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Abstract

The paper proposes an estimator to make inference on key features of hetero-
geneous treatment effects sorted by impact groups (GATES) for non-randomised
experiments. Observational studies are standard in policy evaluation from labour
markets, educational surveys and other empirical studies. To control for a potential
selection-bias we implement a doubly-robust estimator in the first stage. Keeping
the flexibility to use any machine learning method to learn the conditional mean
functions as well as the propensity score we also use machine learning methods to
learn a function for the conditional average treatment effect. The group average
treatment effect is then estimated via a parametric linear model to provide p-values
and confidence intervals. The result is a best linear predictor for effect heterogeneity
based on impact groups. Cross-splitting and averaging for each observation is a
further extension to avoid biases introduced through sample splitting. The advantage
of the proposed method is a robust estimation of heterogeneous group treatment
effects under mild assumptions, which is comparable with other models and thus
keeps its flexibility in the choice of machine learning methods. At the same time, its
ability to deliver interpretable results is ensured.
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1 Introduction

When evaluating a causal effect of some policy, marketing action or another treatment
indicator, it might not be sufficient to only report the average treatment effect (ATE). The
estimation of heterogeneous effects, e.g. the conditional (on covariates) average treatment
effect (CATE), provides further insight into causal mechanisms and helps researchers and
practitioners to actively adjust the treatment assignment towards an efficient allocation.
The more information in terms of characteristics i.e. covariates we are provided with,
the better can heterogeneity be observed. If we have little deterministic information it
might be that heterogeneity effects are overlooked. The trade-off here is that the more
covariates datasets have, the more complex they get. This is why parametric models are
often insufficient when applied on high-dimensional, non-linear datasets (Chernozhukov,
Chetverikov, Demirer, Duflo, Hansen, Newey & Robins, 2018). Therefore, recent methods
for treatment effect estimation use machine learning models that have shown to be superior
in high-dimensional prediction problems (Hastie, Tibshirani & Friedman, 2009). The
idea is to learn nuisance functions and regularize the parameter space while making as
little assumptions as possible. This is especially helpful when the data does not come
from randomised experiments where treatment is randomly assigned to the individuals.
In observational studies, self-selection into treatment can arise which introduces a bias
that has to be corrected for (i.e. self-selection bias) (Heckman, Ichimura, Smith & Todd,
1998). For the ATE one would use the nuisance parameter to orthogonalize the effect
that covariates have on both, the treatment assignment and the outcome variable. See
Chernozhukov et al. (2018) for a recent approach which they call double machine learning.

Recent papers that study and evaluate different models that are designed for the
estimation of heterogeneous treatment effects are (Knaus, Lechner & Strittmatter, 2018;
Kiinzel, Sekhon, Bickel & Yu, 2019; Powers, Qian, Jung, Schuler, Shah, Hastie & Tibshirani,
2018). The two most prominent methods used to estimate the CATE may be the general
random forest, which builds on the idea of controlling for observed confounders through
a tree structure and then estimates the CATE within each final leaf (Athey, Wager &
Tibshirani, 2019). The second one is the causal boosting, which uses boosted trees to
increase performance (Powers et al., 2018). The conditional average treatment effects
can then be interpreted as individualised treatment effects. What the aforementioned
methods lack, however, is that they are built on tree algorithms and therefore do not
allow a flexible estimation of heterogeneous treatment effects in terms of the model choice.
A recent method called R-learner does provide such flexibility and shows competitive
performance in the estimation of the CATE to other existing proposals (Nie & Wager,
2017). Other models, known as meta-learners, decompose the modelling procedure into
sub-regression functions, which can be solved using any supervised learning method. This
can e.g. be done by a two-model approach (TMA) where we train a response function
(conditional mean) on the treated and another one on the non-treated observations. In
randomised experiments, the difference of the two functions can thus be interpreted as the
individualised treatment effect (Kiinzel et al., 2019). Applying the two-model approach on
data from non-randomized experiments would incorporate a potential bias that needs to
be corrected for. One way to address the problem is to use double-robust estimator as
proposed by (Robins & Rotnitzky, 1995). Using the results from the two-model approach
and, in a second step, use inverse probability weighting (IPW) decreases the variance
of the estimator (see e.g. Lunceford & Davidian (2004)). Additional orthogonalization
using the two conditional mean functions produced by the TMA also decreases the bias of



