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Abstract This paper aims to model the joint dynamics of cryptocurrencies
in a nonstationary setting. In particular, we analyze the role of cointegration
relationships within a large system of cryptocurrencies in a vector error correc-
tion model (VECM) framework. To enable analysis in a dynamic setting, we
propose the COINtensity VECM, a nonlinear VECM specification accounting
for a varying systemwide cointegration exposure. Our results show that cryp-
tocurrencies are indeed cointegrated with a cointegration rank of four. We also
find that all currencies are affected by these long term equilibrium relations.
A simple statistical arbitrage trading strategy is proposed showing a great
in-sample performance.
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1 Introduction

Cryptocurrencies have emerged as a new asset class over recent years. As of
2020, the crypto universe includes almost 5000 currencies with a total market
capitalization close to 200 bn USD (coinmarketcap.com). We refer to Härdle
et al. (2019) for a general overview on cryptocurrencies. While the market
is still dominated by Bitcoin (BTC), the analysis of the interdependence of
cryptocurrencies received a lot of attention from researchers as well as prac-
titioners. For instance, Guo et al. (2018) analyzed latent communities from a
network perspective. A large strand of literature is concerned with the relation
of cryptocurrencies to other more traditional classes of assets (Shahzad et al.
(2019), Corbet et al. (2018)). Yi et al. (2018) and Ji et al. (2019) analyzed
directional volatility spillover effects using the variance decomposition method
of Diebold and Yılmaz (2014). Sovbetov (2018) analyzesd the cointegration of
a VAR system of four cryptocurrencies. Leung and Nguyen (2019) proposed
and discussed cointegration-based trading strategies.

While existing research contributions on cointegration restrict their focus
to a small number of currencies, we argue that this only paints an incomplete
picture. This paper aims to model the joint dynamics of cryptocurrencies in a
nonstationary and high dimensional setting. In particular, we investigate the
role of potential cointegration relationships among cryptocurrencies. In our
empirical analysis we consider the ten largest currencies in terms of market
capitalization in the period from July 2017 to February 2020.

Our methodology is based on the vector error correction model (VECM),
developed by Engle and Granger (1987), which augments the standard vector
autoregressive (VAR) model with an additional role for deviations from long-
run equilibria. A crucial task is to select the number of those equlibria, also
referred to as cointegration relations. Johansen (1988, 1991) proposed a likeli-
hood ratio test, which is now commonly used. However, the testing procedure
suffers from poor finite sample performance in systems of more than three
variables (Johansen (2002); Liang and Schienle (2019)). We therefore follow
Onatski and Wang (2018), who proposed an alternative test for cointegration
that is designed for a high-dimensional setting. To analyze the cointegration
of cryptocurrencies in a dynamic setting, we propose a novel nonlinear VECM
specification, which we call COINtensity (cointegration intensity) VECM.

Our empirical results suggest that cointegration plays a crucial role for
cryptocurrencies. In particular, we find four stationary long-run equilibria. We
also find that all currencies are significantly affected by long-term stochastic
trends, rejecting the hypothesis of weak exogeneity. The results of our dynamic
COINtensity VECM show a time-varying dependence of cryptocurrencies on
these stochastic trends. We find that the nonlinearity of error correction is
stronger during the time of the cryptocurrency bubble, compared to a later
time period.

Based on our estimated cointegration vectors, we construct a simple trading
rule, following and generalizing the strategy of Leung and Nguyen (2019). A
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backtest of our trading strategy indicates that trading on large deviations from
the long-run equlibria can be profitable.

The contributions of this paper are two-fold. First, it is the first attempt
to model a system of cryptocurrencies in a large vector autoregression while
accounting for nonstationary effects. Second, we propose a novel, nonlinear
VECM specification which increases the flexibility and also has a good inter-
pretability even in large dimensions.

The remainder of the paper is organized as follows. Section 2 describes
in detail the steps of our modelling and estimation procedure. To show the
validity of our approach, we conduct a small simulation study in section 3. In
section 4, we apply our methodology to a system of the largest ten cryptocur-
rencies. Section 5 introduces a simple cointegration-based trading strategy and
section 6 concludes.

All codes of this paper are available on quantlet.de.

2 Modelling Framework

2.1 VECM and Testing for Cointegration

As a baseline model we consider the following p-dimensional vector autore-
gressive model with error correction term (VECM).

∆Xt = ΠXt−1 +

k∑
i=1

Γi∆Xt−i + ΦDt + εt, (1)

where Dt are deterministic variables and εt are zero-mean, independent error
terms. We assume that each univariate time series is integrated of order one,
Xit ∼ I(1), i = 1, . . . , p. Under cointegration, there exists a linear combination
which is stationary, i.e. β>Xt ∼ I(0). Thus, we can rewrite (1) in the following
way.

