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Data Analytics Driven Controlling: bridging

statistical modeling and managerial intuition �

Kainat Khowaja† Danial Saef‡ Sergej Sizov§

Wolfgang Karl Härdle¶

Abstract

Strategic planning in a corporate environment is often based on expe-
rience and intuition, although internal data is usually available and can be
a valuable source of information. Predicting merger & acquisition (M&A)
events is at the heart of strategic management, yet not sufficiently moti-
vated by data analytics driven controlling. One of the main obstacles in
using e.g. count data time series for M&A seems to be the fact that the
intensity of M&A is time varying at least in certain business sectors, e.g.
communications. We propose a new automatic procedure to bridge this
obstacle using novel statistical methods. The proposed approach allows
for a selection of adaptive windows in count data sets by detecting signifi-
cant changes in the intensity of events. We test the efficacy of the proposed
method on a simulated count data set and put it into action on various
M&A data sets. It is robust to aberrant behaviour and generates accurate
forecasts for the evaluated business sectors. It also provides guidance for
an a-priori selection of fixed windows for forecasting. Furthermore, it can
be generalized to other business lines, e.g. for managing supply chains,
sales forecasts, or call center arrivals, thus giving managers new ways for
incorporating statistical modeling in strategic planning decisions.
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1 Introduction

Data driven insights can improve corporate decision making. In large organi-

zations, a variety of �nancial data is available due to reporting requirements

and organizational purposes. However, expertise in the �eld of data analytics

is scarce. New methods for robotic data evaluation can help organizations cut

costs by shifting resources away from manual tasks and towards tasks that re-

quire supervision. Managers can derive valuable insights from forecasts based

on internal company data to deal with common problems in a corporate environ-

ment such as demand forecasting for supply chain planning (Yelland et al., 2010),

call center arrival times (Taylor, 2007, 2011) and Oreshkin et al. (2016), sales

forecasting (Kolsarici and Vakratsas, 2015), or mergers & acquistions (M&A)

forecasting (Very et al., 2012). However, the available datasets are usually sub-

ject to non-stationarity and structural breaks, and they usually make manual

e�orts to �t a meaningful model necessary. To deal with such problems, ex-

perts employ techniques on change point detection or �nding stable parameter

windows. To the best of our knowledge, no combination of such techniques was

explored for a framework incorporating count data. To address this gap, we

propose a method that automatically detects locally homogeneous time win-

dows and corresponding parameters in an automated way that can be used to

generate point or density forecasts.

As a motivating example we apply this newly developed algorithm to forecast

M&A intensity in di�erent industries. M&A are especially interesting as they

frequently occur in di�erent markets and industries, and are relevant both to the

�nancial industry that generates revenue by supporting their execution, as well

as those companies that are observing their own industry and their competitors.

Recent approaches are using time series models, as in Very et al. (2012) or a

revealed preference model as in Akkus et al. (2015). Figure 1 shows an example
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data set of mergers and acquisitions of German energy market that illustrates

the presence of non-stationarity and structural breaks in such time series.

Figure 1: Time series of count of mergers and acquisitions per month, with

moving average curve of 1 year and 3 years. LPA Empiricalstudy

Empirical evidence strongly suggests that mergers are often clustered in time

as waves, see Martynova and Renneboog (2005), Harford (2005) and Maksimovic

et al. (2013). Ahern and Harford (2014) �nd that their activity is subject

to network e�ects and that these waves largely occur within industries, but

can also be transmitted to connected industries. Furthermore, shocks of any

kind, even if they lead to merger waves, are di�cult to predict. Wave patterns

seem to be heterogeneous and di�er both in time and in industries. Following

their argumentation, we conclude that data on M&A should be evaluated per

industry and geographic location due to di�erences in regulation, innovation

power, technology, and stock markets.

Predictive models for M&A intensity could be identi�ed through aggregat-

ing acquired knowledge and tailored to speci�c industries and markets. Alter-
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natively, time-series models, e.g. ARMA can be used. While a co-variate based

model provides explainability to the user, it requires manual e�orts to gather

data and incorporate expert knowledge to de�ne relevant variables and calibrate

their impact on a predictive model. Data gathering can be time-consuming and

expensive, and knowledge about modeling heterogeneous industries in a speci�c

application requires domain knowledge, which is often scarce and narrowed to

said application. Time series models are an alternative, as they can be adapted

to any other data set with comparable structure. However, such models need

to be robust to non-stationarity, structural breaks and wave patterns that limit

their predictive power.

