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Abstract: We propose a bivariate component GARCH-MIDAS model to estimate the long- and 

short-run components of the variances and covariances. The advantage of our model to the existing 

DCC-based models is that it uses the same form for both the variances and covariances and that it 

estimates these moments simultaneously. We apply this model to obtain long- and short-run factor 

betas for industry test portfolios, where the risk factors are the market, SMB, and HML portfolios. 

We use these betas in cross-sectional analysis of the risk premia. Among other things, we find that 

the risk premium related to the short-run market beta is significantly positive, irrespective of the 

choice of test portfolio. Further, the risk premia for the short-run betas of all the risk factors are 

significant outside recessions.  

Keywords: long-run betas; short-run betas; risk premia; business cycles; component GARCH 

model; MIDAS 

JEL Classifications: G12; C58; C51 
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1. Introduction 

In this paper, we propose a new bivariate component GARCH-MIDAS model that decomposes 

return variances and covariances into a long-run (persistent) and a short-run (transitory) 

component. We use the model to obtain long- and short-run factor betas. The short-run component 

can be interpreted as a correction of or revision to the long-run component, due to arrival of new 

information (similar to the volatility model in Engle and Lee, 1999). Separating these two 

components gives us a better understanding of the cross-sectional relationship between risk and 

expected stock returns.  

We apply our model to test the Fama and French (1993) three-factor model, which is one of the 

most widely used asset pricing models. The long- and short-run components of portfolio betas are 

based on the market portfolio, the small-minus-big portfolio (SMB), and the high-minus-low 

portfolio (HML) risk factors. The risk premia are estimated both at weekly and monthly frequency. 

To be able to compare our results with most of the earlier studies we use several alternative test 

portfolios from French’s online data library. Our main analysis is based on the 30 industry 

portfolios, but for robustness we also consider 49 industry portfolios as well as 25 portfolios sorted 

on size and book-to-market value.  

We contribute with a new econometric model and evaluate its theoretical properties. To the best 

of our knowledge, this is the first conditional model that uses the mixed data sampling (MIDAS) 

approach to simultaneously estimate the long- and short-run components of the variances and 

covariances and thereby it decomposes total betas into long- and short-run components. The long-

run component of variances (covariances) depends on the historical unconditional variance 

(covariance). Our new additive GARCH-MIDAS model differs from the DCC-MIDAS model (see 

e.g. Colacito, Engle, and Ghysels, 2011; Conrad, Loch, and Ritter, 2014; Asgharian, Christiansen, 
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and Hou, 2016) that applies the multiplicative GARCH-MIDAS volatility (from e.g. Engle, 

Ghysels, and Sohn, 2013; Conrad and Locch, 2015) as input. The multiplicative approach works 

well for univariate models, but cannot be applied directly to bivariate models because it may give 

ambiguous estimates of the covariance in case of negative covariance components.1 In general, the 

DCC-MIDAS models assume a multiplicative form in the first step of estimating the variances and 

an additive form in the second step to estimate the correlation (total correlation is modelled as the 

sum of the long- and short run correlations). There are also several studies that use alternative 

models to decompose covariances into high and low frequencies. Rangel and Engle (2012) use the 

two-step DCC model, where the first step is the volatility model from Engle and Rangel (2008) 

with long- and short-run components. The second step uses the first-step residuals to model the 

correlations. Similarly, Bauwens, Hafner, and Pierret (2013) use a DCC model to separate long- 

and short-run correlations of electricity futures returns, where the long-run covariance matrix is 

deterministic. The advantage of our model compared to the DCC-based models is that it uses the 

same additive form for the variances and covariance and estimate these moments simultaneously, 

in a bivariate framework.    

We find that data frequency matters for risk premia: none of the risk premia estimated at weekly 

frequency are significant, which is in contrast to the risk premia obtained at the monthly frequency. 

This may imply that risk premia estimated more frequently than monthly are noisy. Finally, our 

empirical analysis, at the monthly frequency, shows that decomposing risk across horizons may 

help explain the anomaly that the traditional market risk premium is not significant, as we find that 

                                                      
1 In the multiplicative framework, the total covariance is the product of the long- and short-run covariances. The 
problem with the multiplicative framework is that the total covariance will be negative only if one of the components 
is negative and it will be positive if both long- and short-run covariances are negative.  
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the risk premium related to the short-run market beta is significantly positive.2 This result is robust 

to the choice of the test portfolios. We also find that the short-run risk premia are larger in 

expansions than in recessions. In fact, the risk premia for short-run betas of all the risk factors are 

significant if we exclude recessions from our sample. 

This paper is related to several strands of previous literature. Firstly, we build on conditional asset 

pricing models. For example, Bollerslev, Engle, and Wooldridge (1988) apply a multivariate 

GARCH model and define the expected return of an asset as a linear function of the conditional 

covariance of the asset with the market portfolio. Asgharian and Hansson (2000) and Bali (2008) 

use bivariate GARCH models to obtain time-varying factor betas and then use the estimated betas 

in monthly cross-sectional regressions to obtain corresponding risk premia. Bali and Engle (2010) 

use the DCC model of Engle (2002) to investigate if assets’ time-varying conditional covariance 

with the market portfolio predicts the time-variation in the assets’ expected returns. More recently, 

Bali, Engle, and Tang (2017) use the DCC model on individual assets to assess the predictive 

ability of the factor betas.  

Secondly, a number of studies show that the choice of data frequency and time horizon is important 

for obtaining an accurate measure of risk and capturing the risk-return relationship. For example, 

Gilbert, Hrdlicka, Kalodimos, and Siegel (2014) show that there are large differences between 

high- (daily) and low-frequency (quarterly) stock betas. According to Lewellen and Nagel (2006), 

compounding implies that betas vary across different frequencies. Engle and Lee (1999) and Engle 

                                                      
2 Other studies find a significant risk premium for the market beta without decomposition. However, these studies are 
typically based on different test portfolios than the widely used Fama and French (1993, 1997) portfolios. For example, 
Maio and Santa-Clara (2017) use a number of portfolios sorted on e.g. book-to-market ratio and earnings-to-price and 
Kim (1995) and Bali, Engle, and Tang (2017) use individual stocks. An exception is Bali (2008) that applies the 
bivariate GARCH model to Fama and French’s (1993, 1997) test portfolios and show that the portfolios’ conditional 
covariance with the market can predict time-variation in the expected return.   
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and Rangel (2008) show that models with both low- and high-frequency volatility and correlation 

components capture the dynamics of equity returns better than single-frequency models. Adrian 

and Rosenberg (2008) explore cross-sectional pricing of risk by decomposing equity-market 

volatility into short- and long-run components. Cenesizoglu and Reeves (2018) use a 

nonparametric approach and measure market beta with short-, medium-, and long-run components. 

The short- and medium-run components are estimated from daily returns over one- and five-year 

periods, and the long-run component is estimated from monthly returns over a 10-year period. 

Boons and Tamoni (2016) show that dividing risk into long- and short-run components helps 

uncover a link between risk premia and the macro economy. Andersen and Bollerslev (1997) and 

Calvet and Fisher (2007) argue that information in financial markets arrives at different 

frequencies and has different degrees of persistence. Since investors have different investment 

horizons, their view of systematic risk is horizon dependent, see e.g. Bansal, Dittmar, and Kiku 

(2009). Kamara, Korajczyk, Lou, and Sadka (2016) find that cross-sectional risk premiums vary 

with the return horizon. Bandi, Perron, Tamoni, and Tebaldi (2018) model market excess returns 

and their predictors are aggregates of uncorrelated components operating over different 

frequencies and they introduce a notion of scale-specific predictability.  

Thirdly, several studies use the mixed data sampling (MIDAS) approach to estimate systematic 

risk but without decomposing it into long- and short-run betas. Gonzalez, Nave, and Rubio (2012) 

use the weighted average of daily returns to estimate monthly betas. Gonzalez, Nave, and Rubio 

(2018) define the conditional beta with two additive components, a transitory component estimated 

from daily returns and a long-run component based on macroeconomic state variables. Baele and 

Londono (2013) use Colacito, Engle, and Ghysels’s (2011) DCC-MIDAS model to obtain long-

run betas. They find that DCC-MIDAS betas are superior to ordinary betas in limiting the downside 
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risk and ex-post market exposure for the minimum-variance strategy. Ghysels, Santa-Clara, and 

Valkanov (2005) use MIDAS volatilities to analyze the risk-return trade-off. They investigate the 

effects of changing the frequency of the returns in the MIDAS risk-return trade-off regressions 

and find that using high-frequency returns (above monthly) provides excessively noisy estimates. 

Therefore, they conclude that monthly returns are preferable. Ghysels, Guérin, and Marcellino 

(2014) continue this analysis by combining regime switching with MIDAS and consider variations 

across horizons.  

The rest of the paper is structured as follows. Section 2 introduces the econometric framework. 

We present the data in section 3. In section 4, we discuss the empirical results. Finally, we conclude 

in section 5. An Appendix provides further details on the econometric model. 

2. The component asset-pricing model 

In this section, we present the new bivariate component GARCH-MIDAS model. The empirical 

analysis follows a two-step estimation procedure similar to Fama and MacBeth (1973). The first 

step entails time-series regressions to obtain total, long-, and short-run betas. In the second step, 

we estimate the corresponding risk premia. 