∆Xt = αβ>Xt−1 +

k∑
i=1

Γi∆Xt−i + ΦDt + εt, (2)

where β is a p × r matrix of cointegration vectors and α is the p × r loading
matrix. The order of cointegration is characterized by the rank r of β. Γi,
i = 1, . . . , k − 1, are p × p parameter matrices associated with the impact of
lagged values of ∆Xt.

Johansen (1988, 1991) developed a sequential likelihood testing procedure
to determine the cointegration rank r. Under the null hypothesis there are at
most r cointegration relationships.

H0 : rank(Π) ≤ r vs H1 : rank(Π) > r (3)

In the special case of r = 0, there is no cointegration and we have to proceed
with a VAR model in first differences. On the other hand, if r = p, we can use

http://www.quantlet.de
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a VAR model in levels without any error correction terms. In all other cases,
0 < r < p, the series are cointegrated.

The test statistic is based on the squared canonical correlations between
the residuals obtained by regressing ∆Xt and Xt−1 on the lagged differences
and the exogenous variables, respectively. These correspond to the eigenvalues
λ1 ≥ . . . ≥ λp of the matrix S01S

−1
11 S

>
01S
−1
00 , with S00 = 1

TR0tR
>
0t, S01 =

1
tR0tR

>
1t and S11 = 1

TR1tR
>
01. R0t are the residuals of regressing ∆Xt and R1t

are the residuals of regressing Xt−1.

LR = −T
p∑

i=r+1

log(1− λi), (4)

Under the null hypothesis, the test statistic converges in distribution to a
function of Brownian motions.

LR
L→ tr

{(∫ 1

0

WdW>
)>(∫ 1

0

WW>ds

)−1(∫ 1

0

WdW>
)}

, (5)

where W is a (p− r)-dimensional Brownian motion.
The Johansen test of cointegration has proved to have issues in small sam-

ples, in particular if the dimension of the VAR model, p, becomes large. This
issue is adressed in Johansen (2002). Onatski and Wang (2018) therefore de-
veloped a different asymptotic setting. In particular, they consider the case

where T and p go to infinity simultaneously at a constant rate c
def
= p

T ∈ [0, 1].
Consider a simplified representation of (1) without lagged differences.

∆Xt = ΠXt−1 + ΦDt + εt (6)

Under this asymptotic regime and under the null hypothesis of no cointe-
gration, the empirical distribution function of the eigenvalues of the matrix
S01S

−1
11 S

>
01S
−1
00 converges weakly to the Wachter distribution.

Fp(λ)⇒Wc(λ)
def
= W (λ; c/(1 + c), 2c/(1 + c)) (7)

where Fp(λ) = 1
pI(λi ≤ λ) and W (λ, γ1, γ2) denotes the Wachter distribu-

tion function with parameters γ1, γ2 ∈ (0, 1) and density fW (λ, γ1, γ2) =

1
2πγ1

√
(b+−λ)(λ−b−)

λ(1−λ) on [b−, b+] with b± =
(√

γ1(1− γ2)±
√
γ2(1− γ1)

)2
and

atoms of size max(0, 1 − γ2/γ1) at zero and max(0, 1 − 1−γ2
γ1

) at unity. The
rank of cointegration can be determined graphically by comparing the empir-
ical quantiles of the calculated eigenvalues with the theoretical quantiles of
the Wachter distribution. Under the null hypothesis of no cointegration the
empirical quantiles of eigenvalues should lie close to the theoretical quantiles
of the Wachter. Onatski and Wang (2018) suggest to select the cointegration
rank by the number of eigenvalues which deviate from the 45 degree line. We
show the validity of this approach in a simulation study in section 3.
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If the rank of the matrix of cointegration vectors is known, we can estimate
the parameters of the VECM by reduced rank maximum likelihood estimation
(Johansen (1995)). We differentiate between the long-run parameters, β, and
the short-run parameters, α and Γ . In order to derive estimators for these
parameters, it is convenient to rewrite model (2) in matrix notation.

∆X = αβ>X−1 + ΓZ + ε (8)

with ∆X = (∆X1, . . . ,∆XT ), X−1 = (X0, . . . , XT−1) and Z = (Z0, . . . , ZT−1)

with Zt−1 = (∆Xt−1, . . . ,∆Xt−k)>. First, we estimate β̂ by the eigenvectors
corresponding to the r largest eigenvalues of the matrix S01S

−1
11 S

>
01S
−1
00 , which

we defined in the previous subsection. Without normalization, this estimator is
not unique. Therefore, we set the j-th element in the j-th cointegration vector
to one. We can now estimate the remaining parameters with equation-wise
OLS by plugging in the estimator for β.

