=EEδ

∑
i 6=j

δit
pi

δjt
δj
aibj

2

≤32p−2
minE‖a‖2‖b‖2 + 4E

(∑
i

ai

)2(∑
i

bi

)2

.

From the proof of Lemma A.5 we know that E‖a‖2‖b‖2 ≤ C ′γ2k+2j . Moreover, we have∑
i ai = γ>x and

∑
i bi = u>y. Thus, by (A.5) it holds E1/4‖γ>x‖4 ≤ ‖γ>x‖ψ2 ≤ C ′γj

and, similarly, E1/4‖u>y‖4 ≤ C ′γk. Putting those bounds together and applying Cauchy-
Schwarz inequality, we have

|||EBtB>
t |||op ≤ C ′′p−2

minM2γ
2k+2j .



C. Y.-H. Chen, W.K. Härdle, and Y. Klochkov 47

By analogy,
|||EBtB>

t |||op ∨ |||EB>
t Bt|||op ≤ C ′′p−2

minM1 ∨M2γ
2k+2j .

Applying the same sample splitting (A.8) we obtain the bound

|||
∑
t

At−EAt|||op ≤ Cγj+k
(√

p−2
min(M1 ∨M2)T (logN + u) ∨ p−2

min
√
M1M2(logN + u)

)
,

which divided by T provides the result.

Proof of Theorem 3.4. Set,

Sδ
k,j = diag{p}−1Diag(Sk,j)− diag{δ}−1Off(Sk,j)diag{δ}−1,

so that by the union of bounds in Lemmas A.5, A.4 for any u ≥ 1

|||P (Sδ
k,j − ESδ

k,j)Q|||op > Cγk+j

(√
M1 ∨M2(logN + u)

Tp2min

∨ √M1M2(logN + u)

Tp2min

)

holds with probability at least 1− e−u. Take a union of those bounds for every k, j with
u = uk,j = k + j + 1 + u′. The total probability of complementary event is at most

∑
k,j≥0

e−k−j−1−u = e−1−u

∑
k≥0

e−k

2

= e−u/(e− 1) < e−u.

On such event it holds

|||P (Σ̂− EΣ)Q|||op ≤
∑
k,j≥0

|||P (Sδ
k,j − ESδ

k,j)Q|||op

≤C
∑
k,j≥0

γk+j

(√
M1 ∨M2(logN + uk,j)

Tp2min

∨ √M1M2(logN + uk,j)

Tp2min

)

≤C ′

∑
k,j≥0

γk+j

(√(M1 ∨M2) logN
Tp2min

∨ √M1M2 logN
Tp2min

)

+ C

∑
k,j

(k + j)γk+j

(√(M1 ∨M2)u

Tp2min

∨ √M1M2u

Tp2min

)
,

which completes the proof due to the equalities

∑
k,j≥0

γk+j =

∑
k≥0

γk

2

=
1

(1− γ)2∑
k,j≥0

(k + j)γk+j =2
∑
k,j≥0

kγk+j =
2

(1− γ)
∑
k≥0

kγk =
2

(1− γ)3
.
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Proof of Theorem 3.5. Recall the definition,

Ak,jt,t′ = diag{δt}ΘkWt−kW
>
t′−j [Θ

j ]>diag{δt′}.

Then, it holds

ZtZ
>
t+1 =

∑
k,j≥0

diag{δt}ΘkWt−kW
>
t+1−j [Θ

j ]>diag{δt+1} =
∑
k,j≥0

Ak,jt,t+1,

and the decomposition takes place,

A∗ =
∑
k,j≥0

Sk,j , Sk,j =
1

T − 1

T−1∑
t=1

Ak,jt,t+1.

We first apply the Bernstein matrix inequality for each Sk,j separately. Observe that

Pdiag{p}−1Sk,jdiag{p}−1Q =
1

T − 1

T−1∑
t=1

Bt, Bt = Pdiag{p}−1Ak,jt,t+1diag{p}−1Q.

By Lemma A.2 each term satisfies

max
t
‖|||Bt|||op‖ψ1 ≤ C

√
M1M2γ

k+j .

