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Abstract

Estimating spot covariance is an important issue to study, especially with the in-

creasing availability of high-frequency financial data. We study the estimation of spot

covariance using a kernel method for high-frequency data. In particular, we consider first

the kernel weighted version of realized covariance estimator for the price process gov-

erned by a continuous multivariate semimartingale. Next, we extend it to the threshold

kernel estimator of the spot covariances when the underlying price process is a discontin-

uous multivariate semimartingale with finite activity jumps. We derive the asymptotic

distribution of the estimators for both fixed and shrinking bandwidth. The estimator

in a setting with jumps has the same rate of convergence as the estimator for diffusion

processes without jumps. A simulation study examines the finite sample properties of

the estimators. In addition, we study an application of the estimator in the context

of covariance forecasting. We discover that the forecasting model with our estimator

outperforms a benchmark model in the literature.

Keywords: high-frequency data; kernel estimation; jump; forecasting covariance matrix

MOS subject classification: 62F12, 62G05, 60J75.

1 Introduction

The broad availability of high-frequency intra-day data of asset returns has given rise to a

considerable collection of works dedicated to estimating integrated and spot (co)variances.

While integrated (co)variance is an important quantity in risk management and optimal

hedging, in recent years the usage of spot volatility estimators is also increasing in financial

applications. For example, spot covariance estimates have been shown to be beneficial, with

respect to the integrated covariance, in estimating infinitesimal cross-moments Bandi and

Renò (2016) and in co-jump tests Bibinger and Winkelmann (2015), estimating parametric

multivariate stochastic volatility models Kanaya and Kristensen (2016). Moreover, under-

standing covariance dynamics is crucial for effective portfolio choice and derivative pricing

with stochastic volatility where the initial volatility value, in addition to the initial value of

the underlying, is needed to price the option.

We consider the nonparametric estimation of spot covariance with high-frequency finan-

cial data. Our study is at the intersection of two fields of literature. The first strand of

literature is on estimating integrated covariance matrices over a fixed period. This topic has

been studied extensively in high-frequency econometrics. For example, the highly celebrated

paper by Barndorff-Nielsen and Shephard (2004a) makes important contributions to the use

of realized covariance to estimate integrated covariance matrix in a setup without market

microstructure noise. The quasi-maximum likelihood estimator in Aı̈t-Sahalia et al. (2010),

the multivariate pre-averaging estimator in Christensen et al. (2013), the two-scale estimator

in Zhang (2011) are robust to microstructure noise.

The second strand focuses on spot volatility estimation. Several approaches of estimating

spot volatility were proposed. Foster et al. (1996) were the first to introduce the spot volatil-

ity estimator: rolling and sampling filters. Later, kernel-type estimators were introduced in
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Fan and Wang (2008) and Kristensen (2010). These estimators of spot variance neglect the

microstructure noise and jumps. The examples of spot variance estimators accounting for

microstructure noise include Zu and Boswijk (2014), Bos et al. (2012), Mykland and Zhang

(2008). Yu et al. (2014) extended kernel spot volatility estimator of Kristensen (2010) to

the case when the underlying price process has jumps.

The estimation of spot covariance matrix is, however, an area that has been studied

less. For a multi-dimensional continuous semimartingale log-asset price process, Bibinger et

al. (2017) proposed an estimator for spot covariance which is constructed based on a local

average of block-wise parametric spectral covariance estimates. Aiming to fill this gap in

the literature we make the following contribution to the spot covariance estimation for both

continuous and discontinuous semimartingales.

For a setup without jumps, we establish asymptotic properties of the kernel covariance

estimator, which was mentioned in Kristensen (2010) as an extension to the multivariate

case and was left for the future research. The estimator is a kernel-weighted version of the

standard integrated covariance estimator, which depends on a kernel function and choice of

bandwidth. It can be regarded as a kernel regression in the time domain. The bandwidth

choice allows us to focus on the covariance behavior at specific points in time, and give

different weights to the covariance matrix over the window used. As the bandwidth shrinks to

zero, the spot covariance can be extracted. We prove asymptotic normality of the estimator

for both fixed and shrinking bandwidth. The proofs are component-wise. We first derive

the mean and the variance of the estimators using the main results of Barndorff-Nielsen and

Shephard (2004a) and the lemmas from Kristensen (2010) and then prove the asymptotic

normality via the Cramér-Wold device.

Second, we consider the case when the underlying price process is a discontinuous semi-

martingale with finite activity jumps. We extend the kernel estimator to the threshold

kernel covariance estimator and derive the asymptotic distribution of this estimator for a

fixed bandwidth. The estimator is an extension to the multivariate case of the threshold

kernel volatility estimator proposed by Yu et al. (2014). In the proof of this theorem we

combine our results from the first theorem, techniques from Yu et al. (2014) and employ

Cramér-Wold device.

The rate of convergence of both kernel and threshold kernel covariance estimators is n−1/2.

The local method of moments estimator of the spot covariances of Bibinger et al. (2017)

attains slower optimal rate of convergence (n−1/8). However, it should be noted this is due

to the fact that Bibinger et al. (2017) consider the setting with market microstructure noise,

whereas we consider a jump case. The kernel and threshold kernel covariance estimators are

fairly easy to implement.

We examine with simulated data the finite sample properties of the estimators with

different kernel functions using the integrated mean square error and the integrated bias

performance measurements. We find that the estimators with one sided kernel performs

the best. Furthermore, we study an application of the kernel estimator in the context of

covariance forecasting. Considerable efforts has been put into covariance forecasting (see
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e.g. Alexander (2018), Andersen et al. (2013)). Multivariate GARCH models are a standard

tool used in modelling and forecasting covariances. However, more recent studies propose

models based on high-frequency data and options implied data. In a comprehensive empirical

study by Symitsi et al. (2018) several approaches to the covariance forecasting are compared

based on statistical and economic criteria. It is concluded that models based on high-

frequency data offer a clear advantage in terms of statistical accuracy. In particular, a Vector

Heterogeneous Autoregressive (VHAR) model achieves the best performance amongst the

competing models. The VHAR model is a linear combination of past daily, weekly and

monthly realized covariance estimators of Barndorff-Nielsen and Shephard (2004a).

Motivated by this we use the VHAR model to forecast covariance, however instead of the

realized we use the kernel covariance estimator. We further show that with the VHAR model

the kernel covariance estimator outperforms the benchmark realized covariance estimator in

all three measures of accuracy: the Euclidean loss function, the Frobenius distance and the

multivariate quasi-likelihood loss function.

The paper is structured as follows. In Section 2.1 we review theoretical setup of the

problem and the kernel covariance estimator which was proposed in Kristensen (2010) and

left for the future research. In Section 2.2 we study the asymptotic properties of the estimator

for a fixed and small (tending to zero) bandwidth. In Section 3 we introduce the setup

with jumps, propose the estimator for jump case and derive its asymptotic distribution. In

Section 4 we conduct Monte Carlo simulations and investigate the finite sample properties

of both estimators. In Section 5 we present an application of the estimator in the context of

covariance forecasting. Finally, in Section 6 we summarise our findings.

2 Kernel Covariance Estimation

2.1 Theoretical Setup and the Kernel Covariance Estimator

In this Section we start by considering a multidimensional continuous semimatingale, describe

the theoretical setup and review the kernel covariance estimator in Kristensen (2010). Our

aim is to accurately estimate the spot covariance matrix of a d-dimensional log-price process

(X(t))t≥0 = (X1(t), X2(t), ..., Xd(t))t≥0. We assume that, for t ∈ [0, T ], X(t) follows a

continuous semimartingale
dX1(t)

dX2(t)
...

dXd(t)

 =


µ1(t)dt

µ2(t)dt
...

