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Abstract

Public interest, explosive returns, and diversification opportunities gave

stimulus to the adoption of traditional financial tools to crypto-currencies.

While the CRIX index offered the first scientifically-backed proxy to the crypto-

market (analogous to S&P 500), the introduction of Bitcoin futures by Cboe

became the milestone in the creation of the derivatives market for crypto-

currencies. Following the intuition of the "fear index" VIX for the American

stock market, the VCRIX volatility index was created to capture the investor

expectations about the crypto-currency ecosystem. VCRIX is built based on

CRIX and offers a forecast for the mean annualized volatility of the next 30

days, re-estimated daily. The model was back-tested for its forecasting power,

resulting in low MSE performance and further examined by the simulation

of VIX (resulting in a correlation of 78% between the actual VIX and VIX
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estimated with the VCRIX model). VCRIX provides forecasting functionality

and serves as a proxy for the investors’ expectations in the absence of the de-

veloped derivatives market. These features provide enhanced decision making

capacities for market monitoring, trading strategies, and potentially option

pricing.

Keywords: index construction, volatility, crypto-currency, VCRIX

JEL classification: C51, C52, C53, G10

1 Introduction

Since the inception of Bitcoin (BTC) in 2008 the crypto-currency (CC) ecosys-

tem has seen a market capitalization explosion that reached 795 billion USD at its

highest point on January 6, 2018 (CoinMarketCap (2018)). Apart from traditional

hedge-funds and institutional investors who are interested in diversification, the CC

ecosystem saw more than 400 crypto-funds launched during the past three years

(next.autonomous.com/cryptofundlist). The rapid growth of BTC price led to

persistent talks about "bubble-like" behavior and general skepticism of the market

(Hafner (2018), Cheung et al. (2015)), exposing the need for a deeper understanding

of the underlying processes driving the valuation of CC. Research in this field was

done by Hayes (2017) and White (2015). Traditional market instruments (indices,

ratings, investment portfolios) joined the ecosystem, including the early efforts such

as CRIX index by Trimborn and Härdle (2018) and exploration of the potential of

CC as an investment tool (Petukhina et al. (2018)).

Introduction of BTC futures by the CME and Chicago Board Options Exchange

(Cboe) on December 18, 2017 reinforced the positions of CC as a new asset class.

The emergence of the derivatives market signaled the need for solid pricing strategies

and a reliable (and stable) risk measure. The paper on pricing CC by (Chen et al.,

2019) addressed this issue by employing a Stochastic Volatility with a Correlated

Jumps model (Duffie et al. (2000)) and using insights on implied volatility dynamics

by Fengler et al. (2003) in order to match non-stationarity and local heterogeneity

phenomena of CRIX returns.

Industry demand and research revealed the necessity to explore the behavior
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of the CC volatility further, to provide the final ingredient - a proxy for implied

volatility. In traditional markets, implied volatility is measured by volatility indices

which can be considered a traditional financial tool. At the end of the 20th century,

financial markets of the USA and Europe aimed to capture the global measure of

volatility in the respective market, which led to the introduction of VIX or VDAX.

The index providers settled on the model most appropriate for the specifics of the

behavior of the corresponding derivative. Given the absence of a developed deriva-

tives market, we have to infer the characteristics of the implied volatility from the

CC market behavior. The specifics of the latter (high volatility and low liquidity)

triggered the development of new investment methods, see Trimborn et al. (2019),

further justifying the need for a volatility index, that would capture the unique

specifics of CC as an asset class and provide a reliable indicator for the continuously

unstable market.

Our research aims to create a VCRIX - a volatility index especially designed for

markets akin to the CC ecosystem, see Subsection 3.1. The goal of the proposed

VCRIX is the estimation of the risk measurement for the CRIX components and

delivery of market status information, analogous to implied volatility indices that

capture investors expectations.

