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A B S T R A C T

The cryptocurrency market is unique on many levels: Very volatile, frequently changing market
structure, emerging and vanishing of cryptocurrencies on a daily level. Following its development
became a difficult task with the success of cryptocurrencies (CCs) other than Bitcoin. For fiat
currency markets, the IMF offers the index SDR and, prior to the EUR, the ECU existed, which
was an index representing the development of European currencies. Index providers decide on a
fixed number of index constituents which will represent the market segment. It is a challenge to fix
a number and develop rules for the constituents in view of the market changes. In the frequently
changing CC market, this challenge is even more severe. A method relying on the AIC is proposed
to quickly react to market changes and therefore enable us to create an index, referred to as
CRIX, for the cryptocurrency market. CRIX is chosen by model selection such that it represents
the market well to enable each interested party studying economic questions in this market and
to invest into the market. The diversified nature of the CC market makes the inclusion of altcoins
in the index product critical to improve tracking performance. We have shown that assigning
optimal weights to altcoins helps to reduce the tracking errors of a CC portfolio, despite the fact
that their market cap is much smaller relative to Bitcoin. The codes used here are available via
www.quantlet.de.

1. Introduction

More and more companies have started offering digital payment systems. Smartphones have evolved into a digital wallet, telephone
companies offer banking related services: clear signal that we are about to enter the era of digital finance. In fact we are already acting
inside a digital economy. The market for e-𝑥 (𝑥 = ‘‘finance’’, ‘‘money’’, ‘‘book’’, you name it . . . ) has not only picked up enormous
momentum but has become standard for driving innovative activities in the global economy. A few clicks at 𝑦 and payment at 𝑧
brings our purchase to location 𝑤. Own currencies for the digital market were therefore just a matter of time. Due to organizational
difficulties the idea of the Nobel Laureate Hayek, see Hayek (1990), of letting companies offer concurrent currencies seemed for a
long time scarcely feasible, but the invention of the Blockchain has made it possible to bring his vision to life. Cryptocurrencies (CCs)
have surfaced and opened up an angle towards this new level of economic interaction. Since the appearance of Bitcoins, several new
CCs have spread through the Web and offered new ways of proliferation. Even states accept them as a legal payment method or part
of economic interaction. E.g., the USA classifies CCs as commodities, Kawa (2015), and lately Japan announced that they accept
them as a legal currency, EconoTimes (2016). Obviously, the crypto market is fanning out and shows clear signs of acceptance and
deepening liquidity, so that a closer look at its general moves and dynamics is called for.
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The transaction graph of Bitcoin (BTC), the Blockchain, has received much attention, see e.g. Ron and Shamir (2013) and Reid
and Harrigan (2013). Even the economics of BTC has been studied, e.g. Bolt and Oordt (2016) and Kristoufek (2015). To our best
knowledge, the development of the entire CC market has not been studied so far, only subsamples have been taken into account.
Wang and Vergne (2017) studied the variations of 5 CCs. Elendner et al. (2017) analyzed the top 10 CCs by market capitalization and
found that their returns are weakly correlated with each other. Furthermore, a Principal Component (PC) Analysis, carried out in the
same reference, showed 7 out of 10 PC were necessary to describe more than 90% of the variance. These findings indicate the price
evolution of CCs is very different from each other. This brings us to the conclusion that BTC, even though it dominates the market in
terms of its market capitalization, cannot lead the direction of the market. The movements of other CCs are important too, when one
analyzes the market. Having a closer look at the different CCs, it becomes obvious they have different kind of missions and technical
aspects. Bitcoin pioneered as the token of the first decentralized, distributed ledger, giving start to multiple interpretations of its
nature and purpose: new type of currency, commodity (like gold), alternative asset or innovative technology. The currently second
most important CC by market capitalization—Ethereum – was created with a particular goal in mind – to power the blockchain
based Ethereum platform for company building (DAO) and smart contract implementation. This idea triggered an unprecedented
interest as it allowed companies to enter the field without creating their own blockchain ecosystem. Newcomers could benefit from
the existing supporters of the respective platform, which allowed faster entry, adoption and operation. Other CCs, like Ripple (XRP),
are intended to fuel the transaction network bridging traditional markets (banks) and the crypto ecosystem. Ripple also became one of
the first successful cases of pre-emitted CC, abandoning the idea of decentralization. Since the appearance of BTC many technological
advancements took place. Some CCs are designed for faster (or even immediate) transactions, like Litecoin (LTC), some are more
efficient energy-wise, like DASH. Many embraced different hashing algorithms, altering the mining process, like Monero. Long ASIC
domination is being disrupted, Proof-of-work is replaced by Proof-of-Stake, new ways to motivate those providing computational
power are introduced. Regardless the type of CC, one witnesses a new kind of transaction network with a different approach for fees
and handling of trust issues. The intended and actual usage can be interpreted as the business model of the different CCs and the
participation in either CC can give advantages over others, White (2014).

In the first month of 2017, CCs other than BTC (altcoins) showed a strong gain in their market capitalization, reducing the
dominance of BTC in the market. The finding of very different movements of CCs and the stronger position of alternative CCs in
the market infers the necessity of a market index for the CC market for tracking the market movements. Comparing CCs against a
market index answers economic questions like which business model is more successful than another one, gained recently compared
to other CCs, drives the success of the market, is more established. Comparing a CC market index against other market indices
answers economic and financial questions like which market proxy is more volatile, has more tail risk, attracts more investments. We
construct CRIX, a market index (benchmark) which will enable each interested party to study the outlined economic questions, the
performance of the CC market as a whole or of single CCs. Studying the stochastic dynamics of CRIX will allow a la limite to create
ETFs or contingent claims.

Many index providers construct their indices with a fixed number of constituents, see e.g. FTSE (2016), S&P (2014) and Deutsche
Boerse AG (2013). If the respective index is intended to be a proxy for the performance of a market, this requires huge trust from
economists and investors into the choice of the index constituents by the index provider. On the other hand, the CRSP index family,
derived for the US market, CRSP (2015), has no boundary on the number of index constituents. The number of constituents is reviewed
daily and adjusted until the index members cover a predefined share of the market capitalization. Such a dynamic methodology is
important in the market of CCs since the number of CCs changes daily. Additionally the market value of CCs often changes frequently,
which increases the market volatility and therefore the need for considering such a CC for the representation of the market. Our
intention is extending the idea behind the CRSP indices. Our first goal is constructing a methodology for CRIX which relies on model
selection criteria to receive a proxy for the market and to replace the trust problematic with a statistical methodology. The resulting
methodology is dynamic in the number of index constituents, like the CRSP indices. By this method only CCs which add informative
value to the index are considered, which makes it representative. If more CCs than BTC are necessary to fulfill this requirement, they
will be added. However we are concerned with the dominance of BTC in an index solely relying on market capitalization. Thus we
introduce a second weighting scheme based on weighting by trading volume. Due to the usage of trading volume, the respective index
is constructed in terms of trading focus. If the market participants focus more on altcoins than on BTC, these receive a higher weight.
On the other hand, if the market focus is truly on BTC, it will receive a high weight in either index. Our second goal, constructing
an investable index will be fulfilled by the methodology itself due to having a sparse index, only consisting of actively traded CCs
in a market with low transaction costs. Note that due to the low transaction costs in the CC market, a dynamic methodology creates
low additional costs. Additionally to the methodology ensuring an investable index, the proposed trading volume weighting scheme
further supports this goal.

Investing into an ETF composed of the constituents of CRIX implies some differences compared to traditional index investing. In
the traditional setting only the constituents are reviewed and replaced on the review date – if necessary – according to the index
rules. In dynamic index investing the constituents are also reviewed for their number. This requires the manager of the fund to buy
and sell more assets on the review date. In a market with high transaction costs, this approach is more costly. But the market of CCs
has very low transaction costs, thus this problem will not occur in this market.

To compute CRIX, the differences in the log returns of the market against a selection of possible indices is evaluated. The results
show, that the AIC works well to evaluate the differences. It penalizes the index for the number of constituents. For the calculation
of the respective likelihoods, a non-parametric approach using the Epanechnikov (1969) kernel is applied. The proof for the impact
of the value of an asset in the market on the AIC method is given, thus a top-down approach is applied to select the assets for
the benchmarks to choose from, where the sorting depends on either market cap or trading volume. The number of constituents is
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recalculated quarterly to ensure an up-to-date fit to the current market situation. With CRIX one may study the contingent claims
and the stochastic nature of this index, Chen et al. (2017), or study the CC market characteristics against traditional markets, Härdle
and Trimborn (2015).

This paper is structured as follows. Section 2 introduces the topic and reviews the basics of index construction. In Section 3
the method for dynamic index construction for CRIX is described and Section 4 introduces the remaining rules for CRIX. Section 5
describes further variants to create a CRIX family. Their performance is tested in Section 6. In Sections 7 and 8 the new method is
applied to the German and Mexican stock markets to check the performance of the methodology against existing indices. The codes
used to obtain the results in this paper are available via www.quantlet.de.