Furthermore, let Q =
∑M2

j=1 uju>
j with unit vectors uj . Also, denoting x = ΘkWt−k and

y = ΘkWt+1−k it holds Ak,jt,t+1 = diag{δt}xy>diag{δt+1}. Then, using Lemma A.3 we
have for any unit γ ∈ RN ,

E(γ>diag{p}−1Ak,jt,t+1diag{p}−1uj)2

=EEδ

∑
i,j

γixi
δti
pi

δt+1,j

pj
yjuj

2

≤p−2
minE‖diag{γ}x‖2‖diag{u}y‖2 + E(γ>x)(u>y)2,

which due to the subgaussianity of x and y yields,

E‖diag{γ}x‖2‖diag{u}y‖2 ≤E1/2‖diag{γ}x‖4E1/2‖diag{u}y‖4

≤C ′γ2k+2j

E(γ>x)(u>y)2 ≤E1/2(γ>x)4E1/2(u>y)4

≤C ′γ2k+2j .

Therefore, we get that

|||EBtB>
t |||op = sup

‖γ‖=1

M2∑
j=1

E
(
γ>diag{p}−1Ak,jt,t+1diag{p}−1uj

)2
≤ C ′′p−2

minM2γ
2k+2j .
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Using similar derivations we can arrive at

σ2 = |||EBtB>
t |||op ∨ |||EB>

t Bt|||op ≤ C ′′p−2
min(M1 ∨M2)γ

2k+2j .

Now we separate the indices t = 1, . . . , T into four subsets, such that each corresponds
to a set of independent matrices Bt. Since each Bt is generated by Wt−k,Wt+1−j , δt, and
δt+1, we need to ensure that none of the pair of indices t, t′ from the same subset satisfies
|t− t′| = |k − j + 1| nor |t− t′| = 1. It can be satisfied by the following partition. First,
we split the indices into two subsets with odd and even indices, respectively, so that none
of the subsets contains two indices with |t− t′| = 1. Then, both of the subsets need to be
separated into two according to the scheme (A.8), so that the assertion |t−t′| = |k−j+1|
is avoided within each subset. Therefore, applying the Bernstein inequality, Theorem A.1,
to each sum separately and summing them up, we get that for any u ≥ 1 with probability
at least 1− e−u,

|||Pdiag{δ}−1(Sk,j − ESk,j)diag{δ}−1Q|||op

≤ C
(√

p−2
min(M1 ∨M2)T (logN + u)

∨√
M1M2(logN + u) logT

)
.

Similarly to the proof of Theorem 3.4, we take the union of those bounds for every i, j
with u = j + k + u′ and then the result follows.

B LASSO and missing observations
Suppose, we observe a signal y ∈ Rn of the form

y = Φb∗ + ε,

where Φ = [φ1, . . . ,φp] ∈ Rn×p is a dictionary of words φj ∈ Rn and b∗ is some sparse pa-
rameter with support Λ ⊂ {1, . . . , p}. We want to recover the exact sparse representation
by solving a quadratic program

1

2
‖y− Φb‖2 + γ‖b‖1 → min

b∈Rp
. (B.1)

Denote by RΛ the set of vectors with elements indexed by Λ, for b ∈ Rn let xΛ ∈ RΛ

be the result of taking only elements indexed by Λ. With some abuse of notation we will
associate every vector xΛ ∈ RΛ with a vector x from Rn that has same coefficients on Λ
and zeros elsewhere. Let ΦΛ = [φj ]j∈Λ be a subdictionary composed of words indexed
by Λ, and PΛ is the projector onto the corresponding subspace.

The following sufficient conditions for the global minimizer of (B.1) to be supported
on Λ are due to Tropp (2006), who uses the notion of exact recovery coefficient,

ERCΦ(Λ) = 1−max
j /∈Λ
‖Φ+

Λφj‖1,

The results are summarized in the next theorem.

Theorem B.1 (Tropp (2006)). Let b̃ be a solution to (B.1). Suppose that ‖Φ>ε‖∞ ≤
γERC(Λ). Then,



C. Y.-H. Chen, W.K. Härdle, and Y. Klochkov 50

• the support of b̃ is contained in Λ;

• the distance between b̃ and optimal (non-penalized) parameter satisfies,

‖b̃− b∗‖∞ ≤ ‖Φ+
Λε‖∞ + γ‖(ΦΛΦ

>
Λ)

−1‖1,∞,
‖ΦΛ(b̃− b∗)− PΛε‖2 ≤ γ‖(Φ+

Λ)
>‖2,∞;

In what follows, we want to extend this result for the possibility of using missing
observations model. Observe that the program (B.1) is equivalent to

1

2
b>[Φ>Φ]b− b>[Φ>y] + γ‖b‖1 → min

b∈Rp
,

so that the minimization procedure only depends on D = Φ>Φ and c = Φ>y. Suppose
that instead we have only the access to some estimators D̂ ≥ 0 and ĉ that are close
enough to the original matrix and vector, respectively, which may come e.g., from missing
observations model. Then, we can solve instead the following problem,

1

2
b>D̂b− b>ĉ + γ‖b‖1 → min

b∈Rp
. (B.2)

In what follows, we provide a slight extension of Tropp’s result towards missing observa-
tions, the proof mainly follows the same steps.

