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Abstract

In this paper, we conduct simultaneous inference of the non-parametric part of a

partially linear model when the non-parametric component is a multivariate unknown

function. Based on semi-parametric estimates of the model, we construct a simulta-

neous confidence region of the multivariate function for simultaneous inference. The

developed methodology is applied to perform simultaneous inference for the U.S. gaso-

line demand where the income and price variables are contaminated by Berkson errors.

The empirical results strongly suggest that the linearity of the U.S. gasoline demand

is rejected. The results are also used to propose an alternative form for the demand.
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1 Introduction

Partially linear models are welcome compromise between a pure nonparametric and a some-

times too restricted parametric specification. The semi-parametric structure not only makes

it possible to include discrete predictors, but also to estimate part of the model with high

precision. These and other reasons have made this model class very successful, e.g. Härdle

et al. (2000). A typical assumption in the existing partially linear model literature is that the

non-parametric part is univariate. In several applications though, one has a data structure

described by:

Yi = Z>i β + µ(Xi) + εi (1.1)

where Yi is a scalar random variable, Zi is a (`×1) random vector, and Xi is a (d×1) random

vector for i = 1, · · · , n, respectively. In addition, εi is a mean zero IID random error that is

uncorrelated with Zi and Xi. Here β and µ(·) are a (` × 1) vector of unknown parameters

and an unknown smooth function, respectively. Inference of the unknown function µ(·) can

be conducted even when the covariate terms on the RHS of (1.1) are not fully observed,

as illustrated in Secion 3. The model (1.1) is widely used due to its flexibility to combine

the parametric linear part Z>i β and the non-parametric non-linear component µ(Xi). See

Härdle et al. (2000) for more on the partially linear model framework.

The primary contribution of this paper is to introduce a methodology for simultaneous

inference of the multivariate function µ(·) in (1.1) when d ≥ 2. The majority of the literature

on (1.1) and on its variants has focused on simultaneous inference for a “univariate” function

(i.e. d = 1): Johnston (1982) conducts simultaneous inference for an univariate mean

regression function. Härdle (1989) derives simultaneous confidence bands (SCB) for one-

dimensional kernel M-estimators. Fan and Zhang (2000) and Zhou and Wu (2010) show how

to perform simultaneous inference of linear models with varying coefficients. Wu and Zhao

(2007) and Kim (2016) work on inference of univariate time trend in mean regression. Zhao
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and Wu (2008) and Liu and Wu (2010) conduct simultaneous inference of the univariate

mean and univariate volatility functions of a discretized version of the stochastic diffusion

model. Moreover, Härdle and Song (2010) and Guo and Härdle (2012) construct uniform

confidence bands for conditional quantile and expectile functions, respectively. Song et al.

(2012) employ bootstrap procedures for local constant quantile estimators to overcome the

slow convergence of asymptotic confidence bands. Although they contribute to the literature,

all of the mentioned papers deal with the univariate function case. Chao et al. (2017) extend

it to the case of multivariate quantile regression functions. However, to the best of our

knowledge, no paper has worked on simultaneous inference of µ(·) with d ≥ 2 in the partially

linear model (1.1). This paper attempts to undertake the task. The main results that we

obtain in this paper have some resemblance to those in Chao et al. (2017). However, due to

the partially linear structure in (1.1), the main assumptions of this paper are based on the

conditional distribution of the filtered response Y −Z>β on X, rather than on the conditional

distribution of Y on all the covariate terms, which is technically more challenging to handle

than in Chao et al. (2017).

Simultaneous inference of (1.1) is conducted through the construction of simultaneous

confidence region (SCR). Consider testing the following hypotheses for (1.1):

H0 : µ(·) = µθ(·) versus H1 : H0 is not true. (1.2)

where µθ(·) is a multivariate “parametric” function suggested by related economic theory.

To test the hypothesis in (1.2), we construct the SCR of µ(·) and observe whether the

SCR contains the parametric specification “entirely”. The construction of the SCR with

confidence level 100(1 − α)%, α ∈ (0, 1), requires us to find two functions fn(·) and gn(·)

based on data, such that:

lim
n→∞

P{fn(x) ≤ µ(x) ≤ gn(x) for all x ∈ X} = 1− α (1.3)

2



where x is a (d × 1) vector in a compact set X . Given the SCR of µ(·), one can test (1.2)

by checking whether or not the condition fn(x) ≤ µθ(x) ≤ gn(x) holds for all x ∈ X . If the

condition does not hold for some x ∈ X , then we reject the null hypothesis at level α. That

is, even if the condition holds for all x ∈ X except for only one, the null hypothesis still gets

rejected by the test.

The relative advantage of the SCR-based inference over other standard inferential pro-

cedures utilizing some integrated-squared-difference type statistic and its associated p-value

such as those in (Härdle and Mammen (1993)) is in its effectiveness in suggesting the right

function form of µ(·) in (1.1). In case the null hypothesis in (1.2) is somehow rejected, it

would be rather difficult to figure out the reason for rejection if the inference is based on such

standard test statistic and its associated p-value. Thus, it would not be straightforward to

suggest an alternative to the parametric function under the null hypothesis in such as case.

However, if the inference is based on the proposed SCR, one can easily figure out the reason

for the rejection by “locating graphically” where the SCR is violated by the parametric null

µθ(·). Hence it would be relatively straightforward to propose an alternative parametric

form. For more on this, see the last paragraph of Section 3.4.

The proposed methodology is applied to perform simultaneous inference of the U.S. gaso-

line demand. The gasoline demand is of interest to many, including policy makers, due to its

environmental consequences and the role as an economic indicator. With little guidance on

the form of demand function provided by economic theory (Blundell et al. (2012)), however,

we refer to the semi-parametric demand structure (Schmalensee and Stoker (1999); Yatchew

and No (2001); Blundell et al. (2012)), which is a specification of the general one provided

by (1.1). A popular candidate for the function µ(·) in (1.1) is the log-linear structure. The

linear structure is widely used because it provides a simple but useful analytical framework

and because the coefficients under the framework represent important structural parameters

such as income/price elasticities. Despite these advantages, any parametric forms including

the linear one are essentially arbitrary and may be misspecified in ways that produce seri-
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ously erroneous results. Hence we propose to test its validity as µ(·) in (1.1) through the

simultaneous inference proposed in this work.

The organization of the paper is the following: Section 2 introduces the methodology

proposed to perform simultaneous inference of the partially linear model (1.1) with d ≥ 2. We

estimate the partially linear model and carry out the construction of simultaneous confidence

region (SCR) based on the estimate. Both the asymptotic-based and simulation-based

constructions of SCR are introduced. Section 3 handles an application of the proposed

methodology. We estimate and perform simultaneous inference of a semi-parametric and

partially linear U.S. gasoline demand under the Berkson errors. The data are explained

and the empirical results are discussed in detail as well. Section 4 concludes the paper

and discusses related future research. The mathematical proofs regarding the simultaneous

inference for a multivariate function are relegated to Appendix.

Notations. For any vector v = (v1, v2, . . . , vp) ∈ Rp, we let |v| = (
∑p

i=1 v
2
i )

1/2
. For any

random vector V, we write V ∈ Lq (q > 0) if ‖V‖q = [E (|V|q)]1/q < ∞. In particular,

‖V‖ = ‖V‖2. In addition, we write an � bn if |an/bn| is bounded away from 0 and ∞ for all

large n. For brevity, we sometimes write supx U(x) for supx∈X U(x).

2 Methodology

2.1 Assumptions

Let Y ∗i
def
= Yi − Z>i β, where β is the true coefficient in the model (1.1). Denote h as the

bandwidth. Without loss of generality, we assume equal bandwidth for all directions of x.

The assumptions for the theoretic results of this study are the following:

(A1) K is a kernel function of order s − 1 (see (A3)) with bounded support [−A,A]d, and

is continuously differentiable up to order d with bounded derivatives, i.e. ∂αK =

∂α1∂α2 ...∂αdK ∈ L1(Rd) exists and is continuous for all multi-indices α = (α1, ..., αd)
> ∈

{0, 1}d.
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(A2) Given an � (h−3d log n)1/(b1−2) → ∞ for some b1 > 2, assume that the conditional

density fY ∗|X(y∗|x) satisfies

(i) 0 < supx∈X

∣∣∣∫ ∣∣y∗ − µ(x)
∣∣b1fY ∗|X(y∗|x)dv

∣∣∣ <∞.

(ii) There exists C∗ > 0 such that

(
h−3d log n sup

x∈X

∫
{|y∗|>an}

y∗2fY ∗|X(y∗|x)dy∗
)1/2

≤ C∗. (2.1)

(iii) n−1/6h−d/2an = O(n−ν), for some constant ν > 0.