2. Index construction

The basic idea of any price index is to weight the prices of its constituent goods by the quantities of the goods purchased or
consumed. The Laspeyres index takes the value of a basket of 𝑘 assets and compares it against a base period:

𝑃𝐿
0𝑡 (𝑘) =

∑𝑘
𝑖=1 𝑃𝑖𝑡𝑄𝑖0

∑𝑘
𝑖=1 𝑃𝑖0𝑄𝑖0

(1)

with 𝑃𝑖𝑡 the price of asset 𝑖 at time 𝑡 and 𝑄𝑖0 the quantity of asset 𝑖 at time 0 (the base period). For market indices, such as CRSP,
S&P500 or DAX, the quantity 𝑄𝑖0 is the number of shares of the asset 𝑖 in the base period. Multiplied with its corresponding price,
the market capitalization results, hence the constituents of the index are weighted by their market capitalizations. These indices are
often referred to as benchmarks for their respective market. We define the term benchmark:

Definition 1. A benchmark is a measure which consists of a selection of CCs that are representing the market.

But markets change. A company which was representative for market developments yesterday might no longer be important today.
On top of that, companies can go bankrupt, a corporation can raise the number of its outstanding shares, or trading in it can become
infrequent. All these situations must produce a change in the index structure, so that the market is still adequately represented. Hence
companies have to drop out of the index and have to be replaced by others. The index rules determine in which cases such an event
happens. The formula of Laspeyres (1) cannot handle such events entirely because a change of constituents will result in a change
in the index value that is not due to price changes. Therefore, established price indices like DAX or S&P500, see Deutsche Boerse
AG (2013) and S&P (2014) respectively, and the newly founded index CRIX(𝑘), a CRyptocurrency IndeX, thecrix.de, use the adjusted
formula of Laspeyres,

CRIX𝑡(𝑘, 𝛽) =

∑𝑘
𝑖=1 𝛽𝑖,𝑡−𝑙 𝑃𝑖𝑡𝑄𝑖,𝑡−𝑙
𝐷𝑖𝑣𝑖𝑠𝑜𝑟(𝑘)𝑡−𝑙

(2)

with 𝑃 , 𝑄 and 𝑖 defined as before, 𝛽𝑖,𝑡−𝑙 the adjustment factor of asset 𝑖 found at time point 𝑡−𝑙 , 𝑙 indicates that this is the 𝑙th adjustment
factor, and 𝑡−𝑙 the last time point when 𝑄𝑖,𝑡−𝑙

, 𝐷𝑖𝑣𝑖𝑠𝑜𝑟(𝑘)𝑖,𝑡−𝑙 and 𝛽𝑖,𝑡−𝑙 were updated. In the classical setting, 𝛽𝑖,𝑡−𝑙 is defined to be 𝛽𝑖,𝑡−𝑙 = 1
for all 𝑖 and 𝑙. Anyhow, some indices use 𝛽𝑖,𝑡−𝑙 to achieve maximum weighting rules, e.g. Deutsche Boerse AG (2013) and MEXBOL
(2013). The 𝐷𝑖𝑣𝑖𝑠𝑜𝑟 ensures that the index value of CRIX has a predefined value on the starting date. It is defined as

𝐷𝑖𝑣𝑖𝑠𝑜𝑟(𝑘, 𝛽)0 =
∑𝑘

𝑖=1 𝛽𝑖0𝑃𝑖0𝑄𝑖0

starting value . (3)

The starting value could be any possible number, commonly 100, 1000 or 10000. It ensures that a positive or negative development
from the base period will be revealed. Whenever changes to the structure of CRIX occur, the 𝐷𝑖𝑣𝑖𝑠𝑜𝑟 is adjusted in such a way that
only price changes are reflected by the index. Defining 𝑘1 and 𝑘2 as number of constituents, it results

∑𝑘1
𝑖=1 𝛽𝑖,𝑡−𝑙−1𝑃𝑖,𝑡−1𝑄𝑖,𝑡−𝑙−1
𝐷𝑖𝑣𝑖𝑠𝑜𝑟(𝑘1, 𝛽)𝑡−𝑙−1

= CRIX𝑡−1(𝑘1, 𝛽) = CRIX𝑡(𝑘2, 𝛽) =

∑𝑘2
𝑗=1 𝛽𝑗,𝑡−𝑙 𝑃𝑗,𝑡𝑄𝑗,𝑡−𝑙
𝐷𝑖𝑣𝑖𝑠𝑜𝑟(𝑘2, 𝛽)𝑡−𝑙

. (4)

In indices like FTSE, S&P500 or DAX the number of index members is fixed, 𝑘1 = 𝑘2, see FTSE (2016), S&P (2014) and Deutsche
Boerse AG (2013). As long as the goal behind these indices is the reflection of the price development of the selected assets, this is a
straightforward approach. But, e.g., DAX is also meant to be an indicator for the development of the market as a whole, see Janßen and
Rudolph (1992). This raises automatically the question of whether the included assets and the weighting scheme are representing the
market. Since the constituents are chosen using a top-down approach, meaning that the biggest companies by market capitalization
are included, the intuitive answer is yes. But it leaves a sour taste that additional assets may describe the market more appropriately.
Furthermore different weighting schemes provide another view on the market. One may object by referring to total market indices like
the Wilshire 5000, S&P Total Market Index or CRSP U.S. Total Market Index, see Wilshire Associates (2015), S&P (2015) and CRSP
(2015), that are providing a full description. But financial practice has shown that smaller indices like DAX30 and S&P500 receive
more attention in evaluating the movements of their corresponding markets, probably because they are easier to invest in due to the
smaller number of constituents. It is therefore appealing to know which are the representative assets in a market and which smaller
number of index constituents eases the handling of a tracking portfolio. Additionally, one may be concerned that an index would
include illiquid and non-investable assets which makes the management of a tracking portfolio even more difficult. Fig. 1 shows that
this is indeed a problem in the CC market. Some CCs have a fairly high market capitalization while their respective trading volume
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Fig. 1. Comparison of the log mean trading volume and log mean market capitalization, both measured in USD, for all CCs in the dataset over the time period
20140401–20170325. VolMarketCapComparison.

Table 1
Weighting schemes for derivation of CRIX.

Market cap weighting Liquidity weighting

𝛽𝑖,𝑡−𝑙 1
𝑉 𝑜𝑙𝑖,𝑡−𝑙

𝑃𝑖,𝑡−𝑙
𝑄𝑖,𝑡−𝑙

is very low. This is problematic, because an asset which is not frequently traded cannot add enough information to a market index
to display market changes and is difficult to trade for an investor. Hence, one goal behind constructing CRIX is making it investable
by concentrating on liquid CCs:

Definition 2. Between investment portfolios with equal performance, the one with the least assets is preferable.

We react to the goals and problems in two ways: First, these thoughts raise the question which value of 𝑘 is ‘‘optimal’’ for building
an investable benchmark for the market. Additionally, especially young and innovative markets may change their structure over time.
Therefore, a quantification of an accurate CC benchmark with sparse number of constituents is asked for. Since the CC market shows
a frequently changing market structure with a huge number of illiquid CCs, a time varying index selection structure is applied. The
later described selection method omits illiquid CCs by construction, because only CCs who show changes in their return series can be
selected to be added to CRIX by the method. Due to the low transaction costs in this market, a dynamic methodology is applicable
since it does not raise the costs of restructuring a tracking portfolio too much. Secondly, we apply two kind of weighting schemes,
Table 1. We apply the classical setting to build a proper market index which is only flexible in terms of the dynamic constituents and
tackles the illiquidity issue due to the applied selection method. The liquidity weighting allows one to weight CCs higher, which are
more traded relative to their market capitalization and therefore implicitly acquire more financial attention. This weighting scheme
bails (2) down to weighting the price development by their trading volume,

LCRIX𝑡(𝑘, 𝛽) =

∑𝑘
𝑖=1

𝑉 𝑜𝑙𝑖,𝑡−𝑙
𝑃𝑖,𝑡−𝑙

𝑄𝑖,𝑡−𝑙
𝑃𝑖𝑡𝑄𝑖,𝑡−𝑙

𝐷𝑖𝑣𝑖𝑠𝑜𝑟(𝑘)𝑡−𝑙
=

∑𝑘
𝑖=1

𝑉 𝑜𝑙𝑖,𝑡−𝑙
𝑃𝑖,𝑡−𝑙

𝑃𝑖𝑡

𝐷𝑖𝑣𝑖𝑠𝑜𝑟(𝑘)𝑡−𝑙
. (5)

The latter is referred to as Liquidity CRIX (LCRIX). This approach has the potential to diminish the influence of e.g. Bitcoin stronger
than the market cap weighting, if the relation of trading volume to market cap is higher for other CCs. In Section 6 we show that
LCRIX has a better mean directional accuracy than CRIX and puts more weight on altcoins, Table 8, therefore tackling the issue of
BTC dominance when the actual trading amount suggests a different result.

3. Dynamic index construction

This section is dedicated to describing the composition rule which is used to find the number of index members—the spine of
CRIX and LCRIX. Since CRIX will be a benchmark for the CC market, the dimension and evaluation of the market has to be defined:

Definition 3. The total market (TM) consists of all CCs in the CC universe. Its value is the combined market value of the CCs.