Section 2 offers an overview of the used data sets for both traditional and CC

markets. Section 3 provides a detailed explanation of the methodology used, includ-

ing a brief revision of CRIX which was selected as an equivalent for the S&P 500,

a note on the existing implied volatility indices and VIX methodology in particular

(Subsection 3.2). Subsection 3.3 contains the details on the implied volatility proxy

estimation, followed by Subsection 3.4 that clarifies VCRIX model selection and

back-testing. Methodological results, details of the VIX simulation conducted to

test the selected methodology and final time series are showcased in Section 4. Ap-

plications of the proposed volatility index are further explored in Section 5, which

contains an example of the trading implementation of VCRIX. Additional obser-

vations and a summary of the conducted research are provided in Sections 6 and

7.
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2 Data

This research employs CRIX values and traditional financial data, namely S&P

500 index values and VIX, which is the volatility index of Cboe based on the S&P

500. The daily historical closing values of CRIX for the period from Sep 2014 - the

emergence of CRIX - to December 2018 (1583 observations, including weekends)

were sourced from thecrix.de and converted to log-returns.

The daily historical closing prices of the S&P 500 and VIX from 2000 to the

end of 2018 (4780 observations) were sourced from finance.yahoo.com. It must

be pointed out that SPY (ETF on S&P 500 index) has closer relations to VIX by

design, as clarified in Subsection 3.3, however, the log-returns of S&P 500 and SPY

reveal no difference and thus could be interchangeable for the conducted analysis.

The S&P 500 time series were converted to log-returns, VIX values remained as is.

3 Methodology

Implied volatility became a subject of academic research with the development of

the derivatives market in the last quarter of the 20th century. The Black and Scholes

(1976) model yields implied volatility as a volatility measure because, by definition,

the implied volatility is the future volatility expected by the market. However, the

market crash of October 1987 that bent the volatility surface of index options into

a skewed "volatility smile", motivated an alternative solution that would provide a

more accurate fit to market conditions. Bakshi et al. (1997) provide an extensive

overview of the further developments in this field, including the stochastic interest

rate option models of Merton et al. (1973), the jump - diffusion/pure jump models

of Bates (1991), the stochastic volatility models of Heston (1993) and others. While

acknowledging the diversity of options pricing models, authors agree on the necessity

of matching the selection of one to the goals at hand.

The goal of VCRIX is to capture the expectations of the CC market, much

like VIX is offering an uncertainty measurement with regard to the American stock

prices. In simplified terms, VIX "predicts" the mean annualized volatility of the

S&P 500 for the next 30 days in the future, that is in turn derived from the implied

volatility extracted from the S&P 500 ETF swap prices. Absence of a CC analog
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calls for an alternative solution for VCRIX. In the absence of intrinsic predictive

power, VCRIX would also have to be forward-looking, providing a valid estimation

of the CC market volatility in the future. The selection of the new methodology

thus includes two tasks: estimation of the best implied volatility proxy and further

search for the model to exhibit the most consistent predictive performance.

3.1 CRyptocurrency IndeX

S&P 500 and DAX serve as indicators of the current state of American and

German markets by aggregating the weighted performance of the most significant

listed companies. CRIX, developed by Trimborn and Härdle (2018), plays a similar

role for the CC market, providing a statistically-backed market measure, which

distinguishes it from other CC indices like Crypto20, CCi30, WorldCoinIndex. At

the core of CRIX lies the idea that a fixed number of constituents (as in case of

S&P 500) may be a good approach for relatively stable markets, however, with the

ever-growing number of CC, practical implementation would demand a filter that

keeps out the noise, while preserving the information about the market dynamics.

CRIX employs Akaike Information Criterion (AIC, Akaike (1987)) that determine

the number of constituents quarterly according to the explanatory power each CC

has over the market movements. CRIX was used as a proxy to the CC market

before in research papers by Elendner et al. (2018), Klein et al. (2018), Mihoci et al.

(2019), and was adopted as a benchmark by commercial projects like Smarter Than

Crypto, Crypto20, F5 Crypto Index, and also used by the European Central Bank

as a market indicator in the report dedicated to understanding the "crypto-asset

phenomenon" (Chimienti et al. (2019)). These use cases confirm the applicability

of CRIX as an appropriate basis for VCRIX.
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Figure 1: CRIX from Sep 2014 to Aug 2019

CRIXcode

Consequently, the index rules will have a significant impact on the behavior

of VCRIX. The initial paper by Härdle and Trimborn (2015) defines CRIX as a

Laspeyres index, taking the value of a k asset basket and comparing it against the

base period, as indicated in Equation (1):

CRIXt(k) =

∑k
i=1 PitQi,t−l

Divisor(k)tl−
(1)

with Pit the price of asset i at time t and Qi,t−l
the quantity of asset i at time

t−l (the last time point when Qi,t−l
was updated). Monthly re-balancing accounts

for the changes in the market capitalization of a CC and the number of index

components, the Divisor ensures that this procedure does not affect the value of

CRIX, rather only price changes in its constituents shall be of effect.