(A3) The function µ(x) is in Hölder class with order s > d.

(A4) The density fX(x) of X is bounded, continuously differentiable and its gradient is

uniformly bounded. Moreover, infx∈X fX(x) > 0 for domain X .

(A5) The joint probability density function f(y∗,x) is bounded and continuously differen-

tiable up to sth order (needed for the Rosenblatt transform). The conditional density

fY ∗|X(y∗|x) is bounded and continuouly differentiable with respect to x.

(A6) h satisfies
√
nhdhs

√
log n→ 0 (undersmoothing), and nh3d(log n)−2 →∞.

Assumption (A1) gives constraints on the kernel function, and is satisfied by popular

kernels such as the Epanechnikov and quartic kernels. The moment condition of the model

error (A2)(i), and the tail moment condition of the response variable (A2)(ii) are similar to

those in the simultaneous confidence band literature such as Johnston (1982) and Härdle

(1989). The condition (A2)(iii) is necessary for bounding the strong approximation error,

which is given by Theorem 3.2 of Dedecker et al. (2014). (A3)-(A5) are adaptations of those in

Johnston (1982) and Härdle (1989) to multivariate covariates. (A6) implies undersmoothing.
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2.2 Simultaneous confidence region (SCR) of µ(·)

Estimation of µ(·) in (1.1) is done by carrying out the following optimization:

µ̂(x) = argmin
θ

1

nhd

n∑
i=1

K

(
x−Xi

h

)(
Yi − Z>i β̂R − θ

)2

(2.2)

where β̂R is the Robinson estimate (Robinson, 1988) of β in (1.1). Here K(·) is a kernel

function and h is a smoothing parameter, typically called the bandwidth. This leads to:

µ̂(x)
def
=

1

nhdf̂X(x)

n∑
i=1

K

(
x−Xi

h

)(
Yi − Z>i β̂R

)
, (2.3)

where f̂X(x)
def
= 1

nhd

∑n
i=1 K

(
x−Xi

h

)
is a non-parametric estimate of fX , the joint density

of X>i = [X1i, · · · , Xdi]. A popular choice for the kernel function K(·) is the Epanechnikov

kernel with a compact support. The bandwidth h is frequently selected by some data-driven

method, such as the generalized cross-validation (GCV ) (Craven and Wahba, 1979). In this

study, the bandwidth chosen by GCV is adjusted downward to conduct the undersmoothing

in (A6). To construct the SCR of µ(·), we adopt the methodology in Härdle (1989), Johnston

(1982) and extend it to the multi-dimensional case. First, consider the optimization (2.2)

when β is known:

µ̃(x) = argmin
θ

1

nhd

n∑
i=1

K

(
x−Xi

h

)(
Yi − Z>i β − θ

)2
. (2.4)

We define

H̃n(θ,x)
def
=

1

nhd

n∑
i=1

K

(
x−Xi

h

)(
Yi − Z>i β − θ

)
Hn(x)

def
=

1

nhd

n∑
i=1

K

(
x−Xi

h

)(
Yi − Z>i β − µ(x)

)
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Then,

H̃n(µ̃,x) = Hn(x) + {µ(x)− µ̃(x)} f̂X(x).

Since H̃n(µ̃,x) = 0 by the first-order condition (F.O.C.) of (2.4), we have

µ̃(x)− µ(x) =
Hn(x)

f̂X(x)

which leads to

µ̃(x)− µ(x) =
Hn(x)

fX(x)
+
Hn(x){fX(x)− f̂X(x)}

fX(x)f̂X(x)
.

In sum,

µ̃(x)− µ(x) =
Hn(x)− EHn(x)

fX(x)
+Rn(x) (2.5)

where Rn(x)
def
= EHn(x)

fX(x)
+

Hn(x){fX(x)−f̂X(x)}
fX(x)f̂X(x)

. Then, by (2.5),

√
nhdfX(x)

σ(x)
|µ̃(x)− µ(x)| = |Un(x)|+ R̃n(x) (2.6)

where

R̃n(x) =

∣∣∣∣Un(x) +

√
nhdfX(x)

σ(x)
Rn(x)

∣∣∣∣− |Un(x)| (2.7)

σ2(x)
def
=

∫
{y∗ − µ(x)}2 fY ∗|X (y∗|x) dy∗ (2.8)

Un(x)
def
=

√
nhd

σ2(x)fX(x)
(Hn(x)− EHn(x)) (2.9)
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Here y∗
def
= y − z>β. Let σ = σ(x) for simplicity. Then, after some elementary calculations,

we obtain:

Un(x) =
1√

hdσ2fX(x)

∫ ∫
K

(
x− t
h

)
(y∗ − µ(x)) dZn(t, y∗)

where Zn(x, y∗)
def
=
√
n (Fn(x, y∗)− F (x, y∗)). Here Fn(·) is the empirical cumulative distri-

bution function (c.d.f.) while F (·) is the true c.d.f. Moreover, we can define the following

processes:

U1,n(x) =
1√

hdσ2fX(x)

∫ ∫
K

(
x− u
h

)
(y∗ − µ(x)) dBn {T (y∗,u)} ;

U2,n(x) =
1√

hdσ2fX(x)

∫ ∫
K

(
x− u
h

)
(y∗ − µ(x)) dWn {T (y∗,u)} ;

U3,n(x) =
1√

hdσ2fX(x)

∫ ∫
K

(
x− u
h

)
(y∗ − µ(u)) dWn {T (y∗,u)} ;

U4,n(x) =
1√

hdσ2fX(x)

∫
σf

1/2
X (u)K

(
x− u
h

)
dW (u);

U5,n(x) = h−d/2
∫
K

(
x− u
h

)
dW (u),

where {Bn} are a sequence of Brownian bridges and {Wn} are a sequence of Wiener processes

satisfying Bn

{
T (y,u)

}
= Wn

{
T (y,u)

}
− F (y,u)Wn(1, ..., 1). Here W (·) is the Wiener

process and T (y,x) is the d dimensional Rosenblatt transformation (Rosenblatt, 1976):

T (y,u) =
{
FX1|Y (u1|y), FX2|Y (u2|u1, y), ..., FXd|Xd−1,...,X1,Y (ud|ud−1, ..., u1, y), FY (y)

}
.(2.10)

Then, from Theorem 2 of Rosenblatt (1976), suppose the volume of X is 1

P
{√

2d log(h−1)

λK

(
sup
x∈X
|U5,n(x)| − dn

)
< u

}
→ exp (−2 exp(−u)) (2.11)
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where λK = (
∫
R K

2(u)du)1/2 and dn =
√

2d log (h−1) + 1√
2d log(h−1)

(
1
2
(d − 1) log log (h−1) +

log
((

2d
π

)d/2√det(Σ)
4dπ

))
. This leads to the following proposition:

Proposition 2.1. Under Assumptions (A1)-(A6), suppose that the volume of X is 1,

P

{√
2d log(h−1)

λK

(
sup
x∈X
|Un(x)| − dn

)
< u

}
→ exp (−2 exp(−u)) (2.12)

Proof of Proposition 2.1. The proof follows directly by Lemma B.3– Lemma B.8 in Ap-

pendix.

Moreover, by Lemma A.1 in the Appendix,

sup
x∈X
|Rn(x)| = oP

(
1√

nhd log (h−1)

)
(2.13)

Then, by (2.6), (2.12) and (2.13), we obain the following theorem:

Theorem 2.2. Under Assumptions (A1)-(A6), suppose that the volume of X is 1,

P

{√
2d log(h−1)

λK

(
sup
x∈X

√
nhdfX(x)

σ(x)
|µ̃(x)− µ(x)| − dn

)
< u

}
→ exp (−2 exp(−u)) (2.14)

where µ̃(x) is the infeasible estimate of µ(x) defined by (2.4).

Proof of Theorem 2.2. By (2.6),

√
2d log(h−1)

λK

(
sup
x∈X

√
nhdfX(x)

σ(x)
|µ̃(x)− µ(x)| − dn

)

=

√
2d log(h−1)

λK

(
sup
x∈X
|Un(x)| − dn

)
+ R̄n,
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where by using triangle inequality,

|R̄n| =
√

2d log(h−1)

λK

∣∣∣ sup
x∈X

∣∣|Un(x)|+ R̃n(x)
∣∣− sup

x∈X
|Un(x)|

∣∣∣
≤ sup
x∈X

√
2d log(h−1)

λK
sup
x∈X
|R̃n(x)|

≤ sup
x∈X

√
2dfX(x)nhd log(h−1)

λKσ(x)
|Rn(x)|

By (2.12) and (2.13), R̄n = oP(1) and the theorem follows.