To compare the TM with a benchmark candidate, it will be normalized by a Divisor,

TM(𝐾)𝑡 =

∑𝐾
𝑖=1 𝑃𝑖𝑡𝑄𝑖,𝑡−𝑙

𝐷𝑖𝑣𝑖𝑠𝑜𝑟(𝐾)𝑡−𝑙
(6)
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with 𝐾 the number of all CCs in the CC universe. Note that no adjustment factor is used for TM(𝐾)𝑡. For the volume weighting, the
TM is defined as LTM respectively,

LTM(𝐾)𝑡 =

∑𝐾
𝑖=1

𝑉 𝑜𝑙𝑖,𝑡−𝑙
𝑃𝑖,𝑡−𝑙

𝑄𝑖,𝑡−𝑙
𝑃𝑖𝑡𝑄𝑖,𝑡−𝑙

𝐷𝑖𝑣𝑖𝑠𝑜𝑟(𝐾)𝑡−𝑙
. (7)

In the further explanations, the focus lies on the TM. However when LCRIX is derived, it is optimized against LTM. The results can
be easily extended to the case of LTM. Further define the log returns:

𝜀(𝐾)𝑇𝑀𝑡 = log{TM(𝐾)𝑡} − log{TM(𝐾)𝑡−1} (8)
𝜀(𝑘, 𝛽)𝐶𝑅𝐼𝑋

𝑡 = log{CRIX(𝑘, 𝛽)𝑡} − log{CRIX(𝑘, 𝛽)𝑡−1}, (9)

where CRIX(𝑘, 𝛽)𝑡 is the CRIX with 𝑘 constituents at time point 𝑡.
The goal is to optimize 𝑘 and 𝛽 so that a sparse but accurate approximation in terms of

min
𝑘,𝛽

‖𝜀(𝑘, 𝛽)‖2 = min
𝑘,𝛽

‖𝜀(𝐾)𝑇𝑀 − 𝜀(𝑘, 𝛽)𝐶𝑅𝐼𝑋
‖

2, (10)

is achieved, where 𝜀(𝑘, 𝛽) is the difference in the log returns of TM(𝐾) and CRIX(𝑘, 𝛽). A squared loss function is chosen in (10), since
it heavily penalizes deviations.

Since the value of TM(𝐾)𝑡 is unknown and not measurable due to a lack of information, the total market index will be defined
and used as a proxy for the TM(𝐾). The definition is inspired by total market indices like CRSP (2015), S&P (2015) and Wilshire
Associates (2015). They use all stocks for which prices are available.

Definition 4. The total market index (TMI) contains all CCs in the CC universe for which prices are available. The CCs are weighted
by their market capitalization.

This changes (6) to

TMI𝑡(𝑘𝑚𝑎𝑥) =

∑𝑘𝑚𝑎𝑥
𝑖=1 𝑃𝑖𝑡𝑄𝑖,𝑡−𝑙

𝐷𝑖𝑣𝑖𝑠𝑜𝑟(𝑘𝑚𝑎𝑥)𝑡−𝑙
with 𝑘𝑚𝑎𝑥 the maximum number of CCs with available prices and (10) to

min
𝑘,𝛽

‖𝜀(𝑘, 𝛽)‖2 = min
𝑘,𝛽

‖𝜀(𝑘𝑚𝑎𝑥)𝑇𝑀𝐼 − 𝜀(𝑘, 𝛽)𝐶𝑅𝐼𝑋
‖

2 (11)

s.t.: 1 ≤ 𝑘 ≤ 𝑘𝑢

𝑘 = 𝑘1 + 𝑠 (12)
𝑘𝑢 ∈ [1, 𝑘𝑚𝑎𝑥]

𝑠 ∈ [1, 𝑘𝑚𝑎𝑥 − 𝑘1]

𝛽1×𝑘 = (1,… , 1, 𝛽𝑘1+1,… , 𝛽𝑘1+𝑠)
⊤

𝛽𝑘1+1,… , 𝛽𝑘1+𝑠 ∈ (−∞,∞),

where 𝜀(𝑘𝑚𝑎𝑥)𝑇𝑀𝐼 are the log returns for TMI. In the derivation of LCRIX, the optimization is performed against LTMI and
𝛽1×𝑘 = (𝛽1,… , 𝛽𝑘, 𝛽𝑘1+1,… , 𝛽𝑘1+𝑠)

⊤ where 𝛽𝑖 =
𝑉 𝑜𝑙𝑖,𝑡−𝑙

𝑃𝑖,𝑡−𝑙
𝑄𝑖,𝑡−𝑙

for 𝑖 = 1,… , 𝑘1 and 𝛽𝑘1+1,… , 𝛽𝑘1+𝑠 ∈ (−∞,∞).
Several constraints were introduced with (11). The parameters 𝛽𝑘+1,… , 𝛽𝑘+𝑠 are included to evaluate if adding 𝑠 more assets to the

index explains the difference between 𝜀(𝑘𝑚𝑎𝑥)𝑇𝑀𝐼 and 𝜀(𝑘, 𝛽)𝐶𝑅𝐼𝑋 better. The first 𝑘 assets (𝑘1) will not be adjusted by a parameter, so
no parameter estimation is necessary. This makes the first term a constant. The choice of 𝑘1 is important since it defines the number
of base CCs to be included in the index. The parameters of the next 𝑠 assets have to be estimated, so (2) becomes

CRIX𝑡(𝑘, 𝛽) =

∑𝑘1
𝑖=1 𝑃𝑖𝑡𝑄𝑖,𝑡−𝑙

+
∑𝑘1+𝑠

𝑗=𝑘1+1
𝛽𝑗,𝑡−𝑙 𝑃𝑗𝑡𝑄𝑗,𝑡−𝑙

𝐷𝑖𝑣𝑖𝑠𝑜𝑟(𝑘1)𝑡−𝑙
.

A number of criteria are applicable. Model selection (SC) criteria can be categorized by their property to be either asymptotic
optimal or consistent in choosing the true model. In this context will be investigated: Generalized Cross Validation (GC), Generalized
Full Cross Validation (GFC), Mallows’ C𝑝, Shibata (SH), Final Prediction Error (FPE) and Akaike Information Criterion (AIC), all
asymptotic optimal criteria under the assumption of Gaussian distributed residuals. Since CRIX is supposed to be a benchmark model,
all possible models under certain restrictions for the number of parameters are included in the test set,

𝛩𝑆𝐶 = {CRIX(𝑘1, 𝛽),CRIX(𝑘2, 𝛽),…}, (13)

where 𝑘1, 𝑘2,… are predefined values and 𝑆𝐶 ∈ {GC,GFC,C𝑝, SH, FPE,AIC}. Recall that the intention behind CRIX is to discover
under a squared loss function the best model to describe the data (benchmark), which supports the choice of an asymptotic optimal
criteria. The GC criterion, see Craven and Wahba (1978), is defined as

GC{𝜀(𝑘, 𝛽), 𝑠} =
𝑇 −1 ∑𝑇

𝑡=1 𝜀(𝑘, 𝛽)
2
𝑡

(1 − 𝑇 −1𝑠)2
(14)
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by assuming that 𝑠 < 𝑇 . One shall note that 𝑠 and not 𝑘 + 𝑠 defines the number of variables to penalize for, since 𝑘 parameters are
set to be 1 and need not be estimated. According to Arlot and Celisse (2010), the asymptotic optimality of GC was shown in several
frameworks. The GFC, see Droge (1996):

GFC{𝜀(𝑘, 𝛽), 𝑠} = 𝑇 −1
𝑇
∑

𝑡=1
𝜀(𝑘, 𝛽)2𝑡 (1 + 𝑇 −1𝑠)2 (15)

is an alteration.
A further score, SH,

SH{𝜀(𝑘, 𝛽), 𝑠} = 𝑇 + 2𝑠
𝑇 2

𝑇
∑

𝑡=1
𝜀(𝑘, 𝛽)2𝑡 , (16)

was shown to be asymptotically optimal, Shibata (1981), and asymptotically equivalent to Mallows’ C𝑝 and AIC.
Mallows (1973)’ C𝑝:

C𝑝{𝜀(𝑘, 𝛽), 𝑠} =
∑𝑇

𝑡=1 𝜀(𝑘, 𝛽)
2
𝑡

𝜎(𝑘, 𝛽)2
− 𝑇 + 2 ⋅ 𝑠 (17)

with 𝜎(𝑘, 𝛽)2 the variance of 𝜀(𝑘, 𝛽). 𝐶𝑝{𝜀(𝑘, 𝛽), 𝑠} tends to choose models which overfit and is not consistent in selecting the true
model, see Mallick and Yi (2013), Woodroofe (1982) and Nishii (1984).