3.2 Implied volatility indices

Consideration of the existing volatility indices would constitute a logical step to-

wards the selection of the appropriate solution. As observed by Siriopoulos and Fas-

sas (2009) recent decades saw the rise of the model-free indices (based on model-free

implied volatility (MFIV)) that were made possible by highly liquid options mar-

kets and readily available model-free implied variances (France, Germany, Japan,

Switzerland, the U.K., and the U.S). Major alternatives to the "model-free" ap-
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proaches are the Black-Scholes (BS) implied volatility and statistical models such as

GARCH (Bollerslev (1986)). While MFIV is extracted from the corresponding set of

current option prices without the need to assume any specific pricing model, this ap-

proach comes along with a range of methodological issues. For example, Biktimirov

and Wang (2017) tested both approaches on the subject of forecasting accuracy, and

BS implied volatility came out superior both in terms of in-sample "encompassing"

models that include several forecasts in the same combined specification and also in

out-of-sample forecasting. We consider model-free and model-based methodologies

given the available data and above mentioned empirical results.

Introduction of XBT-Cboe BTC Futures by the Cboe in 2017 became the first

step in the establishment of the CC derivatives market, thus approaching the possi-

bility of the model-free implied volatility index construction. However BTC futures

were not considered for this research due to several reasons: officially listed (Cboe

and CME Group) futures do not provide insight into implied volatility of the under-

lying like option prices do by design, existing data for options is so far only available

for BTC from commercial providers like Deribit (2019), not for the broader CC mar-

ket. Most importantly, the goal of the VCRIX is to grasp the investors’ expectations

of the whole CC market. As Figure 2 shows, the weight of BTC in CRIX has been

remaining below 0.6 most of the time, and thus BTC and its options cannot be

considered sufficiently representative.
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Figure 2: Weight of BTC as a constituent of the CRIX over time

Given the outlined limitations of the CC derivatives market, we settle for a

model-based index, that is capable of capturing the predictive power of a traditional

volatility index. The VIX by Cboe for the US market was selected as a guidance

and benchmark. VIX is acknowledged by the established CC players as a standard

for the implied volatility modeling: in 2019 one of the biggest CC derivative trading

platforms Ledger X - a US company regulated by CFTC (United States Commodity

Futures Trading Commission) - introduced an implied volatility index for BTC called

LXVX (Cointelegraph (2019)), announcing its inheritance to VIX (LXVX (2019)).

The current VIX methodology was developed based on the pioneering research

of Whaley (1993), Neuberger (1994), Madan et al. (1998), Demeterfi et al. (1999)

and Britten-Jones and Neuberger (2000) among others. It estimates the implied

volatility of option prices on the S&P 500 by taking strikes and option prices as

inputs. With exchange-traded S&P 500 variance swap rate as its underlying, VIX

became a proxy for market volatility (Cboe (2009)):

σ2 =
2

T

∑
i

∆Ki

K2
i

eRTQ(Ki)−
1

T

[
F

K0

− 1

]2
(2)

V IX = σ ∗ 100, (3)

where T is time to expiration, F is a forward index level from index option
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prices, K0 is a first strike price below F, Ki is a strike price of the ith OTM option

(on average the range of i is between 1 and 500, reflecting the composition of the

S&P 500) , Q(Ki) is the midpoint of the bid-ask spread for each option with strike

Ki, ∆Ki is an interval between strike prices (half the difference between the strike

on either side of Ki) and R the risk-free interest rate to expiration.