µd(t)dt

 +


θ11(t) · · · θ1d(t)

θ21(t) · · · θ2d(t)
...

. . .
...

θd1(t) · · · θdd(t)




dW1(t)

dW2(t)
...

dWd(t)

 (1)

defined on a filtered probability space (Ω,F , (F)t≥0, P ), with an initial condition X(0) ∈ Rd,
the drift vector µ(t), the d-dimensional standard Brownian motion W (t) and the (d × d)-

dimensional instantaneous volatility matrix θ(t) which has elements that are all càdlàg. The

latter yields the (d × d)-dimensional spot covariance matrix Σ(t) = θ(t)θ(t)>, which is our
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object of interest. We also denote the integrated covariance matrix by Σ∗(t) =
∫ t

0 Σ(s)ds.

We consider the finite and fixed time horizon [0, T ] with n + 1 high-frequency discrete

observations Xk(t0), Xk(t1), ..., Xk(tn−1), Xk(tn) of the realization of k-th asset, with k =

1, 2, ..., d. For an arbitrary partition 0 = t0 < t1 < ... < tn = T of the interval [0, T ] we require

that maxi=1,...,n |ti − ti−1| approaches zero under the asymptotic limit. For simplicity, we

consider the case of equally spaced and synchronous observation times. We denote δ = T/n,

so that ti = iδ for i = 1, 2, · · · , n.

A kernel is a non-negative integrable function K satisfying the following condition:∫
RK(u)du = 1. The kernel weighted measure of the integrated covariance, which is an

extension of the measure of the integrated variance introduced in Kristensen (2010), is of

the following form

KCV (t) =

∫ T

0
Kh(s− t)Σ(s)ds, (2)

where the function Kh(z) is given by K
(
z
h

)
/h, satisfies

∫
RK(z)dz = 1, and h > 0 is the

fixed bandwidth. KCV (t) delivers a kernel weighted quadratic covariation.

An estimator of the integrated covariance in equation (2) is the kernel smoothed sample

average of the increments:

K̂CV (t) =
n∑
i=1

Kh(ti−1 − t)∆X(ti−1)∆X>(ti−1), (3)

where ∆X(ti−1) = X(ti)−X(ti−1) is the d-dimensional vector (d is fixed) of the increments

of the process X over time interval [ti−1, ti]. As introduced above, for a fixed h > 0, KCV (t)

gives a weighted measure of the integrated covariance. However, as h→ 0, the instantaneous

covariance can be recovered at any point of continuity t of t 7→ Σ(t):

Σ(t) = plim
h→0

KCV (t), (4)

where plim denotes probability limit. To emphasize that we are working with an estimator

of the instantaneous covariance at time t, we shall denote:

Σ̂(t) =
n∑
i=1

Kh(ti−1 − t)∆X(ti−1)∆X(ti−1)>. (5)

Note that,
∑n

i=1Kh(ti−1 − t)∆X(ti−1)∆X(ti−1)> can be regarded as the Nadaraya-Watson

estimator (see Nadaraya (1964), Watson (1964)). An overview of these types of kernel can

be found in Silverman (1986). In the univariate case, i.e. when d = 1, we recover the spot

variance estimator from Kristensen (2010).

2.2 Asymptotic Properties of the Kernel Covariance Estimator

In this Section we state the necessary assumptions and present a couple of results: a theo-

rem that derives the asymptotic distribution of the kernel covariance estimator for the fixed
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bandwidth, and a theorem that proves asymptotic normality of the kernel covariance esti-

mator for a tending to zero bandwidth. Throughout our work we shall consider the following

set of assumptions:

Assumption 1. The processes µ and Σ are jointly independent of W .

Assumption 1 greatly facilitates the proof by allowing us to make all arguments condi-

tional on µ and Σ. Under Assumption 1, the volatility process being independent of W , the

model falls into the case without leverage effects. However, this assumption does not appear

to be strictly necessary as demonstrated in Kanaya and Kristensen (2016). When examining

the performance of the estimator with simulated data, we relax this assumption.

It is convenient to have short expressions for terms that converge in probability to zero

or are uniformly tight. The notation oP (1) is used for a sequence of random variables that

converges to zero in probability. The expression Op(1) denotes a sequence that is bounded

in probability (see Van der Vaart, (1998), Aı̈t-Sahalia and Jacod (2014)). More generally,

for random variables un and vn > 0 we have

un = op(vn) if
un
vn
→ 0 in probability, (6)

un = Op(vn) if
un
vn

is bounded in probability, i.e. for all ε > 0 ∃ an M

for which sup
n
P

(∣∣∣∣unvn
∣∣∣∣ > M

)
< ε. (7)

Assumption 2. For any sequences (i − 1)δ ≤ si ≤ ti ≤ iδ, with i = 1, · · · , n and every

k = 1, · · · , d, as δ → 0 we have

δ

n∑
i=1

|µ2
k(si)− µ2

k(ti)| = oP (1), δ
n∑
i=1

|Ω(si)− Ω(ti)| = oP (1), (8)

where Ω(t) =: {Σkk′(t)Σll′(t) + Σkl′(t)Σlk′(t)}k,k′,l,l′=1,··· ,d.

Assumptions 2 imposes a restriction on the local behavior of the mean and covariance

processes. It allows for the deterministic patterns, jumps, and nonstationarity, and is auto-

matically satisfied when the mean and volatility processes have continuous trajectories. In

particular, standard diffusion models such as Heston (1993), Hull and White (1987) satisfy

this assumption.

Assumption 3. For every k = 1, · · · , d and i = 1, · · · , n the quantities

δ−1

∫ ti

ti−1

Σkk(s)ds (9)

are bounded away from 0 and infinity uniformly in δ.

Equation (9) in Assumption 3 essentially means that, on any bounded interval, Σkk(t)

itself is bounded away from zero and infinity. This is the case, for example for Cox-Ingersoll-

Ross (CIR) process in Cox et al. (1985) and Ornstein-Uhlenbeck (OU) process in Uhlenbeck
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and Ornstein (1930). The above mentioned assumptions are sufficient to derive the asymp-

totic distribution of K̂CV (t), however in order to get the asymptotics of Σ̂(t), when h→ 0,

the general smoothness condition needs to be imposed on the covariance process.

Assumption 4. The space Cm,γ [0, T ] for some m ≥ 0 and 0 < γ < 1 consists of functions

f : [0, T ] 7→ R that are m times differentiable with the m-th derivative f (m)(t), satisfying

|f (m)(t+ δ)− f (m)(t)| ≤ L(t, |δ|)|δ|γ + oP (|δ|γ), δ → 0, (a.s.), (10)

where L(t, δ) is Lipschitz coefficient, a slowly varying function at zero and t 7→ L(t, 0) is

continuous. The mapping t 7→ Σk,l(t) for k, l = (1, ..., d) lies in Cm,γ [0, T ] for some m ≥ 0

and γ ≥ 0.

As stated in Yu et al. (2014) this condition is satisfied by commonly used diffusion

processes. For any model driven by Brownian motion Assumption 5 holds with m = 0 and

γ < 0.5 (see e.g. Revuz and Yor (1998)).

We also impose requirements on the kernel function:

Assumption 5. The kernel K : R 7→ R

(a) satisfies
∫
RK(x)dx = 1 and continuously differentiable, i.e. K ∈ C1,0, such that

K̄z :=:= sup
0≤u≤T

|K(z)(u)| <∞, z = 0, 1.

(b) satisfies the condition that there exists some constants Λ, L and Γi < ∞ such that

|K(i)(u)| ≤ Λ, and for some v > 1, |K(i)(u)| ≤ Γi|u|−v for |u| ≥ L, i = 0, 1.