[α̂ : Γ̂ ] = [∆XX>−1β : ∆XZ>]

[
β>X−1X

>
−1β β

>X−1Z
>

ZX>−1β ZZ>

]>
(9)

Using standard arguments for stationary processes, the estimator’s distribu-
tion is asymptotically normal.

√
Tvec([α̂ : Γ̂ ]− [α : Γ ])

L→ N(0, Σα,Γ ), (10)

where

Σα,Γ =

[
β>X−1X

>
−1β β

>X−1Z
>

ZX>−1β ZZ>

]>
⊗Σε (11)

This enables us to set up and interpret t-tests in the usual way because they
have a standard normal limiting distribution under our assumptions. Also,
Wald tests and the corresponding F -tests of linear restrictions on the param-
eters have the usual asymptotic χ2- or approximate F -distributions that are
obtained for stationary processes.

2.2 COINtensity VECM

As an extension to the baseline setting, we consider a nonlinear VECM spec-
ification. Such models originate from Granger and Teräsvirta (1993), who in-
troduced the smooth transition error correction model (STECM). A vector
version was proposed by Dijk et al. (2002). Kristensen and Rahbek (2010)
considered the general setting of likelihood-based estimation with nonlinear
error correction. Corresponding linearity tests and inference-related issues are
discussed in Kristensen and Rahbek (2013). The general setting can be formu-
lated as follows.

∆Xt = g
(
β>Xt−1; θ

)
+

k∑
i=1

Γi∆Xt−i +Dt + εt (12)
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where g(·) is a parametric error correction function with parameter vector θ.
The error correction function can be nonlinear in the long term stochastic
trends as well as in θ. In the baseline linear setting, g(z; θ) = αz and θ =
vec(α). In the vector version of the STECM we have g(z; θ) = {α+ α̃ψ(z;ψ)},
where ψ(z;φ) is a fixed function satisfying |ψ(z;φ)| = O(1) as ‖z‖ → ∞, and
θ = (vec(α)>, vec(α̃)>, vec(φ)>)>.

The advantage of using nonlinear models is an increased degree of flexibil-
ity. However, often this flexibility comes at the expense of worse interpretabil-
ity and of overfitting the data. We therefore introduce a new class of vector
error correction models, which we call COINtensity (cointegration intensity)
VECM.

∆Xt = αβ>Xt−1 {1 +G (γ, st)}+

k∑
i=1

Γi∆Xt−i +Dt + εt (13)

where st is a d-dimensional vector of transition variables and G(·) : Rd →
(−1, 1) is a parametric function with parameter vector γ ∈ Rd. We propose the
following parameterisation, G(·) = tanh(s>t γ) and st = β>Xt−1. We denote
G(·) as the COINtensity (cointegration intensity) function. This function has
a universal effect for all cryptocurrencies and measures the intensity of the
impact of cointegration. G(·) takes values in [−1, 1]. In this model specification,
we still have a loading matrix α which measures currency-specific marginal
effects. Please note that our COINtensity VECM is a generalization of the
baseline model, as model (13) reduces to model (2) if γ = 0.

Our model specification has two advantages. First, it has only a few addi-
tional parameters compared to the baseline specification. The overfitting prob-
lem of nonlinear error correction models can therefore be contained. Second,
the modified model enables us to analyze cointegration and the exposure of
cryptocurrencies to long-term equilibrium relationships in a dynamic context,
addressing question III. of this research.

If the cointegration vectors β are known, model parameters can be esti-
mated by quasi maximum likelihood estimation (QMLE). For convenience, we

write θ
def
= (vec(α)>, vec(γ)>, vec(Γ )>)>. The QMLE, θ̂ of θ, is defined as the

minimizer of the following negative log-likelihood criterion,

LT (θ) =
T∑
t=1

ε>t (θ)εt(θ) (14)

We split the parameter vector into two parts and write θ = (θ>1 , θ
>
2 )>, with

θ1 = (vec(α), vecΓ )> and θ2 = vec(γ). Further, we define

Wt(θ2)
def
=
([
β>Xt−1

{
1 + tanh

(
θ2β
>Xt−1

)}]>
, ∆X>t−1, . . . ,∆Xt−k

)>
,

(15)

where Wt(θ2) ∈ Rr+pk. Now, we can rewrite model (13) as follows.

∆Xt = θ>1 Wt(θ2) + εt (16)
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The profile estimator for θ1(θ2) can be obtained by standard OLS.

θ̂1(θ2) =

{
T∑
t=1

Wt(θ2)W>t (θ2)

}−1 T∑
t=1

Wt(θ2)∆X>t−1 (17)

We proceed by obtaining the corresponding vector of residuals.

ε̂t(θ2) = ∆Xt−1 − θ̂1Wt(θ) (18)

Given the profile estimator, we can estimate θ2 by

θ̂2 = arg min
θ2∈Θ2

LT (θ1(θ2), θ2), (19)

where Θ2 is the parameter space of θ2. The final estimator for θ1 can be
obtained by plugging (19) into (17).