the parameter of interest (Lee, Okui & Whang, 2017). The doubly-robust estimator can
even be used in high-dimensional settings to estimate a reduced dimensional conditional
average treatment effect function. Using machine learning methods to learn the nuisance
functions and a kernel regression for the low-dimensional covariates of interest, functional
limit theory can be derived (Fan, Hsu, Lieli & Zhang, 2019).

The difficulty, however, is that machine learning methods are often a black box that is
not easy to interpret and hence hinder the information on drivers for effect heterogeneity.
In this paper, we, therefore, build on the ideas of Chernozhukov, Demirer, Duflo &
Fernandez-Val (2018) who concentrate to estimate a sorted group average treatment effect
(GATE) in randomised experiments. The heterogeneity between these groups can then be
interpreted through covariates which shed some light on the question of what characteristics
determine the differences between groups. We extend the approach to estimate the GATE
parameter towards the use in observational studies and also towards the possibility to
estimate the CATE based on the group heterogeneity. The advantage of the proposed
method is a robust estimation of heterogeneous treatment effect that is comparable with
other models thus keeping its flexibility in the choice of machine learning methods and at
the same time its ability to interpret the results. The latter is especially useful in all areas
of empirical economics like policy or labour markets. It also has the advantage to control
for potential self-selection bias. The idea of going beyond the average, but not as deep as
to estimate conditional average treatment effects for many covariates, is first considered in
Chernozhukov, Fernandez-Val & Luo (2018). They provide standard errors and confidence
bands for the estimated sorted group effects and related classification analysis and provide
confidence sets for the most and least affected groups. While they only use parametric
estimators, a nonparametric attempt to estimate group average treatment effects and also
provide insights from the heterogeneity in terms of observed covariates comes from Zimmert
& Lechner (2019). They use a two-step estimator of which the second step consists of
a kernel estimator. Our contribution is to keep machine learning methods to learn the
nuisance parameter in the first step but use a parametric model in the last step. We also
include a second step which uses the idea of a doubly-robust estimator to make inference
about group average treatment effect when a randomized control trial is not given. This
paper consists of three parts. First, we state the methodology for randomized experiments
and second, the extensions to deliver robust results in observational studies. Third, we
simulate data that include selection bias and are high-dimensional and non-linear. We
compare the results for the GATE obtained with the two-model approach and the our
extended doubly-robust method. Through averaging of the results for each observation
we report the mean absolute error from the true heterogeneous treatment effects for both
methods.

2 Generic Machine Learning for Group ATE

2.1 Potential Outcome Assumptions

Throughout this paper, we make use of the potential outcome theorem (Rosenbaum
& Rubin, 1983) and state three necessary assumptions. The first assumption is the
ignorability of treatment, conditional on observed covariates (X ), from the two potential
outcomes. It is also known as unconfoundedness or simply conditional independence:



(Y}, YP) 1 DX, (1)

With Y denoting the potential outcome under treatment and Y° if not being treated. D
is the treatment assignment variable.

The second assumption, the Stable Unit Treatment Value Assumption (SUTVA),
guarantees that the potential outcome of an individual is unaffected by changes in the
treatment assignment of others. This assumption might be violated if individuals can
interact with each other (peer and social effects). In randomised controlled experiments,
the first two assumptions are fulfilled by design or, at least, cancel out.