Below, for a matrix D and two sets of indices A,B, we denote the submatrix on those
indices as DA,B, and for a vector c, the corresponding subvector is cA.

Lemma B.2. Suppose that

‖D̂Λc,ΛD̂
−1
Λ,ΛĉΛ − ĉΛc‖∞ ≤ γ(1− ‖D̂Λc,ΛD̂

−1
Λ,Λ‖1,∞).

Then, the solution b̃ to (B.2) is supported on Λ.

Proof. Let b̃ be the solution to (B.2) with the restriction supp(b) ⊂ Λ. Since D̂ ≥ 0 this
is a convex problem and therefore the solution is unique and satisfies

D̂Λ,Λb̃− ĉΛ + γg = 0, g ∈ ∂‖b̃‖1,

where ∂f(b) denotes the subdifferential of a convex function f at a point b, in the case
of `1 norm we have ‖g‖∞ ≤ 1. Thus,

b̃ = D̂−1
Λ,ΛĉΛ − γD̂−1

Λ,Λg. (B.3)

Next, we want to check that b̃ is a global minimizer. To do so, let us compare the
objective function at a point b = b̃ + δej for arbitrary index j /∈ Λ. Since ‖b‖1 =
‖b̃‖1 + |δ|, we have

L(b̃)− L(b) = 1

2
b̃>D̂b̃− 1

2
b>
D̂b− ĉ>(b̃− b)− γ|δ|

=
δ2

2
e>
j D̂ej + |δ|γ − δe>

j D̂b̃ + δĉj

> |δ|γ − δe>
j D̂b̃ + δĉj ,
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where the latter comes from the fact that D̂ is positively definite. Applying the equality
(B.3) yields,

e>
j D̂b̃ = D̂j,ΛD̂

−1
Λ,ΛĉΛ − γD̂j,ΛD̂

−1
Λ,Λg,

therefore, taking into account ‖g‖∞ ≤ 1 we have,

L(b̃)− L(b) > |δ|
[
γ(1− ‖D̂Λc,ΛD̂

−1
Λ,Λ‖1,∞)−

∣∣D̂j,ΛD̂
−1
Λ,ΛĉΛ − ĉj

∣∣] ,
where the right-hand side is nonnegative by the condition of the lemma. Since j /∈ Λ is
arbitrary, b̃ is a global solution as well.

Remark B.1. It is not hard to see that in the exact case D̂ = Φ>Φ and ĉ = Φ>y
the condition of the lemma above turns into the condition ‖Φ>

ΛcPΛε‖∞ ≤ γERC(Λ) of
Theorem B.1.

Since we are particularly interested in applications to time series, the features matrix
Φ should in fact be random, thus stating a ERC-like condition onto it might result in
additional unnecessary technical difficulties. Instead, let us assume that there is some
other matrix D̄, potentially the expectation of Φ>Φ, such that it is close enough to D̂
(with some probability, but we are stating all the results deterministically in this section),
and the value that controls the exact recovery looks like

ERC(Λ; D̄) = 1− ‖D̄Λc,ΛD̄
−1
Λ,Λ‖1,∞.

Additionally, we set c̄ = D̄b∗ = D̄·,Λb∗
Λ — the vector that ĉ is intended to approximate.

Note that in this case we have D̄Λc,ΛD̄
−1
Λ,Λc̄Λ − c̄Λc = D̄Λc,Λb∗

Λ − c̄Λc = 0, thus the
conditions of Lemma B.2 hold for D̄, c̄ once ERC(Λ; D̄) and γ are nonnegative. In
what follows, we control the values appearing in the lemma for D̂ and ĉ through the
differences between c̄, D̄ and ĉ, D̂, respectively, thus allowing the exact recovery of the
sparsity pattern. Lemma 7.7

Corollary B.3. Let D̄ and c̄ be such that c̄ = D̄b∗. Assume that

‖ĉ− c̄‖∞ ≤ δc, ‖D̄−1
Λ,Λ(ĉΛ − c̄Λ)‖∞ ≤ δ′c, ‖D̄−1

Λ,Λ(D̂Λ,· − D̄Λ,·)‖∞,∞ ≤ δD,

‖(D̂·,Λ − D̄·,Λ)b∗
Λ‖∞ ≤ δ′D, ‖D̄−1

Λ,Λ(D̄Λ,Λ − D̂Λ,Λ)b∗
Λ‖∞ ≤ δ′′D.