Since the asymptotic result (2.14) involves the infeasible estimate µ̃(x) that depends

on the unknown β, Theorem 2.2 cannot be directly applied to construct the SCR of the

unknown µ(·). However, the result can be extended to derive the following theorem that can

be utilized to construct the SCR of µ(·):

Theorem 2.3. Suppose that the volume of X is 1. Under Assumptions (A1)-(A6),

P

{√
2d log(h−1)

λK

(
sup
x∈X

√
nhdfX(x)

σ(x)
|µ̂(x)− µ(x)| − dn

)
< u

}
→ exp (−2 exp(−u)) (2.15)

where µ̂(x) is the feasible estimate of µ(x) defined by (2.3).

Proof of Theorem 2.3. The proof follows by Theorem 2.2 and by the
√
n-consistency of

β̂R (Robinson, 1988). We omit the details.

Remark 2.4. If the volume vol(X ) is not 1, then replacing the log(h−1) in both Theorem

2.2 and 2.3 by log(vol(X )h−1).
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2.3 Implementation

By Theorem 2.3, the (1− α)× 100% SCR of µ(x) is

[
µ̂(x)±

√
σ2(x)λ2

K

nhdfX(x)

(
dn +

q1−α√
2d log(h−1)

)]
(2.16)

where q1−α = − log[−1/2 log(1−α)] is the (1−α)×100% quantile of the Gumbel distribution

in (2.14). Here q0.95 = 3.66, det(Σ) = 25/16 and λK = 0.6 for the Epanechnikov kernel. Since

σ2(x) and fX(x) in (2.16) are unknown, the feasible SCR is

[
µ̂(x)±

√
σ̂2(x)λ2

K

nhdf̂X(x)

(
dn +

q1−α√
2d log(h−1)

)]
(2.17)

where the estimate of σ2(x) is given by σ̂2(x)
def
= 1

nhdf̂X(x)

∑n
i=1 ε̂

2
iK
(
x−Xi

h

)
and ε̂i is the

residual from the estimation of (1.1).

The SCR (2.17) is based on the asymptotic distribution of the maximum of Gaussian

processes. It is shown in Hall (1979) that the rate of convergence of the extreme of Gaussian

processes in Kolmogorov distance is only of order (log n)−1, so the coverage error of the

asymptotic SCR decays only logarithmically.

In order to obtain SCR with more accurate coverage probabilities, we employ the simulation-

based method to construct the SCR of µ(x). First, we call from page 98–99 of Ferguson

(1996):

P

(
sup

1≤j≤m
|Zj| − dm ≤

u√
2 log(m)

)
→ exp (−2 exp(−u)) (2.18)

where m
def
= inf{k ∈ Z : k ≥ h−d} and Zj are an IID standard normals and

dm =
√

2d log(m)− 1√
2d log(m)

[
1

2
log{d log(m)}+ log

(
2
√
π
) ]

Note that (2.15) and (2.18) share the same asymptotic Gumbel distribution. The quantile
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of the distribution (2.18) can better approximate the quantile of the scaled µ̂(x) (as (2.15))

than the asymptotic Gumbel distribution. This is based on the fact that µ̂(x) and µ̂(x′) are

asymptotically independent for any pairs x 6= x′ since h−d → ∞, so that the IID {Zj}mj=1

has the same asymptotic distribution as the properly scaled {µ̂(x)}x∈Xh
, where Xh is a grid

with the grid size depending on h and m = |Xh|.

We can approximate the quantile of sup1≤j≤m |Zj| to arbitrary accuracy by sampling

{|Zj|}mj=1 sufficiently many times. Thus, the (1 − α) × 100% SCR of `(x) is approximated

by:

[
µ̂(x)±

√
σ̂2(x)λ2

K

nhdf̂X(x)

(
dn +

q∗∗1−α√
2d log(h−1)

)]
(2.19)

where q∗∗1−α = (q∗∗ − dm)
√

2 log(m) and q∗∗ is the (1 − α) × 100% quantile of the sampling

distribution of sup1≤j≤m |Zj|. The same method has been applied in Zhao and Wu (2008)

to obtain the SCR of an univariate function with weakly dependent data. In the following

application, we employ (2.19) to construct the SCR of the multivariate function µ(x) in

(1.1).

3 Application: Gasoline demand function

It is well-known that the key variables of gasoline demand, household income and gasoline

price variables, are typically contaminated by errors since the exact amount of household

income is rarely reported and the gasoline price is typically estimated as well. Specifically,

the Berkson-error framework (Berkson (1950)) fits our data better than the classical mea-

surement error because a “mid-point” of the income/price range applying to each household

is used for the income/price variable. To that end, we consider the following error-in-variable

(EIV ) framework, a specification of (1.1):

Yi = S>i β + g(Ti) + ζi, Si = Zi + ξi, Ti = Xi + ηi (3.1)

12



where Yi is a scalar random variable, Si is a (` × 1) random vector, and Ti is a (d × 1)

random vector for i = 1, · · · , n, respectively. In addition, ζi is a mean zero IID random error

for each i. Here β and g(·) are a (` × 1) vector of unknown parameters and an unknown

smooth function, respectively. Let S and T be unobserved due to measurement errors ξi

and ηi. However, Zi, Xi and Yi are observed. The observed covariates Zi and Xi, error and

measurement errors are mutually independent. Here ζi and ηi have zero means and finite

variances, and ξi has zero mean and covariance matrix Σξ, which does not have to be known.

The distribution of ηi in (3.1) is not needed for testing a linear hypothesis on g(·)

although its distribution is needed in general for a nonlinear null function. See Section 3.2

for more on this. The covariates (Si,Ti) in (3.1) is said to be contaminated by the Berkson

error, because (Zi,Xi) are unbiased estimators for (Si,Ti) as E[(Zi,Xi)− (Si,Ti)] = (0, 0).

The Berkson error models are appropriate when the true individual observations are not

available, but the “average” (unbiased estimators for the individual observations) for the

group where the individuals belong is available. Typically, survey data are subject to the

Berkson errors.

In (3.1), our primary goal is to test the hypothesis on g(·), such that:

H10 : g(x) = g0(x), ∀x ∈ Rd (3.2)

where g0(·) is some known real-valued function. For instance, g(x) could stand for a true

demand function while g0(x) is a parametric log-linear demand function that is commonly

used in the economics literature. That is, the validity of the widely used log-linear demand

structure can be checked by testing the hypothesis (3.2) for the EIV model (3.1).
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3.1 Regression calibration

In the literature on EIV models, regression calibration (Carroll et al., 1995) is widely used

to deal with the error-contaminated covariate terms. Under the assumptions of (3.1),

E(Yi|Zi = z,Xi = x) = z>β + µ(x)

where µ(x)
def
= E[g(Ti)|Xi = x]. Thus, we are led to the following calibrated partially linear

regression model:

Yi = Z>i β + µ(Xi) + εi (3.3)

where εi
def
= g(Ti) − µ(Xi) + ξ>i β + ζi. Note here that E(εi|Zi = z,Xi = x) = 0 due

to µ(x) = E[g(Ti)|Xi = x]. That is, εi is uncorrelated with Zi and Xi. However, εi is

still dependent on Xi. The key difference between the original EIV model (3.1) and the

transformed model (3.3) is that the covariate terms in (3.3) are observed while those in (3.1)

are not. The transformation of (3.1) to (3.3) is called the regression calibration, and is an

effective way to deal with the Berkson errors because the covariates in (3.3) are observed.

Moreover, under the Berkson errors in (3.1), the calibrated model (3.3) is free of the

endogeneity issue because εi is uncorrelated with Zi and Xi. Otherwise, one needs to

find instrument variables (IV ) to conduct the estimation. Interestingly, the convenient

uncorrelatedness between the error and covariate terms in (3.3) breaks down under the

traditional classical-measurement-error setting because E(ξi|Zi = z,Xi = x) 6= 0 under the

classical-measurement-error framework Zi = Si + ξi. Hence one would still need to find

IV s to estimate the calibrated one in (3.3) under the classical measurement errors. That

is, the regression calibration under the Berkson errors provides a convenient way to conduct

inference of 3.3 (and eventually 3.1) without using any IV s.