(c) satisfies
∫
R x

iK(x)dx = 0, i = 1, ..., r − 1 and
∫
R |x|

r|K(x)|dx <∞, for some r ≥ 0.

The assumptions above are satisfied by most standard kernels for r ≤ 2. When r > 2,

K is called a higher-order kernel. If m > 2 as well, the higher-order kernels can be used

to reduce the bias in the estimation of more than twice differentiable functions. Although,

as mentioned in Kristensen (2010), since m = 0 is a usual case, Cline and Hart (1991)

demonstrated that higher-order kernels can potentially reduce bias even when the object of

interest is non-smooth and has jumps.

We denote by
L→ convergence in law for random variables. If X1, X2, ... is a sequence

of random variables with cumulative distribution functions (cdf’s) {Fi}i≥1 of Xi, we say

that {Xn}n converges in law to the random variable X with cdf F (x), written Xn
L→ X, if

Fn(x)→ F (x) for every x at which F (x) is continuous.

Now we derive the asymptotics of the kernel covariance estimator for a fixed bandwidth.

Theorem 1. If Assumptions 1-5 hold, we have that for fixed h and any t ∈ [0, T ]

√
δ−1

{
vec

(
K̂CV (t)

)
− vec

(∫ T

0
Kh(s− t)Σ(s)ds

)}
L→ N

(
0,

∫ T

0
K2
h(s− t)Ω(s)ds

)
(11)

7



(convergence in law for a fixed t). Here Ω(t) = Σ(t)⊗Σ(t) is a d2 × d2 array with elements

Ω(t) =: {Σkk′(t)Σll′(t) + Σkl′(t)Σlk′(t)}k,k′,l,l′=1,··· ,d . (12)

Proof. See Appendix A.

This theorem is an intermediate step in the derivation of the asymptotic distribution of

the estimator for a shrinking bandwidth. The Theorem 1 is necessary for the proof of the

asymptotic normality of the spot kernel covariance estimator in (5).

Theorem 2. If Assumptions 1-5 hold with r ≥ m+γ, then as nh→∞ and nh2(m+γ)+1 → 0

for any t ∈ (0, T ) we have

√
δ−1h

{
vec

(
Σ̂(t)

)
− vec (Σ(t))

}
L→ N

(
0,Ω(t)

∫
R
K2(z)dz

)
(13)

(convergence in law for a fixed t). Here Ω(t) is a d2 × d2 array with elements

Ω(t) =: {Σkk′(t)Σll′(t) + Σkl′(t)Σlk′(t)}k,k′,l,l′=1,··· ,d . (14)

Proof. See Appendix B.

For a given rate of smoothness, the highest rate of convergence is n−(m+γ)/(2(m+γ)+1)

when the bandwidth is chosen as h = O(−1/(2(m + γ) + 1)). In particular, when m = 0

and γ = 1/2 we obtain the convergence rate n−1/4. Bibinger et al. (2017) propose spot

covariance estimator which is constructed based on local averages of block-wise parametric

spectral covariance estimates. This is an extension of the local method of moments (LMM)

in Bibinger and Reiss (2014). Since Bibinger et al. (2017) consider a setting with market

microstructure noise, their estimator attains the optimal rate of convergence (n−1/8) which

is slower compared to the convergence rate of the kernel covariance estimator (n−1/4). The

kernel estimator in equation (5) is fairly easy to implement.

Remark 1 (The bivariate case). It is helpful to focus on the bivariate case in order to gain

further understanding. We will look at the results for the assets k and l, whose log-prices

will be written as Xk and Xl respectively. Then the high-frequency returns at time ti is

∆Xk(ti) = Xk(ti)−Xk(ti−1) and ∆Xl(ti) = Xl(ti)−Xl(ti−1) for i = 1, · · · , n.

In order to avoid the symmetric replication in the covariation matrix we employ a half-

vectorization, or alternatively, a vech transformation. The half-vectorization of a symmetric

matrix is obtained by vectorizing only the lower triangular part of the matrix (see Kollo and

Rosen (2005), Lütkeohl (1996)). In this case, for a fixed T , Theorem 1 tells us that the joint

asymptotic distribution for identifying elements of realized covariation of two assets Xk and
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Xl becomes

√
δ−1


∑n

i=1Kh(ti−1 − t)∆X2
k(ti)−

∫ T
0 Kh(s− t)Σkk(s)ds∑n

i=1Kh(ti−1 − t)∆Xk(ti)∆Xl(ti)−
∫ T

0 Kh(s− t)Σkl(s)ds∑n
i=1Kh(ti−1 − t)∆X2

l (ti)−
∫ T

0 Kh(s− t)Σll(s)ds

 L→

N

0,

∫ T

0
K2
h(s− t)

 2Σ2
kk(s) 2Σkk(s)Σkl(s) 2Σ2

kl(s))

2Σkk(s)Σkl(s) Σkk(s)Σll(s) + Σ2
kl(s) 2Σll(s)Σkl(s)

2Σ2
kl(s) 2Σll(s)Σkl(s) 2Σ2

ll(s))

 ds

 .
3 Extension to the case with jumps

In this Section we assume that the price process is governed by a discontinuous semimartin-

gale with finite activity jumps. We propose a threshold kernel spot covariance estimator.

Theorem 3 derives the asymptotic distribution of the threshold kernel covariance estimator

for a fixed bandwidth.

Consider a filtered probability space (Ω, (F)t∈[0,T ],F , P ). Let the d-dimensional log-

price X(t) = (X1(t), X2(t), ..., Xd(t)) be defined on the this space and satisfy the following

stochastic differential equation:
dX1(t)

dX2(t)
...

dXd(t)

 =


µ1(t)dt

µ2(t)dt
...

µd(t)dt

+


θ11(t) · · · θ1d(t)

θ21(t) · · · θ2d(t)
...

. . .
...

θd1(t) · · · θdd(t)




dW1(t)

dW2(t)
...

dWd(t)

+


dJ1(t)

dJ2(t)
...

dJd(t)

 (15)

where µ(t) is the drift vector, θ(t) is the instantaneous volatility matrix, W (t) is the d-

dimensional Brownian motion and J(t) is a compound Poisson process, which can be written

as J(t) =
∑N(t)

i=1 (Z1(ti), ..., Zd(ti)) =
(∑N(t)

i=1 Z1(ti), ...,
∑N(t)

i=1 Zd(ti)
)

. Here (N(t))t≥0 is a

homogeneous Poisson process with constant intensity λ > 0 and (Zk)k∈N is a sequence of

i.i.d. random variables with values in Rd, which denotes the jump size at the jump location

ti. We assume Zk(ti) for k = 1, 2, ...d are independent of Nt. Denote the (d×d)-dimensional

spot covariance matrix by Σ(t) = θ(t)θ(t)>.

Suppose that on a finite and fixed time horizon [0, T ], we have n + 1 high-frequency

discrete observations Xk(t0), Xk(t1), ..., Xk(tn−1), Xk(tn) of the realization of k-th asset, with

k = 1, 2, ..., d. Here, 0 = t0 < t1 < ... < tn = T is an arbitrary partition of the interval [0, T ].

Although the observations are not necessarily equidistant, we require that maxi=1,...,n |ti −
ti−1| approaches zero under the asymptotic limit. We consider the case of equally spaced

and synchronous observation times, though this assumption can easily be lifted. Denote

δ = T/n, so that ti = iδ for i = 1, 2, · · · , n.