3.3 Implied volatility proxy

VCRIX is designed to measure and proxy the lacking implied volatility in the

CC market, hence it has to be based on a model, capable of capturing the predic-

tive power of a traditional implied volatility index like VIX. In order to select an

appropriate proxy for VIX, one has to check the dynamics of the underlying, in

particular the annualized historical rolling volatility of SPY log-returns over 30 days

(VIX measures how much the market thinks the S&P 500 Index will fluctuate in

the 30 days from the time of each tick, according to Cboe (2009)). Equation (4)

displays the rolling volatility method (rt being a daily return of an asset on day t

and µ̂ an estimated mean daily return over the 30 day period). In case of historical

volatility, the σ would define the volatility of the last day of the month, while for

forward volatility the same calculation will account for the volatility of the first day

of the month. It should be pointed out that we are not using the notion of forward

volatility as in Taleb (1997), namely, how implied volatility differs for related fi-

nancial instruments with different maturities. In this case, the "forward" part only

bears the idea of adjusting the time span of the traditional rolling volatility measure

to be forward-looking (results are displayed in Figure 4).

σt =

√√√√ 1

30

t−1∑
i=t−30

(ri − µ̂)2 ∗
√

252 ∗ 100 (4)

3.4 Model selection and back-testing

The dataset of CRIX log-returns was transformed into annualized daily volatility

based on 30-day rolling windows (CC are traded everyday, unlike traditional secu-

rities). We considered both univariate and multivariate models, however, the latter

did not prove superior in approximating the selected time series and for the sake of
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brevity this case will not be described in this paper. Thus the choice was made in

favor of univariate models. 273 values of the dataset were set aside for back-testing,

which corresponds to 20% of the dataset. We considered the following models that

describe the volatility dynamics:

1. GARCH family (tested by Hansen and Lunde (2005), French et al. (1987),

Antoniou and Holmes (1995)

• GJR

• EGARCH

• EWMA

2. Heterogeneous Auto-Regressive (HAR) model (introduced by Corsi (2009) and

tested by Chiriac and Voev (2011), Busch et al. (2011), Patton and Sheppard

(2015) )

3. neural network-based Long short-term memory cell (LSTM) models (Hochre-

iter and Schmidhuber (1997)

The latter represents a comparatively new approach to volatility modeling. The

LSTM architecture belongs to the Recurrent Neural Networks family and has been

extensively used (together with Gated Recurrent Units) for the modeling of se-

quential data like text or time series. Its complex architecture provides interesting

forecasting opportunities that have been explored and proven useful by Kong et al.

(2017), Pichl and Kaizoji (2017), Kim and Won (2018), Luo et al. (2018). Figure

3 provides a visual comparison of the 3 best-performing models: HAR (specified in

Equations ((9)-(11)), EWMA model (specified in Equation (5), where σ2
i,t+1 is the

variance of CRIX log-returns (ri,t) in the next period and the decay factor λ=0.96)

and LSTM model (15 epochs, 3 layers of 365 neurons, specified in Equation (6) in its

simplified form, where θ̂ signifies the complex set of parameters that are optimized

during the training of the neural network).

σ2
i,t+1 = λσ2

i,t + (1− λ)r2i,t (5)

σ2
i,t+1 = fθ̂(σ

2
i,t) (6)
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As can be observed from Figure 3, all three models learn to anticipate the be-

haviour of the 30-day rolling volatility of CRIX quite well, however, the similar

peaks from August to October expose their limited ability to timely reflect a sudden

splash in the CC market. LSTM proves to be particularly vulnerable in its predictive

capacity. This could be further remedied by the more complex architecture and in-

creased training time, making the modeling more computationally costly. Given the

non-substantial role of LSTM in the further implementation of VCRIX and the fact

that the detailed explanation of the LSTM methodology with regards to financial

forecasting has been provided previously in papers by Chen et al. (2015), Heaton

et al. (2017), Fischer and Krauss (2018), we omit the detailed explanation of the

LSTM application.

Figure 3: Difference between the true (30-day rolling volatility of CRIX) and the

HAR, EWMA and LSTM models

Metric HAR EWMA LSTM

Correlation 0.99 0.99 0.97

MSE 0.03 0.06 0.16

MAE 0.11 0.19 0.30

Mincer Zarnowitz R-adj 0.98 0.98 0.94

Table 1: Evaluation of the predicted values of 30-day annualized rolling volatility of

log-returns on CRIX (daily re-estimation)

11



4 Simulation and assessment

During the model back-testing, the HAR and the EWMA models performed

very closely. EWMA consistently underestimated the volatility but registered the

up and down shifts faster. The LSTM frequently overestimated the volatility, which

is coherent with the higher values that are picked up by VIX in comparison to the

rolling volatility as showcased in Figure 3.