3 Simulation Study

In the first part of this simulation study, we examine the validity of the pro-
cedure of Onatski and Wang (2018) to test for cointegration. They suggest
to determine the cointegration rank graphically by comparing the empirical
quantiles of the eigenvalues with the theoretical eigenvalues of the Wachter
distribution. The cointegration rank is chosen according to the number of
eigenvalues deviating from the 45 degree line. Here, we calibrate the numeri-
cal example in Liang and Schienle (2019), which is an 8-dimensional VAR(2)
process with four unit roots, i.e p = 8, r = 4, k = 1.

∆Xt = αβ>Xt−1 + Γ1∆Xt−1 + εt, (20)

with full-rank matrices α, β of dimension p×r and iid-distributed εt generated
from N(0, I8). We consider T = 200, matrices α, β and Γ1 are listed in the
appendix.

Figure 1 shows that there are exactly 4 eigenvalues that deviate from the
45 degree line, which also supports the simulation result of Onatski and Wang
(2018), while the Johansen test rejects the null hypothesis of a cointegration
rank smaller than or equal to four at 5% significance level, implying five cointe-
gration relationship. So, we apply the Wachter Q-Q plot to decide the number
of cointegration in our large dimensional model.
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Fig. 1: The Wachter Q-Q plot shows that the number of eigenvalues deviating
from the 45 degree line is equal to the true cointegration rank, r = 4.

In the second part of the simulation study, we investigate the finite-sample
properties of our estimator for the COINtensity VECM. We follow the study
design of Kristensen and Rahbek (2010). In particular, we focus on the case
where p = 2 and the number of cointegration relation is r = 1. Further, the
number of lagged differences entering our model is k = 1. We consider four
different sample sizes, T ∈ {250, 500, 1000, 2000}. The cointegration vector
is assumed to be known, β = (1,−1)>. The loading parameters are set to
α1 = 0.2 and α2 = −0.2. The elements matrix of parameters associated with
the lagged first differences are set to Γjk = 0.05 for j, k = 1, 2. For each sample
size, we simulate 1000 sample paths of our VECM specification. Finally, we
set γ = 0.2. We evaluate the performance of the estimator by the root mean
square error (RMSE). The simulation results can be found in Table 1.

T = 250 T = 500 T = 1000 T = 2000
α1 0.0624 0.0498 0.0403 0.0314
α2 0.0622 0.0501 0.0400 0.0314
γ 0.4034 0.3476 0.2838 0.2202

Table 1: RMSE for QMLE of individual parameters in our COINtensity
VECM.

CryptoDynamics Simulation

https://github.com/QuantLet/CryptoDynamics/tree/master/CryptoDynamics_Simulation
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For the individual-specific parameters, α1 and α2, we can observe a good
estimation accuracy already in small and moderate samples. As expected, the
estimates become more precise with increasing sample size T . This is also
the case for γ, which governs the intensity by which the individual series are
affected by deviations from the long-term equlibrium. However, the estimates
for γ are not as precise as for the former parameters.

4 Dynamics of Cryptocurrencies

4.1 Data and Descriptive Statistics

In the empirical part of the paper, we analyze the joint dynamics of the largest
cryptocurrencies. In particular, we are interested in the following set of ques-
tions.

I. Do cointegration relations exist among cryptocurrencies?
II. Which cryptocurrencies affect and which are affected by long-term equi-

librium effects?
III. How does the impact of the cointegration relationships change in a dy-

namic setting?

We use daily time series data of the largest ten cryptocurrencies, which we
obtained from Coinmarketcap.com. Since some of the currencies have a very
short trading history, we restrict our analysis to those with a time series dating
back to at least July 2017. The reason for this decision is to include the boom
and the bust of the crypto-bubble at the end of 2017 and start of 2018. To
avoid pathological cases, we also remove stable coins such as Tether (USDT).
Stable coins are characterized by a fixed exchange rate with the USD and are
therefore expected to be stationary in levels. The list of currencies included
in our analysis can be found in Table 2. In total, we have 945 daily price
observations from July 25, 2017 until February 25, 2020.

Currency Symbol Market Cap (106 USD) Avg Return (%) σ
Bitcoin BTC 170,370 0.181 0.019
Ethereum ETH 27,223 0.077 0.020
XRP XRP 11,087 0.028 0.022
Bitcoin Cash BCH 6,477 0.133 0.047
Litecoin LTC 4,567 0.092 0.025
EOS EOS 3,764 0.107 0.034
Binance Coin BNB 3,164 0.338 0.053
Tezos XTZ 1,978 0.204 0.031
Stellar XLM 1,320 0.222 0.045
Ethereum Classic ETC 1,076 0.066 0.032

Table 2: List of cryptocurrencies and descriptive statistics. Market capitaliza-
tion as of February 25, 2020, obtained from Coinmarketcap.com.