The FPE uses the formula

FPE{𝜀(𝑘, 𝛽), 𝑠} = 𝑇 + 𝑠
(𝑇 − 𝑠)𝑇

𝑇
∑

𝑡=1
𝜀(𝑘, 𝛽)2𝑡 , (18)

see Akaike (1970)
So far, the discussed criteria depend on little data information. Just the squared residuals and, in the case of Mallows’ C𝑝, the

variance are taken into account. The AIC uses more information by depending on the maximum likelihood, derived by

𝐿{𝜀(𝑘, 𝛽)} = max
𝛽

∏

𝑡
𝑓{𝜀(𝑘, 𝛽)𝑡}, (19)

where 𝑓 , in (21), represents the density of the 𝜀(𝑘, 𝛽)𝑡 over all 𝑡. The AIC is defined to be

AIC{𝜀(𝑘, 𝛽), 𝑠} = −2 log𝐿{𝜀(𝑘, 𝛽)} + 𝑠 ⋅ 2, (20)

Akaike (1998). If the true model is of finite dimension, then the AIC is not consistent, compare Hurvich and Tsai (1989). Shibata
(1983) showed the asymptotic efficiency of Mallows’ C𝑝 and AIC under the assumption of an infinite number of regression variables
or an increasing number of regression variables with the sample size. Due to the usage of the density in deriving the AIC, it uses more
information about the dataset. Considering that (10) implies the criteria are derived under an expected squared loss function,

E(‖𝜀(𝑘, 𝛽)‖2) = ∫

∞

−∞
‖𝜀(𝑘, 𝛽)‖22 𝑓{𝜀(𝑘, 𝛽)}𝑑𝜀(𝑘, 𝛽), (21)

the density, 𝑓 , can be estimated different from the Gaussian distribution. Here, 𝑓 is estimated nonparametrically with an Epanechnikov
kernel, since according to Härdle et al. (2004) the Epanechnikov (1969) kernel shows a good balance between variance optimization
and numerical performance. In nonparametric estimation with an Epanechnikov kernel, Epa, the estimator of 𝑓 is derived by

𝑓ℎ(𝑥) =
1
𝑛ℎ

𝑛
∑

𝑖=1
Epa(

𝑥 − 𝑥𝑖
ℎ

), Epa(𝑢) = 3

4
√

5
(1 − 𝑢2

5
)𝐈(|𝑢| ≤

√

5)

where ℎ is the bandwidth.
The bandwidth selection is performed with the plug-in selector by Sheather and Jones (1991) and further described in Wand and

Jones (1994). The plug-in selector is derived under the loss function Mean Integrated Squared Error, MISE. Hall (1987) found that
the Kullback–Leibler (KL) loss function for selecting the smoothing parameter of the kernel density is highly influenced by the tails of
the distribution. Devroye and Györfi (1985) mention that Mean Integrated Error (MIE) is stronger affected than MISE by the tails of
the distribution and Kanazawa (1993) claims that MIE shall be used if interest is in modeling the tails. Kanazawa (1993) investigates
that the use of a Kullback–Leibler loss function would put more weight on the tails compared to MISE. Since this is not in our interest,
the choice of the density smoothing parameter, ℎ, is performed under MISE.

Due to the richer information basis of the AIC, we decide to use it as the selection criteria for CRIX. The choice is supported by
an empirical analysis in Section 6.

To decide with the AIC which number 𝑘 should be used, a procedure was created which compares the squared difference between
log returns of the TMI, see Definition 4, and several candidate indices,

‖𝜀(𝑘𝑗 , 𝛽)‖2 = ‖𝜀(𝑘𝑚𝑎𝑥)𝑇𝑀𝐼 − 𝜀(𝑘𝑗 , 𝛽)𝐶𝑅𝐼𝑋
‖

2, (22)

where 𝜀(𝑘𝑗 , 𝛽)𝐶𝑅𝐼𝑋 is the log return of CRIX version with 𝑘𝑗 constituents and 𝜀(𝑘𝑗 , 𝛽) is the respective difference. The candidate
indices, CRIX(𝑘𝑗 , 𝛽), have different numbers of constituents which fulfill 𝑘1 < 𝑘2 < 𝑘3 < ⋯ , where 𝑘𝑗 = 𝑘1 + 𝑠(𝑗 − 1). Therefore, the
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number of constituents between the indices are equally spaced. The procedure implies that the selection method evaluates if 𝑠 more
assets add information to CRIX. If so, these assets are added to the intercept and the next 𝑠 assets are tested for. Assets with a higher
market capitalization are expected to have a higher influence on the AIC, so the following theorem is formulated:

Theorem 1. The rate of improvement of the AIC depends on the relative value of an asset in the market.

The proof for Theorem 1 is given in the Appendix A.1, under the assumption of normally distributed error terms. Therefore, we
will follow the common practise to include the assets with the highest market capitalization in the index,

argmax
𝑖

𝑘
∑

𝑗=1
𝑃𝑗,𝑖,𝑡−𝑙

𝑄𝑗,𝑖,𝑡−𝑙
, 𝑖 ∈ {1,… , 𝐾}. (23)

Thus, a top-down approach to decide about the number of index constituents is applied.
For the sorting of the index constituents by highest market capitalization, just the closing data of the last day of a month are used.

We chose to do so, since the next periods CRIX will just depend on 𝑄𝑖,𝑡−𝑙
, (2), and not on data which lie further in the past. This is in

line with the methodology of e.g. the DAX. For LCRIX, the CCs with the highest trading volume are chosen respectively,

argmax
𝑖

𝑘
∑

𝑗=1
𝑉 𝑜𝑙𝑗,𝑖,𝑡−𝑙 , 𝑖 ∈ {1,… , 𝐾}. (24)

Since the differences between the TMI(𝑘𝑚𝑎𝑥) and CRIX(𝑘𝑗 , 𝛽) are caused over time by the missing time series in CRIX(𝑘𝑗 , 𝛽), the
independence assumption of the 𝜀(𝑘𝑗 , 𝛽) for all 𝑗 cannot be fulfilled by construction. But Györfi et al. (1989) give arguments that under
certain conditions in case of nonparametric density estimation, the rate of convergence is essentially the same as for an independent
sample. Summarizing the described procedure, results to:

1. At time point 𝑇 + 1, construct TMI(𝑘𝑚𝑎𝑥)
2. Set 𝑗 = 2
3. Construct CRIX(𝑘1, 1) and CRIX(𝑘𝑗 , 𝛽), 𝑘1 < 𝑘2 < 𝑘3 < ⋯
4. Compute 𝜀(𝑘𝑗 , 𝛽) and 𝜀(𝑘1, 1)
5. Kernel density estimation (KDE) for density 𝑓 (𝜀(𝑘1, 1))

(a) Compute the log likelihood (20) for 𝜀(𝑘𝑗 , 𝛽) with KDE for 𝜀(𝑘1, 1).
(b) Sum the log likelihoods

6. Derive AIC{𝜀(𝑘𝑗 , 𝛽), 𝑘𝑗 − 𝑘1} and AIC{𝜀(𝑘1, 1), 0}
7. If 𝑗 = (𝑘𝑚𝑎𝑥 − 𝑘1)∕𝑘1: stop, else jump to 3. and 𝑗 = 𝑗 + 1

The next section describes the further index rules for CRIX.

4. CRIX family rules

The constituents of the indices are regularly checked so that the corresponding index always represents its asset universe well.
It is common to do this on a quarterly basis. In case of CRIX this reallocation is much faster. In the past, coins have shown a very
volatile behavior, not just in the manner of price volatility. In some weeks, many occur out of nothing in the market and many others
vanish from the market even when they were before very important, e.g., Auroracoin. This calls for a faster reallocation of the market
benchmark than on a quarterly basis. A monthly reallocation is chosen to make sure that CRIX catches the momentum of the CC
market well. Therefore, on the last day of every month, the CCs which had the highest market capitalization on the last day in the
last month will be checked and the first 𝑘 will be included in CRIX for the coming month. Accordingly for LCRIX the ones with the
highest trading volume are chosen.

Since a review of an index is commonly performed on a quarterly basis the number of index members of CRIX will be checked
on a quarterly basis too. The described procedure from Section 3 will be applied to the observations from the last three months on
the last day of the third month after the markets closed. The number of index constituents, 𝑘, will be used for the next three months.
Thus, CRIX corresponds to a monthly rebalanced portfolio which number of constituents is reviewed quarterly.

It may happen that some data are missing for some of the analyzed time series. If an isolated missing value occurs alone in the
dataset, meaning that the values before and after it are not missing, then Missing At Random (MAR) is assumed. This assumption
means that just observed information cause the missingness, Horton and Kleinman (2007). The Last-Observation-Carried-Forward
(LOCF) method is then applied to fill the gap for the application of the AIC. We did not choose a different approach since a regression
or imputation method may alter the data in the wrong direction. By LOCF, no change is implied and the CC is not excluded. If two
or more data are missing in a row, then the MAR assumption may be violated, therefore no method is applied. The corresponding
time series is then excluded from the computation in the derivation period. If data are missing during the computation of the index
values, the LOCF method is applied too. This is done to make the index insensitive to this CC at this time point. CRIX should mimic
market changes, therefore an imputation or regression method for the missing data would distort the view on the market.