As mentioned in Section 3.1, the distribution of ηi is assumed to be known in (3.1). Hence
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a test of H10 in (3.2) can be carried out by testing the following hypothesis for (3.3) instead:

H20 : µ(x) = µ0(x), ∀x ∈ X , (3.4)

where µ0(x)
def
= E[g0(Ti)|Xi = x] and X is the compact range of Xi. The hypothesis H10 in

(3.2) is, however, not equivalent to H20 in (3.4) in general situation, because µ(x) = µ0(x)

for all x ∈ X only implies

E[g(Ti)− g0(Ti)|Xi = x] = 0, ∀x ∈ X ,

which does not necessarily imply g(x) = g0(x), ∀x ∈ X . To ensure the equivalence between

(3.2) and (3.4), we require the family of densities {fη(· − x) : x ∈ X} for ηi to be complete

in the following sense:

(C) [Completeness] For any measurable functions h0, h1 : Rd → R,
∫
h0(v)fη(v − x)dv =∫

h1(v)fη(v−x)dy for all x ∈ X implies h0(x) = h1(x) almost everywhere (in Lebesgue

measure) for all x ∈ X .

Condition (C) is satisfied, for example, when the density fη(·) of ηi in (1.1) is continuous

with mean 0. Similar discussion can be found in Koul and Song (2008, 2010), among others.

In our application, g0(·) in (3.2) is a log-linear function. In such a linear case, we do not

require the knowledge of the distribution of the measurement error ηi in 3.1. To see this, if

g0(x) = θ>0 x in 3.2,

µ0(x) = E[θ>0 Ti|Xi = x] = θ>0 x

Hence the distribution of ηi is not needed to perform simultaneous inference when the null

hypothesis (3.2) involves a linear function. However, with some “non-linear” g0(·),

µ0(x) = E[g0(Ti)|Xi = x] =

∫
g0(x+ y)fη(y)dy
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where fη(·) is the density function of ηi. Thus, in general, fη(·) is required to derive µ0(·) in

(3.4) such that one can conduct simultaneous inference of µ(·). With the known distribution

of ηi, the methodology proposed in this study applies to both linear and nonlinear functions

in the hypothesis (3.2). The linear function for (3.2) is used here only because it is the most

widely used form of demand. Given the distribution of ηi, our methodology allows us to test

a non-linear function in (3.2) as well.

3.2 U.S. gasoline demand

Several recent studies analyze demand for gasoline in the U.S./Canadian economy (Haus-

man and Newey (1995); Yatchew and No (2001); Blundell et al. (2012)). Schmalensee and

Stoker (1999) employ the U.S. household level data and analyze the U.S. gasoline consump-

tion. They estimate their partially linear model using 1988 and 1991 data of approximately

5, 000 observations and report a positive relationship between household income and gasoline

consumption. Yatchew and No (2001) extends for the Canadian gasoline consumption.

In contrast to the earlier works, we focus on statistical inference of the non-parametric

component in the gasoline demand. Our gasoline demand function, which is a special case

of (3.1) with d = 2, is the following:

log(TOTMILESi) = β1 log(DRV Ri) + β2 log(V EHSi) + β3 log(HHSIZEi)

+ β4 CHILDi + β5 SEXi + β6 RURALi

+ β′7 Region + g (log(INCOMEi), log(PRICEi)) + ζi (3.5)

where TOTMILESi is total miles traveled by household i, INCOMEi is annual household

income in U.S. dollars for household i and PRICEi is gasoline price. Here DRVRi, VEHSi and

HHSIZEi are regressors that represent the number of drivers, vehicles and family members for

household i, respectively. The other regressors are dummy variables such that CHILDi = 1

for a household with a child, SEXi = 1 for a female respondent, and RURALi = 1 for

a household residing in a rural area. The region dummy Region is a vector of dummy
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variables that represents different regions of the U.S. In total, there are nine different region

dummy variables. The dummy variables take either 1 or 0. The data for (3.5) are obtained

from the Residential Transportation and Energy Consumption Surveys, which are a series of

detailed household surveys on driving behavior and vehicle ownership collected by the U.S.

Department of Energy, beginning 1979. The survey used in this paper was conducted in year

2001. The total number of observations in our sample is 22, 178. The descriptions and the

summary statistics for the variables in (3.5) are given by Table 1.

The hypothesis we consider for (3.5) is the following:

H10 : g is a linear function in both argument. (3.6)

As mentioned in (3.2), the log-linear structure is widely used in demand analysis because

it provides a simple and useful analytical framework and because its coefficients represent

important structural parameters. However, such a parametric form is essentially arbitrary

and potentially misspecified (Schmalensee and Stoker (1999), Blundell et al. (2012)). Thus,

it is crucial to be able to check its validity through statistical inference. The SCR-based

methodology in this study can be readily employed to perform the desired inference.

As mentioned in Section 3.1, the household income and gasoline price variables in (3.5)

are likely to be contaminated by Berkson errors. When households are surveyed regarding

their annual incomes, they are typically asked to choose the right categories for their incomes,

rather than to report the exact amounts. When using such data in practice, the median values

for each category are taken, which leads to the unobserved true income randomly fluctuating

around the observed median. This clearly represents the Berkson error defined by (3.1).

Similarly, the gasoline price data are likely to be contaminated with the Berkson error since

they are based on self-reported household expenditure data. In this study, the gasoline price

data are obtained through dividing a household’s total annual expenditure on gasoline by

the total gallons of gasoline purchased each year because the directly observed data on price

are not available. Since the self-reported expenditure is likely to be an average of all possible
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estimates over the plausible range (Hyslop and Imbens (2001)), we naturally introduce the

Berkson error into the gasoline price estimates. Through the regression calibration, we

conduct the SCR-based inference for (3.5) which is affected by Berkson errors.

The calibrated regression model (cf. (3.3)) states:

log(TOTMILESi) = β1 log(DRV Ri) + β2 log(V EHSi) + β3 log(HHSIZEi)

+β4 CHILDi + β5 SEXi + β6 RURALi + β′7 Region

+µ
(

log(med(INCOMEi)), log( ̂PRICEi)
)

+ εi (3.7)

where med(INCOMEi) is the median of the interval that household i belongs, and ̂PRICEi

is defined to be the annual gasoline expenditure divided by the annual gallons of gasoline

purchased, which are reported by the ith household in the sample.

3.3 Empirical results

The summary statistics for the variables in (3.5) are provided by Table 1. They include the

mean and standard deviation of each variable in the gasoline demand equation, the OLS es-

timate under the fully parametric linear model, and the standard error for the corresponding

OLS estimate. Except for the gender dummy and the gasoline price variable, the OLS es-

timates are positive. The negative coefficients for the gasoline price variable and the gender

dummy indicate that the rising gasoline price makes consumers to switch to other energy

sources and that male consumers tend to consume more gasoline than their female counter-

parts. The corresponding t-statistics are very high, except for HHSIZE, which indicates

that the variables in (3.5) are statistically very significant with small p-values.

The estimation and simultaneous inference results for the non-parametric portion of (3.5)

are presented by Figs 1–3. The code that produces these figures can be found in the website

www.quantlet.de. In particular, Figs 2 and 3 show the estimated µ(x) (i.e. the solid curve)

in the calibrated model (3.7) and its corresponding 95 percent simultaneous confidence region

(SCR) (i.e. the surrounding dotted band). Here x1 refers to the household income, while
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x2 represents the gasoline price.

Fig.2 represents the two-dimensional relationship between gasoline demand and gasoline

price when the household income is fixed at a certain percentile, while Fig.3 represents the

relationship between the gasoline demand and household income when the gasoline price is

fixed instead. As the traditional demand theory in economics predicts it, Fig.2 shows that the

gasoline demand decreases in its price for all three percentiles of income. In contrast, Fig.3

illustrates that the gasoline demand rises in household income regardless of the percentile

of price. Interestingly, we can see that the slope of gasoline demand in household income

is generally steeper than that in gasoline price. The slope in demand also depends on the

percentile of income or that of price, as we observe it from Figs 2 and 3. However, the

general trend appears to hold true regardless of the corresponding percentile.

In order to accept the null hypothesis of linearity for g(·, ·) in (3.5), which is a common

assumption in demand analysis, one should be able to insert a straight line into the con-

structed SCRs in “all” of the panels in Figs 2–3. That is, if one cannot insert a straight

line into all of the constructed SCRs in Figs 2–3, then the linearity of µ(·, ·) is rejected at

5 percent level. Thus, the linearity of g(·, ·) is also rejected by the argument in Section 3.2.

Obviously, the SCRs presented in Fig.3 cannot contain any straight line in them because

of the non-linearity of the estimates and of the corresponding SCRs. Hence the linearity

hypothesis for g(·, ·) in (3.5) is clearly rejected at 5 percent level for the reasons discussed

in Section 3.2.