2.1 First step: bivariate component GARCH model 

Within the component GARCH models, there are two general approaches to distinguish short- 

from long-run movements: the additive approach from Engle and Lee (1999) and the multiplicative 

approach from Engle, Ghysels, and Sohn (2013). The multiplicative approach, despite working 

well in univariate models, cannot be applied to bivariate models as we may have negative 

covariances. We use the additive approach and extend Asgharian and Hansson’s (2000) and Bali’s 

(2008) bivariate GARCH model to a bivariate component GARCH model to decompose the total 
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variance and covariance to a long-run (persistent) component and a short-run (transitory) 

component. The advantage of the proposed model compared to for instance the DCC-MIDAS 

model is that it provides an estimate of the covariance, instead of correlation, which is used directly 

to calculate betas.  

We use the subscripts s and t to keep track of time, where s and t denote periods corresponding to 

the weekly and monthly frequency, respectively. We assume that the mean equations for the 

weekly excess returns for portfolio i (𝑟𝑟𝑖𝑖,𝑠𝑠,𝑡𝑡) and the state variable x (𝑟𝑟𝑥𝑥,𝑠𝑠,𝑡𝑡) follow a simple form 

where they are equal to a constant  plus an error term (𝜀𝜀𝑖𝑖,𝑠𝑠,𝑡𝑡 and 𝜀𝜀𝑥𝑥,𝑠𝑠,𝑡𝑡, respectively): 

 𝑟𝑟𝑖𝑖,𝑠𝑠,𝑡𝑡 = 𝛾𝛾𝑖𝑖 + 𝜀𝜀𝑖𝑖,𝑠𝑠,𝑡𝑡 

𝑟𝑟𝑥𝑥,𝑠𝑠,𝑡𝑡 = 𝛾𝛾𝑥𝑥 + 𝜀𝜀𝑥𝑥,𝑠𝑠,𝑡𝑡. 
(1) 

The error terms are assumed to follow normal distributions with mean zero and time dependent 

variances, 𝑞𝑞𝑖𝑖,𝑠𝑠,𝑡𝑡 and 𝑞𝑞𝑥𝑥,𝑠𝑠,𝑡𝑡 and covariance, 𝑞𝑞𝑖𝑖𝑖𝑖,𝑠𝑠,𝑡𝑡. 

Engle and Lee’s (1999) univariate additive component GARCH model defines the total conditional 

variance as the sum of a long-run (persistent) component and a short-run (transitory) component 

where the total variance follows a GARCH(1,1) model. They replace the unconditional variance 

used in GARCH models by the long-run time-varying variance. The idea of an unconditional time-

varying variance is also presented in, for example, Amado and Teräsvirta’s (2014) model. We 

extend the idea in Engle and Lee (1999) to a bivariate GARCH(1,1) model to estimate each 

portfolio’s conditional variances as well as their conditional covariances with the common factors, 

one factor at a time. 

In the parameterization of the GARCH equation, we use the BEKK specification to reduce the 

number of parameters, cf. Engle and Kroner (1995). The formulation of the intercept follows Santis 
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and Gerard (1997), while the unconditional moments (the τ’s) are time varying. The total variances 

and covariance are modeled as: 

 𝑞𝑞𝑖𝑖,𝑠𝑠,𝑡𝑡 = 𝜏𝜏𝑖𝑖,𝑡𝑡(1 − 𝑎𝑎𝑖𝑖2 − 𝑏𝑏𝑖𝑖2) + 𝑎𝑎𝑖𝑖2𝜀𝜀𝑖𝑖,𝑠𝑠−1,𝑡𝑡
2 + 𝑏𝑏𝑖𝑖2𝑞𝑞𝑖𝑖,𝑠𝑠−1,𝑡𝑡 

𝑞𝑞𝑥𝑥,𝑠𝑠,𝑡𝑡 = 𝜏𝜏𝑥𝑥,𝑡𝑡(1 − 𝑎𝑎𝑥𝑥2 − 𝑏𝑏𝑥𝑥2) + 𝑎𝑎𝑥𝑥2𝜀𝜀𝑥𝑥,𝑠𝑠−1,𝑡𝑡
2 + 𝑏𝑏𝑥𝑥2𝑞𝑞𝑥𝑥,𝑠𝑠−1,𝑡𝑡 

𝑞𝑞𝑖𝑖𝑖𝑖,𝑠𝑠,𝑡𝑡 = 𝜏𝜏𝑖𝑖𝑖𝑖,𝑡𝑡(1 − 𝑎𝑎𝑖𝑖𝑎𝑎𝑥𝑥 − 𝑏𝑏𝑖𝑖𝑏𝑏𝑥𝑥) + 𝑎𝑎𝑖𝑖𝑎𝑎𝑥𝑥𝜀𝜀𝑖𝑖,𝑠𝑠−1,𝑡𝑡𝜀𝜀𝑥𝑥,𝑠𝑠−1,𝑡𝑡 + 𝑏𝑏𝑖𝑖𝑏𝑏𝑥𝑥𝑞𝑞𝑖𝑖𝑖𝑖,𝑠𝑠−1,𝑡𝑡 , 

(2) 

where , , and  are the long-run variances and covariance. We use the equally weighted 

moving average of the past five years’ observations to estimate the long-run variances and 

covariances. This is similar to Colacito, Engle, and Ghysels’s (2011) approach to estimating long-

run correlation in the DCC-MIDAS model.3 The advantage is that the estimated long-run betas are 

equal to the conventional estimate of the unconditional beta. This facilitates straightforward 

comparisons with earlier studies:  

 
𝜏𝜏𝑖𝑖,𝑡𝑡 =

1
𝐾𝐾
�(𝑟𝑟𝑖𝑖,𝑘𝑘 − 𝜇𝜇𝑖𝑖,𝐾𝐾)2
𝐾𝐾

𝑘𝑘=1

 

𝜏𝜏𝑥𝑥,𝑡𝑡 =
1
𝐾𝐾
�(𝑟𝑟𝑥𝑥,𝑘𝑘 − 𝜇𝜇𝑥𝑥,𝐾𝐾)2
𝐾𝐾

𝑘𝑘=1

 

𝜏𝜏𝑖𝑖𝑖𝑖,𝑡𝑡 = 1
𝐾𝐾
∑ �𝑟𝑟𝑖𝑖,𝑘𝑘 − 𝜇𝜇𝑖𝑖,𝐾𝐾��𝑟𝑟𝑥𝑥,𝑘𝑘 − 𝜇𝜇𝑥𝑥,𝐾𝐾�𝐾𝐾
𝑘𝑘=1  , 

(3) 

   

where K is the number of months within the past five years, i.e., K=60.4 𝑟𝑟𝑖𝑖,𝑘𝑘and 𝑟𝑟𝑥𝑥,𝑘𝑘 are the monthly 

returns for portfolio i and state variable x. 𝜇𝜇𝑖𝑖,𝐾𝐾 and 𝜇𝜇𝑥𝑥,𝐾𝐾 are the means of the monthly returns of 

                                                      
3 We have also used the more general beta-lag polynomial weighting function for describing the long-run moments, 
where the weighting function is estimated. However, the estimation converges to the equally weighted average in most 
cases. The model with the beta-lag polynomial weighing function is described in the Appendix.  
4 The five-year window with monthly returns is conventional for estimating unconditional betas (see e.g. Fama and 
French, 1993). 

ti,τ tx,τ tsix ,,τ
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the past K months for portfolio i and state variable x, respectively. The long-run component is the 

average of the squared deviations of the monthly returns from their mean within the past five years. 

In this way, the long-run betas are identical to the conventional rolling-window betas.5 Therefore, 

the short-run variance (covariance) is defined as a function of the deviation of the lagged shock 

and the lagged total variance (covariance) from the long-run variance (covariance).  

The total betas are calculated from the estimated total covariance and variance, and the long-run 

betas from the estimated long-run covariance and variance: 

 𝛽̂𝛽𝑥𝑥,𝑖𝑖,𝑠𝑠,𝑡𝑡
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =

𝑞𝑞�𝑖𝑖𝑖𝑖,𝑠𝑠,𝑡𝑡

𝑞𝑞�𝑥𝑥,𝑠𝑠,𝑡𝑡
           and        𝛽̂𝛽𝑥𝑥,𝑖𝑖,𝑠𝑠,𝑡𝑡

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
𝜏̂𝜏𝑖𝑖𝑖𝑖,𝑠𝑠,𝑡𝑡

𝜏̂𝜏𝑥𝑥,𝑠𝑠,𝑡𝑡
. (4) 

The short-run betas are the differences between the total and long-run betas.  

In addition to the mixed-frequency model, we also work with a single-frequency model. In the 

single-frequency model, s and t are identical, i.e. either weekly or monthly frequency.  

Several restrictions have been applied to ensure that the conditional variance–covariance matrix is 

positive definite at each s and t. The details are in the appendix, where we also discuss 

identification and stationarity of the model. The log-likelihood function for model estimation is 

also given in the appendix. 

2.2 Second step: cross-sectional regressions 

In our setting, the expected returns depend on both long- and short-run components of the three 

risk premia, stemming from the market, SMB, and HML  risk factors. 

                                                      
5 In the GARCH–MIDAS model, the long-run component is calculated as the weighted sum of the realized variances 
and covariance. We also estimate the model with realized moments based on daily data and exponential weights. The 
conclusions remain unaltered. 
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The second step concerns the Fama and MacBeth (1973) cross-sectional regressions. There is one 

cross-sectional regression for each period s. When we consider the total betas, it reads as follows. 