The third assumption, called overlap, guarantees that for all x € supp(X), the proba-
bility of being in the treatment group (propensity score e(z)), is bounded away from 0
and 1:

0<P(D=1X=x)<1.
e(x) =P(D =1X =x). (2)

We control for the common support by estimating the propensity score and balance the
treatment and control group based on the distribution. We hence exclude all observations
that have a propensity score lower 0.02 or higher than 0.98. The fundamental problem of
causal inference is that we only observe one of the two potential outcomes at the same
time. The counterfactual for a nontreated (treated) person, namely, what would have
happened if this person were (not) treated, is always missing. We can represented this
statement through a switching regression where the observed outcome (Y;) depends on the
two potential outcomes and the treatment assignment:

Y=Y+ D(Y -Y'). (3)

We further assume that, for the estimation of standard errors, the following moments
exist: E[|Y7]7] < oo for ¢ >4 and j =0, 1.

2.2 Randomized Control Trial

To provide valid estimation and inference for a causal interpretation of parameters,
Chernozhukov et al. (2018) focus on features of the CATE. One of main features is the
Sorted Group Average Treatment Effect. The idea is to find groups of observations
depending on the estimated treatment effect heterogeneity. Their proposed method relies
on a two-model approach in the first step. Here, two response functions are trained
separately for the treated and non-treated observations. This approach can be biased if the
data sample is from an observational study. Consider e.g. self-selection into a treatment.
In randomized control trials, difference of the two functions provides an estimate of the
treatment effect for every observation. To denote that this function might not be consistent
or unbiased it is further called score-function:

7(X)=E[Y|D=1,X]-E[Y|D=0,X] (4)
S(X) = g1 (X, @) — Go (X4, @) -



Here gp (X;,ap) = E(Y|D, X) is the regression model of the outcome variable on X
separately for D € {0,1} and &p represents the parameters for treatment and control
group. These two functions can be estimates with a broad range of supervised machine
learning methods. The target parameters are

E[7(X)|Gk] G k™ n-tile of estimated S(X), (5)

where G is an indicator of group membership. The groups are ex-post defined by
the predicted scores (S(X)) in the first stage. If the treatment effect for the groups are
consistent, it asymptotically holds that

E[7(X)|G1] < E[7(X)|G:] < ... <E[7(X)|Gi], (6)

which is the monotonicity restriction. Furthermore, it can be tested whether there is a
homogeneous effect if E[7(X)|Gx] would be equal for all k groups. The weighted linear
projection equation to recover the GATES parameter is:

YH=(TAH+4x(D-é(X))xI(S(X)el;)+v, (7)

with A; = (1, B(X)) and B(X) = E[Y|D =0, X] being the baseline function without
treatment. S;(X) = BE[Y|D = 1,X]-E[Y|D = 0,X] is the treatment effect projection.
I, = [lr-1,0) and £y is the k/K-quantile of {SZ}ZGM Subscript M denotes that these
are all out-of-sample predictions. This becomes clearer in the pseudo-code of Algorithm
1, which describes the implementation of this method. The weights H represent the
Horvitz-Thompson transformation (Horvitz & Thompson, 1952):

D-é(X)

e (9] "

This estimator, which is applied to account for different proportions of observations
within strata in a target population, is equivalent to the simple inverse probability weighting
estimator. These estimators, however, might exhibit a high variance if the identification
(the precision) of the propensity scores is lacking Lunceford & Davidian (2004).

The main identification result is that the projection coefficients ~, can be represented
in the following way:

7= (Mizr = E[r(X)IGkDi- 9)



Algorithm 1: GATES

for b=1 to B do
Split Data in k = 2 samples: I* and M with [y M
Train Y = go(X;, D = 0) + Uy;, with i € I
Train Y, = g,(X;, D = 1) + Uy, with i € I

Predict Y? = Go(X;), with i € M

Predict Y;! = gy (X;), with i € M

Calculate S,(X|i) = Y}! -V}

Train D; = eg(X;) +V, with i € ¢

Predict D; = é(X;), with i e M
10 Calculate V; = D; - é(X;), with i e M
11 Estimate GATES parameters (y) with weighted OLS using M (see equation 7)
12 end
13 Average v over B iterations: 4 = median{vy}