According to the results in Table 1, the HAR model was selected as the best

predictive performer with correlation 0.99, MSE 0.03, and MAE 0.11. It should

be specified that the original HAR model, Corsi (2009), is built on the premise

that traders conduct their activities according to the strategies based on different

frequencies (high-frequency trading, daily traders, weekly, monthly), which in turn

affects the overall market volatility at certain points in time. As the CC market

is young and presumably still dominated by sporadic non-expert traders (due to

the pseudo-anonymity of most CC, justification of this assumptions remains chal-

lenging), presenting an informed judgment at this stage is rendered impossible by

the implicit anonymity of most CC and its users. The recent analysis for potential

herding behavior by Bouri et al. (2018) and Gama Silva et al. (2019) touches on this

topic, without providing actual analysis of the traders’ practices.

In the absence of data on CC traders’ behavior, we have made the assumption

that the traditional practices could potentially be applied for the CC case. This led

us to make two adjustments to the original HAR model. 30-day historical rolling

volatility (annualized, as shown in Equation (7) was used instead of realized volatility

(it was selected as a most representative to proxy VIX).

RV d
t = σt =

√√√√ 1

30

t−1∑
i=t−30

(ri − µ̂)2 ∗
√

365 ∗ 100 (7)

Similarly to Equation (4), rt is a daily return of CRIX on day t and µ̂ an estimated

mean daily return over the past 30 days (we keep the span to 30 days as CC are

traded without the weekends), meanwhile, the number of days was changed to 365

for the same reason. Further on we will refer to σ2
t as daily realized volatility RV d

t

to maintain the usual HAR notation.

The change of 5 (weekly) and 21 (monthly) trading frequencies to 7 and 30

days respectively is reflected in the calculation of weekly and monthly volatilities
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(Equations (8) and (9)).

RV w
t =

1

7
(RV d

t +RV d
t−1 + ...+RV d

t−6) (8)

RV m
t =

1

30
(RV d

t +RV d
t−1 + ...+RV d

t−29) (9)

The final version of VCRIX is forward-looking and offers a forecast of the mean

annualized daily volatility for the next 30 days. The index is re-estimated daily

based on the realized daily volatility. The Equations (10) and (11) offer the ac-

tual methodology where the forecast - RV d
t+1 - is estimated with a regression given

the daily RV d
t (initially estimated with 30-day rolling window), weekly RV w

t and

monthly RV m
t volatilities that are recalculated daily.

RV d
t+1 = α + βdRV d

t + βwRV w
t + βmRV m

t + ωt+1 (10)

V CRIXt =
RV d

t+1

Divisor
(11)

The initial value of VCRIX is set to 1000, following the convention set by CRIX.

A Divisor is introduced in order to account for the jumps that might occur due

to the change in the number of constituents every month. The Divisor is set to a

certain value on the first day to transform the estimated volatility to 1000 points of

VCRIX. Divisor remains the same over the month. Every month the constituents

can change. In this case, the value of VCRIX from the last day of the month will

be transferred to the first day of the next month, after that the Divisor will be

reevaluated in order to reflect the value for transformation.

In order to provide an additional justification for the selected methodology, a

VIX simulation was performed. It comprised the application of the selected HAR

model to log-returns of the S&P 500 instead of CRIX.

After establishing the CRIX as the underlying for VCRIX and selecting VIX as a

benchmark for the evaluation of the CC volatility index, we proceeded with selection

of the appropriate implied volatility proxy in the absence of CC derivatives market.

The time series (Figure 4) analysis showed the correlation of 0.89 between VIX and

historical volatility, while the correlation between VIX and forward-looking volatility

was 0.78. Given the scale of the differences, it is obvious that both historical and

forward-looking volatilities fail to grasp the exact variation of VIX. This gap grows in

crisis periods (as it can be seen for 2009) but shrinks back during market cool-down.
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Figure 4: Difference between VIX and historical and forward-looking volatilities (30

calendar days)

Further analysis with linear regression showed that historical volatility could

explain 80% of the VIX variance. Thus the historical 30-day rolling volatility of

S&P 500 log-returns was selected as the best proxy for VIX. Following this decision

and the goal of granting VCRIX predictive capabilities, the time series of 30-day

historical rolling volatility of CRIX log-returns was constructed and used as a true

value in back-testing of several predictive models that were estimating the annualized

volatility one day ahead. According to the evaluation metrics, as shown in Table

1, the HAR model was selected as a basis for VCRIX. Further on this model was

tested in the simulation of actual VIX using the S&P 500 log-returns instead of

CRIX log-returns. The resulting pair of time series showcased the correlation of

89%, thus justifying the model selection.