 𝑅𝑅𝑖𝑖,𝑠𝑠,𝑡𝑡 = 𝐶𝐶0𝑠𝑠,𝑡𝑡
total + 𝐶𝐶1𝑠𝑠,𝑡𝑡

total𝛽𝛽𝑀𝑀,𝑖𝑖,𝑠𝑠,𝑡𝑡
total + 𝐶𝐶2𝑠𝑠,𝑡𝑡

total𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆,𝑖𝑖,𝑠𝑠,𝑡𝑡
total + 𝐶𝐶3𝑠𝑠,𝑡𝑡

total𝛽𝛽𝐻𝐻𝐻𝐻𝐻𝐻,𝑖𝑖,𝑠𝑠,𝑡𝑡
total + 𝜀𝜀𝑖𝑖,𝑠𝑠,𝑡𝑡, for 𝑖𝑖 = 1, … ,𝑁𝑁 . (5) 

We also do cross-sectional regressions with both short- and long-run betas and thereby obtain long- 

and short-run risk premia. This is new to the literature. 

 𝑅𝑅𝑖𝑖,𝑠𝑠,𝑡𝑡 = 𝑐𝑐0𝑠𝑠,𝑡𝑡 + 𝑐𝑐1,𝑠𝑠,𝑡𝑡
long𝛽𝛽𝑀𝑀,𝑖𝑖,𝑠𝑠,𝑡𝑡

long + 𝑐𝑐1,𝑠𝑠,𝑡𝑡
short𝛽𝛽𝑀𝑀,𝑖𝑖,𝑠𝑠,𝑡𝑡

short + 𝑐𝑐2,𝑠𝑠,𝑡𝑡
long𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆,𝑖𝑖,𝑠𝑠,𝑡𝑡

long + 𝑐𝑐2,𝑠𝑠,𝑡𝑡
short𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆,𝑖𝑖,𝑠𝑠,𝑡𝑡

short +

𝑐𝑐3,𝑠𝑠,𝑡𝑡
long𝛽𝛽𝐻𝐻𝐻𝐻𝐻𝐻,𝑖𝑖,𝑠𝑠,𝑡𝑡

long  + 𝑐𝑐3,𝑠𝑠,𝑡𝑡
short𝛽𝛽𝐻𝐻𝐻𝐻𝐻𝐻,𝑖𝑖,𝑠𝑠,𝑡𝑡

short + 𝜀𝜀𝑖𝑖,𝑠𝑠,𝑡𝑡,    for 𝑖𝑖 = 1, … ,𝑁𝑁 . 

(6) 

The risk premia are the average of the estimated slope coefficients, the c’s. We use the time series 

of the estimated coefficients to investigate the properties of the factor risk premia such as whether 

the average coefficients are significant and, if so, whether they are positive or negative. We use 

Newey and West (1987) corrected standard errors, which is similar to Bali, Engle and Tang (2017). 

The usage of portfolios rather than individual assets as test assets help reduce the errors-in-

variables problem of using estimated explanatory variables (the betas) in the second step 

regressions. 

3. Data 

Our analysis is based on the value-weighted excess log-returns for 30 industry portfolios at weekly 

and monthly frequency. We use market, SMB, and HML risk factors as state variables (Fama and 

French, 1993). The sample covers the period from 1945 to 2015 and includes several recessions 

such as the dotcom bubble and the recent financial crisis. For robustness, we also use 49 value 
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weighted industry portfolios and 25 size and book-to-market double-sorted portfolios.6 We use the 

NBER recession indicator to measure of the state of the macroeconomy.7 

Table 1 shows descriptive statistics for the monthly excess returns of the 30 industry portfolios. 

The mean returns are significantly positive and varies from 6.0% per year (“Other”) to 11.5% per 

year (“Smoke”). The standard deviations are relatively large, ranging from 13.3% per year 

(“Utilities”) to 32.4% per year (“Coal”). For all industry portfolios, we observe negative skewness 

and positive excess kurtosis, revealing extreme negative returns. 

4. Empirical results 

In this section, we show the empirical results. First, we show the results regarding estimations of 

betas and following for the estimated risk premia. At the end, we discuss how the risk premia are 

related to the state of the economy.  

4.1 Estimation of the bivariate component GARCH model 

We use two different frequency pairs (s, t) to decompose the long- and short-run components. The 

long-run component, t, is at the monthly frequency and the short-run component, s, varies between 

weekly and monthly frequency.8 Our benchmark model is based on the monthly-monthly (M-M) 

frequency. That is, the returns in equation (1), the total variance and covariance in equation (2), 

and the long-run variances and covariance in equation (3) are all based on monthly returns. This 

is a GARCH specification with time-varying unconditional moments. We use the monthly-

                                                      
6 We gratefully obtain the data from French’s online data library. 
7 We obtain the NBER recession data from the NBER webpage.  
8 We also estimate the model with the monthly-daily combination. The results are similar to those with the monthly-
weekly combination. For the sake of brevity, those results are not reported. 
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monthly approach as the base case to be able to compare our results with earlier studies since it is 

conventional to use a five-year moving window with monthly returns to estimate betas and the 

monthly frequency to estimate the cross-sectional regression. We also use an alternative 

specification of the component GARCH model in which we keep the long-run moments in 

equation (3) at the monthly frequency while changing the frequency of the bivariate variance and 

covariance in equation (2) and the returns in equation (1) to weekly (denoted monthly-weekly or 

M-W). This is a MIDAS specification. 

Table 2 shows the means and standard deviations of the parameter estimates of the bivariate 

component GARCH model in equations (1) to (3) estimated for each of the 30 industry portfolios 

together with each of the three factors, one at a time, both for the monthly-weekly and monthly-

monthly specifications. The parameter estimates show that the volatilities are persistent, because 

all the b coefficients are much greater than the corresponding a coefficients. The related standard 

deviations are very small, indicating that the volatility persistence holds for most of the industries. 

As expected, the estimated mean returns (the γ’s) are larger in the monthly-monthly specification 

than in the monthly-weekly specification. 

To illustrate the estimated betas over time, we use the financial industry (“Fin”) as an example. 

Figure 1 shows the time series of the total and long-run betas for the monthly-monthly and 

monthly-weekly frequency for this industry. The long-run betas are smoother than the total betas, 

especially when we use the monthly-weekly frequency instead of the monthly-monthly frequency. 

The market betas are less variable than the SMB and HML betas at both frequencies. As expected, 

the estimated betas are, in general, very large during the recent financial crises, which supports the 

large contribution of the financial industry to the systematic risk during this period. 
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A number of studies examine the link between the cross-sectional dispersion of industry betas and 

the state of the economy. Gomes, Yaron, and Zhang (2003) find that the heterogeneity of betas 

across firms increases during recessions leading to increasing beta dispersion. This effect is 

reinforced by the countercyclical behavior of dispersion of the firms’ characteristics, which is in 

line with the findings of Chan and Chen (1988). Similarly, Baele and Londono (2013) find that the 

empirical cross-sectional dispersion in industry betas increases during recessions.  

We use the method in Baele and Londono (2013) to calculate the cross-sectional dispersion of the 

betas for each month. The cross-sectional dispersion coefficient at a given point in time is the 

value-weighted sum of squares of each industry’s beta minus the average beta across all industries. 

Table 3 (top rows) shows the time-series average of the cross-sectional dispersion of the estimated 

betas based on the monthly-monthly frequency. The dispersions of the short-run betas are on 

average smaller than those of the long-run betas.  

To investigate how the cross-sectional dispersion of industry betas varies across the business cycle, 

we regress the dispersion coefficients for all the betas on the NBER recession indicator. The 

regression results are reported in Table 3 (bottom rows). The dispersion of the total betas is larger 

in recessions than in expansions, which supports the findings of earlier studies (e.g., Gomes, 

Yaron, and Zhang, 2003; Baele and Londono, 2013). Interestingly, our results show that the larger 

cross-sectional dispersion of the total betas in recessions depends on the short-run betas, as the all 

the short-run dispersions are significantly larger in recessions than in expansions, while none of 

the long-run dispersions are significantly different in recessions and expansions. The long-run 

betas reflect the slow movements of the factor loadings, while the recession periods are fairly short 

lived. 
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4.3 Cross-sectional regressions 

To evaluate our component GARCH model, we compare its pricing ability with that of two 

alternative models for estimating betas: the traditional rolling-window OLS regressions 

(unconditional betas) and the bivariate GARCH model. For these comparisons, we use both weekly 

and monthly returns. Table 4 shows all the estimated risk premia. None of the models describe the 

cross-sectional variation in expected returns perfectly, as all models have significant intercepts 

(alphas). 

Panel A of Table 4 shows the total risk premia obtained from the various models, i.e. the mean of 

the estimated time-series coefficients from the cross-sectional regressions in equation (5). First, 

the table shows the estimated risk premia associated with the unconditional betas. The market and 

HML risk premia are not significant. The SMB risk premium is significantly positive at the 

monthly frequency, which is in accordance with earlier findings, whereas it is insignificant at the 

weekly frequency. Table 4 also shows the risk premia obtained from the conventional bivariate 

GARCH model. None of the risk premia are significant irrespectively of data frequency. Finally, 

the table shows the total risk premia related to the component GARCH model. Here the total risk 

premia are qualitatively similar to the unconditional risk premia, namely, that only the SMB risk 

premium is significant, and only so at the monthly-monthly frequency. So, if we limit our interest 

to total risk premia, the component GARCH model provides the same information as the traditional 

model. This also implies that the total risk premia results for our new model confirm previous 

findings.  

Panel B of Table 4 shows the new risk premia of the long- and short-run components of beta. At 

the monthly-weekly frequency, none of the risk premia in Panels A and B of Table 4 are 

significant. This indicates that risk premia based on the weekly frequency is too noisy. For the 
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monthly-monthly frequency, several of the risk premia are significantly positive. The risk premia 

associated with both the long- and short-run SMB betas are significant. Interestingly, the risk 

premium associated with the short-run market beta is also significantly positive.  