© 0 N o ok W N -

2.3 Observational Studies

To use the best linear predictor for group heterogeneity in observational studies, we
need to change and extend the first and second stage. First, we replace the two-model
approach by a doubly-robust estimator. This means we not only weight by the inverse
of the propensity score but also orthogonalize the outcome variable by subtracting the
mean. We also use the sample splitting as a form of cross-fitting by using the auxiliary
sample to estimate the score function via the doubly- robust estimator and then use the
main sample to predict the final score function, which is used in the parametric step. In
this way, we limit the danger of over-fitting. The parametric second stage simplifies by
plugging in the robust score function without the use of inverse probability weighting. The
resulting function is a more robust version of the CATE for each individual as well as for
the GATE function. The two steps are described in more detail in the following.

The separate estimation of the outcome conditioning on the treatment assignment
only works for randomised experiments. Assume that in observational studies individual’s
self-select themselves into the treatment. If this is the case, then the distribution of
the covariates is different given treatment status. As a consequence, the estimated
score-function, which is the difference between the estimated outcomes from g, (X;, @) -
Jo (X;,@o) might not reflect the treatment effect rather than observed differences based on
the covariates. To account for a selection bias, we replace the simple two-model approach
by a doubly-robust estimator, which accounts for this potential bias via an extension of
inverse probability weighting and orthogonalization of the outcome variable Y; via the
conditional expectation functions gp (X;,@p) for D € {0,1}.

We can also think of this estimator as a transformed outcome estimator, which is why
we denote the outcome as Y;*. This new outcome is calculated on the training data (the /¢
sample). In a second step, a new supervised model is trained on the transformed outcome
using /¢ while predictions are made on the test set M. Algorithm 2 describes this process.

Vo= (60 =y (3,0 SR - B Rl o
7(X) =Yg =m(X;) +w ()



In equation 10, g1 (X;, @) — Go (X;, @) is equivalent to the the score-function from the
two-model approach. Simulation evidence of Knaus et al. (2018) suggests that estimators
based on Y;",, might be more stable because of the doubly-robust property and that
the performance is competitive for the estimation of heterogeneous treatment effects in
observational studies. The doubly-robust property states that, at least for the ATE,
the estimator is consistent and unbiased if only one of the models, the regression or
the propensity score, is correctly specified (Robins, Rotnitzky & Zhao, 1994; Robins &
Rotnitzky, 1995). Lunceford & Davidian (2004); Williamson, Forbes & White (2014);
Belloni, Chernozhukov & Hansen (2014) study the theoretical properties and highlight
implications for practice. One of the findings is that the variance can be decreased
when using the doubly-robust estimator instead of a simple inverse probability estimator
(Lunceford & Davidian, 2004). Chernozhukov & Semenova (2018) show that equation 10
is conditionally locally robust to the estimation error of the nuisance parameter.

Next we state some asymptotic results to recover the the CATE. From equation 5 it
follows that

7(X)=E{E[Y|D=1,X]-E[Y|D=0,X][X = 2,} (12)

Let n(X) := (e(X), 01 (Xi,21),90 (Xi,0)) be the true high dimensional nuisance
parameters. Following Fan et al. (2019) we can define

D; (Yi—g1 (Xi,on)) (1= Di) (Vi — go (Xi, o))
e (Xi) (1-e(Xi))
(13)

Y(D,Y, X, n(X)) = g1 (Xs,1) = go (Xi, ) +

Theorem 1.1
(i) under Assumption 1,2,3,4

D; (Y; — g1 (Xi>
e(X;)
(1-D;) (Yi—g0(Xi,0))
1-e(X;)

Elgl (X, a1) + al))\X Z%‘] :E(YIIX :xi),

Elgo (Xi, ) + |X=xi] =E(Y0|X =x,~)

()E[¢v(D,Y, X,n(X)) - 7(X)|X = ;] =0 given (i). This moment condition satisfies
the Neyman-orthogonality condition. Neyman-orthogonality is a key component in ensuring
that the CATE estimators are robust to the regularization bias inherent for the nuisance
functions which are learned via machine learning models.