CryptoDynamics Scraping

https://github.com/QuantLet/CryptoDynamics/tree/master/CryptoDynamics_Scraping
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The aggregated market capitalization of our sample is around 230 bn USD
and captures more than 95% of the total market capitalization of cryptocurren-
cies. Our analysis therefore has a high degree of external validity. By looking
at Table 2, it becomes apparent that the crypto market is still dominated
by Bitcoin. However, also ETH and XRP occupy a dominant position in the
market.

2018 2019 2020

−
5

0
5

10

Fig. 2: Time Series of log prices from July 2017 - February 2020. BTC, ETH,
XRP, BCH and all others.

CryptoDynamics Series

Figure 2 shows the development of the log prices over time. The mul-
tivariate time series reveals a strong co-movement of cryptocurrencies. For
instance, we can observe a sharp rise in prices for all currencies at the end of
2017, followed by a sharp decrease at the beginning of 2018 during burst of
the cryptocurrency bubble. This empirical observation suggests a dependence
of currencies in levels, not only in first differences. It is thus an essential task
to account for cointegration, when analyzing the joint dynamics of cryptocur-
rencies. Failing to do so would only paint an incomplete picture.

Before any cointegration analysis can be done, one has to assure that all
the currencies series are non-stationary and integrated of the same order. Per-
forming the Augmented Dickey-Fuller with a constant and a time trend, the
null hypothesis of a unit root cannot be rejected for the individual logged
prices at 90% level. The lag length k for the ADF test has been selected by
the Ng and Perron (1995) downtesting procedure starting with a maximum
lag of 12, which corresponds to a time span of about three months. However,
the results of the ADF test are not sensitive to the choice of k and the null
cannot be rejected for any number of lagged terms in each of the series.

https://github.com/QuantLet/CryptoDynamics/tree/master/CryptoDynamics_Series
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In the next step, we apply differences of the time series and compute
the ADF test statistic on the differenced data. This time, the null of non-
stationarity is rejected for all indices at the 99% level. This suggests that daily
returns follow a stationary process. Since the original series must be differenced
one time in order to achieve stationarity, we conclude that the cryptocurrency
prices are integrated of order one, such that the vector Xt is I(1). The results
of the tests are summarized in Table 3.

Xt ∆Xt

ADF KPSS ADF KPSS
BTC 0.76 < 0.01 < 0.01 > 0.1
ETH 0.56 < 0.01 < 0.01 > 0.1
XRP 0.21 < 0.01 < 0.01 > 0.1
BCH 0.59 < 0.01 < 0.01 > 0.1
LTC 0.60 < 0.01 < 0.01 > 0.1
EOS 0.41 < 0.01 < 0.01 > 0.1
BNB 0.40 < 0.01 < 0.01 0.04
XTZ 0.62 < 0.01 < 0.01 > 0.1
XLM 0.28 < 0.01 < 0.01 0.07
ETC 0.39 < 0.01 < 0.01 > 0.1

Table 3: p-values of the stationary tests for the level and first difference data.

Having confirmed that all the series are integrated of the same order, this
allows to test for cointegration.

4.2 Estimation Results

BTC ETH XRP BCH LTC EOS BNB XMR XLM ETC
β1 1.00 0.00 0.00 0.00 1.98 0.13 -0.94 -3.42 0.57 0.70
β2 0.00 1.00 0.00 0.00 -0.28 -0.27 0.24 -1.09 0.11 0.31
β3 0.00 0.00 1.00 0.00 -0.97 0.39 0.20 0.54 -0.76 0.00
β4 0.00 0.00 0.00 1.00 0.53 -0.43 -0.06 -1.27 0.37 -0.42

Table 4: Estimated cointegration vectors β̂.
CryptoDynamics Estimation

In the first step, we determine the cointegration rank graphically by using
the Wachter QQ plot proposed by Onatski and Wang (2018). As explained in
the last section, large deviations of the empirical quantiles of eigenvalues from
the theoretical quantiles of the Wachter distribution indicate that the present
matrix does not have full rank. We conclude from Figure 3 that there are four
cointegration relations since we can observe four eigenvalues deviating from
the 45 degree line.

https://github.com/QuantLet/CryptoDynamics/tree/master/CryptoDynamics_Estimation
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Fig. 3: Wachter QQ plot to determine the cointegration rank r.
CryptoDynamics Wachter

Having fixed the cointegration rank, we can proceed with estimating the
cointegration vectors. The estimated coefficients can be found in Table 4. To
make the estimator unique, we normalize the j-th entry of the j-th cointe-
gration vector to 1. Due to this normalization, we have one vector associated
with each of the four largest currencies. For instance, we can observe for β1
that the entry for BTC is one whereas the entries for ETH, XRP and BCH
are all close to zero. Based on these estimation results, we plot the time series
of our four stochastic trends in Figure 4. Apart from the beginning of our
observation period and apart from the crypto bubble of 2017/2018, we can
observe steady and mean-reverting stochastic trends. These observations can
be confirmed statistically. Results from the ADF test reject the hypothesis
that these trends have a unit root. We can continue to estimate the short-run
parameters α and Γ . In the following, we assume that the lag order k = 1.