To investigate if our results are robust to the choice of the test assets, we estimate our model for 

some alternative portfolios. First, we use 25 doubled-sorted Fama and French (1993) book-to-

market and size portfolios. Second, we use a finer division into industries (49 industry portfolios). 

Panel C of Table 4 shows the variations in the long- and short-run risk premia for the three data 

sets based on monthly-monthly frequency. The risk premium of the long-run beta for HML, as 

expected, becomes highly significant when we use the portfolios sorted based on book-to-market 

and size. The risk premia related to the short-run market beta are significantly positive for all three 

data sets. So, this finding is not specific to the 30 industry portfolios.  

4.4 Risk premia across the business cycle 

In Table 5, we relate the risk premia to the state of the economy as measured by NBER recessions. 

More specifically, we calculate the average risk premia from the cross-sectional regressions for 

the entire period as well as separately for recessions and expansions. Panel A is concerned with 

the total risk premia and panel B with the short- and long-run risk premia. For the unconditional 

model, the risk premia during expansions are similar to those for the entire sample period. The 

values are very different in recessions, where the market risk premium is significantly negative, 

showing large average ex-post realized return for risky firms, i.e. firms with high market betas. 

For the bivariate GARCH model, the risk premia of all the factors are insignificant for all the 

subsamples, except the market risk premium which is significantly negative in recessions. The 

total betas from the component GARCH model also give significant risk premia for SMB and 
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HML (only at the 10% level for the latter). Overall, none of these estimations give a significantly 

positive risk premium for the market beta, which is consistent with findings from the previous 

literature. 

For the component GARCH model (Panel B of Table 5), the short- and long-run SMB risk premia 

are significantly positive and slightly larger in expansions than for the entire sample period. The 

short-run market risk premium is significantly positive for the entire sample period and during 

expansions. The short-run market risk premium is larger in expansions than for the entire period, 

which is caused by the negative (and insignificant) risk premium in recessions. The negative short-

run market risk premium in recessions is similar to the negative unconditional risk premium. Risk 

premia for both short- and long-run HML for expansions are positive and significant at the 10% 

level. The insignificance of the HML factor for the total period is due to important recession 

periods that cause a large negative realized mean return and result in an insignificant risk premium. 

In general, excluding recessions from our sample, i.e. only considering expansions, makes the risk 

premia for all the betas, except for the long-run market beta, significant and have the expected 

sign. 

5. Conclusion 

This paper proposes a new model for decomposing systematic risk into long- and short-run 

components and provides an important empirical application. The new bivariate component 

GARCH model enables us to simultaneously decompose total variances and covariances into long- 

and short-run variances and covariances and thereby to estimate the corresponding components of 

the factor betas. We model the long-run variances and covariances based on the unconditional 
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variance and covariance of past long-run monthly returns, while the short-run variances and 

covariances are based on higher or same frequency data (weekly or monthly). 

The main analysis is based on the 30 industry portfolios. We investigate the dynamics and 

determinants of market, SMB, and HML industry betas (Fama and French, 1993). We apply our 

component GARCH model to each factor and an industry portfolio to estimate long- and short-run 

variances and covariances. From these, we calculate long- and short-run betas and use them in 

cross-sectional regressions to estimate the long- and short-run risk premia associated with each 

factor. 

We find that the cross-sectional dispersion in short-run betas increases in recessions. Moreover, 

we find that the data frequency matters for estimation of the risk premium: none of the risk premia 

estimated at weekly frequency are significant. At the monthly frequency, our analysis of the risk 

premia highlights the importance of decomposing risk across horizons. Although, the risk premia 

associated with both the long- and short-run SMB betas are significant, only the risk premium 

associated with the short-run market beta is significantly positive. The results appear to be robust 

to the choice of data set, at least for a finer division into industry portfolios and for portfolios based 

on book-to-market and size. Further, we fine that the risk premia of the short-run betas of all the 

risk factors are significant outside recessions.  
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Appendix 

This appendix contains technical details about the component GARCH model. 

A.1. Beta-lag polynomial weighting function 

In a more general version of the long-run moments than equation (3), we use the beta-lag 

polynomial weighting function. Here the long-run moments are: 

 
𝜏𝜏𝑖𝑖,𝑡𝑡 = �𝜑𝜑𝑘𝑘(𝑤𝑤1,𝑤𝑤2)𝑉𝑉𝑖𝑖,𝑡𝑡−𝑘𝑘

𝐾𝐾

𝑘𝑘=1

 

𝜏𝜏𝑥𝑥,𝑡𝑡 = �𝜑𝜑𝑘𝑘(𝑤𝑤1,𝑤𝑤2)𝑉𝑉𝑥𝑥,𝑡𝑡−𝑘𝑘

𝐾𝐾

𝑘𝑘=1

 

𝜏𝜏𝑖𝑖𝑖𝑖,𝑡𝑡 = ∑ 𝜑𝜑𝑘𝑘(𝑤𝑤1,𝑤𝑤2)𝑉𝑉𝑖𝑖𝑖𝑖,𝑡𝑡−𝑘𝑘
𝐾𝐾
𝑘𝑘=1  , 

(A.1.1) 

where 

 𝑉𝑉𝑖𝑖,𝑡𝑡 = (𝑟𝑟𝑖𝑖,𝑡𝑡 − 𝜇𝜇𝑖𝑖,𝑡𝑡)2 

𝑉𝑉𝑥𝑥,𝑡𝑡 = (𝑟𝑟𝑥𝑥,𝑡𝑡 − 𝜇𝜇𝑥𝑥,𝑡𝑡)2 

𝑉𝑉𝑖𝑖𝑖𝑖,𝑡𝑡 = �𝑟𝑟𝑖𝑖,𝑡𝑡 − 𝜇𝜇𝑖𝑖,𝑡𝑡��𝑟𝑟𝑥𝑥,𝑡𝑡 − 𝜇𝜇𝑥𝑥,𝑡𝑡� . 

(A.1.2) 

 and are the means of the monthly returns for i and x over five-year historical data before 

each t, and K is the number of periods within the five years. The long-run component is the average 

of the squared deviations of the monthly returns from their mean. In this way, the long-run betas 

are identical to the conventional rolling-window betas.  

The weighting scheme is described by a beta-lag polynomial: 

 
𝜑𝜑𝑘𝑘(𝑤𝑤1,𝑤𝑤2) =

�𝑘𝑘 𝐾𝐾� �
𝑤𝑤1−1

(1 − 𝑘𝑘
𝐾𝐾� )𝑤𝑤2−1

∑ (𝑗𝑗 𝐾𝐾� )𝑤𝑤1−1(1− 𝑘𝑘
𝐾𝐾� )𝑤𝑤2−1𝑘𝑘

𝑗𝑗=1

. (A.1.3) 

ti ,µ tx ,µ
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In the empirical analysis in the paper we use 𝑤𝑤1 = 𝑤𝑤2 = 1. 

A.2. Likelihood function 

The bivariate component GARCH model written in matrix form is as follows 

 
�
𝑟𝑟𝑖𝑖,𝑠𝑠,𝑡𝑡

𝑟𝑟𝑥𝑥,𝑠𝑠,𝑡𝑡
� = �

𝛾𝛾𝑖𝑖
𝛾𝛾𝑥𝑥
� + �

𝜀𝜀𝑖𝑖,𝑠𝑠,𝑡𝑡

𝜀𝜀𝑥𝑥,𝑠𝑠,𝑡𝑡
�~𝑄𝑄𝑠𝑠,𝑡𝑡

1/2𝜁𝜁𝑡𝑡 (A.2.1)  

 𝑄𝑄𝑠𝑠,𝑡𝑡 = �
𝑞𝑞𝑖𝑖,𝑠𝑠,𝑡𝑡 𝑞𝑞𝑖𝑖𝑖𝑖,𝑠𝑠,𝑡𝑡
𝑞𝑞𝑖𝑖𝑖𝑖,𝑠𝑠,𝑡𝑡 𝑞𝑞𝑥𝑥,𝑠𝑠,𝑡𝑡

� 
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�
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� �
𝜀𝜀𝑖𝑖,𝑠𝑠−1,𝑡𝑡
2 𝜀𝜀𝑖𝑖,𝑠𝑠−1,𝑡𝑡𝜀𝜀𝑥𝑥,𝑠𝑠−1,𝑡𝑡

𝜀𝜀𝑖𝑖,𝑠𝑠−1,𝑡𝑡𝜀𝜀𝑥𝑥,𝑠𝑠−1,𝑡𝑡 𝜀𝜀𝑥𝑥,𝑠𝑠−1,𝑡𝑡
2 � �𝛼𝛼𝑖𝑖 0

0 𝛼𝛼𝑥𝑥
�

− �𝑏𝑏𝑖𝑖 0
0 𝛼𝛼𝛼𝛼𝑥𝑥

� �
𝑞𝑞𝑖𝑖,𝑠𝑠−1,𝑡𝑡 𝑞𝑞𝑖𝑖𝑖𝑖,𝑠𝑠−1,𝑡𝑡
𝑞𝑞𝑖𝑖𝑖𝑖,𝑠𝑠−1,𝑡𝑡 𝑞𝑞𝑥𝑥,𝑠𝑠−1,𝑡𝑡

� �𝑏𝑏𝑖𝑖 0
0 𝑏𝑏𝑥𝑥

�. 