Through the doubly-robust estimator, 7(X ), the weighted linear projection equation
changes to

Y =4 x(D-é(z)) xI(S(X) ely) +v, (14)

with S(X) = m(X;). The interaction (D - é(z)) is an orthogonalization of the treatment
variable to all other covariates and used to increase precision. The Horvitz-Thompson
transformation is excluded since the inverse probability weighting is already included in
the doubly-robust estimator.



The second extension to the method is to weight each individual based on the group
inclusion probability. Instead of taking the median over B repetitions for the K groups we
store the information about the group estimate for each individual 7 over the B repetitions.
The median is then taken over B repetitions for each individual rather than the groups.
This allows us to get an estimate for each individual which can be used for comparison
with other methods and to make predictions. Naturally, we can do the same in the first
step and apply this weighting procedure on the score-function. The result is a robust
estimate for the conditional average treatment effect.

Algorithm 2: Extended GATES

for b=1 to B do
Split Data in k = 2 samples: I* and M with [¢u M
Train Y2 = go(X;, D = 0) + Uy, with i € I®
Train Y;' = ¢;(X;,D = 1) + Uy;, with i € [®
Train D; = eo(X;) +V, with i € [¢
Predict Y = Go(X;), with i € [
Predict Y;! = §i(X;), with i € I
Predict D; = é(X;), with i € I
Train Y, on X; = I(X;)+W with i€ [®
Predict Y}, = [(X;) with i e M
11 Calculate V; = D; - é(X;), with i e M
12 Calculate S,(X|i) = ffifDR
13 Estimate GATES parameters () with OLS using M (see equation 14)
14 end
15 Average v over B iterations: 4 = median{vy}
16 Calculate Density for every i: S;(X) given Sy(X|i) over all b

17 Calculate Final score-function (S;(X)) given density of medians for i = 1 to N

© 00 N o ok o =

=
o

3 Simulation Study

3.1 Data Generating Process

To evaluate the advantage of the proposed extensions i) doubly-robust first stage and
ii) simplified parametric second stage, we use simulated data where the true treatment
effects are known. In the following we describe the data generating process (DGP) in
detail and show the variations that we consider. We generate the covariates X in a way
that they are partially correlated among each other. The process is described in Algorithm
3.



Algorithm 3: Correlation Matrix

1 Generate random positive definite covariance matrix > based on a uniform
distribution over the space p x p of the correlation matrix
2 Scale covariance matrix. This equals the correlation matrix and can be seen as the

covariance matrix of the standardised random variables X = %
3 Generate random normal distributed variables Xy, with mean = 0 and variance

=

An illustration of the distribution for p = 10 and N = 5000 observations is given in
Figure 3.1.
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Figure 3.1: Correlation Matrix of Covariates. Correlation metric is
bravais-pearson.

It shows that the covariates are correlated among each other. This is guaranteed
through the uniform distribution of the covariance matrix which is then transformed to
a correlation matrix. This assumption is more common in real datasets and helps to
investigate the performance of machine learning algorithms, especially the regularization
bias, in a more realistic manner.

The basic model used in this paper is a partially linear regression model based on
Robinson (1988) with extensions:

Y =7(X)D + go(X) + U, E[U|X,D] =0, (15)
D =mo(X)+V, E[V]X] =0, (16)
(X)) =t(Z) + W E[W|Z]=0,Zc X (17)

with Y being a continuous outcome variable. 7(X) is the true treatment effect or
population uplift, while D is the treatment status. The vector X = (Xj, ..., X,,) consists

8



of p different features, covariates or confounders, while the vector Z is a subspace of X
and represents the variables on which the treatment effect is dependent. U, V and W are
unobserved covariates which follow a random normal distribution = N(0,1).