The quantity of interest is the spot covariance matrix Σ(t). The threshold kernel covari-

ance estimator is an extension of threshold kernel volatility estimator of Yu et. al. (2014).
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We denote the threshold kernel covariance estimator by T̂CV , and defined it as

T̂CV (t) =
n∑
i=1

Kh(ti−1 − t)∆X(ti−1)∆X>(ti−1)1{‖∆Xti−1‖≤r(δ)}, (16)

where 1(·) is the indicator function and ∆X(ti−1) = X(ti) −X(ti−1) is the d-dimensional

vector of increments of process X over time interval [ti−1, ti]. The function Kh(x) is given by

K(x/h)/h, where h is bandwidth and the kernel function K(x) satisfies
∫
RK(x)dx = 1. The

threshold function r(δ) is a deterministic function of the step length δ. As the bandwidth

h→ 0 we recover the spot covariance. The threshold function r(δ) has to vanish more slowly

than the modulus of the continuity of the Brownian motion in order to have the convergence

in probability. Thus we have the following additional assumption.

Assumption 6. r(δ) is a deterministic function of the step length δ such that lim
δ→0

r(δ) = 0

and lim
δ→0

δ log 1
δ

r(δ) = 0.

We now can derive the asymptotics of the threshold kernel covariance estimator.

Theorem 3. If Assumptions 1-6 hold, we have that for fixed h and any t ∈ [0, T ]

√
δ−1

{
vec

(
T̂CV (t)

)
− vec

(∫ T

0
Kh(s− t)Σ(s)ds

)}
L→ N

(
0,

∫ T

0
K2
h(s− t)Ω(s)ds

)
(17)

(convergence in law for a fixed t). where Ω(t) is a d2 × d2 array with elements

Ω(t) =: {Σkk′(t)Σll′(t) + Σkl′(t)Σlk′(t)}k,k′,l,l′=1,··· ,d . (18)

Proof. See Appendix C.

In Theorem 3 we derived asymptotic distribution for the estimator for a fixed bandwidth

h of the kernel. The similar results as in Theorem 3 was achieved for univariate case in Yu

et al. (2014).

4 Examining the performance of estimators with simulated

data

In this Section we examine the performance of the kernel and threshold kernel covariance

estimators. In particular, we investigate the finite-sample performances of the estimators

relative to the time distance between observations. Throughout we work with bivariate

stochastic volatility model. First, we examine the kernel covariance estimator in a setup

without jumps and assume that asset prices, Y (t) = (Y1(t), Y2(t)), follow Heston model:

dY (t) = µY (t)dt+ θ(t)Y (t)dW (t), Σ(t) = θ(t)θ′(t), (19)
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Table 1: Interior performance of the KCV estimator

Gaussian kernel One-sided kernel∗ Beta kernel
Data Frequency IMSE ISB IMSE ISB IMSE ISB

5 seconds 0.14 0.37 0.11 0.21 0.13 0.28
20 seconds 0.73 0.63 0.43 0.49 0.66 0.46
1 minute 0.80 0.74 0.59 0.71 0.76 0.69
5 minutes 1.85 1.97 1.17 1.24 2.03 1.43
10 minutes 3.88 4.21 2.16 2.14 2.85 3.16

Note: Integrated mean squared error (×10−5) and integrated squared bias
(×10−5).

where

Σ(t) =

(
Σ11(t) Σ12(t)

Σ12(t) Σ22(t)

)
=

(
σ2

1(t) σ1,2(t)

σ1,2(t) σ2
2(t)

)
(20)

with the covariance σ1,2(t) = σ1(t)σ2(t)ρ, the drift vector µ(t) = (µ1(t), µ2(t)) and a standard

two dimensional Brownian motion W (t) = (W1(t),W2(t)) such that d 〈W1,W2〉t = ρdt. The

variance processes, σi(t) for i = 1, 2, follow the CIR model Cox et al. (1985):

dσ2
i (t) = κi(θi − σ2

i (t))dt+ ηiσi(t)dZi(t). (21)

The data generating parameters are chosen to match the estimated parameter values in

Barndorff-Nielsen and Shephard (2002). Note that although in Assumption 1 we assume no

leverage for theoretical results, in the simulations we include the leverage to demonstrate

that the estimation works in realistic model.

In our simulation we set T = 2 (48 hours). We consider frequencies ∆−1 = 12 × 60 ×
24, 2×60×24, 60×24, 12×24, 6×24 corresponding to sampling every 5 seconds, 20 seconds,

1 minute, 5 minutes and 10 minutes. In order to simulate the data using model (4) we

employ the Euler discretization scheme from Kloeden and Platen (1999). We simulate one

trajectory of each {σ2
i (t)} for i = 1, 2 and keep them fixed. Then we run 500 Monte Carlo

repetitions for prices of two assets {Y1(t), Y2(t)}. In each repetition we compute Σ̂kl(t) for

i = 1, 2 based on sampling frequencies.

Three different estimators of instantaneous covariance: Gaussian kernel estimator, one-

sided kernel estimator and beta kernel estimator are implemented. For all three estimators

cross-validation was used to select the bandwidth (see Kristensen (2010)). We used the

following integrated squared error (ISE) as the goodness-of-fit criterion:

ISE(h) =

∫ tu

tl

∥∥∥Σ(s)− Σ̂(s)
∥∥∥2

F
ds, for 0 ≤ tl < tu ≤ T, (22)

where ‖·‖F denotes the Frobenius norm, Σ(s) and Σ̂(s) are the true and the estimated

spot covariances. Two performance measurements are used to evaluate the finite-sample
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Table 2: Interior performance of the TKCV estimator

Gaussian kernel One-sided kernel∗ Beta kernel
Data Frequency IMSE ISB IMSE ISB IMSE ISB

5 seconds 1.76 1.38 1.25 1.22 2.34 1.75
20 seconds 2.24 1.13 1.87 1.34 2.13 2.03
1 minute 3.76 1.45 2.31 1.67 3.54 2.43
5 minutes 9.35 1.67 7.31 1.35 3.52 6.67
10 minutes 5.53 1.25 3.65 7.38 1.83 4.39

Note: Integrated mean squared error (×10−5) and integrated squared bias
(×10−5).

properties of the estimators: the integrated mean squared error and the integrated bias

IMSE = E

[∫ tu

tl

∥∥∥Σkl(s)− Σ̂kl(s)
∥∥∥2

F
ds

]
, ISB =

∫ tu

tl

(∥∥∥E[Σkl(s)− Σ̂kl(s)]
∥∥∥2

F
ds

)
, (23)

where 0 ≤ tl < tu ≤ T . The results for the performance of the estimator of the covariance,

Σ̂12(t), are reported in Table 1. Figure 1 displays QQ plot for observed standardized error

terms of Kernel Covariance Estimator using minute-by-minute data.

Figure 1: Normal residuals based on QQ plot for observed standardized error terms of Kernel
Covariance Estimator using minute-by-minute data

Next, we examine the finite sample performance of the threshold covariance estimator.