(A.2.2)  

The error terms in the return equation are assumed to be bivariate normally distributed with 𝑄𝑄𝑡𝑡 as 

the conditional variance–covariance matrix and 𝜁𝜁𝑡𝑡 is an IID vector process such that E(𝜁𝜁𝑡𝑡𝜁𝜁𝑡𝑡′) = 𝑰𝑰, 

where 𝑰𝑰 is the identity matrix. 

The log likelihood function is 

 𝐿𝐿(Θ) = −
1
2
��ln(2𝜋𝜋) + 𝑙𝑙𝑙𝑙�𝑄𝑄𝑠𝑠,𝑡𝑡�� + 𝜀𝜀𝑠𝑠𝑠𝑠′ 𝑄𝑄𝑠𝑠,𝑡𝑡

−1𝜀𝜀𝑠𝑠𝑠𝑠

𝑇𝑇

𝑖𝑖=1

. (A.2.3) 

A.3. Positive definiteness 

Here, we discuss the necessary restrictions on the parameters to ensure the positive definiteness of 

the conditional variance–covariance matrix, 𝑄𝑄𝑠𝑠,𝑡𝑡. 

Recall that the residuals from the return equations of the bivariate component GARCH model are 

assumed joint normal: 
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 𝜺𝜺𝑠𝑠,𝑡𝑡|ℱ𝑠𝑠−1,𝑡𝑡 ~ ℕ (0,𝑸𝑸𝑠𝑠,𝑡𝑡), (A.3.1) 

where, without loss of generality, s and t denote periods corresponding to the higher and lower 

frequency, respectively, 𝑡𝑡 =  1, … ,𝑇𝑇 and 𝑠𝑠 =  1, … , 𝑡𝑡, … , 2𝑡𝑡, … , 𝑆𝑆, and 𝑆𝑆 =  𝑇𝑇 ×  𝑚𝑚, where 𝑚𝑚 is 

the block size. [.] denotes the floor function of the quotient. Clearly, 𝑡𝑡 = [𝑠𝑠 𝑚𝑚⁄ ] + 1 (note that in 

practice the block size, 𝑚𝑚, might be different as we might not have T full blocks of data.). 

The returns are an exogenous p covariate and are denoted 𝑅𝑅𝑡𝑡 = (𝑟𝑟𝑖𝑖𝑖𝑖, 𝑟𝑟𝑥𝑥𝑥𝑥)𝑇𝑇, where i and x denote 

portfolios and state variables, respectively. Assume also that 𝑅𝑅𝑡𝑡 is a component-wise stationary, 

ergodic, strongly mixing process with mixing coefficient ∑ 𝛼𝛼𝑛𝑛
1−2/𝛾𝛾∞

𝑛𝑛=1 <  ∞ (𝛾𝛾 > 2) . 𝑄𝑄𝑡𝑡  is 

parameterized as being measurable to ℱ𝑠𝑠−1,𝑡𝑡 and the exogenous variable 𝑅𝑅𝑡𝑡. 𝜺𝜺𝑠𝑠,𝑡𝑡 is a 𝑑𝑑 ×  1 matrix 

and 𝑸𝑸𝑠𝑠,𝑡𝑡 is a 𝑑𝑑 × 𝑑𝑑 matrix. We consider a bivariate model, so d=2. Without loss of generality, 

𝜺𝜺𝑠𝑠,𝑡𝑡 =  𝑸𝑸𝑠𝑠,𝑡𝑡
1/2𝜂𝜂𝑠𝑠,𝑡𝑡, and 𝜂𝜂𝑠𝑠,𝑡𝑡 is assumed to be IID bivariate Gaussian ~ ℕ(0, 𝐼𝐼𝑑𝑑), and is independent 

of 

ℱ𝑠𝑠−1,𝑡𝑡 =  𝜎𝜎(𝜀𝜀𝑠𝑠−1,𝑡𝑡, 𝜀𝜀𝑠𝑠−2,𝑡𝑡 , … , 𝜀𝜀𝑠𝑠−1,𝑡𝑡, 𝜀𝜀𝑠𝑠−2,𝑡𝑡 , … ). 

The bivariate component GARCH model in matrix form is given as 

 𝑸𝑸𝑠𝑠,𝑡𝑡 =  𝝉𝝉𝑡𝑡 − 𝑨𝑨′𝜏𝜏𝑡𝑡𝑨𝑨 − 𝑩𝑩′𝜏𝜏𝑡𝑡𝑩𝑩 + 𝑨𝑨′𝜺𝜺𝑠𝑠−1,𝑡𝑡, 𝜺𝜺′𝑠𝑠−1,𝑡𝑡𝑨𝑨 +  𝑩𝑩′𝑸𝑸𝑠𝑠−1,𝑡𝑡𝑩𝑩, (A.3.2) 

where 𝝉𝝉𝑡𝑡 is a 𝑑𝑑 × 𝑑𝑑 random variable (long-run exogenous matrix), A and B are 𝑑𝑑 × 𝑑𝑑 coefficient 

matrices and that are assumed to be real matrices. In particular, 𝐴𝐴 = (𝑎𝑎𝑖𝑖, 0; 0,𝑎𝑎𝑥𝑥) , 𝐵𝐵 =

(𝑏𝑏𝑖𝑖, 0; 0, 𝑏𝑏𝑥𝑥) as in equation (2). 

Remark The term 𝝉𝝉𝑡𝑡 − 𝑨𝑨𝜏𝜏𝑡𝑡𝑨𝑨 − 𝑩𝑩′𝜏𝜏𝑡𝑡𝑩𝑩  resembles the variance-targeting constant term in 

Pedersen and Rahbek (2014). However, it is worth noting that the constant term is time varying in 

our case and is driven by low-frequency variables. 
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𝝉𝝉𝑡𝑡 is defined as follows: 𝝉𝝉𝑡𝑡 = 𝑽𝑽𝑡𝑡𝑡𝑡diag(𝝎𝝎)𝑽𝑽′𝑡𝑡𝑡𝑡 = ∑ 𝝎𝝎𝑘𝑘𝑽𝑽𝑡𝑡𝑡𝑡𝑽𝑽′𝑡𝑡𝑡𝑡𝐾𝐾
𝑘𝑘=1 , where 𝑽𝑽𝑡𝑡𝑡𝑡 is a 𝑑𝑑 × 𝐾𝐾 matrix 

of (low-frequency) exogenous shocks, 𝝎𝝎 is a 𝐾𝐾 × 1 vector, and diag(𝝎𝝎) is a 𝐾𝐾 × 𝐾𝐾 matrix with 

diagonal elements equal to 𝝎𝝎.  In our case, 𝑑𝑑 =  2 and 𝝎𝝎 = (𝜔𝜔1,𝜔𝜔2, … ,𝜔𝜔𝐾𝐾)𝑇𝑇  is set to be 

(𝜙𝜙1(𝜔𝜔1,𝜔𝜔2),𝜙𝜙2(𝜔𝜔1,𝜔𝜔2), … ,𝜙𝜙𝐾𝐾(𝜔𝜔1,𝜔𝜔2)) 𝑇𝑇 defined in equation (A.1.3), and 𝑽𝑽𝑡𝑡𝑡𝑡 = (𝑉𝑉𝑡𝑡1, … ,𝑉𝑉𝑡𝑡𝑡𝑡) 

with 𝑽𝑽𝑡𝑡𝑡𝑡 = (𝑟𝑟𝑖𝑖,𝑡𝑡−𝑘𝑘 −  𝜇𝜇𝑖𝑖, 𝑟𝑟𝑥𝑥,𝑡𝑡−𝑘𝑘 −  𝜇𝜇2)𝑇𝑇. 

To ensure 𝑸𝑸𝑠𝑠,𝑡𝑡 is positive definite at each s and t, we first need to impose a condition to guarantee 

that 𝑪𝑪𝑟𝑟𝑟𝑟 ≝  𝝉𝝉𝑡𝑡 − 𝑨𝑨′𝝉𝝉𝑡𝑡𝑨𝑨 − 𝑩𝑩′𝝉𝝉𝑡𝑡𝑩𝑩  is positive definite. We define the matrix 𝑪𝑪 = 1 − 𝑨𝑨′1𝑨𝑨 −

𝑩𝑩′1𝑩𝑩, where 1 is a 2 x 2 matrix of ones. Then  𝑪𝑪 = (1 − 𝑎𝑎𝑖𝑖2 −  𝑏𝑏𝑖𝑖2, 1 − 𝑎𝑎𝑖𝑖𝑎𝑎𝑥𝑥 − 𝑏𝑏𝑖𝑖𝑏𝑏𝑥𝑥; 1 − 𝑎𝑎𝑖𝑖𝑎𝑎𝑥𝑥 −

𝑏𝑏𝑖𝑖𝑏𝑏𝑥𝑥, 1 −  𝑎𝑎𝑥𝑥2 −  𝑏𝑏𝑥𝑥2)  ≝ (𝑐𝑐𝑖𝑖, 𝑐𝑐𝑖𝑖𝑖𝑖; 𝑐𝑐𝑖𝑖𝑖𝑖, 𝑐𝑐𝑥𝑥). 

Proposition 1. (Positive definiteness of 𝑪𝑪𝑟𝑟𝑟𝑟) If 𝑐𝑐𝑖𝑖 > 0, 𝑐𝑐𝑥𝑥 > 0, 𝑐𝑐𝑖𝑖𝑐𝑐𝑥𝑥 − 𝑐𝑐𝑖𝑖𝑖𝑖2 > 0, then the matrix 𝑪𝑪 is 

positive definite, and 𝑪𝑪𝑟𝑟𝑟𝑟 is positive definite almost surely. 