Before continuing, the described rules are summarized:

∙ Quarterly altering of the number of index constituents

113



S. Trimborn, W.K. Härdle Journal of Empirical Finance 49 (2018) 107–122

∙ Monthly altering of the index constituents
∙ Model selection for index derivation with AIC
∙ Nonparametric estimation of the density
∙ Application of a top-down approach to select the assets for the subset analysis
∙ Application of LOCF if trading of an asset stops before next reallocation.

5. The CRIX family

Using the described methods and rules from above, three indices will be proposed. This indices provide a different look at the
market.

1. CRIX/LCRIX: The first and leading index is CRIX and for volume weighting LCRIX. While the choice for the best number of
constituents is made, their numbers are chosen in steps of 5. It is common in financial industry to construct market indices
with a number of constituents which is evenly divisible by 5, see e.g. FTSE (2016), S&P (2014), Deutsche Boerse AG (2013).
Therefore this selection is applied for CRIX(𝑘), 𝑘 = 5, 10, 15,… with 𝑘1 = 5. Since the global minimum for the selection criterion
may involve many index constituents, but a sparse index is the goal, the search for the optimal model terminates at level 𝑗
whenever

AIC{𝜀(𝑘𝑗 , 𝛽), 𝑘𝑗 − 5} < AIC{𝜀(𝑘𝑗−1, 𝛽), 𝑘𝑗−1 − 5} (25)

and 𝑘𝑗−1 index constituents are chosen. Therefore merely a local optimum will be achieved in most of the cases for 𝛩 = 𝛩𝐴𝐼𝐶 ,
in (13). But the choice is still asymptotically optimal by defining 𝛩 = {𝛩𝐴𝐼𝐶 |𝑘𝑖 ≤ 𝑘𝑗∀𝑖}. In Section 6 it will be shown that the
performance of the index is already very good.

2. ECRIX/LECRIX: The second constructed index is called Exact CRIX (ECRIX) and Liquidity ECRIX respectively. It follows the
above rules too. But the number of its constituents is chosen in steps of 1. Therefore the set of models contains CRIX(𝑘),
𝑘 = 1, 2, 3,… with 𝑘1 = 1 and stops when

AIC{𝜀(𝑘𝑗 , 𝛽), 𝑘𝑗 − 1} < AIC{𝜀(𝑘𝑗−1, 𝛽), 𝑘𝑗−1 − 1}. (26)

3. EFCRIX/LEFCRIX: Since the decision procedures for CRIX and ECRIX terminate when the AIC rises for the first time, Exact
Full CRIX and Liquidity EFCRIX will be constructed to visualize whether the decision procedure works fine for the covered
indices. The intention is to have an index which may approach the TMI but only in case even small assets help improve the
view on the total market, a benchmark for the benchmarks. It will be derived with the AIC procedure, compare Section 3. For
𝑘 = 1, 2, 3,… with 𝑘1 = 1 the decision rule is based on

min
𝑘𝑗 ,𝛽

AIC{𝜀(𝑘𝑗 , 𝛽), 𝑘𝑗 − 1} (27)

for 𝛩 = 𝛩𝐴𝐼𝐶 , in (13). This index computes the AIC for every possible number of constituents and the number is chosen where
the AIC becomes minimal.

6. Performance analysis

The indices CRIX, ECRIX, EFCRIX with market cap weighting and LCRIX, LECRIX, LEFCRIX with volume weighting have been
proposed to give insight into the CC market. Our RDC CC database covers data for over 1000 CCs, kindly provided by CoinGecko.
The data used for the analysis cover daily closing data for prices, market volume and market capitalization in USD for each CC in the
time period from 2014-04-01 to 2017-03-25. Crypto exchanges are open on the weekends, therefore data for weekend closing prices
exist. Since CC exchanges do not finish trading after a certain time point every day, a time point which serves as a closing time has
to be defined. CoinGecko used 12 am UTC time zone. One should note that missing data are observed in the dataset, therefore the
last rules from Section 4 will come into play.

Fig. 2 shows the performance of CRIX, and Fig. 6 the differences between CRIX and both ECRIX and EFCRIX. For the purpose
of comparison, the indices were recalibrated on the recalculation dates since the index constituents change then. We do not provide
each index plot individually since they perform almost equally. However, the AIC method gave very different numbers of constituents
for the corresponding indices. The numbers of constituents are given in Table 4. For comparison, the number of constituents under
the other discussed model selection criteria are provided too. The variance of 𝐶𝑝 was derived with a GARCH(1,1) model, Bollerslev
(1986). The corresponding information for ECRIX and EFCRIX are given in the same Table 4. Interestingly the methodology of EFCRIX
causes its number of constituents to reach a relatively stable value for each period. ECRIX has mostly much fewer constituents than
CRIX and EFCRIX due to the fact that this index just runs until a local optimum. Comparing the number of constituents for CRIX
derived with AIC against the other criteria, one sees that GC, GFC and SH tend to choose more or the same number of constituents
than AIC. Also all three criteria suggest the same result. 𝐶𝑝 stops at the initial value for CRIX, ECRIX and EFCRIX. For CRIX, ECRIX
and EFCRIX, AIC mostly chooses less constituents compared to all other criteria, except 𝐶𝑝 which terminates very early. For LCRIX,
LECRIX and LEFCRIX mostly less constituents were chosen than for CRIX, ECRIX and EFCRIX, compare Table 5. Note that the AIC
gave the sparsest result again.
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Fig. 2. Performance of CRIX. CRIXindex CRIXcode.

Table 2
Comparison of CRIX, ECRIX, EFCRIX, derived under different penalizations, against TMI under mean of monthly Mean Squared Error, compared with btc.

AIC GC GFC SH Cp FPE

CRIX 0.4769 0.4883 0.3755 0.3598 1.9844 0.0042
ECRIX 11.0988 10.3673 10.3673 10.4667 79.3979 0.0048
EFCRIX 3.1394 0.0116 0.0049 0.0049 79.3979 0.0048
LCRIX 0.6417 0.1497 0.1217 0.1211 0.6638 0.0049
LECRIX 22.8782 16.7187 16.7187 16.7187 125.0620 0.0047
LEFCRIX 7.9158 0.0645 0.0126 0.0126 125.0620 0.0047
btc 79.3979 79.3979 79.3979 79.3979 79.3979 79.3979

Table 3
Comparison of CRIX, ECRIX, EFCRIX, derived under different penalizations, against
TMI under mean of monthly Mean Directional Accuracy, compared with btc.

AIC GC GFC SH Cp FPE

CRIX 0.9896 0.9908 0.9918 0.9928 0.9835 1.0000
ECRIX 0.9576 0.9586 0.9586 0.9586 0.9133 1.0000
EFCRIX 0.9794 0.9990 1.0000 1.0000 0.9133 1.0000
LCRIX 0.9928 0.9949 0.9959 0.9959 0.9917 1.0000
LECRIX 0.9692 0.9700 0.9700 0.9700 0.9501 1.0000
LEFCRIX 0.9855 0.9979 1.0000 1.0000 0.9501 1.0000
btc 0.9133 0.9133 0.9133 0.9133 0.9133 0.9133

The indices optimized until a local optimum are expected to perform less optimal than the globally optimized ones against the
TMI/LTMI. Tables 2 and 3 give the mean over monthly Mean Squared Error (MSE) and Mean Directional Accuracy (MDA), defined
as

MSE{CRIX(𝑘)} = 1
𝑡+𝑙 − 𝑡−𝑙

𝑡+𝑙
∑

𝑡=𝑡−𝑙

{CRIX(𝑘)𝑡 − TMI(𝑘max)𝑡}2 (28)

MDA{CRIX(𝑘)} = 1
𝑡+𝑙 − 𝑡−𝑙

𝑡+𝑙
∑

𝑡=𝑡−𝑙

𝐈[sign{TMI(𝑘max)𝑡 − TMI(𝑘max)𝑡−1}

= sign{CRIX(𝑘)𝑡 − CRIX(𝑘)𝑡−1}] (29)

where 𝑡−𝑙 and 𝑡+𝑙 are the beginning and end of the month respectively, 𝐈(⋅) is the indicator function and sign(⋅) gives the sign of the
respective equation. Apparently CRIX performs best, which can be explained due to its larger number of index constituents. The
CRIX, ECRIX and EFCRIX are close in terms of the MDA but the MSE is much better for CRIX. Comparing all the model selection
criteria, FPE has the best performance in terms of MSE and MDA, due to choosing high numbers of constituents. The trading volume
weighted indices are close in terms of MSE and MDA to their market weighted corresponding indices. At the same time the number
of constituents are mostly sparser for the volume weighted ones.

CRIX was constructed with steps of five which is common in practice and performed best under AIC. For this case the number of
constituents was the most stable, while achieving the best performance for MSE and MDA. Additionally, the analysis showed that it is
indeed unnecessary from a practical viewpoint to choose the global optimal AIC under steps of 1. Even a local optimum and a much
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Fig. 3. Performance of CRIX compared to BTC.