As mentioned in Introduction, the main advantage of SCR-based inference over the

usual integrated-squared-difference type statistics (Härdle and Mammen (1993)) is that it is

relatively straightforward to suggest an alternative based on the SCR when the null model

gets rejected. Given Figs 2–3, the linearity between the household income and gasoline

consumption is rejected while that between the gasoline price and gasoline consumption is

not. Hence β ∗price+g(income) is suggested instead of g(income, price) in (3.5). This would

be rather difficult to suggest if the original null is rejected based on the integrated-squared-
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difference type statistics and its associated p-value.

4 Concluding Remarks

The paper illustrates how to conduct the simultaneous inference of a semi-parametric par-

tially non-linear model when the number of covariate terms in the non-linear part is two

or higher. To that end, we illustrate how to construct the simultaneous confidence region

(SCR) for the multivariate unknown function. The developed methodology is applied to

perform inference of the gasoline demand function when the model covariates are possibly

contaminated by the Berkson-type measurement errors. Through the regression calibration

(Carroll et al. (1995)), we transform the original model into the one with observable covariate

terms and base the inference on the transformed one instead. The inference of the trans-

formed model is conducted through the construction of SCR, which is a multi-dimensional

extension of the two-dimensional uniform confidence band (Härdle (1989), Johnston (1982);

Kim (2016)). The relating asymptotic properties of the introduced methodology are inves-

tigated. In addition, a simulation-based construction of SCR is discussed in comparison to

the asymptotic-based approach. The empirical analysis shows that the linearity hypothesis

for the U.S. gasoline demand is rejected at 5 percent level, mainly due to the non-linear rela-

tionship between the U.S. gasoline consumption and the U.S. household income (see Fig.3).

Based on the result, an alternative form for the demand function is also suggested.

Regarding future research, this project suggests a couple of interesting topics for con-

sideration. One of them is to extend the current work to the case of time series. Unlike

the cross section one considered in this study, time series data inherently possess temporal

dependence among them. Furthermore, the data might suggest that the underlying process

is non-stationary. One possibility is to model the covariate terms as locally stationary pro-

cesses as in Kim (2016), among others. These features would require a different framework

to handle the issue more properly. Another potential extension is to consider the classical

measurement error structure. Due to the nature of the available income and price data in
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this study, we assume that the model covariates are contaminated by the Berkson errors.

One can instead assume that the error structure is the classical one and perform simulta-

neous inference of the model, accordingly. Further insight can be gained by extending the

current work in these and other possible directions.
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Appendices

In the appendix, we provide the technical details for the theoretical results given in the main

text. Section A and B contain the proof for the theorems in the main text. Section C lists

some useful results for proving our theory.

We introduce some additional notations. Let Γn = {y : |y| ≤ an}. σ2
n(x) = E

[
(Y ∗ −

µ(x))21(Y ∗ ∈ Γn)|X = x
]

and σ̃2
n = E

[
(Y ∗ − µ(x))21(Y ∗ 6∈ Γn)|X = x

]
. Denote the vector

of ones and zeros by l = (1, ..., 1) and 0 = (0, ..., 0).

A Bound for Rn

Lemma A.1. Under assumptions (A1)-(A6), suppose εi is bounded almost surely, then

‖Rn(x)‖ = oP

{(
nhd log(n)

)−1/2
}

(A.1)
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Proof. Recall that Rn(x) = EHn(x)
fX(x)

+
Hn(x)(fX(x)−f̂(x))

fX(x)f̂(x)
. Then,

sup
x
|Rn(x)| ≤ sup

x

∣∣∣∣EHn(x)

fX(x)

∣∣∣∣+ sup
x

∣∣∣∣∣∣
Hn(x)

(
fX − f̂X(x)

)
fX(x)f̂X(x)

∣∣∣∣∣∣ (A.2)

By Theorem 1.4 in Li and Racine (2007) and (A4),

sup
x

∣∣∣fX(x)− f̂X(x)
∣∣∣ = OP

(
h2 +

√
log(n)

nhd

)
(A.3)

Then, by (A.3),

sup
x

∣∣∣∣∣ f̂X(x)− fX(x)

fX(x)f̂X(x)

∣∣∣∣∣ ≤ supx

∣∣∣f̂X(x)− fX(x)
∣∣∣

infx fX(x)(fX(x)− εn)
= OP

(
h2 +

√
log(n)

nhd

)
(A.4)

where
∣∣∣f̂X(x)− fX(x)

∣∣∣ ≤ εn and εn → 0 in probability from (A.3). This leads to fX(x) −

εn ≤ f̂X(x), where fX(x) − εn > C for some constant C > 0 for sufficiently large n.

Moreover,

EHn(x) = h−dE
[
K

(
x−Xi

h

)
(µ (X) + εi − µ(x))

]
= h−dE

[
K

(
x−Xi

h

)
(µ (X)− µ(x))

]
= h−d

∫
K

(
x− t
h

)
(µ (t)− µ(x)) f(t)dt

. h−d
∫
K

(
x− t
h

)
‖x− t‖s∞f(t)dt

. h−d+s

∫
K

(
x− t
h

)
f(t)dt

= hs
∫
K(u)f(x− u)du

= O(hs)
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where the fourth inequality follows by assumption (A1) and (A3); the fifth inequality is

from the bounded support of K(·) assumed in (A1); the sixth equality is from the change-of-

variables, and the final rate is obtained by the summability condition of K(·) from (A1) and

the bounded fX(x) from (A4). Thus,

sup
x
|EHn(x)| = O(hs) (A.5)

Furthermore,

sup
x
|Hn(x)| ≤ sup

x
|Hn(x)− EHn(x)|+ sup

x
|EHn(x)| , (A.6)

where supx |Hn(x)− EHn(x)| = OP((log n/nhd)1/2) from the application of Bernstein in-

equality, and a truncation argument to εi as in the proof for Theorem 2 of Hansen (2008).

Then in view of (A.2) and (A.4)–(A.6),

sup
x
|Rn(x)| = OP

(
hs +

√
log(n)

nhd

(
h2 +

√
log(n)

nhd

))
,

note that by (A6) we have hs
√
nhd log n→ 0. Hence the lemma follows.

B Proof of Proposition 2.1

The steps of the proof mainly follow Chao et al. (2017).

Un(x) =
1√

hdσ2fX(x)

∫ ∫
K

(
x− u
h

)
(y∗ − µ(x))dZn(u, y∗) (B.1)

U0,n(x) =
1√

hdσ2
n(x)fX(x)

∫ ∫
Γn

K

(
x− u
h

)
(y∗ − µ(x))dZn(u, y∗) (B.2)

U1,n(x) =
1√

hdσ2
n(x)fX(x)

∫ ∫
Γn

K

(
x− u
h

)
(y∗ − µ(x))dBn(T (y∗,u)) (B.3)
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where Bn

{
T (y,u)

}
= Wn

{
T (y,u)

}
− F (y,u)Wn(1, ..., 1) and T (y,u) is the d dimensional

Rosenblatt transformation:

T (y,u) =
{
FX1|Y (u1|y), FX2|Y (u2|u1, y), ..., FXd|Xd−1,...,X1,Y (ud|ud−1, ..., u1, y), FY (y)

}
.

U2,n(x) =
1√

hdσ2
n(x)fX(x)

∫ ∫
Γn

K

(
x− u
h

)
(y∗ − µ(x))dWn(T (y∗,u)) (B.4)

U3,n(x) =
1√

hdσ2
n(x)fX(x)

∫ ∫
Γn

K

(
x− u
h

)
(y∗ − µ(u))dWn(T (y∗,u)) (B.5)

U4,n(x) =
1√

hdσ2
n(x)fX(x)

∫ √
σn(u)2f(u)K

(
x− u
h

)
dW (u) (B.6)

U5,n(x) =
1√
hd

∫
K

(
x− u
h

)
dW (u) (B.7)

Theorem 2.2 follows from applying Theorem 2 of Rosenblatt (1976) on U5,n(x).

Next we introduce some notations which are used repeatedly in the following proofs.

Definition B.1 (Neighboring Block in X ⊂ Rd, Bickel and Wichura (1971) p.1658). A block

B ⊂ X is a subset of X of the form B = Πi(si, ti] with s and t in X ; the pth-face of B

is Πi 6=p(si, ti]. Disjoint blocks B and C are p-neigbbors if they abut and have the same pth

face; they are neighbors if they are p-neighbors for some p ≥ 1.

To illustrate the idea of neighboring block, take d = 3 for example, the blocks (s, t] ×

(a, b]× (c, d] and (t, u]× (a, b]× (c, d] are 1-neighbors for s ≤ t ≤ u.