Proof. Because 𝝉𝝉𝑡𝑡 = 𝑽𝑽𝑡𝑡𝑡𝑡diag(𝝎𝝎)𝑽𝑽𝑡𝑡𝑡𝑡′ =  ∑ 𝜔𝜔𝑘𝑘𝑉𝑉𝑡𝑡𝑡𝑡𝑉𝑉𝑡𝑡𝑡𝑡′𝐾𝐾
𝑘𝑘=1 , we can define the matrix 𝝉𝝉𝑡𝑡 =

(𝜔𝜔�12,𝜔𝜔�12;  𝜔𝜔�12,𝜔𝜔�22) with 𝜔𝜔�12 =  ∑ 𝜔𝜔𝑘𝑘(𝑟𝑟𝑖𝑖,𝑡𝑡−𝑘𝑘 − 𝜇𝜇𝑖𝑖)2𝐾𝐾
𝑘𝑘=1 , 𝜔𝜔�22 =  ∑ 𝜔𝜔𝑘𝑘(𝑟𝑟𝑥𝑥,𝑡𝑡−𝑘𝑘 − 𝜇𝜇𝑥𝑥)2𝐾𝐾

𝑘𝑘=1  and 𝜔𝜔�12 =

 ∑ 𝜔𝜔𝑘𝑘(𝑟𝑟𝑥𝑥,𝑡𝑡−𝑘𝑘
𝐾𝐾
𝑘𝑘=1 − 𝜇𝜇𝑥𝑥)(𝑟𝑟𝑖𝑖,𝑡𝑡−𝑘𝑘 − 𝜇𝜇𝑖𝑖). Now, we can write that 𝑪𝑪𝑟𝑟𝑟𝑟 = (𝑐𝑐𝑖𝑖𝜔𝜔�12, 𝑐𝑐𝑖𝑖𝑖𝑖𝜔𝜔�12; 𝑐𝑐𝑖𝑖𝑖𝑖𝜔𝜔�12 , 𝑐𝑐𝑥𝑥𝜔𝜔�22). 

We calculate the two eigenvalues of 𝑪𝑪𝑟𝑟𝑟𝑟 . Letting 𝑇𝑇𝑖𝑖 =  𝑐𝑐𝑖𝑖𝜔𝜔�12 +  𝑐𝑐𝑥𝑥𝜔𝜔�22  and 𝐷𝐷𝑖𝑖 =  𝑐𝑐𝑖𝑖𝜔𝜔�12𝑐𝑐𝑥𝑥𝜔𝜔�22 −

 𝑐𝑐𝑖𝑖𝑖𝑖2 𝜔𝜔�122 , 

𝜆𝜆1(𝐶𝐶𝑟𝑟𝑟𝑟) = �𝑇𝑇𝑖𝑖
2
� + (𝑇𝑇𝑖𝑖

2

4
− 𝐷𝐷𝑖𝑖)

1
2,𝜆𝜆2(𝐶𝐶𝑟𝑟𝑟𝑟) = �𝑇𝑇𝑖𝑖

2
� + (𝑇𝑇𝑖𝑖

2

4
− 𝐷𝐷𝑖𝑖)

1
2. 

As 𝑐𝑐𝑖𝑖, 𝑐𝑐𝑥𝑥 > 0 , 𝑇𝑇𝑖𝑖 > 0  because 𝑇𝑇𝑖𝑖
2

4
− 𝐷𝐷𝑖𝑖 = �𝑐𝑐𝑖𝑖𝜔𝜔�12+ 𝑐𝑐𝑥𝑥𝜔𝜔�22�

2

4
−  𝑐𝑐𝑖𝑖𝜔𝜔�12𝑐𝑐𝑥𝑥𝜔𝜔�22 +  𝑐𝑐𝑖𝑖𝑖𝑖2 𝜔𝜔�122 = �𝑐𝑐𝑖𝑖𝜔𝜔�12+ 𝑐𝑐𝑥𝑥𝜔𝜔�22�

2

4
+

 𝑐𝑐𝑖𝑖𝑖𝑖2 𝜔𝜔�122  ≥ 0. Further, by the Cauchy-Schwarz inequality 𝜔𝜔�122  ≤ 𝜔𝜔�12𝜔𝜔�22, we have 𝐷𝐷𝑖𝑖  ≥ (𝑐𝑐𝑖𝑖𝑐𝑐𝑥𝑥 −

 𝑐𝑐𝑖𝑖𝑖𝑖2 )𝜔𝜔�1
2𝜔𝜔�22. Therefore, by 𝑐𝑐𝑖𝑖𝑐𝑐𝑥𝑥 −  𝑐𝑐𝑖𝑖𝑖𝑖2 > 0, 𝐷𝐷𝑖𝑖 ≥ 0. This leads to 𝜆𝜆1(𝑪𝑪𝑟𝑟𝑟𝑟),𝜆𝜆2(𝑪𝑪𝑟𝑟𝑟𝑟) ≥ 0. Moreover 
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𝜆𝜆2(𝑪𝑪𝑟𝑟𝑟𝑟) = 0 if and only if 𝜔𝜔�1 = 0 or 𝜔𝜔�2 = 0. As the weights 𝜔𝜔  are positive and the returns 

𝑟𝑟𝑖𝑖,𝑡𝑡−𝑘𝑘 − 𝜇𝜇𝑖𝑖, 𝑟𝑟𝑥𝑥,𝑡𝑡−𝑘𝑘 − 𝜇𝜇𝑥𝑥 are continuously distributed, 𝜔𝜔�1 = 0 and 𝜔𝜔�2 = 0 with probability 0. 

Remark If we would like to extend the model to a multidimensional case, this result can also be 

proved by considering 𝑪𝑪𝑟𝑟𝑟𝑟 = 𝑪𝑪 ∘ 𝒓𝒓𝑡𝑡, where ∘ denotes the elementwise (Hadamard) product of two 

matrices. As 𝒓𝒓𝑡𝑡 is a weighted sum of almost surely positive-definite matrices 𝑽𝑽𝑡𝑡𝑡𝑡𝑽𝑽𝑡𝑡𝑡𝑡′  (symmetric 

and real), then by Weyl’s inequality in matrix theory, the smallest eigenvalue of 𝒓𝒓𝑡𝑡 is almost surely 

positive as well. Also, C is positive definite according to our conditions. Therefore, we have by 

the Schur product theory for the Hadamard product, as 𝒄𝒄𝑟𝑟𝑟𝑟 is the Hadamard product of 𝑪𝑪 and 𝝉𝝉𝑡𝑡, 

𝑪𝑪𝑟𝑟𝑟𝑟 is almost surely positive definite. 

Proposition 2. (Positive definiteness of 𝑸𝑸𝑠𝑠.𝑡𝑡) Suppose that diagonal element 𝑏𝑏𝑥𝑥 ≠  0 and 𝑎𝑎𝑖𝑖 > 0, 

𝑏𝑏𝑖𝑖 > 0, 𝑸𝑸0 is a positive definite matrix and conditions in proposition 1 hold, then 𝑸𝑸𝑠𝑠,𝑡𝑡 is positive 

definite for all s. 

Proof. If 𝑪𝑪𝑟𝑟𝑟𝑟 is almost surely positive definite, 𝑩𝑩′𝑸𝑸𝑠𝑠−1,𝑡𝑡𝑩𝑩 is positive definite, and 𝑨𝑨′𝜺𝜺𝑠𝑠−1,𝑡𝑡𝜺𝜺𝑠𝑠−1,𝑡𝑡
′ 𝑨𝑨 

is semipositive definite, we have that  𝑸𝑸𝑠𝑠,𝑡𝑡 is positive definite. The positive definiteness of 𝑪𝑪𝑟𝑟𝑟𝑟 is 

addressed by proposition 1. Since 𝑸𝑸0  is positive definite, 𝑩𝑩′𝑸𝑸0𝑩𝑩  is positive definite, so the 

positive definiteness of 𝑩𝑩′𝑸𝑸𝑠𝑠,𝑡𝑡𝑩𝑩  follows by iteration. As it can be seen that 

rank�𝑨𝑨′𝜺𝜺𝑠𝑠−1,𝑖𝑖𝜺𝜺𝑠𝑠−1,𝑖𝑖
′ 𝑨𝑨� = 1, then it follows that 𝑸𝑸𝑠𝑠,𝑡𝑡 is positive definite. 

A.4. Stationarity 

Here, we show the identifiability and stationarity results. We rewrite the model in vector form as 
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vec�𝑸𝑸𝑠𝑠,𝑡𝑡� = �𝐼𝐼 − 𝑨𝑨′⊗𝑨𝑨′ − 𝑩𝑩′⊗𝑩𝑩′� vec{𝒓𝒓𝑡𝑡} + 𝑨𝑨′⊗𝑨𝑨′vec �𝜺𝜺𝑠𝑠−1,𝑡𝑡𝜺𝜺𝑠𝑠−1,𝑡𝑡

′
�

+ 𝑩𝑩′⊗𝑩𝑩′vec�𝑸𝑸𝑠𝑠−1,𝑡𝑡�. 