The estimation results of our baseline VECM indicate that cointegration
plays an important role for cryptocurrencies. See Table 5 for the estimation
of the loading matrix α. The (j,i)-th entry of the table shows how currency

j is affected by error correction term i, where ECTj,t−1
def
= β̂j

>
Xt−1. Almost

all currencies are significantly affected by at least one stochastic trend, with
BTC and LTC being the only exceptions. We additionally test the hypothesis
of weak exogeneity to examine whether a given currency is unaffected by all

https://github.com/QuantLet/CryptoDynamics/tree/master/CryptoDynamics_Wachter
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Fig. 4: Time series of the long-term stochastic trends. β>1 Xt−1, β>2 Xt−1,
β>3 Xt−1 and β>4 Xt−1.

CryptoDynamics Estimation

stochastic trends. The null and alternative hypotheses are:

H0 : αj,1 = . . . = αj,r = 0 vs. H1 : ∃ αj,k≤r 6= 0 (21)

The test statistic is constructed as a classical Wald statistic. We reject the
null hypothesis for all currencies at a significance level of 0.1%. Cointegra-
tion therefore has universal effects. The long-run linkages between the indices
suggest that cryptocurrency prices are not independent, but predictable us-
ing information of others. The results also suggest that investors who seek to
diversify their portfolios internationally should be aware that the ten cryp-
tocurrency prices in the system follow a common stochastic trend. This means
that these markets generate similar returns in the long-run. Therefore, di-
versification across the markets is limited and investors should include other
markets with lower correlation to hedge their risk.

In the first error correction term, ETH and BNB do not tend to return
to the long-run equilibrium as the coefficient on the error term is positive. In
the second one, ETH, XRP LTC, EOS and XLM all have the predicted nega-
tive sign, which indicates that the disequilibrium given in the error correction
term will be reduced period by period. However, the size of the estimates differs
widely and is quite small compared to the short-term adjustment parameters.
These results suggest that distortions in the long-run equilibrium will be cor-
rected slowly and unevenly among the 10 cryptocurrencies. In the third one,
XLM is the leader in the system, XRP, BCH and EOS carry the burden of
adjustment to return to the long-run relationship. In the fourth one, EOS,
XRM, ETC are the leaders in the system and that BCH carries the burden of
adjustment to return to the long-run relationship.

https://github.com/QuantLet/CryptoDynamics/tree/master/CryptoDynamics_Estimation
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ECT1 ECT2 ECT3 ECT4
BTC 0.0045 -0.0017 -0.0119 0.0005
ETH 0.0084 -0.0228 0.0098 0.0085
XRP -0.0010 -0.0385 -0.0287 0.0164
BCH 0.0044 0.0024 -0.0348 -0.0403
LTC 0.0019 -0.0144 -0.0185 -0.0138
EOS -0.0068 -0.0293 -0.0382 0.0438
BNB 0.0308 -0.0199 0.0142 -0.0047
XMR 0.0024 0.0026 -0.0123 0.0268
XLM 0.0067 -0.0276 0.0205 0.0205
ETC -0.0009 -0.0096 0.0007 0.0282

Table 5: Estimated loading matrix α̂. Red color indicates significance of neg-
ative coefficients, blue color indicates significance of positive coefficients, with
significance at 5%, 1% and 0.1% level.

CryptoDynamics Estimation

BTC ETH XRP BCH LTC EOS BNB XMR XLM ETC
BTC 0.08 -0.08 -0.03 -0.05 -0.06 0.07 0.00 0.06 0.02 -0.04
ETH -0.07 0.05 -0.07 0.00 0.07 -0.02 0.01 0.02 0.02 -0.08
XRP -0.17 0.06 0.11 -0.03 0.03 0.01 0.05 0.06 -0.08 -0.12
BCH -0.28 0.13 -0.09 0.19 -0.05 -0.00 0.08 0.06 0.01 -0.14
LTC 0.01 -0.11 -0.03 0.02 0.09 -0.05 0.02 0.03 -0.01 -0.02
EOS -0.07 -0.06 -0.07 -0.03 0.11 0.00 0.08 0.02 0.01 -0.01
BNB 0.15 0.01 0.02 0.03 -0.18 0.01 0.18 -0.04 -0.13 -0.06
XMR -0.05 -0.01 -0.07 -0.01 0.02 0.03 0.07 -0.04 -0.01 -0.05
XLM 0.04 -0.08 -0.04 -0.07 0.09 0.03 0.00 -0.03 0.13 -0.11
ETC 0.05 -0.01 -0.09 0.05 -0.00 0.05 0.01 -0.08 0.02 -0.07

Table 6: Estimated coefficient matrix Γ̂ . Red color indicates significance of
negative coefficients, blue color indicates significance of positive coefficients,
with significance at 5%, 1% and 0.1% level.