Definition B.2 (Bickel and Wichura (1971) p.1658). Let X : Rd → R. The increment of

X on the block B, denoted X(B), is defined by

X(B) =
∑

α∈{0,1}d
(−1)d−|α|X

{
s+α� (t− s)

}
, (B.8)

where |α| = α1 + α2 + ... + αd, ”�” denotes the componentwise product; that is, for any

vectors u,v ∈ Rd, u� v = (u1v1, u2v2, ..., udvd).
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Below we give some examples of the increment of a multivariate function X on a block:

• d = 1: B = (s, t], X(B) = X(t)−X(s);

• d = 2: B = (s1, t1]× (s2, t2]. X(B) = X(t1, t2)−X(t1, s2) +X(s1, s2)−X(s1, t2).

Lemma B.3. ‖Un − U0,n‖ = Op
(
(log n)−1/2

)
.

Proof of Lemma B.3. By the triangle inequality we have

‖Un − Un,0‖ ≤ ‖Un − Ûn,0‖+ ‖Ûn,0 − Un,0‖
def
= E1 + E2,

where Ûn,0 = σ2(x)/σn(x)Un,0(x) and the terms E1 and E2 are defined in an obvious manner.

We now show that Ej = Op
{

(log n)−1/2
}
, j = 1, 2. Note that

|Ûn,0(x)− Un,0(x)| =
∣∣∣(σ(x)/σn(x)− 1

)
Un,0(x)

∣∣∣.
It is shown later that ‖Un,0‖ = Op

(√
log n

)
, hence it remains to prove that

sup
x∈X

∣∣σ(x)/σn(x)− 1
∣∣ = O

{
(log n)−1

}
. (B.9)

Under an � (h−3d log n)1/(b1−2) → ∞ as n → ∞, σ2
n(x) → σ2(x) > 0 uniformly in x;

moreover, by (A2)(ii), we have

h−3d log n sup
x∈X
|σ̃2(x)| = h−3d log n sup

x∈X

∣∣∣∣∫
|y∗|>an

(y∗ − µ(x))2fY ∗|X(y∗|x)dy∗
∣∣∣∣ = O(1), (B.10)

which implies supx∈X |(log n)2σ̃2
n(x)/σ2

n(x)| ≤
∣∣(log n)h3dO(1)

∣∣ = O(1). Therefore,

(log n) sup
x∈X

∣∣∣∣∣
√
σ2(x)

σ2
n(x)

− 1

∣∣∣∣∣ = (log n) sup
x∈X

∣∣∣∣∣
√
σ̃2
n(x) + σ2

n(x)

σ2
n(x)

− 1

∣∣∣∣∣ ≤ sup
x∈X

∣∣∣∣∣
√

(log n)2σ̃2
n(x)

σ2
n(x)

∣∣∣∣∣→ 0,

as n→∞, hence E2 = Op
(
(log n)−1/2

)
.

We now show that E1 = op((log n)−1). To do this, it is enough to show the weak
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convergence of log nE1, and it requires to show the finite dimensional convergence to 0 with

rate (log n)−1 and the tightness of the process inducing E1 in D(X ) in the sense of Chapter

3 of Billingsley (1968). First, we observe that

(log n)1/2E1 = (log n)1/2 sup
x∈X
|Un(x)− Ûn,0(x)|

= (log n)1/2 sup
x∈X

∣∣∣∣∣ 1√
hdfX(x)σ2(x)

∫ ∫
{|y|>an}

K

(
x− u
h

)
(y∗ − µ(x))dZn(y∗,u)

∣∣∣∣∣
= sup
x∈X

∣∣∣∣∣ 1√
fX(x)σ2(x)

Vn(x)

∣∣∣∣∣ ,
where

Vn(x) =
n∑
i=1

Wn,i(x),

and

Wn,i(x) = (log n)1/2(nhd)−1/2

{
ψ(Y ∗i − µ(x))1(|Y ∗i | > an)K

(x−Xi

h

)
−E
[
ψ(Y ∗i − µ(x))1(|Y ∗i | > an)K

(x−Xi

h

)]}
.

Note that fX(x)σ2(x) > 0 for all x ∈ X by Assumption (A2) and (A4). By (B.10),

E[Wn,i(x)2] ≤ (log n)(nhd)−1E

[(
Y ∗i − µ(x)

)2
1(|Y ∗i | > an)K2

(x−Xi

h

)]
≤ (log n)(nhd)−1CK σ̃

2
n(x)

= O(h2dn−1).

Thus,

E

( n∑
i=1

Wn,i(x)

)2
 ≤ nE

[
(Wn,i(x))2] = O(h2d) = O

(
(log n)−1

)
,

as n→∞. From Markov’s inequality, Vn(x) = op(1) for each fixed x ∈ X . With this result,
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finite convergence follows by Cramér-Wold theorem and the detail is omitted.

We now show the tightness of Vn(x) for x ∈ X . To simplify the expression, define

g(x)
def
= {Y ∗ − µ(x)}K

(
x−X

h

)
.

Take arbitrary neighboring blocksB,C ⊂ X (see Definition B.1) and supposeB = Πd
i=1(si, ti],

E[Vn(B)2]1/2 ≤ (log n)1/2h−d/2
{
E
[
1(Y ∗i > an)

( ∑
α∈{0,1}d

(−1)d−|α|g
(
s+α� (t− s)

))2]
+ E
[
1(Y ∗i < −an)

( ∑
α∈{0,1}d

(−1)d−|α|g
(
s+α� (t− s)

))2]}1/2

def
= (log n)1/2h−d/2(I1 + I2)1/2,

where I1 and I2 are defined in an obvious manner. Hence, I1 can be estimated as

I1 ≤ 2

∫ ∫
1(y∗ > an)y∗2

( ∑
α∈{0,1}d

(−1)d−|α|K
[(
s+α� (t− s)− u

)
/h
])2

f(y∗,u)dydu.

+ 2

∫ ∫
1(y∗ > an)

( ∑
α∈{0,1}d

(−1)d−|α|µ(
(
s+α� (t− s))K

[(
s+α� (t− s)− u

)
/h
])2

f(y∗,u)dydu

Note that

∑
α∈{0,1}d

(−1)d−|α|K
[(
s+α� (t− s)− u

)
/h
]

=

∫
B

∂(1,...,1)K
(v − u

h

)
dv ≤ h−dCK′λ(B),

∑
α∈{0,1}d

(−1)d−|α|µ(
(
s+α� (t− s))K

[(
s+α� (t− s)− u

)
/h
]

=

∫
B

∂(1,...,1)
{
µ(v)K

(v − u
h

)}
dv ≤ h−dCK′,µ′λ(B),

where by (A1) and (A3) the constant CK′ , CK′,µ′ > 0 satisfies supu∈D |∂αK(u)| ≤ CK′ and

supu∈D |∂α{µ(u)K(u)}| ≤ CK′,µ′ . λ(·) is the Lebesgue measure.

Taking C1 = max{CK′ , CK′,µ′} > 0. Under the constraint that y∗ > an > 1 for large
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enough n, we have

I1 ≤ 4

∫ ∫ ∞
an

y∗2
(
C1h

−dλ(B)
)2
f(y∗,u)dydu = 4h−2dC2

1λ(B)2

∫
{y∗>an}

y∗2fY ∗(y
∗)dy∗.

By symmetry,

I2 ≤ 4h−2dC2
1λ(B)2

∫
{y<−an}

y∗2fY ∗(y
∗)dy∗.

Hence, by (2.1) in (A2),

E[Vn(B)2]1/2 ≤ 2C1λ(B)

(
h−3d log n

∫
{|y∗|>an}

y∗2fY ∗(y
∗)dy∗

)1/2

≤ 2C1C
∗λ(B).

Analogously we obtain the estimate for

E[Vn(C)2]1/2 ≤ 2C1C
∗λ(C),

which finally yields by Hölder’s inequality,

E[|Vn(B)||Vn(C)|] ≤ E[|Vn(B)|2]1/2E[|Vn(C)|2]1/2 ≤ 4C2
1C
∗2λ(B)λ(C).

Applying Lemma C.1 with γ1 = γ2 = λ1 = λ2 = 1 yields the tightness.

Lemma B.4. ‖U0,n − U1,n‖ = Op
(
n−1/6h−d/2(log n)ε+(2d+4)/3an

)
for any ε > 0.