(A.4.1) 

As we do not need all the elements of a symmetric matrix, we write (A.3.2) in terms of the vech 

operator. The vech form of the bivariate component model specified in equation (A.3.2) can be 

derived as 

 vech�𝑸𝑸𝑠𝑠,𝑡𝑡� =  𝑪𝑪�vech{𝒓𝒓𝑡𝑡} + 𝑨𝑨�vech �𝜺𝜺𝑠𝑠−1,𝑡𝑡𝜺𝜺𝑠𝑠−1,𝑡𝑡
′

� + 𝑩𝑩�vech{𝑸𝑸𝑠𝑠−1,𝑡𝑡}, (A.4.2)  

where the operator vech denotes the vectorized part of the lower diagonal elements of a symmetric 

matrix. 𝑨𝑨� = diag(𝑎𝑎𝑖𝑖2,𝑎𝑎𝑖𝑖𝑎𝑎𝑥𝑥,𝑎𝑎𝑥𝑥2), 𝑩𝑩� = diag(𝑏𝑏𝑖𝑖2, 𝑏𝑏𝑖𝑖𝑏𝑏𝑥𝑥, 𝑏𝑏𝑥𝑥2), and 𝑪𝑪� = 𝑰𝑰𝑑𝑑(𝑑𝑑+1)/2 −  𝑨𝑨� −  𝑩𝑩� . 

Proposition 3. (Identifiability) Suppose that 𝑎𝑎𝑖𝑖 > 0 and 𝑏𝑏𝑖𝑖 > 0. Then the parameters in equation 

(2) are identifiable. 

Proof. In equation (2), the coefficient attached to 𝜀𝜀𝑖𝑖,𝑠𝑠−1,𝑡𝑡
2  is 𝑎𝑎𝑖𝑖2, which  is identified up to its sign, 

as is the 𝑏𝑏𝑖𝑖 coefficient. The coefficient associated with 𝜀𝜀𝑖𝑖,𝑠𝑠−1,𝑡𝑡𝜀𝜀𝑥𝑥,𝑠𝑠−1,𝑡𝑡 is 𝑎𝑎𝑖𝑖𝑎𝑎𝑥𝑥. Since 𝑎𝑎𝑖𝑖 is identified, 

𝑎𝑎𝑥𝑥 is identified as well. Similarly, 𝑏𝑏𝑥𝑥 is identified. ∎ 

The stationarity of the BEKK model is studied in Boussama, Fuchs, and Stelzer (2011). Next, we 

prove that we need to ensure that the spectral radius of 𝑨𝑨� +  𝑩𝑩�  is less than one for the stationarity 

of our model. In particular, this is equivalent to max(𝑎𝑎𝑖𝑖2, |𝑎𝑎𝑖𝑖𝑎𝑎𝑥𝑥|,𝑎𝑎𝑥𝑥2) +  max(𝑏𝑏𝑖𝑖2, |𝑏𝑏𝑖𝑖𝑏𝑏𝑥𝑥|,𝑏𝑏𝑥𝑥2) < 1. 

Proposition 4. (Covariance Stationarity) If max(𝑎𝑎𝑖𝑖2, |𝑎𝑎𝑖𝑖𝑎𝑎𝑥𝑥|,𝑎𝑎𝑥𝑥2) +  max(𝑏𝑏𝑖𝑖2, |𝑏𝑏𝑖𝑖𝑏𝑏𝑥𝑥|,𝑏𝑏𝑥𝑥2) < 1, the 

model is covariance stationary, and the stationary covariance Σ  is of the form vech{Σ} =

(𝐼𝐼 −  𝑨𝑨� −  𝑩𝑩�)−1𝑪𝑪�τ∞. 

The stationary solution of equation (2) is 
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vech�𝑸𝑸𝑠𝑠,𝑡𝑡� =  ∑ 𝑩𝑩�𝑙𝑙−1𝑨𝑨�vech{𝜺𝜺𝑠𝑠−𝑙𝑙,𝑖𝑖𝜺𝜺𝑠𝑠−𝑙𝑙,𝑡𝑡

′
}

∞
𝑙𝑙=1 +  ∑ 𝑩𝑩�𝑙𝑙−1𝑪𝑪�vech{𝝉𝝉⌊(𝑠𝑠−𝑙𝑙)/𝑚𝑚⌋+1,𝑡𝑡}

∞
𝑙𝑙=1 . (A.4.3)  

Proof. As in the proof of proposition 2.7 in Engle and Kroner (1995), denote by 𝔼𝔼𝑡𝑡 the conditional 

expectation 𝔼𝔼(∙ |ℱ𝑡𝑡), conditioning on the information set ℱ𝑡𝑡. 

 

𝔼𝔼𝑠𝑠−𝐿𝐿vech �𝜺𝜺𝑠𝑠,𝑡𝑡𝜺𝜺𝑠𝑠,𝑡𝑡
′
�

=  �(𝑨𝑨� + 𝑩𝑩�)𝑙𝑙−2𝑪𝑪�𝔼𝔼𝑠𝑠−𝐿𝐿vech{𝝉𝝉⌊(𝑠𝑠−𝑙𝑙+1)/𝑚𝑚⌋+1,𝑡𝑡}
𝐿𝐿

𝑙𝑙=2

+  (𝑨𝑨� + 𝑩𝑩�)𝐿𝐿−1vech{𝑸𝑸𝑠𝑠−𝐿𝐿+1} 

(A.4.4) 

As 𝐿𝐿 →  ∞, (𝑨𝑨� + 𝑩𝑩�)𝐿𝐿−1 → 0 if max(𝑎𝑎𝑖𝑖2, |𝑎𝑎𝑖𝑖𝑎𝑎𝑥𝑥|,𝑎𝑎𝑥𝑥2) +  max(𝑏𝑏𝑖𝑖2, |𝑏𝑏𝑖𝑖𝑏𝑏𝑥𝑥|,𝑏𝑏𝑥𝑥2) < 1. 

As we have assumed that {𝑹𝑹t} are element-wise strong mixing processes, the elements in 𝝉𝝉𝑡𝑡 are 

the weighted sum of functions related to {𝑹𝑹𝑡𝑡}. Mixing series are measure preserving. It can be seen 

that for the blocks 𝑏𝑏 = 1, 2, … , ⌊𝐿𝐿 𝑚𝑚⁄ ⌋, ∑ (𝑨𝑨� + 𝑩𝑩�)𝑙𝑙−2𝑪𝑪�𝔼𝔼𝑠𝑠−𝐿𝐿vech{𝝉𝝉⌊(𝑠𝑠−𝑙𝑙+1)/𝑚𝑚⌋+1,𝑡𝑡}𝑏𝑏𝑏𝑏
𝑙𝑙=(𝑏𝑏−1)𝑚𝑚+1  will 

be mixing. Note that within block b, as vech{𝝉𝝉⌊(𝑠𝑠−𝑙𝑙+1)/𝑚𝑚⌋+1,𝑡𝑡} does not vary with respect to s, 

therefore the value 𝔼𝔼𝑠𝑠−𝐿𝐿vech{𝝉𝝉⌊(𝑠𝑠−𝑙𝑙+1)/𝑚𝑚⌋+1,𝑡𝑡 stays the same within a block. As long as 𝐿𝐿 𝑚𝑚⁄ →

∞, it is not hard to see that 

 lim
𝐿𝐿→∞

∑ (𝑨𝑨� + 𝑩𝑩�)𝑙𝑙−2𝑪𝑪�𝔼𝔼𝑠𝑠−𝐿𝐿vech𝝉𝝉⌊(𝑠𝑠−𝑙𝑙+1)/𝑚𝑚⌋+1,𝑡𝑡
𝐿𝐿
𝑙𝑙=2 𝑝𝑝

→  (𝐼𝐼 −  𝑨𝑨� −  𝑩𝑩�)−1𝑪𝑪�τ∞, (A.4.5) 

where 𝝉𝝉∞ =  𝔼𝔼vech𝝉𝝉⌊(𝑠𝑠−𝑙𝑙+1)/𝑚𝑚⌋+1. 
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Table 1: Summary statistics for excess returns of 30 industry portfolios 

The table shows the yearly means, standard deviations, excess kurtosis, and skewness of the excess returns 
in percentage for the 30 industrial portfolios. The monthly sample covers the period from 1945 to 2015. 
The data are from Kenneth French’s online data library. ***, **, and, * indicate significance at the 1%, 5%, 
and, 10% levels, respectively. 

 Mean St. dev Excess kurtosis Skewness 
Food  8.610*** 14.179 2.479*** −0.056  
Beer  9.767*** 18.303 4.868*** 0.412*** 
Smoke 11.512*** 19.633 2.870*** −0.065  
Games 9.370*** 23.862 2.519*** −0.186**  
Books 7.641*** 19.509 2.412*** −0.025  
Hshld 8.179*** 16.119 1.503*** −0.302*** 
Clths 8.400*** 20.611 3.115*** −0.083  
Hlth  10.165*** 16.960 1.903*** 0.066  
Chems 8.006*** 18.456 2.121*** −0.096  
Txtls 8.865*** 23.308 9.418*** 0.492*** 
Cnstr 7.811*** 19.776 2.431*** −0.210**  
Steel 6.138*** 23.904 2.335*** −0.240*** 
FabPr 7.751*** 20.155 2.513*** −0.384*** 
ElcEq 9.906*** 20.931 1.443*** −0.160*  
Autos 7.768*** 22.176 5.893*** 0.209**  
Carry 9.737*** 21.213 1.360*** −0.260*** 
Mines 6.400*** 23.920 2.220*** −0.173**  
Coal  9.475*** 32.400 2.714*** 0.143*  
Oil  9.232*** 18.199 1.062*** −0.005  
Util  7.096*** 13.343 1.098*** −0.201**  
Telcm 6.486*** 14.695 1.837*** −0.174**  
Servs 9.935*** 21.490 1.514*** −0.151*  
BusEq 9.681*** 22.163 2.051*** −0.311*** 
Paper 8.612*** 17.269 2.098*** −0.169**  
Trans 7.584*** 19.354 1.279*** −0.200**  
Whlsl 8.294*** 18.602 2.283*** −0.298*** 
Rtail 9.001*** 17.528 2.409*** −0.222*** 
Meals 10.068*** 20.450 2.478*** −0.405*** 
Fin  8.523*** 17.779 1.808*** −0.405*** 
Other 5.959*** 19.152 1.752*** −0.388*** 
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Table 2: Parameter estimates of the component GARCH model 

The table shows the means and standard deviations of the parameter estimates from the bivariate component 
GARCH model specified in equations (1)-(3) for the monthly-weekly (M-W) and monthly-monthly (M-M) 
frequencies. The estimations are based on the 30 industry portfolios and the market, small-minus-big (SMB), 
and high-minus-low (HML) factors. The sample covers the period from 1945 to 2015. 