Suppose, ERC(Λ) ≥ 3/4 and

3δc + 3δ′D ≤ γ, sδD ≤
1

16
,

where |Λ| = s. Then, the solution to (B.2) is supported on a subset of Λ and satisfies

b̃Λ = D̂−1
Λ,ΛĉΛ − γD̂−1

Λ,Λg, (B.4)

with some g ∈ Rs satisfying ‖gΛ‖∞ ≤ 1 and the max-norm error satisfies

‖b̃− b∗‖∞ ≤ 2(δ′′D + δ′c + γ‖D̄−1
Λ,Λ‖1,∞),
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while the `2-norm error satisfies

‖b̃− b∗‖ ≤ 2
√
s(δ′′D + δ′c + γσ−1

min).

If additionally 2(δ′′D+δ
′
c+γ‖D̄−1

Λ,Λ‖1,∞) ≤ minj∈Λ |b∗
j |, then we have the exact recovery,

so that the following equality takes place

b̃Λ = D̂−1
Λ,Λĉλ − γD̂−1

Λ,ΛsΛ,

where s = sign(b∗).

Proof. First, observe that DΛc,ΛD
−1
Λ,ΛcΛ − cΛc = Φ>

Λc(Φ
+
Λy − y) = Φ>

Λc(PΛ − I)ε. By
Lemma B.4 we have,

‖D̂Λc,ΛD̂
−1
Λ,Λ‖1,∞ ≤ ‖D̄Λc,ΛD̄

−1
Λ,Λ‖1,∞ + 4sδD ≤ 1/2,

while since c̄Λc = D̄Λc,Λb∗
Λ = D̄Λc,ΛD̄

−1
Λ,Λc̄Λ,

‖D̂Λc,ΛD̂
−1
Λ,ΛĉΛ − ĉΛc‖∞ ≤ ‖D̂Λc,ΛD̂

−1
Λ,ΛĉΛ − D̄Λc,ΛD̄

−1
Λ,Λc̄Λ‖∞ + ‖ĉΛc − c̄Λc‖∞

≤ ‖D̂Λc,ΛD̂
−1
Λ,Λ(ĉΛ − c̄Λ)‖∞ + ‖D̂Λc,Λ(D̂

−1
Λ,Λ − D̄

−1
Λ,Λ)c̄Λ‖∞

+ ‖(D̂Λc,Λ − D̄Λc,Λ)D̄
−1
Λ,Λc̄Λ‖∞ + δc

≤ ‖D̂Λc,ΛD̂
−1
Λ,Λ(ĉΛ − c̄Λ)‖∞ + ‖D̂Λc,Λ(D̂

−1
Λ,Λ − D̄

−1
Λ,Λ)c̄Λ‖∞ + δ′D + δc.

Here, ‖D̂Λc,ΛD̂
−1
Λ,Λ(ĉΛ− c̄Λ)‖∞ ≤ δc/2 due to ‖D̂Λc,ΛD̂

−1
Λ,Λ‖1,∞ ≤ 1/2. Moreover, we have

‖D̂Λc,Λ(D̂
−1
Λ,Λ − D̄

−1
Λ,Λ)c̄Λ‖∞ = ‖D̂Λc,ΛD̂

−1
Λ,Λ(D̄Λ,Λ − D̂Λ,Λ)D̄

−1
Λ,Λc̄Λ‖∞

≤ ‖D̂Λc,ΛD̂
−1
Λ,Λ‖1,∞‖(D̄Λ,Λ − D̂Λ,Λ)D̄

−1
Λ,Λc̄Λ‖∞

≤ δ′D/2.