There is no doubt that only time varying time series models approximate

the dynamics of the underlying series better than any homogeneous parameter

approach, e.g. a �xed ARMA(p; q) model. Therefore, we employ an adaptive

estimation method called Local Parametric Approach (LPA). The quantitative

implementation was �rst proposed in Spokoiny (1998), advances are made in

Mercurio and Spokoiny (2004) and Spokoiny (2009). It helps us to �nd locally

homogeneous time intervals with stable parameters and guarantees a trade-o�

between parameter variance and modeling bias. The technique is based on a

series of likelihood ratio tests to determine assumed but unknown change points

in the underlying series. As a result one �nds local intervals of homogeneity and

e�cient estimates at each point in time.

Since we are often dealing with small sample sizes, and the test statistic

distribution is unknown, we need a method to approximate this distribution.

Recent advances in bootstrapping methodology allow us to generate con�dence

sets and critical values that non-asymptotically approximate the true distri-

bution. Here, we couple LPA with multiplier bootstrap (MBS) (Spokoiny and

Zhilova, 2015) for approximating a critical value for the testing procedure. MBS
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builds up on wild bootstrap, that originates from Wu (1986) and Beran (1986).

An important application is reported in H•ardle and Mammen (1993), and Mam-

men (1993). Further advancements are made in Chatterjee and Bose (2005) and

Arlot et al. (2010). Notable publications that precede Spokoiny and Zhilova

(2015) are B•ucher and Dette (2013) and Chernozhukov et al. (2013). Klochkov

et al. (2019) present an application in the context of a conditional autoregressive

Value at Risk model. We generalize this LPA idea to any data that is Poisson

jump distributed, although our simulation study indicates that these assump-

tions could be relaxed to the general membership to any of the exponential

families. This indication is useful in bridging business requirements with the

robustness of novel statistical methods through 
exible automated estimations,

since many problems in strategic management, e.g. forecasting M&A intensity,

are subject to data sets for which strict assumptions on underlying distribution,

stationarity, or absence of structural breaks may not be ful�lled.

We detect locally homogeneous windows by computing a non-parametric

likelihood ratio statistics. This approach is related to the branch of change

point detection methods. Chen and Gupta (2011), Eckley et al. (2011), and

Aminikhanghahi and Cook (2017) summarize and evaluate diverse methods of

change point detection. Notable approaches are Hinkley and Hinkley (1970),

(Hsu, 1979), (Haccou et al., 1987), and (Chen and Gupta, 1999) that propose

change point detection methods for gamma, exponentially, and normally dis-

tributed data respectively. Kutoyants and Spokoiny (1999) propose an adaptive

procedure as well as theoretical properties for Poisson distributed data. Chen

and Gupta (2011) provides the null distribution of a likelihood ratio test for

Poisson distributed random variables, but they do not evaluate the e�ciency of

the procedure on real data.

Both change point detection and homogeneous window approaches can serve
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as determinator for an optimal forecasting window. Recent approaches for opti-

mal window selection are Giraitis et al. (2013), Pesaran et al. (2013), and Inoue

et al. (2017). They address parameter instability and frequent structural breaks

and indicate that adaptive window selection is favorable over choosing �xed win-

dow sizes, such as a 1 year or 3 year moving average. Since we aim at developing

a generally applicable method that is robust to di�erent data characteristics,

we need an adaptive window. Hence, we pursue a nonparametric approach that

is independent of knowledge about or assumptions on the dataset, except that

the values are generated by a Poisson process with smooth but time varying

intensity over some unknown time window.

Our approach extends the previous literature as it serves as a generic toolbox

that could easily be adapted to other applications and gives density forecasts

that can (but do not have to) be adjusted by incorporating knowledge from

industry experts and is adaptable to arbitrary frequencies. Although we show

how to forecast the density of M&A, our methodology could also extend research

in other areas that typically use Poisson processes.

The remainder of this paper is structured as follows: Section 2 describes the

algorithm that is based on a combination of LPA, MBS and put into action

in an iterative procedure. Section 3 contains an experimental study. We de-

scribe the evaluation method, verify the robustness of the presented algorithm

in simulation scenarios, apply it empirically on a dataset of mergers & acqui-

sitions and show how it can be used to generate forecasts. Section 4 presents

key results, such as robustness to diverse data inputs and adaptability to other

applications. Section 5 discusses limitations, such as in the evaluation approach

or computational costs and suggests next steps like density forecasting, intro-

ducing a judgemental component and extending the test-statistic. All numerical

algorithms can be found on Quantlet.de .
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2 Methodology

2.1 Basic Idea

Planning processes in corporate environments are based on internal �nancial

data of di�erent kinds. Traditionally, these problems have been solved using

diverse time series models. However, it is di�cult to use them since real time

series often are non stationary and have structural breaks. Automated analyses

can be bene�cial as they make modelling easier. To contribute to solving this

problem, we focus on detecting locally homogeneous intervals with stable pa-

rameters. To be more speci�c, we focus on a count data model where the time

varying intensity determines a Poisson process. Take again �gure 1 as an exam-

ple. We aim to detect the years of '95 - '97 as a structural break and capture

therefore the non stationary component (a slight uptrend is observable). We

�nd locally homogeneous windows, verifying that the procedure is working and

show how it can be used to obtain density forecasts.