Equation 16 is the propensity score. In the case of completely random treatment
assignment the propensity score mg(X;) = 6y for all units (i =1,..., N) with N being the
number of observations. The scalar §, can take any value between (0,1). Here we use
0.5 (balanced assignment). The covariates X are generated from a random multivariate
normal distribution (N(0,1)) as follows:

The function go(X) is calculated via a trigonometric function to make the covariates
non-linear and potentially complicated for estimation.

go(X) = cos(X x b)? (18)

The vector b = % with [ € {1,2,...,k} represents weights for every covariate. Next, a
description of how to build the function my(X) as well as how to create a heterogeneous
treatment effect is given. A varying treatment effect implies that its strength differs
among the observations and is therefore conditioned on some covariates Z. Regarding
the treatment assignment (D) two options are considered. Option 1 assumes D to be
completely random assigned among the observations. In this case, D is just a vector of
random numbers with values 0 or 1. In the second option, the treatment assignment is
dependent on the covariates. The functions are generated as follows:

Algorithm 4: Treatment Assignment

1 if random assignment then

2 Generate D "% Bernoulli(c), with c€[0,1] ;
3 else
4 Create Vector Multiply the matrix X by vector b = % with [ € {1,2,...,p} to

get vector a.
Make nonlinear a = a + X, * Xg + sin(X5) + Xo
6 Calculate probability distribution for the vector a from the normal
distribution function:

7 Apply random number generator from a Binomial function B(N,k,p) with
probability (p) for success equals mg(X). This creates a vector D € {0;1}

such that D " Bernoulli(mg(X)).

8 end

Regarding the treatment effect, three different options are considered. First, 7(X)
is a constant for every unit. Second, 7(X) depends on all covariates and is continuous.
Third, 7(X) only depends on some space Z of the covariates and further takes only two
different values. The latter two options are especially useful when examining heterogeneous
treatment effects. In the causal tree section, there will also be a fourth option in which



the treatment effect only depends on two covariates and is binary.

Algorithm 5: Treatment Effect

1 if constant effect then

2 | 7(X)=cwithce(-2,5) ;

3 else if simple heterogeneous effect then
4 Generate 7(X) ~ N(u,0)
5
6
7

T(X) =X1 + (X2 > 0) +N(0,01) ;
Ise if non-linear heterogeneous effect then
Apply trigonometric function:

®

7(X) =sin(X x b)* + W, (20)
W~ (N(0,0.1)) (21)
8 else

9 Define Z as some feature space of X and apply CDF as in 19 and run
Bernoulli trials:

Z = (Xgo (X1 x X5) 0 Xp)? (22)
_ o[ Z-1(2)
to(2) _(I)(W) (23)
7(2Z) " Bernoulli(ty(Z)) (24)
Standardise the treatment effect within the set {-2,+5}.
r(x) = — D mmin(r(Z) (o 0y (25)

maz(1(Z)) —min(7(2))

10 end

Treatment assignment (D) depends on some covariates, which includes a selection bias.
The treatment effect (7(X)) is heterogeneous among the observations (continuous within
the interval of approximately (-2,+5)). The outcome variable Y is created through a
partially linear model in the form of Y = 7(X) D+ go(X) + U with go(X) being a non-linear
function (e.g. cos(x)) and U ~ N(0,0.1) is the error-term.

3.2 Simulation Results

Figure 3.2 shows the densities for 49 randomly selected observations. The simulated
data has the following properties. N =1000, X =R* P(D =1) =0.5 and 7(X) € (0.1,0.3).
We show that even in randomised experiments, the point estimates differ due to the
sample-splitting in the first step. Averaging them by taking the mean leads to a more
stable conditional treatment effect function over all observations.

Figure 3.3 shows the results from a simulation, which compares the ATE estimated
with the two-model and the doubly-robust estimator, respectively. The average treatment
effect is used to build one estimator over the K groups. The groups are divided by a
quantile function and hence have equal length. This leads to unequal frequency binning

10
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Figure 3.2: Distribution of scores (7(X)) for 49 randomly selected
individuals.