Proof of Lemma B.4. In this proof, we adopt the notation that if α ∈ {0, 1}d+1, then

we write α = (α1,α2) where α1 ∈ {0, 1} and α2 ∈ {0, 1}d. In the computation below, we

focus on Bx = Πd
j=1

[
xj − Ah, xj + Ah

]
instead of Rd since K has compact support. Recall

definition B.1 of an increment of a function X over a block B. Integration by parts for
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multivariate integral (see, for example, Theorem 3.4 on p.64 of Proksch (2012)) gives,

U0,n(x) =
1√

hdfX(x)σ2
n(x)

[ ∫
Bx

∫
Γn

Zn(y,u) d

((
y∗ − µ(x)

)
K

(
x− u
h

))
+
{
Zn
(
·1, ·2

)(
·1 −µ(x)

)
K
(x− ·2

h

)}(
Γn ×Bx

)
(B.11)

+

{ ∑
α∈{0,1}d+1−{0,l}

∫ ∫
(Γn×Bx)α

Zn(·1, ·2) dα1
(
·1 −µ(x)

)
∂α2K

(
x− ·2
h

)}(
Γn ×Bx

)
l−α

]

where l = (1, ..., 1) ∈ {0, 1}d+1 and 0 = (0, ..., 0) ∈ {0, 1}d+1.
(
Γn × Bx

)
is a d + 1 di-

mensional cube. ·1 corresponds to the one-dimensional variable y and ·2 corresponds to the

two-dimensional variable u. The second term in (B.11) can be evaluated with the formula

(B.8).
(
Γn × Bx

)
l−α can be viewed as the projection of Γn × Bx on to the space spanned

by those axes whose numbers correspond to positions of ones of the multi-index l−α. This

leaves us with an |α|-fold integral.

Moreover, d
{(
y∗ − µ(x)

)
K((x− u)/h)

}
= ∂y∗

(
y∗ − µ(x)

)
∂l2uK

(
(x− u)/h

)
, where l2 =

(1, ..., 1) ∈ {0, 1}d and d
(
y∗ − µ(x)

)
= 1.

By applying integration by parts for Brownian integral (Theorem 3.5 on p.70 of Proksch

(2012)) to U1,n(x), and by Theorem 3.2 in Dedecker et al. (2014), we obtain for every ε > 0,

hd/2n1/6(log n)−ε−(2d+4)/3a−1
n |U0,n(x)− U1,n(x)|

≤ O(1)

∣∣∣∣ a−1
n√

fX(x)σ2
n(x)

∣∣∣∣{2an

∣∣∣∣∫
Bx

dK((x− u)/h)

∣∣∣∣+ 2an

∣∣∣K(x− ·2
h

)∣∣∣(Bx)
+ 2an

∣∣∣∣ ∑
α1=1,α2∈{0,1}d−{l2}

∫
(Bx)α2

∂α2K

(
x− ·2
h

)∣∣∣∣(Bx)l2−α2

+ 2an

∣∣∣∣ ∑
α1=0,α2∈{0,1}d−{02}

∫
(Bx)α2

∂α2K

(
x− ·2
h

)∣∣∣∣(Bx)l2−α2

}
, a.s.

(B.12)

By (A1), K is of bounded variation in the sense of Hardy and Krause (Owen (2005) definition

2), (B.12) is almost surely bounded.
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Lemma B.5. ‖U1,n − U2,n‖ = Op
(
hd/2

)
.

Proof of Lemma B.5. Since Bn

(
T (y,u)

)
= Wn

(
T (y,u)

)
−F (y,u)Wn(1, ..., 1), we obtain

by a change of variables and a first order approximation to f(y,x− hv):

‖U1,n − U2,n‖

. hd/2
∣∣∣ ∫ K (v) dv

∣∣∣ ∥∥∥∥∥ 1√
fX(x)σ2

n(x)

∫
Γn

∣∣y∗ − µ(x)
∣∣f(y∗,x)dy∗ +O(h)

∥∥∥∥∥ |W (1, ..., 1)|

Note that |W (1, ..., 1)| = Op(1), Y ∗i −µ(x) has a finite second moment by (A2)(i) is uniformly

bounded on X .

Lemma B.6. ‖U2,n − U3,n‖ = Op
(
h1−δ), where 0 < δ < 1.

Proof of Lemma B.6. Define

Vn(x)
def
= U2,n(x)− U3,n(x)

=
1√

hdfX(x)σ2
n(x)

∫ ∫
Γn

{(
y∗ − µ(x)

)
− (y∗ − µ(u))

}
K

(
x− u
h

)
dW
(
T (y∗,u)

)
=

1√
hdfX(x)σ2

n(x)

∫ ∫
Γn

(
µ(u)− µ(x)

)
K

(
x− u
h

)
dW
(
T (y∗,u)

)
. (B.13)

Via applying mean value theorem to µ and (A3), and the fact that FY ∗|X(y∗|u) ≤ 1 for all

y∗ and u,

E

[(V (x)

h

)2
]

=
1

hd+2fX(x)σ2
n(x)

∫ ∫
Γn

(
µ(u)− µ(x)

)2
K2

(
x− u
h

)
f(y∗,u)dy∗du

≤ Cµ′

hd+2fX(x)σ2
n(x)

∫ (
FY ∗|X(an|u)− FY ∗|X(−an|u)

)
|x− u|2K2

(
x− u
h

)
fX(u)du

≤ C2

h2fX(x)σ2
n(x)

∫
K2(z)|hz|2fX(x)dz +O(h) ≤ 2C2dA2

σ2
n(x)

‖K‖2
2 +O(h),

where the last inequality follows from Assumption (A1) that K has bounded support. There-
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fore,

σ2 def
= sup

x∈X
E

[(Vn(x)

h

)2
]
≤ C +O(h), (B.14)

Now we compute d(s, t) defined in Lemma C.2.

E

[(V (t)− V (s)

h

)2
]
≤ 2

hd+2

∫ ∫
Γn

(
µ(s)− µ(t)

)2
K2

(
s− u
h

)
f(y∗,u)dy∗du+

2

hd+2

∫ ∫
Γn

(
µ(u)− µ(t)

)2
[
K

(
t− u
h

)
−K

(
s− u
h

)]2

f(y∗,u)dy∗du
def
= I1 + I2.

We estimate I1 first,

I1 ≤
2Cµ′

hd+2

∫
‖t− s‖2

∞K
2

(
s− u
h

)
fX(u)du

≤ 2Cµ′

hd+2
‖s− t‖2

∞

∫
K2

(
s− u
h

)
fX(u)du .

‖s− t‖2
∞

h2
,

where by (A3) there exists constant Cµ′ > 0 such that
∑d

j=1 supx∈X |∂jµ(x)| ≤ Cµ′ , and the

last inequality uses (A1) that K is bounded.

For I2, by (A3), we obtain

I2 ≤
2Cµ′

hd+2

∫
‖t− u‖2

[
K

(
t− u
h

)
−K

(
s− u
h

)]2

fX(u)du

≤ 4Cµ′

hd+2

‖s− t‖∞
h

∫
‖hz‖2

∣∣∣∣K (z)−K
(
z +

s− t
h

)∣∣∣∣ fX(x+ hz)dz

≤ 4Cµ′
‖s− t‖∞

h

[∫
[−A,A]d

‖z‖2 |K (z)| dz +

∫
[−A,A]d−s−t

h

‖z‖2

∣∣∣∣K (z +
s− t
h

)∣∣∣∣ dz
]
.
‖s− t‖∞

h
,

where in the last inequality we again uses the bounded support property of K(·) in (A1).

Thus, for the function γ defined in Lemma C.2, we obtain the estimate γ(ε) ≤ C max{
√
ε/h, ε/h} ≤

C
√
ε/h for ε < 1 and C > 0, and

Q(m) ≤ C ′(2 +
√

2)

∫ ∞
1

√
m2−y2

h
dy ≤ C ′

√
m

h
,
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where C ′ > 0 and m < 2. Observe that the graph of the inverse of a univariate, injective

function Q(m) is its reflection about the diagonal line, so the inverse of an upper bound for

Q would be a lower bound for Q−1. Given the upper bound above, we can therefore bound

Q−1 from below by

2 > Q−1(a) ≥ (C ′)−2h2a2.

Let a = ηh−δ for 0 < δ < 1 and arbitrary η > 0. Q−1(a−1) = Q−1
(
η−1hδ

)
≥ (C ′)−2η−2h2+2δ.

σ > a−1 when n is large. Applying Lemma C.2 yields

P

{
sup
x∈X

∣∣∣∣Vn(x)√
h

∣∣∣∣ > ηh−δ
}
≤ 22d+2(2r)dη2dh−2d(1+δ) 2σ

ηh−δ
exp

{
− η2h−2δ

8σ2

}
,

for large enough n and all η > 0, where r is a constant depending on X .

Lemma B.7. U3,n(x)
d
= U4,n(x) for all x ∈ X .

Proof of Lemma B.7. The proof resembles the proof for Lemma A.5 in the supplement

material of Chao et al. (2017) and is omitted for brevity.