CryptoDynamics Estimation

The estimation results for the lagged differences can be found in Table
6. Compared to the estimated coefficients for the error correction terms, the
lagged differences seem to be less important. Some currencies, such as BCH
and BNB, have highly significant coefficients associated with their own lagged
value. Another interesting observation is that BTC and BCH both depend on
each other negatively.

All the previous results are obtained in the baseline linear VECM setting.
For a dynamic analysis we henceforth rely on our COINTensity VECM. We
estimate the model by the profile likelihood estimation framework introduced
in section 2.3. In the first step, we estimate the cointegration vectors β as
before. In practice, we then estimate the nonlinear part of the model by ran-
dom parameter search. We assume that the parameter vector θ2 = γ lies in
Θ2 = [−1, 1]r. The candidate parameters are generated from the r-dimensional
uniform distribution in the same range. Our number of simulations is 10000.

https://github.com/QuantLet/CryptoDynamics/tree/master/CryptoDynamics_Estimation
https://github.com/QuantLet/CryptoDynamics/tree/master/CryptoDynamics_Estimation
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Fig. 5: Time series of cointegration intensity (grey) and spline interpolation
(blue).

CryptoDynamics Nonlinear

The time series of the estimated COINtensity function, G(γ̂, β̂>Xt−1), is
visualized in Figure 5. We can observe a time-varying pattern of the intensity
by which cryptocurrencies are affected by long run equilibrium effects. Prior
to the building of the bubble at the end of 2017, cointegration intensity was
low with values close to zero. The following increase goes along with the strong
increase in prices across all cryptocurrencies in the last quarter of the same
year. The subsequent months can be characterized by a highly volatile coin-
tegration intensity. Recently, from the second half of 2018, we can observe a
period of stabilization with no values exceeding the 0.5 and 1.5 thresholds. We
conclude that nonlinearity was more prevalent in the turbulent period of the
cryptocurrency bubble.

5 A Simple Statistical Arbitrage Trading Strategy

In this section, we apply a simple cointegration-based trading strategy for
cryptocurrencies. We use the same data as in the previous section. Under the
assumption of mean reversion of the long term stochastic trends, a large devi-
ation from the equilibrium relationships should lead to profitable investment
opportunities. In the following we define the cointegration spreads. For each
cointegration relationship, j = 1, . . . , r, we have

Sj,t = β>j Xt

= βj,1X1,t + . . .+ βj,pXp,t

(22)

If the spread exceeds an upper threshold, we enter a long position, if the spread
goes below the lower threshold, we enter a short position. The reasoning be-
hind the strategy is very intuitive. A large positive spread is a signal that the

https://github.com/QuantLet/CryptoDynamics/tree/master/CryptoDynamics_Nonlinear
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portfolio is overpriced and it is profitable to sell it. On the other hand, if we
encounter a large negative spread, the portfolio is underpriced and we should
buy it. We choose three different threshold levels, τ ∈ (±0.5σj ,±σj ,±1.5σj),
which are chosen to be symmetric around the long term mean of the stochas-
tic trend, σj is the estimated standard deviation. This investment decision is
repeated for each estimated cointegration relationship and for each trading
day. So each day, we have to make a decision to either buy, sell or hold our
position. The trading strategy follows Leung and Nguyen (2019), who con-
sider a similar statistical arbitrage strategy. However, our strategy differs in
two aspects. First, Leung and Nguyen (2018) use the approach of Engle and
Granger (1987) to estimate the cointegration vector and second, our paper
utilizes r cointegration relations while their paper is restricted to a single one.
We backtest our strategy and compare the performance to the cryptocurrency
index CRIX Trimborn and Härdle (2018).

0 50 100 150 200
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−
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−
1

0
1

2
3

Fig. 6: Visualization of the statistical arbitrage trading strategy for simulated
data. Neutral position, short position and long position.