Days of lag Correlation MDA

Day-on-day 0.89 51%

21 days 0.89 64%

42 days 0.87 73%

Table 2: Evaluation of the simulation of VIX using VCRIX methodology, comparison

of true and simulated values

The simulation of VIX exhibited correlation of 89% and a Mean Directional
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Accuracy (MDA) of 51% rising to 64% in case lag of 21 days is considered, as

indicated in Table 2. Figure 5 and Figure 6 showcase the difference between the

estimated values and actual VIX. These results led us to believe that the chosen

methodology does indeed provide a solid estimation of the implied volatility in the

absence of the derivatives market.

Figure 7 displays the time series of VCRIX from Jan 2015 to Aug 2019 and the

smoothed conditional means (LOESS) red line with a span of 0.5, it is added to offer

a long term review on volatility.

Figure 5: VIX estimated with HAR model on scaled daily volatility of SPY log-

returns, VIX estimated with HAR with 21 days lag and true VIX values from 2000

to 2019

Figure 6: Difference between true and estimated VIX, values from 2000 to 2019. One

can observe that the proposed model lags in catching the big spikes but performs

well when market volatility is lower.

15



Figure 7: VCRIX and LOESS-smoothed mean (span=0.5)

VCRIX

5 Trading implementation

As the CC market develops and new financial instruments based on CC appear,

VCRIX can become increasingly employed in trading strategies. As one of the

examples, an inverse volatility ETF is a financial product that allows investors to

gain exposure to volatility, and thus hedge against portfolio risk, without having to

buy options.

Regardless of the absence of the above mentioned derivative instruments, volatility-

based trading strategies may still be employed and tested. Conventional short-term

reversal strategies have been explored and perfected by scholars and industry prac-

titioners (Lehmann (1990), Jegadeesh (1990), Blitz et al. (2013)) over the years.

We have employed a number of modified reverse volatility trading strategies with

an example provided below. As an input, we employ VCRIX for daily volatility

estimation and LOESS of VCRIX (as a variation of MA, different spans represented

in Figure 8) as a benchmark.
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Figure 8: VCRIX and the LOESS-smoothed mean of VCRIX, with span=0.05,

span=0.1, span=0.2, span=0.25

VCRIXloess

LOESS is a non-parametric operator that yields a smooth function by locally

minimizing the variance of the residuals or prediction error (Cleveland (1979)). For

each value of x, the value of f(x) is estimated by using its neighboring sampled

(known) values (quite similarly to a knn algorithm). In the case of LOESS, the

tunable parameter is the span that will determine the smoothness of the resulting

estimate, with a broader span resulting in higher bias and narrower span offering

higher variance.

Figure 9 provides an illustration of a trading strategy that is based on long-cash

signals generated by the relationships between the daily VCRIX value and its two

LOESS curves (span=0.25 and span=0.20). In further notation we indicate the

span with the subscripts, as in Figure 9, constructed with the use of LOESS0.25 and

LOESS0.20.

17

https://github.com/QuantLet/CRIX/tree/master/CRIXcode


Figure 9: Cumulative returns of the trading strategy with LOESS0.25 and

LOESS0.20 versus the cumulative returns on CRIX

VCRIXtrading

The strategy gets its signals from the LOESS-smoothed mean of VCRIX. The

trading strategy, Algorithm 1, dictates to go long in cash when the volatility mea-

sured by VCRIX is high and go long in an ETF on CRIX when the volatility mea-

sured by VCRIX is low. We compare if the volatility is high or low by the LOESS-

smoothed mean of VCRIX. A LOESS with a broad span gives a long term smoothed

average for VCRIX, whereas a LOESS with smaller span gives the short term aver-

age. In particular we go Long in a CRIX ETF when the short term volatility is low

compared to the long term one, LOESSi ≥ LOESSj, and vice versa go Long in

cash when the short term volatility is comparably high, LOESSi < LOESSj, see

Algorithm 1.
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Algorithm 1 : Trading strategy
Set: i, j ∈ {0.05, 0.1, 0.15, 0.2, 0.25}, i > j

Input: LOESSi, LOESSj, CRIX ETF

Output: Investment product y

1: if LOESSi ≥ LOESSj then

2: y = CRIX ETF

3: else LOESSi < LOESSj

4: y = Cash

5: end if

By construction the choice of the span of LOESS is critical for the performance

of the trading strategy. We construct the LOESS for the spans 0.05, 0.1, 0.15, 0.2,

0.25, and compare the results with the following measures:

1. cumul.returns: the aggregate gain over the observed time period up to the

final day of trading.