Though several models combining jumps and stochastic volatility appeared in the literature,

we use the model from Bates (1996), one of the most popular examples of the class, an

independent jump component is added to the Heston stochastic volatility model:

dX(t) = µdt+ θ(t)dW (t) + dJ(t), Σ(t) = θ(t)θ′(t), (24)
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with

Σ(t) =

(
Σ11(t) Σ12(t)

Σ12(t) Σ22(t)

)
=

(
σ2

1(t) σ1,2(t)

σ1,2(t) σ2
2(t)

)
, (25)

where σ1,2(t) = σ1(t)σ2(t)ρ(t), µ = (µ1, µ2) is the drift vector, J(t) =
∑N(t)

i=1 (N1(ti), N2(ti))

is a two dimensional compound Poisson jump process and W (t) = (W1(t),W2(t)) is a two

dimensional Brownian motion such that d 〈W1,W2〉t = ρdt. The variance processes, σi(t) for

i = 1, 2, follow the CIR model:

dσ2
i (t) = κi(θi − σ2

i (t))dt+ ηiσ
2
i (t)dZi(t). (26)

As in simulations for Heston model without jumps we set T = 2 (48 hours) and consider

sampling frequencies 5 seconds, 30 seconds, 1 minute. We employ Euler discretization scheme

from Kloeden and Platen (1999) for the simulation. We simulate one trajectory of each

{σ2
i (t)} for i = 1, 2 and keep them fixed. Then we run 500 repetitions of (X1(t), X2(t)). For

each simulated path of the bivariate log asset price we compute T̂KCV based on sampling

frequencies. We use the threshold function r(δ) = δα. We set α = 0.49 as it yields the

best estimates of spot variance for all sample frequencies considered in simulations (see Yu

et al. (2014)). We use two IMSE and ISB performance measurements in equation (23)

Figure 2: Normal residuals based on QQ plot for observed standardized error terms of
Threshold Kernel Covariance Estimator using minute-by-minute data

for three different estimators: Gaussian, beta and one-sided kernel estimator. The results

for the performance of the T̂CV estimator are reported in Table 2. Figure 2 displays QQ

plot for observed standardized error terms of Threshold Kernel Covariance Estimator using

minute-by-minute data.
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5 Application to covariance forecasting

Forecasting covariance has an important economic value in the context of asset pricing and

portfolio allocation. Multivariate GARCH model is a standard tool of modelling and fore-

casting covariances. However, the more recent approaches advocate the use of high-frequency

data.

Symitsi et al. (2018) undertake a comprehensive empirical comparison of two generic

families of covariance forecasting models: multivariate GARCH models that employ daily

data and models that use high-frequency and options data. The authors conclude that models

based on high-frequency data offer both a clear advantage in terms of statistical accuracy

and yield more theoretically consistent predictions leading to superior out-of-sample portfolio

performance. In particular, a Vector Heterogeneous Autoregressive Model (VHAR) achieves

the best performance out of the models under consideration. Motivated by this, we use the

VHAR model to forecast the integrated covariance, however, when implementing for a finite

sample, we use the kernel covariance estimator (3) in Section 2.1 instead of the realized

covariance estimator of Barndorff-Nielsen and Shephard (2004a).

Heterogeneous Autoregressive model (HAR), see Corsi (2009), was proposed as a simple

way to approximate the long-memory behaviour of volatility. Vector HAR, implemented in

Chiriac (2011), is a multivariate extension of HAR. In the VHAR the realized covariance is

expressed as a linear combination of past daily, weekly and monthly realized covariances:

RCt+1 = α+ βdRCt + βwRCt−5:t + βmRCt−22:t + εt+1, (27)

where RCt is obtained from Cholesky decomposition of realized covariance matrix. If Ht

is a matrix of realized covariances, its Cholesky decomposition gives Ht = CtC
′
t and then

RCt = vech(Ct). In order to allow direct comparison among quantities defined over various

time horizons, these multiperiod factors are normalized sums of the daily realized factors,

i.e.

RCt−k:t =
1

k

k−1∑
i=0

RCt−i (28)

is the past k day values of RC, α is a constant term and βd, βw, βm are, respectively, the

parameters of daily, weekly and monthly components of the model. The covariance forecasts,

Ht, are obtained by the reverse transformations of the RCt’s. Modelling the Cholesky factors

rather than covariances directly is done in order to avoid unnecessary restrictions that ensure

positive definiteness.

We simulate the log-prices of two assets and their volatilises using model (4) in Section 4.

Since we use simulated data, we have the true integrated covariance matrix and we propose

to forecast the true covariance matrix using two measures of integrated covariance: standard

in the literature realized covariance estimator of Barndorff-Nielsen and Shephard (2002) and

newly proposed kernel estimator of the covariance in equation (3). Thus we have two models

for forecasting integrated covariance. First model is VHAR model where we use the realized
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covariance as a measure of integrated covariance:

ICt+1 = α+ βdRCt + βwRCt−5:t + βmRCt−22:t + εt+1, (29)

where IC is the half-vectorized Cholesky decomposition of the integrated covariance matrix.

In light of this it is natural to define the VHAR-KCV model, in which we borrow the

VHAR model above to predict the integrated covariance matrix, however we use kernel

covariance estimator:

ICt+1 = α+ βdK̂CV t + βwK̂CV t−5:t + βmK̂CV t−22:t + εt+1, (30)

where K̂CV is the half-vectorized Cholesky decomposition of the kernel covariance estimator

in (3). We benchmark the VHAR-KCV against the VHAR.

In line with Symitsi et al. (2018) we evaluate forecasting ability of the the VHAR-KCV

model (30) based on three multivariate loss functions and compare its performance to the

performance of the benchmark VHAR model (29). We use the Euclidean loss function,

LE , which is equally-weighted elements of the forecast error matrix; the Frobenius distance,

LF , which is the extension of the mean squared error to the multivariate space and the

multivariate quasi-likelihood loss function, LQ, which is scale invariant:

LE = vech(Σt −Ht)
′vech(Σt −Ht), (31)

LF = Tr[(Σt −Ht)
′(Σt −Ht)], (32)

LQ = log |Ht|+ Tr(H−1
t Σt). (33)

Here Tr denotes the trace of square matrix, Σt denotes the integrated covariance matrix at

time t and Ht is time t matrix of conditional covariance forcasts.

Results are reported in Table 3. Based on these results the VHAR-KCV model outper-

forms the VHAR at all forecasting horizons. In the large study by Symitsi et al. (2018) out

of twelve models under consideration the VHAR model was shown to be the best model for

forecasting covariance matrix. Thus, the VHAR-KCV is already significant improvement.

This improvement maybe due to the fact that the VHAR-KCV model with kernel covari-

ance estimator simply puts higher weight to the more recent data, whereas the VHAR with

realized covariance estimator puts equal weight to all data points.

6 Concluding Remarks

In this paper we developed estimators of spot covariances for two types of the underlying

price process: continuous and discontinuous semimartingales. We showed the asymptotic

normality of the estimators. An important result is that we are able to attain the conver-

gence rate of for a bandwidth tending to zero, which is n−1/4. The convergence rate of spot

covariance matrix estimator for continuous martingales in a setup with microstructure noise

proposed by Bibinger et al. (2017) is, in turn, n−1/8. In financially realistic scenarios, we
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Table 3: The table reports the out of sample forecast loses for the 1-, 5-, 22-day horizons, respectively.
The model with the lowes out-of-sample loss is market with asterisk (*).

1-day horizon 1-week horizon 2-week horizon
V HAR VHAR−KCV ∗ V HAR VHAR−KCV ∗ V HAR VHAR−KCV ∗

α 0.3243 0.3213 0.4987 0.4896 0.4124 0.4126
βd 0.6904 0.6064 0.2443 0.2032 0.2295 0.2175
βw 0.6909 0.6028 0.1765 0.1483 0.2257 0.1591
βm 0.8922 0.8374 0.9007 0.7289 0.5219 0.4328

LE 0.1267 0.0529 0.1831 0.0772 0.2412 0.1841
LF 0.1387 0.0546 0.1796 0.0797 0.2981 0.1902
LQ -10.143 -14.0537 -9.893 -13.2624 -7.8503 -11.5561

conducted Monte Carlo experiments to study the finite sample properties of our estimators.

In addition, we investigated one of the possible applications of the estimator, the forecast-

ing of covariance matrix. We concluded that our estimator performs better in the context

of forecasting than the benchmark realized covariance estimator of Barndorff-Nielsen and

Shephard (2004a). One of the possible extensions of the estimators is to consider a market-

microstructure noise.
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Bandi, F.M. and Renò, R. 2016. Price and volatility co-jumps. Journal of Financial Eco-

nomics 119: 1007-146.

Barndorff-Nielsen O.E. and Shephard N. 2004a. Econometric analysis of realised covaria-

tion: high frequency based covariance, regression and correlation in financial economics.