  γι  γx  ai  ax  bi  bx 
  Mean Std dev Mean Std dev Mean Std dev Mean Std dev Mean Std dev Mean Std dev 

M-W 
Market 0.208 0.036 0.190 0.011 0.241 0.015 0.265 0.016 0.963 0.005 0.954 0.007 
SMB 0.201 0.038 0.012 0.005 0.290 0.047 0.262 0.015 0.942 0.021 0.949 0.008 
HML 0.209 0.032 0.062 0.004 0.251 0.023 0.272 0.006 0.959 0.008 0.958 0.002 

M-M 
Market 0.731 0.146 0.662 0.057 0.282 0.020 0.284 0.026 0.941 0.014 0.943 0.011 
SMB 0.693 0.150 0.008 0.031 0.284 0.030 0.319 0.021 0.939 0.020 0.880 0.037 
HML 0.803 0.192 0.305 0.057 0.289 0.028 0.313 0.016 0.927 0.028 0.939 0.014 

 
  

Electronic copy available at: https://ssrn.com/abstract=3046548



 

32 

Table 3: Cross-sectional dispersion of betas  

The table shows the time-series means of the cross-sectional dispersion of the estimated total, long- and 
short-run betas, as well as the coefficients and t-values from univariate regressions of the dispersion 
coefficients on the NBER recession indicator. ***, **, and, * indicate significance at the 1%, 5%, and, 10% 
levels, respectively. 

 

  Total  Long  Short  
 Market SMB HML Market SMB HML Market SMB HML 

Mean dispersion 0.286*** 0.434*** 0.523*** 0.271*** 0.413*** 0.478*** 0.115*** 0.180*** 0.233*** 

Intercept 0.282*** 0.431*** 0.519*** 0.269*** 0.414*** 0.480*** 0.113*** 0.174*** 0.229*** 
t-value 74.553 112.830 113.111 79.995 158.618 124.801 72.901 68.935 65.254 
Recession 0.031*** 0.023**  0.033*** 0.009    -0.010    -0.017    0.014*** 0.040*** 0.024**  
t-value 3.084 2.211 2.730 0.981 -1.411 -1.606 3.299 5.878 2.519 
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Table 4: Risk premia 

Panel A shows the risk premia estimated using unconditional betas, betas from a conventional bivariate 
GARCH model for weekly and monthly frequencies, and total betas from the bivariate component GARCH 
model for the monthly-weekly (M-W) and monthly-monthly (M-M) frequencies. Panel B shows the risk 
premia for long- and short-run betas from the bivariate component GARCH model with M-W and M-M 
frequencies. Panel C shows the risk premia estimated using long- and short-run betas from the bivariate 
component GARCH model for the M-M frequency using four different data sets as test assets. For each 
factor, market, small-minus-big (SMB), and high-minus-low (HML), the factor risk premium is estimated 
as the average of the time-series of the estimated coefficients obtained from the weekly (monthly) repeated 
multivariate cross-sectional regressions of the weekly (monthly) returns of the 30 industry portfolios on 
their factor betas. The estimations cover the period from 1950 to 2015. ***, **, and, * indicate significance 
at the 1%, 5%, and, 10% levels, respectively. 

Panel A. Risk premia for total betas 
  Intercept  Market  SMB  HML 
  Coef. t-val Coef. t-val Coef. t-val Coef. t-val 

Unconditional Weekly 0.175*** 4.11 −0.010  −0.12 0.034  0.90 0.026  0.65 
Monthly 0.858*** 4.69 −0.464  −1.55 0.490*** 3.01 0.114  0.71 

Bivariate 
GARCH 

Weekly 0.147*** 4.21 0.001  0.02 −0.008  −0.27 −0.040  −1.10 
Monthly 0.643*** 3.86 0.039  0.14 0.166  0.93 0.007  0.04 

Component 
GARCH 

M-W 0.156*** 4.24 0.019  0.26 0.005  0.16 −0.013  −0.34 
M-M 0.661*** 4.08 −0.020  −0.07 0.463*** 2.64 0.217  1.23 

 
Panel B. Risk premia for component GARCH betas 

   Long  Short 
 Intercept  Market  SMB  HML  Market  SMB  HML 
 Coef. t-val Coef. t-val Coef. t-val Coef. t-val Coef. t-val Coef. t-val Coef. t-val 

M-W 0.150*** 3.32 0.018  0.20 0.013  0.30 0.021  0.42 0.050  0.58 0.039  0.90 −0.019  −0.43 
M-M 0.844*** 4.79 −0.275  −0.89 0.645*** 3.01 0.321  1.40 0.818**  2.00 0.669**  1.87 0.402  1.29 

 
Panel C: Risk premia variations across data sets  

  Long  Short 
 Intercept  Market  SMB  HML  Market  SMB  HML 
 Coef. t-val Coef. t-val Coef. t-val Coef. t-val Coef. t-val Coef. t-val Coef. t-val 

25 BM-Size 0.876*** 4.29 −0.306  −1.05 0.371*** 2.55 0.356**  2.01 0.318*  1.76 0.054  0.32 0.102  0.65 
30 Industries 0.844*** 4.79 −0.275  −0.89 0.645*** 3.01 0.321  1.40 0.818**  2.00 0.669**  1.87 0.402  1.29 
49 industries 0.467*** 3.35 0.202  0.83 0.350**  2.41 0.284*  1.72 0.690*** 2.60 0.470**  2.31 0.105  0.61 
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Table 5: Recession and risk premia 

The table shows the risk premia for the entire sample and for NBER expansions and recessions. Panel A shows the 
risk premia using monthly unconditional betas, monthly betas from the conventional bivariate GARCH model, and 
the total betas from the bivariate component GARCH model with the monthly-monthly frequency. Panel B shows the 
risk premia associated with the short- and long-run betas from the component GARCH model with the monthly-
monthly (M-M) frequency. For each factor, market, small-minus-big (SMB), and high-minus-low (HML), the factor 
risk premium is estimated as the average of the time-series of the estimated coefficients obtained from the monthly 
repeated multivariate cross-sectional regressions of the monthly returns of the 30 industry portfolios on their factor 
betas. The estimations cover the period from 1950 to 2015. ***, **, and, * indicate significance at the 1%, 5%, and, 
10% levels, respectively. 

Panel A. Risk premia for total betas 
  Intercept  Market  SMB  HML 
 Coef. t-val Coef. t-val Coef. t-val Coef. t-val Coef. 

Unconditional  
Entire 0.858*** 4.69 −0.464 −1.55 0.490*** 3.01 0.114 0.71 
Expansion 0.834*** 4.378 −0.159  −0.516 0.427**  2.493 0.231  1.382 
Recession 1.004**  2.128 −2.335*** −3.070 0.876**  2.063 −0.604  −1.459 

Bivariate GARCH 
Entire 0.643*** 3.86 0.039  0.14 0.166  0.93 0.007  0.04 
Expansion 0.557*** 3.231 0.294  1.054 0.132  0.692 0.119  0.634 
Recession 1.174*** 2.751 −1.522**  −2.206 0.375  0.795 −0.681  −1.468 

Component GARCH 
Entire 0.661*** 4.08 −0.020  −0.07 0.463*** 2.64 0.217  1.23 
Expansion 0.651*** 3.876 0.134  0.501 0.433**  2.404 0.316*  1.782 
Recession 0.720*  1.730 −0.964  −1.452 0.647  1.451 −0.389  −0.887 

 
Panel B. Risk premia for component GARCH betas 

   Long  Short 
 Intercept  Market  SMB  HML  Market  SMB  HML 
 Coef. t-val Coef. t-val Coef. t-val Coef. t-val Coef. t-val Coef. t-val Coef. t-val 

Entire 0.844*** 4.79 −0.275  −0.89 0.645*** 3.01 0.321  1.40 0.818**  2.00 0.669**  1.87 0.402  1.29 
Expansion 0.777*** 4.253 −0.011  −0.033 0.668*** 3.148 0.443*  1.935 1.025**  2.369 0.753**  2.073 0.490*  1.642 
Recession 1.259*** 2.783 −1.897**  −2.395 0.507  0.966 −0.431  −0.760 −0.450  −0.420 0.156  0.174 −0.137  −0.185 
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Figure 1: Factor betas estimated by the component GARCH model 

The graphs plot the total (dotted line) and long-run (solid line) market, small-minus-big (SMB), and high-
minus-low (HML) betas estimated by the component GARCH model at monthly-monthly and monthly-
weekly frequency for the financial industry as the test portfolio. The estimated betas are for the period from 
1950 to 2015. 
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Karl Härdle, January 2020.

003 ”Structured climate financing: valuation of CDOs on inhomogeneous asset pools”
by Natalie Packham, February 2020.

004 ”Factorisable Multitask Quantile Regression” by Shih-Kang Chao, Wolfgang K.
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