Threshold ±0.5σj ±σj ±1.5σj CRIX
Number of Trades 20 13 7 -
Net Profits 14,625 23,480 16,853 15,330
Maximal Drawdown 4,549 4,511 5,910 55,297
Annual Sharpe Ratio 0.59 0.93 0.66 0.22

Table 7: Performance statistics for different threshold levels.
CryptoDynamics Trading

Table 7 summarizes the performance of our trading strategy for different
threshold levels and compares it to the performance of the CRIX. The num-
ber of trades is decreasing with an increasing threshold level. For each of the

https://github.com/QuantLet/CryptoDynamics/tree/master/CryptoDynamics_Trading


On Cointegration and Cryptocurrency Dynamics 17

2018 2019 2020

0
10

00
0

30
00

0
50

00
0

Fig. 7: Performance of the trading strategy with thresholds τ = ±σ (black)
vs. CRIX (yellow).

candidate thresholds, we can make substantial profits. The optimal threshold
in our analysis is τ = ±σj . It has the highest net profits, the largest Sharpe
ratio and the lowest maximal drawdown. While the net profits of the bench-
mark index portfolio (CRIX) are comparable to those of the strategies with
thresholds ±0.5σj and ±1.5σj , the risk is significantly higher. The maximal
drawdown is more than ten times as large as for the optimal strategy. Also
the Sharpe ratio, which relates expected returns to the standard deviation, is
clearly smaller. Figure 7 visualizes the time series of the cumulative returns of
our trading strategy and of the CRIX. As expected of an arbitrage strategy,
there is almost no dependence of the cumulative returns to the market. An
interesting observation is that the largest losses are made during the height of
the crypto bubble at the end of 2017. The gains and losses are very volatile
in this period. From the middle of 2018 until the beginning of 2020 we can
observe small but steady profits.

While the backtesting results show a great performance of our trading
strategy, a word of caution is needed. First, backtesting is an in-sample eval-
uation with limited external validity. There is no guarantee that long-term
relationship will hold in the future, which is an implicit assumption in our
cointegration analysis. This problem is particularly severe in the case of cryp-
tocurrencies due to their very short history. Another caveat is that we assume
perfect markets. In reality, investors face short selling restrictions and trans-
action costs, even if some exchanges as Bitfinex allow for short selling.

6 Conclusion

This paper examined the joint behavior of cryptocurrencies in a non-stationary
setting. We were in particular interested in three questions.

I. Do cointegration relations exist among cryptocurrencies?
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II. Which cryptocurrencies affect and which are affected by long-term equi-
librium effects?

III. How does the impact of the cointegration relationships change in a dy-
namic setting?

To address problem I. and II., we tested for cointegration using the approach
of Onatski and Wang (2018) and estimated a linear VECM. We found that
our sample of currencies are indeed cointegrated with rank four. By testing
for weak exogeneity, we were able to show that all cryptocurrencies are sig-
nificantly affected by long term stochastic trends. To address problem III.,
we proposed a new nonlinear VECM specification, which we call COINtensity
VECM. The model has a good interpretability without the need of having
to estimate many new parameters. The results of our dynamic VECM show
a time-varying dependence of cryptocurrencies on deviations from long run
equilibria. We find that the nonlinearity of error correction is stronger during
the time of the cryptocurrency bubble, compared to a later time period.

Finally, we utilized the estimated cointegration relationships to construct
a simple statistical arbitrage trading strategy, extending the one proposed in
Leung and Nguyen (2019). Our strategy shows a great performance in a back-
testing study, beating the industry benchmark CRIX in terms of net profits,
Sharpe ratio and maximal drawdown.

Appendix: Simulation Design

Baseline VECM specification:

∆Xt = αβ>Xt−1 + Γ1∆Xt−1 + εt,

with parameter matrices

α =



−1.47 −1.3 0 −1.26
0 0.97 0 0
0 0 −0.74 0

−1.19 0.85 0 0
0.55 0.78 −1 −1.37
0.8 0.75 0 0
0 −0.74 −1.26 0.78
0 −1.4 0 0


, β> =


1 0 0 0 0 0 −0.87 1.45
0 1 0 0 0 0 0 1.48
0 0 1 0 0 −1.29 −0.53 0.9
0 0 0 1 0.8 1.49 −0.82 −0.69

 ,

Γ1 = diag{0, 0.797929, 0, 0.793248, 0, 0.537687, 0, 0.722737}.
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012 ”On Cointegration and Cryptocurrency Dynamics” by Georg Keilbar, Yanfen Zhang,
May 2020.

IRTG 1792, Spandauer Strasse 1, D-10178 Berlin
http://irtg1792.hu-berlin.de

This research was supported by the Deutsche
Forschungsgemeinschaft through the IRTG 1792.

http://irtg1792.hu-berlin.de
http://irtg1792.hu-berlin.de

	Introduction
	Modelling Framework
	Simulation Study
	Dynamics of Cryptocurrencies
	A Simple Statistical Arbitrage Trading Strategy
	Conclusion