Econometrica 72: 885–925.

Barndorff-Nielsen, O.E. and Shephard N. 2002. Econometric analysis of realized volatility

and its use in estimating stochastic volatility models. Journal of the Royal Statistical Society

64: 253-280.

16



Bates D. 1996. Jumps and stochastic volatility: the exchange rate processes implicit in

Deutschemark options. The Review of Financial Studies 9: 69-107.

Bibinger M., Hautsch N., Malec P. and Reiss M. 2017. Estimating the spot covariation of

asset prices — statistical theory and empirical evidence. Journal of Business and Economic

Statistics. 37: 1504-1516.

Bibinger M. and Reiss M. 2014. Spectral estimation of covolatility from noisy observations

using local weights. Scandinavian Journal of Statistics 6: 23-50.

Bibinger M., and Winkelmann L. 2015. Econometrics of co-jumps in high-frequency data

with noise. Journal of Econometrics 184: 361-378.

Bos C.S., Janus P. and Koopman S.J. 2012. Spot variance path estimation and its application

to high-frequency jump testing. Journal of Financial Econometrics 10: 354-389.

Chiriac R. and Voev V. 2011. Modelling and forecasting multivariate realized volatility.

Journal of Applied Econometrics 26: 922-947.

Christensen K., Podolskij M. and Vetter M. 2013. On covariation estimation for multivariate
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A Proof of Theorem 1

Before presenting the proof, let us first rewrite the Lemma 6 in Kristensen (2010) in terms

of the components of covariance matrix.

Lemma 1. Under Assumption 2 and Assumption 5(a,b), we have for every k, l = 1, · · · , d

(i)

n∑
i=1

Kh(ti−1 − t)
∫ ti

ti−1

Σkl(s)ds =

∫ T

0
Kh(s− t)Σkl(s)ds+ oP (δ)K̄1,

(ii) δ−1
∑

K2
h(ti−1 − t)

(∫ ti

ti−1

Σkl(s)ds

)2

=

∫ T

0
K2
h(s− t)Σ2

kl(s)ds+ oP (1)× K̄0

+OP (δ)× K̄1

uniformly over t ∈ [0, T ], as δ → 0.

Proof. See Kristensen (2010).

The proof of Theorem 1 is component-wise and consists of several steps. First step is to

derive the means and covariances of the variates

K̂CV kl(t) =
n∑
i=1

Kh(ti−1 − t)∆Xk(ti−1)∆Xl(ti−1) (34)

=
n∑
i=1

Kh(ti−1 − t) (Xk(ti)−Xk(ti−1)) (Xl(ti)−Xl(ti−1)) (35)

with k, l = 1, 2, · · · , d. Next, the Theorem 1 is proved for the case, where the mean processes

µk (k = 1, · · · , d) are identically 0. Finally, the latter restriction is lifted. The proof relies on

results and techniques employed in Barndorff-Nielsen and Shephard (2004a) and Kristensen

(2010).

Notation For the purpose of simplifying the proof we will use index (or equivalently,

tensor) notation instead of vector or matrix notation in a similar way to Barndorff-Nielsen

and Shephard (2004a). We rewrite the d stochastic processes Xk, (k = 1, · · · , d) in equation

(1) in index notation as

Xk(t) =

∫ t

0
µk(s)ds+

∫ t

0
θak(u)dWa(s) (36)

with initial condition Xk(0) = 0. Here

Θ(t) = {θak(t)}k,a=1,2,··· ,d.

In index notation Einstein summation convention is used, which means if an index variable

appears twice in a single expression then it implies summation over that index. Thus (36)
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is understood to mean

Xk(t) =

∫ t

0
µk(s)ds+

d∑
a=1

∫ t

0
θak(u)dWa(s) (37)

We apply summation convention to indices a, b, c, d, but not to indices k, l, k′, l′, unless

otherwise specified. Furthermore, we write

θabkl = θakθ
b
l , (38)

with similar notation for other index combination. In (38) no superscripts or subscripts are

repeated and so no summation operator is generated. Combining the Einstein summation

convention and the notional rule for θabkl , the (k, l)th element of the spot covariance matrix

of model (1) is

Σkl(t) = θaakl =
d∑
a=1

θak(t)θal (t), (39)

Mean and variances Throughout the rest of this proof we reason conditionally on the

paths of θt and µt: with H denoting the σ-field generated by all variables (θt, µt), t ≥ 0.

We have H =
∞⋃
i=1
Hti . We condition on H, which is independent of F by assumption

1. Therefore the Brownian motion, W , is independent of H. We start by computing the

conditional expectation of K̂CV kl(t) in equation (35):

E
[
K̂CV kl(t)|H

]
= E

[
n∑
i=1

Kh(ti−1 − t) (Xk(ti)−Xk(ti−1)) (Xl(ti)−Xl(ti−1)) |H

]

=
n∑
i=1

Kh(ti−1 − t)E
[
(Xk(ti)−Xk(ti−1)) (Xl(ti)−Xl(ti−1)) |Hti−1

]
=

n∑
i=1

Kh(ti−1 − t)
∫ ti

ti−1

θaakl (s)ds, (40)

where the final equation is due to the results of Barndorff-Nielsen and Shephard (2004a) on

p.918 :

E
[
(Xk(ti)−Xk(ti−1)) (Xl(ti)−Xl(ti−1)) |Hti−1

]
=

∫ ti

ti−1

θaakl (s)ds. (41)

Next, we apply Lemma 1 and have

n∑
i=1

Kh(ti−1 − t)
∫ ti

ti−1

θaakl (s)ds =

∫ T

0
Kh(s− t)θaakl (s)ds+ o(

√
δ). (42)

Thus

E
[
K̂CV kl(t)|H

]
=

∫ T

0
Kh(s− t)θaakl (s)ds. (43)
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In order to compute covariance of (35) we use the following results from Barndorff-Nielsen

and Shephard (2004a)

Cov
{

[∆Xk(ti−1)∆Xl(ti−1] , [∆Xk′(ti−1)∆Xl′(ti−1] |Hti−1

}
= (44)∫ ti

ti−1

θaakk′(s)θ
cc
ll′(s)ds+

∫ ti

ti−1

θaakl′(s)θ
cc
lk′(s)ds. (45)

Now, using the definition of covariance and equations (43), (42) and (44) we have

Cov
{
K̂CV kl(t), K̂CV k′l′(t)|H

}
= Cov

{[
n∑
i=1

Kh(ti−1 − t)∆Xk(ti−1)∆Xl(ti−1)], [
n∑
i=1

Kh(ti−1 − t)∆Xk′(ti−1)∆Xl′(ti−1)

] ∣∣∣∣H
}

= E

{[
n∑
i=1

Kh(ti−1 − t)∆Xk(ti−1)∆Xl(ti−1)−
∫ T

0
Kh(s− t)θaakl (s)ds

]

×

[
n∑
i=1

Kh(ti−1 − t)∆Xk′(ti−1)∆Xl′(ti−1)−
∫ T

0
Kh(s− t)θcck′l′(s)ds

] ∣∣∣∣H
}

=
n∑
i=1

K2
h(ti−1 − t)

{∫ ti

ti−1

θaakk′(s)θ
cc
ll′(s)ds+

∫ ti

ti−1

θaakl′(s)θ
cc
lk′(s)ds

}
.

By applying Lemma 1 and invoking Riemann integration, we get as δ → 0

δ−1
n∑
i=1

K2
h(ti−1 − t)

{∫ ti

ti−1

θaakk′(s)ds

∫ ti

ti−1

θccll′(s)ds+

∫ ti

ti−1

θaakl′(s)θ
cc
lk′(s)ds

}

→
∫ T

0
K2
h(s− t)Ωkl,k′l′(s)ds,

where Ω(t) is given in (12).