Scenarios

Table 3.1:

Settings and Monte Carlo averages

A

B

C

D

within the groups. We, therefore, assign every observation the value of the group average
treatment effect in where they belong to. After M iterations we take the median to get
one estimate for every observation. To get the estimated ATE we simply take the mean
over each observation in the whole dataset. We show the absolute deviation from the true
ATE for different settings. We use Monte Carlo resampling 10 times for each setting and
show the single results in Figure 3.3. We also state the average result (error) for each data
generating process in Table 3.1. A two-sample Welch t-test confirms that the hypothesis of
equal means can be rejected based on a 1% significance level for each setting. Algorithm
6 describes the estimation for the ATE based on the k£ groups from the GATES as well
as the MAE estimation over S datasets. Naturally, this imposes a new estimator for the

E

F

P(D
7(X)
Average error Two-Model

Average error Doubly-Robust

:1)

1000
100
m(X)

constant

0.19
0.15

1000
200
m(X)

0.20
0.16

11

continuous

5000
100
m(X)

0.16
0.13

continuous

2000
200

m(X)
binary

0.16
0.12

5000
200
0.5

0.18
0.13

continuous

5000
500
0.5
binary
0.20
0.15



Algorithm 6: ATE estimation from GATES and error estimation

1 for s=1 to S do

2
3

© 00 N O ooN

10
11
12

for b=1 to

group

end

end

B do

k

Store results in some matrix R,z

for both estimators

Store results in some matrix () g.2
Resample keeping specifications constant (monte carlo study)

Average errors over S iterations

Assign group average treatment effect from group k to observations in

Average Take median for each observation over B bootstraps
Estimate mean absolute error (MAE) from true treatment effect

Doubly—Robust Estimator
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Figure 3.3: Comparison of two-model approach and doubly-robust.
Axes show absolute error between estimated ATE and true
ATE. 45-degree line indicates the equality of both methods.

Our simulation shows that, for all the considered data settings, our method decreases the
error of the true individual treatment effect. Setting A:D show results for non-randomized
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settings with different parameters. We even find that the proposed extensions produce a
smaller MAE in randomized control trials ( see Figure 3.3: E, F'). This is true for every
resampling of the DGP and each setting. Surprisingly there is no difference between the
treatment assignment mechanism. The doubly-robust method is always better but even in
randomized settings the error is in the range of 0.1 to 0.3. Looking at the MAE we find
the highest difference between the two methods for random assignment (probability =
0.5).

4 Conclusion

In this paper, we extend the idea of reporting group average treatment effects to-
wards the combination of machine learning methods and parametric estimation for non-
randomized control trials. Since flexibility in terms of the model choice, as well as
interpretability of the results, is of main interest we extend the idea of the GATES
approach towards the use of a doubly-robust estimator. This ensures to control for
self-selection into treatment which is a realistic assumption in observational studies.

We find that using a doubly-robust estimator with cross-fitting, in combination with
a simplified parametric model, decreases the error compared to a two-model approach
significantly. A disadvantage when estimating the CATE from the GATE is, that we
can only assign k different values to the individuals. In our setting, we considered only
five different groups. This amount could be increased to e.g. 10 or even more groups.
In empirical settings, it would depend on the sample size. If we want to have at least
30 observations within a group we could have % groups, with A-splits or folds of the
dataset in the first stage. Here we considered only two-folds. However, there is no general
relationship between the number of folds in cross-fitting and the precision of the estimator
(see Chernozhukov et al. (2018) for an example with different folds). Due to computational
reasons we only use B = 10 iterations within the same sample and S = 10 Monte Carlo
re-samplings of the same data generating process. This amount needs to be increased to
e.g. 50 and 100, respectively. At this stage, we only consider a boosting-trees algorithm
(with parameter tuning via 10 fold cross-validation) as a machine learning method. In
a further draft, we will extend this to the use of boosted gradient descent (XGBoost),
random forest algorithm, neural networks and some linear methods like variants of the
Elastic Net. We can even consider different methods for each nuisance function.

In a further draft, we would also compare the ATE as well as the CATE, all resulting
from the group average treatment effect, and compare them with recent methods that
estimate the former parameter or function.
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