Table 4
Comparison of AIC, GC, GFC, SH, Cp and the FPE method for the selection of the number of index constituents for the CRIX, ECRIX and EFCRIX in the 11 periods.

CRIX ECRIX EFCRIX

AIC GC GFC SH Cp FPE AIC GC GFC SH Cp FPE AIC GC GFC SH Cp FPE max

1 5 10 10 10 10 35 2 2 2 3 1 36 2 7 30 30 1 36 36
2 10 15 15 15 5 100 3 3 3 3 1 93 3 94 93 93 1 93 113
3 5 10 35 35 5 100 5 5 5 5 1 93 5 94 93 93 1 93 158
4 10 10 10 40 5 95 3 3 3 3 1 90 3 91 90 90 1 90 182
5 10 20 20 20 5 100 2 4 4 4 1 93 12 94 93 93 1 93 169
6 10 10 20 20 5 100 2 2 2 2 1 93 2 94 93 93 1 93 171
7 5 20 20 20 5 100 1 1 1 1 1 93 16 94 93 93 1 93 176
8 15 20 20 20 5 95 3 4 4 4 1 91 3 92 91 91 1 91 140
9 15 5 5 5 5 100 3 3 3 3 1 93 3 94 93 93 1 93 188
10 15 15 25 25 5 100 3 5 5 5 1 93 3 94 93 93 1 93 207
11 10 35 45 45 5 100 2 2 2 2 1 93 4 94 93 93 1 93 221

more stable number of constituents is able to mimic the market movements very well in terms of the MDA and MSE. Furthermore,
even for ECRIX there was more than one constituent selected most of the time. This shows that Bitcoin, which currently clearly
dominates the market in terms of market capitalization and trading volume, does not account for all the variance in the market.
Other CCs are important for the market movements too.

Depending on the theoretical and empirical analysis, we decided to continue with the AIC. From the theoretical viewpoint, the
AIC uses the most information about the data, since it relies on the density. From the empirical analysis, the AIC chooses much less
constituents than GC, GFC, SH and FPE, while its performance in terms of MSE and MDA is close to the three outlined criteria. The
better performance was achieved due to overparametrization of the index by GC, GFC, SH and FPE. Therefore, CRIX will be derived
with the AIC criterion.

Comparing CRIX with the development of BTC, it tracks the market development better over time. Fig. 3 shows the monthly MSE
of CRIX with AIC and BTC. In 2016 CRIX tracked the market development much better than BTC, and in the beginning of 2017
even better due to the huge impact of the price gain of altcoins like Ethereum, Ripple and Dash. Their performance is visualized in
Fig. 4, clearly showing the better performance of CRIX in this time period, driven by price gains in altcoins. Due to the log scale and
the high gains of altcoins, the difference between CRIX and BTC appears little, while in fact being considerable. Fig. 4(b) shows the
difference in the log returns of CRIX and BTC. One sees differences in their return series, which are particularly strong beginning of
2016 and in March 2017. Comparing the performance of CRIX and LCRIX against BTC, one observes an increasing spread between
the indices, Fig. 5. It indicates a lower weight of BTC in LCRIX, thus tackling the issue of dominance of BTC in CRIX by liquidity
weighting. Having a look at the actual differences in the log return series compared to CRIX, Fig. 5(b), stronger spikes are observed,
thus showing the difference in the performance from CRIX and LCRIX driven by the stronger weights on altcoins in LCRIX. Table 8
shows the actual weights given to BTC and altcoins in the respective indices. In the liquidity indices altcoins frequently receive a
higher weight compared to the respective indices based on market capitalization weighting. Once the altcoins received even 52% of
the weights in LCRIX. The results show the market focus in terms of trading is stronger for altcoins than their market capitalization
suggests, thus an index accounting for this is called for, LCRIX. Simultaneously the weighting scheme tackles the dominance of BTC
in a market capitalization index.
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Fig. 4. Comparison of performance of CRIX, BTC, ETH, XRP and DASH.

Fig. 5. Comparison of performance of CRIX, BTC and LCRIX.

Table 5
Comparison of AIC, GC, GFC, SH, Cp and the FPE method for the selection of the number of index constituents for the LCRIX, LECRIX and LEFCRIX in the 11 periods.

LCRIX LECRIX LEFCRIX

AIC GC GFC SH Cp FPE AIC GC GFC SH Cp FPE AIC GC GFC SH Cp FPE max

1 5 10 15 15 5 35 2 3 3 3 1 36 2 6 16 16 1 36 36
2 5 10 10 10 5 100 2 4 4 4 1 93 2 94 93 93 1 93 113
3 5 5 20 20 5 100 3 4 4 4 1 93 6 94 93 93 1 93 158
4 15 20 20 30 5 95 3 2 2 2 1 90 3 91 90 90 1 90 182
5 5 5 5 5 5 100 1 1 1 1 1 93 93 94 93 93 1 93 169
6 5 5 5 5 5 100 2 2 2 2 1 93 9 94 93 93 1 93 171
7 10 25 30 35 5 100 1 2 2 2 1 93 1 94 93 93 1 93 176
8 10 20 35 35 5 95 1 1 1 1 1 91 3 92 91 91 1 91 140
9 5 10 10 10 5 100 2 2 2 2 1 93 2 94 93 93 1 93 188
10 10 10 10 10 5 100 1 1 1 1 1 93 1 94 93 93 1 93 207
11 5 15 15 15 5 100 2 3 3 3 1 93 2 94 93 93 1 93 221

7. Application to the German stock market

The CRIX methodology was derived with the idea of finding a method which allows mimicking young and fast changing markets
appropriately. But well known major markets usually change their structure too. So the proposed methodology is tested on the
German stock market, which has four major indices: DAX, MDAX, SDAX and TecDAX. The DAX is used to determine the overall
market direction, Janßen and Rudolph (1992). Since it is chosen from the so called prime segment, it has some prior restrictions. It
is interesting to see whether our methodology yields the DAX as an adequate benchmark for the total market. Since the indices are
derived with market cap weighting scheme, only this methodology is tested. Following Definition 4, all available stocks are defined
as the TMI and our new method is applied to find an appropriate index. Again, the 7-step method from Section 3 was applied to find
the number of constituents, but it starts at 30 members to check if more constituents are necessary. The method for the identification
of 𝑘 and the reallocation of the included assets is performed quarterly, like DAX. To be in line with the DAX reallocation dates, the
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Fig. 6. Realized difference between TMI and CRIX (solid), ECRIX (dashed), EFCRIX (dotdashed). CRIXfamdiff CRIXcode.

Fig. 7. Number of constituents of FDAX (solid), DAX (horizontal solid) and cumulated monthly variance of FDAX (dashed). CRIXdaxmembersvar CRIXcode.

index calculation will start after the third Friday of September and the reallocation dates are the third Fridays of December, March,
June and September, see Deutsche Boerse AG (2013).

The data were fetched from Datastream in the period 2000-06-16 until 2015-12-18. All stocks which are German companies and
are traded on XETRA are chosen. Any time series for which Datastream reported an error either for the price or market capitalization
data was excluded from the analysis. The index, computed with the new methodology, is called Flexible DAX (FDAX). One should
note that the analysis starts three months after the starting point of the dataset due to the initialization period of FDAX.

Fig. 7 shows the number of members of FDAX and DAX in the respective periods. Most of the time, the number of index constituents
for FDAX is higher than the 30 members of DAX. Just around 2004–2005 is the 𝑘 more frequently 30. Especially while the turmoil
of the financial markets, starting from 2008/2009, is the number of index constituents much higher. One might hint that a higher
reported variability in one period should cause an increase in 𝑘 in the next period, since it was shown that the selection method
depends on the variance, see Appendix A. Fig. 7 shows that this idea can partially be supported. The derivation of the conditional
variance was performed with a GARCH(1,1) model, Bollerslev (1986), and the daily results were summed up. Obviously, in the
extreme cases increases the 𝑘 in the next period, see 2001, 2002, 2006 and 2011.

The computation of the MSE and MDA, see Table 6, shows that FDAX is a more accurate benchmark for the total market as DAX.
Since Janßen and Rudolph (1992) state that DAX may be used to analyze the movements of the total market, an MDA of 92% is
indeed good. But FDAX mimics the market even better, with an MDA of 96%. Also the MSE for FDAX is much lower than the one of
DAX. Therefore the methodology fulfilled its goal to find a sparse, investable and accurate benchmark, depending on the MDA.

8. Application to Mexican stock market

The Mexican stock market is represented by the IPC35, MEXBOL (2013). One of its rules is a readjustment of the weights to
lower the effect of dominant stocks. In the CC market BTC is such a dominant asset. The CRIX methodology could help to circumvent
arbitrary rules and develop an index to represent the market accurately.
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Table 6
Comparison of DAX with CRIX methodology (FDAX) and rescaled DAX against TMI.

MSE MDA

FDAX vs. TMI 6.36 0.96
DAX vs. TMI 51.02 0.92

Fig. 8. Number of constituents of FIPC (solid) and IPC (dashed) in the respective periods. CRIXipcmembers CRIXcode.