Asymptotic normality To prove the results of Theorem 1 in the case where the mean

processes µk are identically 0, we apply Cramer-Wold device, i.e. it suffices to show that for

any real constants akl we have, as δ → 0

1√
δ

(
n∑
i=1

akl

[
Kh(ti−1 − t)∆Xk(ti−1)∆Xl(ti−1)−

∫ ti

ti−1

Kh(s− t)θaakl (s)ds

])
L→ N

(
0, aklak

′l′(

∫ T

0
K2
h(s− t)Ωkl,k′l′(s)ds)

)
. (46)
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Here we apply Einstein summation convention also to the indices k, l. By the above calcu-

lations,

Var

{
n∑
i=1

akl

(
Kh(ti−1 − t)∆Xk(ti−1)∆Xl(ti−1)−

∫ ti

ti−1

Kh(s− t)θaakl (s)ds

)∣∣∣∣H
}

→ aklak
′l′

n∑
i=1

∫ ti

ti−1

K2
h(s− t)Ωkl,k′l′(s)ds. (47)

We apply central limit theorem for martingale difference array from Alj et al. (2010). Mar-

tingale array {sni,Fni, 1 ≤ i ≤ kn} is a zero-mean, square-integrable martingales for each

n ≥ 1. Martingale difference is yni = sni − sn,i−1. Let yn = yn1 + ... + ynkn . Notice that

E[yni|Fn,i−1] = 0 and conditional variance V ar[yn] =
∑kn

j=1E[y2
nj |Fn,j−1].

Theorem 4. Suppose that

(a)
kn∑
j=1

E[|ynj |2+ε]→ 0 as n→∞ (48)

for some ε > 0.

(b)
kn∑
j=1

E[y2
nj |Fn,j−1]→ 1 as n→∞. (49)

Then yn
L→ N(0, 1).

Proof. See Alj et al. (2010).

Now we state the Corollary 3 from Barndorff-Nielsen and Shephard (2004a) below.

Corollary 1. Suppose that E[yni] = 0 for all n and i and there exists a non-negative number

v that Var[yn]→ v for n→∞. Then

yn
L→ N (0, v) (50)

if and only if (48) is satisfied.

Proof. See Barndorff-Nielsen and Shephard (2004a).

Thus, we only need to show that condition (48) holds. Let

yni =
1√
δ
akl{Kh(ti−1 − t)∆Xk(ti−1)∆Xl(ti−1)−

∫ ti

ti−1

Kh(s− t)θaakl (s)ds}. (51)
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We have that ∆Xk(ti)
L
=
√∫ ti

ti−1
θaakk(s)dsUki, where Uki is a standard normal random vari-

able. Thus we have

yni
L
=

1√
δ
akl
{
Kh(ti−1 − t)

√∫ ti

ti−1

θaakk(s)ds

√∫ ti

ti−1

θccll (s)dsUkiUli

−
∫ ti

ti−1

Kh(s− t)θaakl (s)ds

}

L
=

1√
δ
akl
{
Kh(ti−1 − t)

√∫ ti

ti−1

θaakk(s)ds

√∫ ti

ti−1

θccll (s)dsUkiUli

−Kh(ti−1 − t)
∫ ti

ti−1

θaakl (s)ds

}
L
=

1√
δ

{
aklKh(ti−1 − t)

(√∫ ti

ti−1

θaakk(s)ds

√∫ ti

ti−1

θccll (s)ds(UkiUli − ρkl

)}
L
=
√
δakl

{
Kh(ti−1 − t)

√
Γ̂kiΓ̂li (UkiUli − ρkl)

}
(52)

where

Γ̂ki =
1

δ

∫ ti

ti−1

θaakk(s)ds (53)

and

ρkl =

∫ ti
ti−1

θaakl (s)ds√∫ ti
ti−1

θcckk(s)ds
√∫ ti

ti−1
θddll (s)ds

(54)

is the correlation coefficient between Uk and Ul. By our Assumption on the process Σ, as

δ varies the quantities Γ̂ are bounded away from 0 and infinity, uniformly in k and j. This

implies that

E[|aklKh(ti−1 − t)
√

Γ̂kiΓ̂li(UkiUli − ρkl))|2+ε|H] (55)

is uniformly bounded above, and hence, by (51), we have

n∑
i=1

E[|yni|2+ε]→ 0 (56)

as to be shown. Next, we show that the effect of a nonzero drift term is negligible.

K̂CV kl(t)− K̂CV
∗
kl(t) =

n∑
i=1

Kh(ti−1 − t)

(∫ ti

ti−1

µk(s)ds

)(∫ ti

ti−1

µl(s)ds

)

+
n∑
i=1

Kh(ti−1 − t)

(∫ ti

ti−1

µk(s)ds)(

∫ ti

ti−1

θl(s)dW (s)

)

+
n∑
i=1

Kh(ti−1 − t)

(∫ ti

ti−1

µl(s)ds

)(∫ ti

ti−1

θk(s)dW (s)

)
(57)
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By Lemma 1 the first term in equation (57) is

n∑
i=1

Kh(ti−1 − t)

(∫ ti

ti−1

µk(s)ds

)(∫ ti

ti−1

µl(s)ds

)
= δ

∫ T

0
Kh(s− t)µk(s)µl(s)ds+ o(δ).

The second term is

n∑
i=1

Kh(ti−1 − t)

(∫ ti

ti−1

µk(s)ds

)(∫ ti

ti−1

θl(s)dW (s)

)

∼ N

(
0,

n∑
i=1

K2
h(ti−1 − t)(

∫ ti

ti−1

µk(s)ds)
2

∫ ti

ti−1

θccll (s)ds

)

and, similarly, the third term

n∑
i=1

Kh(ti−1 − t)

(∫ ti

ti−1

µl(s)ds

)(∫ ti

ti−1

θk(s)dW (s)

)

∼ N

0,

n∑
i=1

K2
h(ti−1 − t)

(∫ ti

ti−1

µl(s)ds

)2 ∫ ti

ti−1

θaakk(s)ds

 .

where

n∑
i=1

K2
h(ti−1 − t)

(∫ ti

ti−1

µk(s)ds

)2 ∫ ti

ti−1

θccll (s)ds

≤ δ sup
s
θccll (s)×

n∑
i=1

K2
h(ti−1 − t)

(∫ ti

ti−1

µk(s)ds

)2

= δ2 sup
s
θccll (s)×

(∫ T

0
K2
h(s− t)µ2

k(s)ds+ o(1)

)
and

n∑
i=1

K2
h(ti−1 − t)

(∫ ti

ti−1

µl(s)ds

)2 ∫ ti

ti−1

θaakk(s)ds

≤ δ sup
s
θaakk(s)×

n∑
i=1

K2
h(ti−1 − t)

(∫ ti

ti−1

µl(s)ds

)2

= δ2 sup
s
θaakk(s)×

(∫ T

0
K2
h(s− t)µ2

l (s)ds+ o(1)

)
.

B Proof of Theorem 2

Before presenting the proof, we state the Lemma 7 in Kristensen (2010) in terms of the

components of covariance matrix.

Lemma 2. Under Assumption 4 and Assumption 5, uniformly over t ∈ [a, T − a], as
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δ, h, a/h→ 0 we have:

(i)
n∑
i=1

Kh(ti−1 − t)
∫ ti

ti−1

Σkl(s)ds = Σkl(t) + hm+γL(t, 0)

∫
R
K(z)zm+γdz +

OP (
δ

h
) + oP (hm+γ),

(ii)
∑

K2
h(ti−1 − t)

(∫ ti

ti−1

Σkl(s)ds

)2

=
δ

h
Σ2
kl(t)

∫
R
K2(z)dz +OP (

δ1+γ

h
) +OP (

δ2

h2
).