Using the condition on γ, we get that

‖D̂Λc,ΛD̂
−1
Λ,ΛĉΛ − ĉΛc‖∞ ≤

3

2
(δ′D + δc) ≤

γ

2
≤ γ(1− ‖D̂Λc,ΛD̂

−1
Λ,Λ‖1,∞),

so that the conditions of Lemma B.2 are satisfied and (B.4) takes place. Therefore, we
can write

b̃Λ − b∗
Λ = D̂−1

Λ,ΛĉΛ − D̄−1
Λ,Λc̄Λ − γD̂−1

Λ,Λg,

= D̂−1
Λ,Λ(D̄Λ,Λ − D̂Λ,Λ)D̄

−1
Λ,Λc̄Λ + D̂−1

Λ,Λ(ĉΛ − c̄Λ)− γD̂−1
Λ,Λg

= D̂−1
Λ,Λ(D̄Λ,Λ − D̂Λ,Λ)b∗

Λ + D̂−1
Λ,Λ(ĉΛ − c̄Λ)− γD̂−1

Λ,Λg

= D̂−1
Λ,ΛD̄Λ,Λ

(
D̄−1

Λ,Λ(D̄Λ,Λ − D̂Λ,Λ)b∗
Λ + D̄−1

Λ,Λ(ĉΛ − c̄Λ)− γD̄−1
Λ,Λg

)
By Lemma B.4 we have ‖D̂−1

Λ,ΛD̄Λ,Λ‖∞7→∞ ≤ 2 so that

‖b̃Λ − b∗
Λ‖∞ ≤ 2‖D̄−1

Λ,Λ(D̄Λ,Λ − D̂Λ,Λ)b∗
Λ‖∞ + 2‖D̄−1

Λ,Λ(ĉΛ − c̄Λ)‖∞ + 2γ‖D̄−1
Λ,Λ‖1,∞ .
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Since we also have |||D̂−1
Λ,ΛD̄Λ,Λ|||op ≤ 2 and ‖g‖ ≤

√
s, it holds

‖b̃Λ − b∗
Λ‖ ≤ 2

√
s
(
‖D̄−1

Λ,Λ(D̄Λ,Λ − D̂Λ,Λ)b∗
Λ‖∞ + ‖D̄−1

Λ,Λ(ĉΛ − c̄Λ)‖∞ + γ|||D̄−1
Λ,Λ|||op

)
.

Before we proceed with the proof of this corollary, we present a technical lemma that
collects some trivial inequalities.

Lemma B.4. Set δc = ‖ĉ−c̄‖∞, δD = ‖(D̂Λc,Λ−D̄Λc,Λ)D̄
−1
Λ,Λ‖∞,∞. Suppose, ‖D̄ΛcΛD̄

−1
ΛΛ‖1,∞ ≤

1 and sδD ≤ 1/2. It holds,

• for any q ≥ 1

‖DΛ,ΛD̂
−1
Λ,Λ‖q→q ≤ 2, ‖D̂−1

Λ,ΛDΛ,Λ‖q→q ≤ 2 ;

•
‖D̂Λc,ΛD̂

−1
Λ,Λ −DΛc,ΛD

−1
Λ,Λ‖1,∞ ≤ 4sδD.

Proof. First, we have

‖DΛ,ΛD̂
−1
Λ,Λ‖q→q = ‖I + (DΛ,Λ − D̂Λ,Λ)D̂

−1
Λ,Λ‖q→q

≤ 1 + ‖(DΛ,Λ − D̂Λ,Λ)D
−1
Λ,Λ‖q→q‖DΛ,ΛD̂

−1
Λ,Λ‖q→q

≤ 1 + sδD‖DΛ,ΛD̂
−1
Λ,Λ‖q→q,

which solving the inequality and since sδD ≤ 1/2, turns into

‖DΛ,ΛD̂
−1
Λ,Λ‖q→q ≤

1

1− sδD
≤ 2.

Similarly, ‖D̂−1
Λ,ΛDΛ,Λ‖q→q ≤ 2.

Furthermore,

‖(D̂Λc,Λ −DΛc,Λ)D̂
−1
Λ,Λ‖1,∞ ≤ ‖(D̂Λc,Λ −DΛc,Λ)D

−1
Λ,Λ‖1,∞‖DΛ,ΛD̂

−1
Λ,Λ‖1→1

≤ 2sδD.

and

‖DΛc,Λ(D
−1
Λ,Λ − D̂

−1
Λ,Λ)‖1,∞ ≤‖DΛ,ΛcD−1

Λ,Λ‖1,∞‖D̂
−1
Λ,Λ(D̂Λ,Λ −DΛ,Λ)‖1→1

≤‖DΛ,ΛcD−1
Λ,Λ‖1,∞‖D̂

−1
Λ,ΛDΛ,Λ‖1→1‖D−1

Λ,Λ(D̂ −D)‖1→1

≤2‖DΛ,ΛcD−1
Λ,Λ‖1,∞sδD,

which together give us the second inequality.
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