2. mean.returns: the mean of the daily trading strategy returns.

3. takeover.days: the percentage of days when the cumul.returns are higher for

the trading strategy than for CRIX.

4. Sharpe.ratio: compares the mean of the returns of the trading strategy over

the standard deviation of the returns of the trading strategy, reflecting extra

return per unit of increase in risk.

The results are presented in Table 3. The rows are named by the two LOESS-

smoothed means involved in the trading strategy. CRIX returns are offered for

reference. The left LOESS measures the long term VCRIX volatility and the right

one the shorter-term one, in Algorithm 1 indicated as i and j respectively.

We observe the Sharpe ratio is best when we measure the long term volatility

over a longer window, meaning for higher values of LOESS-smoothed means, e.g.,

i = 0.20 and i = 0.25. We found the best results, in terms of the Sharpe ratio, for

the pair of LOESS spans 0.25 and 0.15, as well as 0.25 and 0.20. The second pair

performs best, followed by spans 0.25 and 0.15 in terms of cumulative returns as well

as takeover days (these trading strategies are more often above the one for a CRIX
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cumul.returns mean.returns takeover.days Sharpe.ratio

CRIX 3.00% 0.19% NA 0.0484

LOESS0.10 ∼ LOESS0.05 0.83% 0.05% 27.24% 0.0202

LOESS0.15 ∼ LOESS0.05 2.18% 0.14% 45.64% 0.0583

LOESS0.20 ∼ LOESS0.05 2.36% 0.15% 45.89% 0.0661

LOESS0.25 ∼ LOESS0.05 2.96% 0.19% 55.05% 0.0810

LOESS0.15 ∼ LOESS0.10 3.43% 0.22% 75.52% 0.0948

LOESS0.20 ∼ LOESS0.10 2.95% 0.19% 63.97% 0.0867

LOESS0.25 ∼ LOESS0.10 3.41% 0.21% 66.92% 0.1009

LOESS0.20 ∼ LOESS0.15 3.51% 0.22% 57.88% 0.1013

LOESS0.25 ∼ LOESS0.15 3.58% 0.23% 49.15% 0.1039

LOESS0.25 ∼ LOESS0.20 3.76% 0.24% 68.05% 0.1029

Table 3: Comparison of trading strategies with several LOESS-smoothed means of

VCRIX.

ETF). The trading strategy, see Algorithm 1, works in this case in the following

way: We go long in a CRIX ETF when LOESS0.25 > LOESS0.10 and long in cash

when LOESS0.25 < LOESS0.10. Similarly, for 0.25 and 0.20, the trading strategy

receives signals if: We go long in a CRIX ETF when LOESS0.25 > LOESS0.20 and

long in cash when LOESS0.25 < LOESS0.20.

As it can be observed from the graph, Figure 9, and Table 3, for 67% of the days

the strategy outperforms the benchmark. As an additional benefit for the portfolio

balancing, the variation of the trading strategy is lower than one of CRIX returns.

Regardless of the downturn that takes place during the 2017 boom, the results

after the cool-down remain superior to the plain CRIX returns, which suggests the

viability of VCRIX as a trading tool.

6 Discussion

From the beginning, one of the biggest complexities in crypto-trading came from

the absence of clear pricing strategies: what is BTC worth? How do we estimate

the value of new coins? Are coins under- or over-appreciated? (Yermack (2015)).
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While mechanics and potential implications of CC in financial economics are being

explored Härdle et al. (2019), there is still no established consensus over the evalu-

ation methods. Nowadays agents are often left with nothing but the information on

the overall market "feeling" about the CC, which is communicated by the rise and

fall of the price, in other words, It is volatility.