Proof. See Kristensen (2010).

The convergence results in the proof of Theorem 1 still hold when h → 0. Now, we

consider shrinking bandwidth, h→ 0, and we derive means and covariances of varieties

Σ̂kl(t) =

n∑
i=1

Kh(ti−1 − t)∆Xk(ti−1)∆Xl(ti−1) (58)

=

n∑
i=1

Kh(ti−1 − t) (Xk(ti)−Xk(ti−1)) (Xl(ti)−Xl(ti−1)) . (59)

Following the proof of Theorem 1 and applying Lemma 2 instead of Lemma 1 we obtain:

n∑
i=1

Kh(ti−1 − t)
∫ ti

ti−1
θaakl (s)ds = θaakl + hm+γL(t, 0)

∫
R
K(z)zm+γdz +OP

(
δ

h

)
+OP (hm+γ)

where L(t, 0) denotes ”Lipschitz coefficient” of θkl(s). Thus we have:

E
[
Σ̂kl(t)|H

]
= Σkl(t). (60)

For deriving the covariance of the components in (59) we use the following result from proof

of Theorem 1:

Cov
{

Σ̂kl(t), Σ̂k′l′(t)|H
}

=

n∑
i=1

K2
h(ti−1 − t)

{∫ ti

ti−1

θaakk′(s)θ
cc
ll′(s)ds+

∫ ti

ti−1

θaakl′(s)θ
cc
lk′(s)ds

}
.

Now we using Lemma 2 and invoking Riemann integration for h→ 0 we obtain:

δ−1h
n∑
i=1

K2
h(ti−1 − t)

{∫ ti

ti−1

θaakk′(s)ds

∫ ti

ti−1

θccll′(s)ds+

∫ ti

ti−1

θaakl′(s)ds

∫ ti

ti−1

θcclk′(s)ds

}

→ Ωkl,k′l′(t)

∫
R
K2(z)dz.

One can easily show the asymptotic normality by following p.21-24 in the proof of Theorem

1 and applying Cramer-Wold device, i.e. to show that for any real constants akl we have, as
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δ → 0 and h→ 0:

√
δ−1h(akl(Σ̂kl(t)− Σkl(t))

L→ N
(

0, aklak
′l′Ωkl,k′l′(t)

∫
R
K2(z)dz

)
. (61)

C Proof of Theorem 3

Here we follow the notation in Section A with Σkl(t) denoting the (k, l)-th element of spot

covariance matrix at time t (see equation (39)). We first derive the asymptotic distribution of

elements (T̂CV kl) for k, l = 1, ...d by following Ye et al. (2014) and then using Cramér-Wold

theorem prove multivariate convergence in distribution using univariate results.

Let T̂CV kl denote the (k, l)-th component of the estimator and X∗ denote the diffusion

part of X. So, we have

√
n
T̂CV kl(t)−

∫ T
0 Kh(s− t)Σkl(s)ds√∫ T

0 K2
h(s− t)Ωkl,k′l′(s)ds

=
√
n

∑n
i=1Kh(ti−1 − t)∆i−1X

∗
kl∆i−1X

∗
k′l′1{∆i−1N=0} −

∫ T
0 Kh(s− t)Σkl(s)ds√∫ T

0 K2
h(s− t)Ωkl,k′l′(s)ds

=
√
n

∑n
i=1Kh(ti−1 − t)∆i−1X

∗
kl∆i−1X

∗
k′l′ −

∫ T
0 Kh(s− t)Σkl(s)ds√∫ T

0 K2
h(s− t)Ωkl,k′l′(s)ds

−
√
n

∑n
i=1Kh(ti−1 − t)∆i−1X

∗
kl∆i−1X

∗
k′l′1{∆i−1N 6=0}√∫ T

0 K2
h(s− t)Ωkl,k′l′(s)ds

, (62)

where the the second line is due to results of Mancini (2009) (p.273, Theorem 1). The first

term in equation (62) for the fixed h, as δ → 0 is

√
n

∑n
i=1Kh(ti−1 − t)∆i−1X

∗
kl∆i−1X

∗
k′l′ −

∫ T
0 Kh(s− t)Σkl(s)ds√∫ T

0 K2
h(s− t)Ωkl,k′l′(s)ds

L→ N(0, 1). (63)

Now, the Assumption 5 states that the kernel K is bounded |Kh(ti−1 − ti)| ≤ Λ/h for some

constant Λ. The number of jumps occurring over the interval [0, T ] is finite. Then the second

term in equation (62)

√
n

∣∣∑n
i=1Kh(ti−1 − t)∆i−1X

∗
kl∆i−1X

∗
k′l′1{∆i−1N 6=0}

∣∣√∫ T
0 K2

h(s− t)Ωkl,k′l′(s)ds
≤ (64)

√
n

Λ
h

∑n
i=1 ∆i−1X

∗
kl∆i−1X

∗
k′l′1{∆i−1N 6=0}√∫ T

0 K2
h(s− t)Ωkl,k′l′(s)ds

≤

√
n
NT × Λ

h × sup
∫ ti
ti−1

θkl(s)dWs

∫ ti
ti−1

θk′l′(s)dBs√∫ T
0 K2

h(s− t)Ωkl,k′l′(s)ds
.
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Here the integral
∫ t

0 θkl(s)dWs,
∫ t

0 θk′l′(s)dBs are time changed Brownian motions (see Revuz

and Yor (1998), ch.5, thm.9) and by the Levy law of the modulus of continuity of Brownian

motion’s path Karatzas and Shreve (1999), for small δ we have

sup
i∈1,...,n

∣∣∣∫ titi−1
θkl(s)dWs

∣∣∣√
2δ log 1

δ

≤
√
M, sup

i∈1,...,n

∣∣∣∫ titi−1
θk′l′(s)dBs

∣∣∣√
2δ log δ−1

≤
√
L, (65)

where M,L are a non-negative constants. Therefore the last term in equation (62) is

√
n

∣∣∑n
i=1Kh(ti−1 − t)∆i−1X

∗
kl∆i−1X

∗
k′l′1{∆i−1N 6=0}

∣∣√∫ T
0 K2

h(s− t)Ωkl,k′l′(s)ds
≤ (66)

√
n
NT × Λ

h ×
√
M ×

√
L× 2δ log δ−1√∫ T

0 K2
h(s− t)Ωkl,k′l′(s)ds

P→ 0.

To prove multivariate convergence, given that we have asymptotic distribution of the ele-

ments of the covariance matrix, we employ Cramér-Wold device:

Lemma 3. For any real a ∈ Rd×d, as δ → 0

1√
δ

(
n∑
i=1

aT
[
vec

(
Kh(ti−1 − t)∆X(ti−1)∆X>(ti−1)1{‖∆Xti−1‖≤r(δ)}

)
−vec

(∫ ti

ti−1

Kh(s− t)Σ(t)ds

)])
L→ N

(
0, aT

∫ T

0
K2
h(s− t)Ω(s)dsa

)
.

Proof. This follows from univariate case, since or k, l = 1, ..., d the variates
1√
δ

(∑n
i=1 a

kl
[
Kh(ti−1 − t)∆X(ti−1)∆X>(ti−1)1{‖∆Xti−1‖≤r(δ)} −

∫ ti
ti−1

Kh(s− t)Σkl(s)ds
])

are

independent and identically distributed with variance aklak
′l′
∫ T

0 K2
h(s − t)Ωkl,k′l′(s)ds and

mean 0.
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016 ”A data-driven P-spline smoother and the P-Spline-GARCH models” by Yuanhua
Feng, Wolfgang Karl Härdle, October 2020.
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