Table 7
Comparison of IPC with CRIX methodology (FIPC) and rescaled IPC against TMI.

MSE MDA

FIPC vs. TMI 24.97 0.97
IPC vs. TMI 4743.50 0.91

The data were fetched from Datastream for the period 1996-06-01 until 2015-05-29 and cover all Mexican companies listed in
Datastream. The specifications of the methodology are the same as for the German stock market except for the recalculation date. In
line with the methodology of the IPC35, the index is recalculated with the closing data of the last business days of August, November,
February and May, therefore the recalculated index starts on the first business days of September, December, March and June. The
TMI will be all fetched companies. The choice of 𝑘 starts with 35 since this is the amount of constituents of IPC.

Again, the CRIX methodology works well. The MSE is very low compared to the one for the IPC35 and the MDA gives a much
better performance too, see Table 7. We can conclude that the methodology helped to circumvent the usage of arbitrary rules for the
weights in the rules of the indices and enhances at the same time the performance of the market index. Fig. 8 shows the number of
index members of the FIPC compared to the IPC. Obviously, the methodology also suggests using more than 35 index members half
of the time which is the number of members of the IPC.

9. Conclusion

The movements of CCs are very different from each other, Elendner et al. (2017). So studying the entire market of CCs requires
an instrument which adequately captures and displays the market movements, an index. But index construction for CCs requires
a new methodology to find the right number of index members. Innovative markets, like the one for CCs, change their structure
frequently. The proposed methods were applied to oracle a new family of indices, which are displayed and updated on a daily basis.
The performance of the new indices were studied and it was shown that the dynamic AIC based methodology results in indices with
stable properties. The results show that a market like the CC market – momentarily dominated by Bitcoin – still needs a representative
index since Bitcoin does not account for all the variance in the market. The diversified nature of the CC market makes the inclusion
of altcoins in the index product critical to improve tracking performance. We have shown that assigning optimal weights to altcoins
helps to reduce the tracking errors of a CC portfolio, despite the fact that their market cap is much smaller relative to Bitcoin.

Besides the classical market capitalization weighting, a volume weighting scheme was proposed. The corresponding indices are
sparser in terms of constituents while having a comparable performance, which gives support to this weighting scheme under the
goals of the study. The AIC based method was also applied to the German stock market. The results yield a more accurate benchmark
in terms of MDA. In applying the CRIX methodology to the Mexican stock market, which is dominated by Telmex, one finds high
accuracy of it in terms of MSE and MDA.

We conclude, that the CRIX technology enhances the construction of an index if the goal is to find a sparse, investable and accurate
benchmark.
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Table 8
Average monthly weights of BTC and altcoins in the respective periods in the 6 indices.

Periods CRIX LCRIX ECRIX LECRIX EFCRIX LEFCRIX

k BTC altcoins k BTC altcoins k BTC altcoins k BTC altcoins k BTC altcoins k BTC altcoins

2014/08 5 0.96 0.04 5 0.96 0.04 2 0.98 0.02 2 0.97 0.03 2 0.98 0.02 2 0.97 0.03
2014/09 5 0.94 0.06 5 0.82 0.18 2 0.97 0.03 2 0.86 0.14 2 0.97 0.03 2 0.86 0.14
2014/10 5 0.93 0.07 5 0.86 0.14 2 0.97 0.03 2 0.91 0.09 2 0.97 0.03 2 0.91 0.09
2014/11 10 0.92 0.08 5 0.95 0.05 3 0.94 0.06 2 0.99 0.01 3 0.94 0.06 2 0.99 0.01
2014/12 10 0.85 0.15 5 0.95 0.05 3 0.86 0.14 2 0.97 0.03 3 0.86 0.14 2 0.97 0.03
2015/01 10 0.82 0.18 5 0.93 0.07 3 0.85 0.15 2 0.98 0.02 3 0.85 0.15 2 0.98 0.02
2015/02 5 0.86 0.14 5 0.90 0.10 5 0.86 0.14 3 0.91 0.09 5 0.86 0.14 6 0.90 0.10
2015/03 5 0.90 0.10 5 0.96 0.04 5 0.90 0.10 3 0.96 0.04 5 0.90 0.10 6 0.96 0.04
2015/04 5 0.90 0.10 5 0.94 0.06 5 0.90 0.10 3 0.95 0.05 5 0.90 0.10 6 0.94 0.06
2015/05 10 0.90 0.10 15 0.96 0.04 3 0.92 0.08 3 0.96 0.04 3 0.92 0.08 3 0.96 0.04
2015/06 10 0.87 0.13 15 0.86 0.14 3 0.90 0.10 3 0.88 0.12 3 0.90 0.10 3 0.88 0.12
2015/07 10 0.88 0.12 15 0.48 0.52 3 0.90 0.10 3 0.48 0.52 3 0.90 0.10 3 0.48 0.52
2015/08 10 0.88 0.12 5 0.59 0.41 2 0.93 0.07 1 1.00 0.00 12 0.88 0.12 93 0.58 0.42
2015/09 10 0.89 0.11 5 0.53 0.47 2 0.93 0.07 1 1.00 0.00 12 0.88 0.12 93 0.52 0.48
2015/10 10 0.90 0.10 5 0.59 0.41 2 0.96 0.04 1 1.00 0.00 12 0.90 0.10 93 0.58 0.42
2015/11 10 0.92 0.08 5 0.82 0.18 2 0.97 0.03 2 0.83 0.17 2 0.97 0.03 9 0.82 0.18
2015/12 10 0.93 0.07 5 0.84 0.16 2 0.98 0.02 2 0.84 0.16 2 0.98 0.02 9 0.84 0.16
2016/01 10 0.92 0.08 5 0.87 0.13 2 0.97 0.03 2 0.87 0.13 2 0.97 0.03 9 0.87 0.13
2016/02 5 0.89 0.11 10 0.90 0.10 1 1.00 0.00 1 1.00 0.00 16 0.87 0.13 1 1.00 0.00
2016/03 5 0.83 0.17 10 0.86 0.14 1 1.00 0.00 1 1.00 0.00 16 0.81 0.19 1 1.00 0.00
2016/04 5 0.85 0.15 10 0.93 0.07 1 1.00 0.00 1 1.00 0.00 16 0.84 0.16 1 1.00 0.00
2016/05 15 0.83 0.17 10 0.75 0.25 3 0.87 0.13 1 1.00 0.00 3 0.87 0.13 3 0.75 0.25
2016/06 15 0.85 0.15 10 0.65 0.35 3 0.88 0.12 1 1.00 0.00 3 0.88 0.12 3 0.65 0.35
2016/07 15 0.84 0.16 10 0.71 0.29 3 0.90 0.10 1 1.00 0.00 3 0.90 0.10 3 0.71 0.29
2016/08 15 0.83 0.17 5 0.70 0.30 3 0.90 0.10 2 0.72 0.28 3 0.90 0.10 2 0.72 0.28
2016/09 15 0.82 0.18 5 0.73 0.27 3 0.88 0.12 2 0.77 0.23 3 0.88 0.12 2 0.77 0.23
2016/10 15 0.84 0.16 5 0.84 0.16 3 0.89 0.11 2 0.85 0.15 3 0.89 0.11 2 0.85 0.15
2016/11 15 0.87 0.13 10 0.94 0.06 3 0.91 0.09 1 1.00 0.00 3 0.91 0.09 1 1.00 0.00
2016/12 15 0.89 0.11 10 0.94 0.06 3 0.93 0.07 1 1.00 0.00 3 0.93 0.07 1 1.00 0.00
2017/01 15 0.88 0.12 10 0.92 0.08 3 0.93 0.07 1 1.00 0.00 3 0.93 0.07 1 1.00 0.00
2017/02 10 0.89 0.11 5 0.93 0.07 2 0.94 0.06 2 0.94 0.06 4 0.92 0.08 2 0.94 0.06
2017/03 10 0.81 0.19 5 0.74 0.26 2 0.87 0.13 2 0.82 0.18 4 0.84 0.16 2 0.82 0.18
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Appendix A

A.1. Proof of Theorem 1

Proof. Assume normally distributed error terms, (10) and (22): 𝜀(𝑘, 𝛽) ∼ N{0, 𝜎(𝑘, 𝛽)2}, 𝜀(𝑘, 𝛽) ∼ N{0, �̂�(𝑘, 𝛽)2}. Then

log𝐿{𝜀(𝑘, 𝛽)} = −𝑇
2
log(2𝜋) − 𝑇

2
log 𝜎(𝑘, 𝛽)2 − 1

2𝜎(𝑘, 𝛽)2

𝑇
∑

𝑡=1
𝜀(𝑘, 𝛽)2𝑡 . (30)

Denote 𝑅𝑆𝑆{𝜀(𝑘, 𝛽)} =
∑𝑇

𝑡=1𝜀(𝑘, 𝛽)
2
𝑡 and �̂�(𝑘, 𝛽)2 = 𝑇 −1𝑅𝑆𝑆{𝜀(𝑘, 𝛽)}. Then

log𝐿{𝜀(𝑘, 𝛽)} = −𝑇
2
log(2𝜋) − 𝑇

2
log 𝑇 −1𝑅𝑆𝑆{𝜀(𝑘, 𝛽)} − 1

2𝑇 −1𝑅𝑆𝑆{𝜀(𝑘, 𝛽)}
𝑅𝑆𝑆{𝜀(𝑘, 𝛽)} (31)

= −𝑇
2
log(2𝜋) − 𝑇

2
log 𝑇 −1𝑅𝑆𝑆{𝜀(𝑘, 𝛽)} − 𝑇

2
(32)

= −𝑇
2
log 𝑇 −1𝑅𝑆𝑆{𝜀(𝑘, 𝛽)} + 𝐶 (33)

with 𝐶 = − 𝑇
2 log(2𝜋) − 𝑇

2 . Since 𝐶 does not depend on any model parameters, just on the data length 𝑇 , this part of the equation
could be omitted.