VCRIX captures the volatility jumps that correspond to the development of the

CC-ecosystem and can tell a story of the CC adoption (Figure 11). We observe spikes

of interest in BTC in 2015, winter and summer of 2016 when BTC was slowly making

its way to the attention of the general public. The large scale swings in price would

not constitute a significant shock in absolute values, but when something that was

still considered a digital maverick rose in value from roughly 400 USD to 1000 USD

within a year (Business Insider, 2016 ("Bitcoin is still storming higher")), investors

noticed. VCRIX further captures the beginning of the first massive growth wave

(also captured well by the CRIX in Figure 10) and development of altcoins (ETH,

LTH, and others).

Figure 10: CRIX and VCRIX

2017 became the year of massive volatility (VCRIX showcases the values that can

be interpreted as daily volatility of 140%). These levels of uncertainty were largely

caused by the major legislative shifts that were happening in countries-juggernauts

of CC movement: China, Korea, Japan, and the USA. Additionally, BTC was go-
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ing through the heated debates on the SegWit (Segregated Witness) fork that was

supposed to improve the speed and cost of BTC transactions. The fork was imple-

mented in August, 2017 and led to the emergence of BTC Cash due to a certain

number of big miners disagreeing with the implementation. These volatility spikes

yet proved to be minor in comparison with the major market meltdown that hap-

pened at the beginning of 2018, when prices of most currencies on average suffered

an 80% drop (CoinMarketCap (2018)). 2018 was considered to be a stabilization pe-

riod when governments and financial corporations were getting on-board, however,

the end of 2018 saw another volatility spike, majorly driven by the "holiday race"

and uncertainty driven by "Constantinople fork" that is expected from Ethereum

at the beginning of 2019.

Figure 11: VCRIX interpretation

Pattern analysis of the VCRIX graph allows to distinguish a pattern that could

be allegedly interpreted as a signal to large volatility spikes. Volatility clusters take

the "triple spike" shape with the first spike indicating the upcoming large wave - this

structure can be observed throughout 2016 and 2017, with the biggest wave at the

end of 2018, taking a form of a tall "triple spike". This structure fades throughout

2018 during the settle-down, however, one may expect that the spike at the beginning

of 2019 may be interpreted as the signal to a large wave of volatility coming during

summer and autumn of 2019 (this prognosis was made during the writing of the

paper in Spring of 2019). As of August 2019, this forecast proved correct (Figure

12), although the interpretation requires further economic investigation and cannot
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be used as a forecasting tool without additional scrutiny.

Figure 12: VCRIX and realization of the forecasted volatility spike

The search for an implied volatility proxy performed in Section 3.3 showed that

VIX tends to overestimate the realized volatility. As it would seem, there is some

information about market expectations that is not explained by the historical volatil-

ity. The excessive uncertainty would be expected to have strong relationships with

returns that happen at the point of the highest delta. Given the design of VIX, one

may expect it to contain additional signal about the emotional status of the mar-

ket that tends to overreact in times of uncertainty. Interestingly enough, the LSTM

predictive model also tends to overestimate the volatility. The neural network-based

models are known for the capability to pick up underlying trends that are omitted

in traditional financial models, however, the "black box" nature of models render

clear interpretation complicated.

7 Conclusion

We have set the goal of capturing the expectations on the CC market (repre-

sented by CRIX) through the construction of an implied volatility proxy in the

absence of the derivatives for the majority of CC. The "fear index" of the American

stock market - VIX - was selected as guidance and benchmark. Analysis of the
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relationships between VIX and volatility of the underlying assets provided an in-

sight for the selection of a mentioned proxy - the historical rolling volatility of SPY.

Following this finding, the rolling volatility of log-returns of CRIX was calculated.

The HAR model proved to be best for the estimation of the daily volatility of CRIX

log-returns, offering the MSE of 0.03 and a 99% correlation with the 30 day-rolling

volatility of CRIX log-returns. This model was further tested in a simulation, where

it was used to estimate VIX. An impressive 89% correlation was achieved, thus prov-

ing the fitness of the selected methodology to the announced goal. The established

VCRIX provides a daily forecast for the mean annualized volatility of the next 30

days. Authors intend to conduct further research to capture the observed exces-

sive volatility that is captured by derivative-based indices like VIX and presumably

stems from the behavioral component of option pricing.
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