Lemma B.8. ‖U4,n − U5,n‖ = Op
(
h1−δ), where 0 < δ < 1.

Proof of Lemma B.8. We will proceed as in Lemma B.6 and apply Lemma C.2. Set

Ṽn(x)
def
= U4,n(x)− U5,n(x)

=
1√

hdfX(x)σ2
n(x)

∫ (√
σ2
n(u)fX(u)−

√
σ2
n(x)fX(x)

)
K

(
x− u
h

)
dW (u).

To apply Lemma C.2, we need to estimate

E

[( Ṽn(t)

h

)2
]

=
1

hd+2fX(t)σ2
n(t)

∫ (√
σ2
n(u)fX(u)−

√
σ2
n(t)fX(t)

)2

K2

(
t− u
h

)
du

=
1

hd+2fX(t)σ2
n(t)

∫ {√
σ2
n(u)

[√
fX(u)−

√
fX(t)

]
+
√
fX(x)

[√
σ2
n(u)−

√
σ2
n(t)

]}2

K2

(
t− u
h

)
du.
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Note that 0 < infx∈X fX(x) < supx∈X fX(x) < ∞ by (A4), σn(x)2 ≤ σ(x)2 < ∞ for all n

and x ∈ X by (A2)(i), and for sufficiently large n, σn(x)2 > 0. Hence,

E

[( Ṽn(t)

h

)2
]
≤ 2Ch−d−2

{∫ [√
fX(u)−

√
fX(t)

]2

K2

(
t− u
h

)
du

+

∫ [√
σ2
n(u)−

√
σ2
n(t)

]2

K2

(
t− u
h

)
du

}
,

We have σ2
n(x) = σ2(x)−σ̃2

n(x). By (B.10) in Lemma B.3, supx∈X σ̃
2
n(x) = O(h3d log−1 n).

For large enough n such that σ2
n(x) > 0,

[√
σ2
n(u)−

√
σ2
n(t)

]2

=

[
σ2
n(u)− σ2

n(t)√
σ2
n(u) +

√
σ2
n(t)

]2

≤ C
[
σ̃2
n(t)− σ̃2

n(u)
]2

= O(h6d log−2 n).

Moreover,
√
fX(x) is continuously differentiable on X by assumption (A4). Along with∫

|z|2K(z) <∞ by (A1), we have

sup
t∈X

E

[( Ṽn(t)

h

)2
]

= O(1).

On the other hand,

E

[( Ṽn(t)− Ṽn(s)

h

)2
]

≤ Ch−d−2

∫ {[√
σ2
n(u)fX(u)−

√
σ2
n(t)fX(t)

]
K

(
t− u
h

)
−
[√

σ2
n(u)fX(u)−

√
σ2
n(s)fX(s)

]
K

(
s− u
h

)}2

du

= Ch−d−2

∫ {[√
σ2
n(u)fX(u)−

√
σ2
n(t)fX(t)

][
K

(
t− u
h

)
−K

(
s− u
h

)]
+
[√

σ2
n(t)fX(t)−

√
σ2
n(s)fX(s)

]
K

(
s− u
h

)}2

du

≤ 2Ch−d−2

∫ [√
σ2
n(u)fX(u)−

√
σ2
n(t)fX(t)

]2[
K

(
t− u
h

)
−K

(
s− u
h

)]2

du

+ 2Ch−d−2

∫ [√
σ2
n(t)fX(t)−

√
σ2
n(s)fX(s)

]2

K2

(
s− u
h

)
du

def
= I1 + I2.
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From

[√
σ2
n(t)fX(t)−

√
σ2
n(s)fX(s)

]2

=

[
σ2
n(t)fX(t)− σ2

n(s)fX(s)√
σ2
n(t)fX(t) +

√
σ2
n(s)fX(s)

]2

≤ C‖t− s‖2
∞,

we obtain

I2 = C
‖t− s‖2

∞
h2

.

By change of variables and a similar argument as to bound I2 in the proof of Lemma B.6, it

follows

I1 ≤ C
‖s− t‖∞

h
.

Computing γ(ε), Q(m), Q−1(a) as in Lemma B.6. Setting a = ηh−δ for 0 < δ < 1 and

arbitrary η > 0, and applying Lemma C.2 as in Lemma B.6 give the desired result.

C Auxiliary Results

Lemma C.1 (Bickel and Wichura (1971): Tightness of processes on a multidimensional

cube). If {Xn}∞n=1 is a sequence in D[0, 1]d, P(X ∈ [0, 1]d) = 1. For neighboring blocks B,C

in [0, 1]d (see Definition B.1) constants λ1 + λ2 > 1, γ1 + γ2 > 0, {Xn}∞n=1 is tight if

E[|Xn(B)|γ1|Xn(C)|γ2 ] ≤ λ(B)λ1λ(C)λ2 , (C.1)

where µ(·) is a finite nonnegative measure on [0, 1]d (for example, Lebesgue measure), where

the increment of Xn on the block B is defined by

Xn(B) =
∑

α∈{0,1}d
(−1)d−|α|Xn

(
s+α� (t− s)

)
.

Lemma C.2 (Meerschaert, M. M., Wang, W. and Xiao, Y. (2013)). Suppose that Y =
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{Y (t), t ∈ Rd} is a centered Gaussian random field with values in R, and denote

d(s, t)
def
= dY (s, t) =

(
E|Y (t)− Y (s)|2

)1/2
, s, t ∈ Rd.

Let X be a compact set contained in a cube with length r in Rd and let σ2 = supt∈X E[Y (t)2].

For any m > 0, ε > 0, define

γ(ε) = sup
s,t∈X ,‖s−t‖≤ε

d(s, t)

and

Q(m) = (2 +
√

2)

∫ ∞
1

γ(m2−y
2

)dy.

Then, for all a > 0 which satisfy a ≥ (1 + 4d log 2)1/2(σ + a−1),

P

{
sup
t∈S
|Y (t)| > a

}
≤ 22d+2

(
r

Q−1(1/a)
+ 1

)d
σ + a−1

a
exp

{
− a2

2(σ + a−1)2

}
, (C.2)

where Q−1(a) = sup{m : Q(m) ≤ a}.
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Figure 1: U.S. gasoline demand in income and price. The unit is log scale of U.S. dollar.
The bandwidth is obtained through undersmoothing of the GCV -chosen one. EIV UCS
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Table 1: Variables in the RTECS Surveys from Year 2001. The unit is in U.S. dollar.

Variable Description Mean Std. Dev. OLS estimate
(std. error)

Log of Total Miles Traveled (TOTMILES) 4.214 0.423 -

Log of Income (INCOME) 4.623 0.333 0.190
(0.008)

Log of Gasoline Price (PRICE) 0.125 0.026 −0.516
(0.086)

Log of Number of Drivers (DRV R) 0.236 0.170 0.266
(0.026)

Log of Number of Vehicles (V EHS) 0.248 0.212 0.825
(0.014)

Log of Household Size (HHSIZE) 0.344 0.227 0.008
(0.031)

Child Dummy (CHILD) 0.348 0.476 2.397
(0.030)

Gender Dummy (SEX) 0.584 0.493 −0.029
(0.005)

Urban Residence Dummy (RURAL) 0.254 0.435 0.086
(0.005)

Region Dummy Variables (Region)

New England 0.091 0.288 0.812
(0.011)

Middle Atlantic 0.187 0.390 0.802
(0.011)

East North Central 0.069 0.254 0.783
(0.012)

West North Central 0.026 0.160 3.270
(0.038)

South Atlantic 0.090 0.286 3.146
(0.036)

East South Central 0.102 0.302 2.926
(0.035)

West South Central 0.055 0.227 3.214
(0.038)

Mountain 0.199 0.399 3.139
(0.038)

Pacific 0.181 0.385 3.032
(0.037)
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Figure 2: U.S. gasoline demand; The dashed band is 95% simultaneous confidence region.
EIV UCS

41

https://github.com/QuantLet/EIV_UCS/tree/master/EIV_UCS


0.2 0.4 0.6 0.8

3.
70

3.
75

3.
80

3.
85

3.
90

3.
95

4.
00

income

ga
so

lin
e

(a) 25th-percentile price

0.2 0.4 0.6 0.8

3.
70

3.
75

3.
80

3.
85

3.
90

3.
95

4.
00

income

ga
so

lin
e

(b) 50th-percentile price

0.2 0.4 0.6 0.8

3.
70

3.
75

3.
80

3.
85

3.
90

3.
95

4.
00

income

ga
so

lin
e

(c) 75th-percentile price

Figure 3: U.S. gasoline demand; The dashed band is 95% simultaneous confidence region.
EIV UCS
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