AIC{𝜀(𝑘, 𝛽), 𝑠} = 𝑇 log 𝑇 −1𝑅𝑆𝑆{𝜀(𝑘, 𝛽)} + 2 ⋅ 𝑠 (34)
= 𝑇 log 𝜎(𝑘, 𝛽)2 + 2 ⋅ 𝑠 (35)
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The enhancement in the fit to the Total Market Index (TMI) by adding more constituents, 𝑠, determines the degree of improvement
of the likelihood.

With the linearity property of the expectation operator, assume without loss of generality

𝖤{𝜀(𝑘𝑚𝑎𝑥)𝑇𝑀} = 𝖤{𝜀(𝑘, 𝛽)𝐶𝑅𝐼𝑋} = 0

𝑡 ∈ {1,… , 𝑇 }

𝑡−𝑙 = 0

𝑠 = 1

𝜎(𝑘, 𝛽) = Var{𝜀(𝑘, 𝛽)}
= Var{𝜀(𝑘𝑚𝑎𝑥)𝑇𝑀 − 𝜀(𝑘, 𝛽)𝐶𝑅𝐼𝑋}

=
𝑇
∑

𝑡=1

[

log

{𝑘𝑚𝑎𝑥
∑

𝑖=1
𝑃𝑖𝑡𝑄𝑖,0(

𝑘
∑

𝑖=1
𝑃𝑖,𝑡−1𝑄𝑖,0 + 𝛽1𝑃𝑘+1,𝑡−1𝑄𝑘+1,0)

}

− log

{𝑘𝑚𝑎𝑥
∑

𝑖=1
𝑃𝑖,𝑡−1𝑄𝑖,0(

𝑘
∑

𝑖=1
𝑃𝑖,𝑡𝑄𝑖,0 + 𝛽1𝑃𝑘+1,𝑡𝑄𝑘+1,0)

}

]

2

=
𝑇
∑

𝑡=1

[

log

{𝑘𝑚𝑎𝑥
∑

𝑖=1
𝑃𝑖𝑡𝑄𝑖,0

𝑘
∑

𝑖=1
𝑃𝑖,𝑡−1𝑄𝑖,0 +

𝑘𝑚𝑎𝑥
∑

𝑖=1
𝑃𝑖𝑡𝑄𝑖,0𝛽1𝑃𝑘+1,𝑡−1𝑄𝑘+1,0

}

− log

{𝑘𝑚𝑎𝑥
∑

𝑖=1
𝑃𝑖,𝑡−1𝑄𝑖,0

𝑘
∑

𝑖=1
𝑃𝑖,𝑡𝑄𝑖,0 +

𝑘𝑚𝑎𝑥
∑

𝑖=1
𝑃𝑖,𝑡−1𝑄𝑖,0𝛽1𝑃𝑘+1,𝑡𝑄𝑘+1,0

}

]

2

Using the relation log(𝑎 + 𝑏) = log(𝑎) + log(1 + 𝑏
𝑎
), it results:

=
𝑇
∑

𝑡=1

[

log

{𝑘𝑚𝑎𝑥
∑

𝑖=1
𝑃𝑖𝑡𝑄𝑖,0

𝑘
∑

𝑖=1
𝑃𝑖,𝑡−1𝑄𝑖,0

}

+ log

⎧

⎪

⎨

⎪

⎩

1 +
∑𝑘𝑚𝑎𝑥

𝑖=1 𝑃𝑖𝑡𝑄𝑖,0𝛽1𝑃𝑘+1,𝑡−1𝑄𝑘+1,0
∑𝑘𝑚𝑎𝑥

𝑖=1 𝑃𝑖𝑡𝑄𝑖,0
∑𝑘

𝑖=1 𝑃𝑖,𝑡−1𝑄𝑖,0

⎫

⎪

⎬

⎪

⎭

− log

{𝑘𝑚𝑎𝑥
∑

𝑖=1
𝑃𝑖,𝑡−1𝑄𝑖,0

𝑘
∑

𝑖=1
𝑃𝑖,𝑡𝑄𝑖,0

}

+ log

⎧

⎪

⎨

⎪

⎩

1 +
∑𝑘𝑚𝑎𝑥

𝑖=1 𝑃𝑖,𝑡−1𝑄𝑖,0𝛽1𝑃𝑘+1,𝑡𝑄𝑘+1,0
∑𝑘𝑚𝑎𝑥

𝑖=1 𝑃𝑖,𝑡−1𝑄𝑖,0
∑𝑘

𝑖=1 𝑃𝑖,𝑡𝑄𝑖,0

⎫

⎪

⎬

⎪

⎭

]

2

=
𝑇
∑

𝑡=1

(

log

{𝑘𝑚𝑎𝑥
∑

𝑖=1
𝑃𝑖𝑡𝑄𝑖,0

𝑘
∑

𝑖=1
𝑃𝑖,𝑡−1𝑄𝑖,0

}

− log

{𝑘𝑚𝑎𝑥
∑

𝑖=1
𝑃𝑖,𝑡−1𝑄𝑖,0

𝑘
∑

𝑖=1
𝑃𝑖,𝑡𝑄𝑖,0

}

+

[

log

{

1 +
𝛽1𝑃𝑘+1,𝑡−1𝑄𝑘+1,0
∑𝑘

𝑖=1 𝑃𝑖,𝑡−1𝑄𝑖,0

}

− log

{

1 +
𝛽1𝑃𝑘+1,𝑡𝑄𝑘+1,0
∑𝑘

𝑖=1 𝑃𝑖,𝑡𝑄𝑖,0

}]

)

2 (36)

Solving the derivation and writing the terms which do not depend on 𝛽1 as 𝐴𝑡 and the last part of (36) as 𝐵𝑡:

𝜎(𝑘, 𝛽) =
𝑇
∑

𝑡=1
𝐴𝑡 + 2 log

{𝑘𝑚𝑎𝑥
∑

𝑖=1
𝑃𝑖𝑡𝑄𝑖,0

𝑘
∑

𝑖=1
𝑃𝑖,𝑡−1𝑄𝑖,0

}

𝐵𝑡 − 2 log

{𝑘𝑚𝑎𝑥
∑

𝑖=1
𝑃𝑖,𝑡−1𝑄𝑖,0

𝑘
∑

𝑖=1
𝑃𝑖,𝑡𝑄𝑖,0

}

𝐵𝑡 + 𝐵2
𝑡

=
𝑇
∑

𝑡=1
𝐴𝑡 + 2𝐵𝑡

[

log

{𝑘𝑚𝑎𝑥
∑

𝑖=1
𝑃𝑖𝑡𝑄𝑖,0

𝑘
∑

𝑖=1
𝑃𝑖,𝑡−1𝑄𝑖,0

}

− log

{𝑘𝑚𝑎𝑥
∑

𝑖=1
𝑃𝑖,𝑡−1𝑄𝑖,0

𝑘
∑

𝑖=1
𝑃𝑖,𝑡𝑄𝑖,0

}]

+ 𝐵2
𝑡

=
𝑇
∑

𝑡=1
𝐴𝑡 + 2𝐵𝑡

[

𝜀(𝑘𝑚𝑎𝑥)𝑇𝑀 − 𝜀(𝑘, 1)𝐶𝑅𝐼𝑋] + 𝐵2
𝑡

Since normally distributed error terms are assumed, note that 𝛽1 =
𝐶𝑜𝑣{𝜀(𝑘,1),𝜀𝑘+1}

𝑉 𝑎𝑟{𝜀𝑘+1}
, where 𝜀𝑘+1 is the log return of 𝑃𝑖,𝑡𝑄𝑖,0. The change

in the variance will depend on the additional variance which the new constituent can explain, see 𝛽1. Furthermore, it depends on the
value of 𝑃𝑘+1,𝑡𝑄𝑘+1,0 relative to ∑𝑘

𝑖=1𝑃𝑖,𝑡𝑄𝑖,0, (36), which is the summed market value of the constituents in the index. This infers that
constituents with a higher market capitalization are more likely to be part of the index. ■

This gives support to using the often applied top-down approach, which we use for the construction of CRIX too.
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009 ”CRIX an Index for cryptocurrencies” by Simon Trimborn, Wolfgang Karl Härdle,
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