2.2 Stochastics

Let Yt 2 N; t = 0 ; :::; T be a count data time series such as the count of M&A

series, see in �gure 1. Think ofYt � Poisson(� ), where � represents the rate

or average number of occurrences in a �xed interval. Since we allow for time

variation in our model, for any interval I = [ a; b] with a < b and a; b2 f 0; :::; Tg,

we write (Yt )t 2 I � Poisson(� )

The log likelihood function on I is:

L I (� ) =
X

t 2 I

log(� Yt e� � =Yt !) = log �
X

t 2 I

Yt �
X

t 2 I

� �
X

t 2 I

log(Yt !) (1)
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the MLE ~� I based on observations ini 2 I is:

~� I
def= argmax

� 2 �
L I (� ) (2)

which for a Poisson model is the sample mean.

2.3 Local Parametric Approach

LPA, �rst introduced by Spokoiny (1998) is based on the phenomenon that a

series of locally parametric models can describe the features of a time series

better than a global parametric model. The basic idea is that given a time

series and a model for its dynamics, one �nds locally stationary intervals of the

time series in an online fashion. This is done by �nding the set of most recent

observations, such that the model parameters are approximately stable in that

interval. This set of time points is called interval of homogeneity. Employing

the same procedure at each point in time, one locally estimates the parameter

(H•ardle et al., 2015). The merit of LPA is that it does not require an explicit

expression of the law of the dynamics of the parameter, but only assumes that

the parameter is constant on some unknown time interval in the past (Spokoiny,

2009).

In order to check the homogeneity of an interval I = [ a; b], LPA looks for

some break point � 2 (a; b) such that A � = [ a; � ) has one parameter andB � =

[�; b] has another parameter. If at least one break point exists in the intervalI ,

we conclude that the interval is non-homogeneous (Klochkov et al., 2019).
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The testing hypotheses are therefore:

H0(I ) : (Yt )t 2 I � Poisson(� �
I ); � �

I 2 � ;

vs

H1(I ) : (Yt )t 2 A � � Poisson(� �
A �

); � �
A �

2 � ;

(Yt )t 2 B � � Poisson(� �
B �

); � �
B �

2 � ;

with some � �
A �

6= � �
B �

(3)

The LR test statistic for a breakpoint � is:

TI;� = L A � ( ~� A � ) + L B � ( ~� B � ) � L I ( ~� I ) (4)

Since one has many candidates� 2 J , one arrives at:

TI = max
� 2 J

TI;� (5)

This unfortunately has a very intractable distribution, hence the critical

valueszI (� ), indicating that the test indicates that the test statistic rejects H0

in equation (3) i.e. when

TI � zI (� ) (6)

is hard to calculate. Indeed the limiting distribution of TI is di�erent from

general likelihood ratio tests due to the presence of nuisance parameters (break-

points) in the alternative hypothesis which are not identi�ed under the null

hypothesis. Hence, convergence of the generalized LR statistics to a� 2 distri-

bution according to Wilk's phenomenon can not be put into action. While the

asymptotic distribution of the sup-LR test in equation (5) can still be derived

(Andrews and Ploberger, 1994), a large enough sample size is required for its

asymptotic critical values to be applicable. Certainly, that is not the case in
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most of the practical situations where only small samples of data are available.

Spokoiny and Zhilova (2015) provide a non-asymptotic result for mis-

speci�ed models with small sampling sizes. The technique is called multiplier

bootstrap (MBS) which is discussed in detail in the next section.

2.4 Multiplier bootstrap

Since the asymptotic distribution for the LR test statistic is not available for

small samples, we approximate the unknown log-likelihood distribution using

the bootstrap. First, introduce random weights to the previously de�ned likeli-

hood function:

L �
I (� ) =

X

t 2 I

wt l t (� )

where the weightswt are with E(wt ) = 1 and Var( wt ) = 1 iid . The bootstrap

version of (1) is given by:

L �
I (� ) = log �

X

t 2 I

Yt wt �
X

t 2 I

wt � �
X

t 2 I

log(Yt !)wt : (7)

The bootstrap MLE is then de�ned as:

~� �
I = arg max L �

I (� );

which is:

~� �
I =

P
t 2 I Yt wtP

t 2 I wt
:

It follows that the corresponding bootstrap of (10) is:
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T �
I;� = L �

A;� ( ~� �
A;� ) + L �

B;� ( ~� �
B;� ) � sup

�

n
L �

A;� (� ) + L �
B;� (� + ~� B;� � ~� A;� )

o
; (8)

A penalty term ~� B;� � ~� A;� is introduced to compensate for model misspec-

i�cation bias. Klochkov et al. (2019) shows that the distribution of this test

conditional on the data mimics the "true" distribution of TI with high proba-

bility. Using (8) we can obtain the critical value through simulations. Indeed,

the critical value z�
I (� ) is de�ned as:

z�
I (� ) = z�

I (� ; Y ) = inf
�

z � 0 : P(T �
I > z 2=2) � �

	
: (9)

2.5 Algorithm

The algorithm for an adaptive window length selection at each point in time is

now straightforward. It is based on sequential testing of the hypotheses on a

nested set of intervalsf I k gk=0 ;1;:::;K , whereI 0 � I 1 � : : : � I K . Let nk = jI k j be

the number of observations in each interval. The �rst interval I 0 is assumed to

be homogeneous with lengthn0. Then, for each interval I k , the null hypothesis

of parameter homogeneity is tested against the alternative of a change point at

an unknown location � within I k , as in (3).

Since the setup deals with nested intervals, but the existence and location

of a change point are unknown, only additional points in each new interval are

considered as possible change points. The candidate set for change points in

each interval is de�ned as Jk = I k nI k � 1. Using each point � 2 Jk , the left

and right intervals are constructed as Ak;� = [ i 0 � nk+1 ; � ] and Bk;� = ( �; i 0]

respectively (see �gure (2)). The test statistic is calculated similarly to equation

(5) as

TI k ;� = L A k;� ( ~� A k;� ) + L B k;� ( ~� B k;� ) � L I k +1
( ~� I k +1 ) (10)
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whereAk;� and Bk;� are as previously speci�ed and we test at every point� 2 Jk

for a change point. Thekth interval is rejected if

max
j 2 J k

TI k ;� � z�
I k

(� ) (11)

and z�
I k

is generated via multiplier bootstrap as explained in the previous sec-

tion. If the interval I is not rejected, i.e. there exists no change point and it

is homogeneous, we continue the testing procedure by choosing a bigger inter-

val. Otherwise, the length of the last non-rejected interval bI is the interval of

homogeneity andb� i 0 = b� bI is the respective adaptive estimate ofbI .

Homogeneity testing for I k utilizes also part of observations ofI k+1 . Hence,

the pre-de�nition of intervals is crucial. Following that, the choice of interval

lengths a�ects the test results, and therefore requires careful selection. We

employ a geometric increase of intervals like H•ardle et al. (2015) and Klochkov

et al. (2019). Based on the initial length n0, the intervals lengths are de�ned by

nk =
�

n0ck
�

(12)

wherec is a geometric multiplier, chosen slightly above 1 to ensure a monotonic

increase of interval lengths, but not by a big margin. Furthermore, instead of

taking a constant number of intervals K for testing as proposed by H•ardle et al.

(2014) and Klochkov et al. (2019), we selectK to be the smallest integer such

that the whole time series is covered under a geometrically increasing length.

In summary, the LPA algorithm for the adaptive choice of an interval of

homogeneity and the corresponding MLE is given by the following iterative

procedure:

1. Initialization : Select I 0; I 1; I 2; and de�ne J1 = I 1nI 0; (8� 2 J1); A1;� =
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Figure 2: Iterative algorithm

[i 0 � n2; � ], B1;� = ( �; i 0].

2. Iteration : For each iteration, select I k � 1; I k ; I k+1 ;, Jk = I k nI k � 1; (8� 2

Jk ) Ak;� = [ i 0 � nk+1 ; � ]; Bk;� = ( �; i 0].

3. Testing homogeneity : Calculate test statistics in equation (10) and

select critical value with multiplier bootstrap. Test hypothesis in equation

(3) using equation (11).

4. Loop : If I k is accepted, take the next interval I k+1 . Otherwise set bI to

the latest non rejected I k .

5. Adaptive estimator : Take interval bI as interval of homogeneity and

b� i 0 = b� bI as adaptive estimate of bI . Repeat the procedure for each point

in time (di�erent i 0)

3 Experimental results

The following lines seek to answer the question whether or not we can gener-

ate better forecasts by using the described adaptive methodology, and whether
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or not the methodology is robust with respect to previously unseen and thus

unpredictable patterns. We compare one-step-ahead and multi-period point pa-

rameter forecasts of the proposed locally adaptive procedure to a baseline of one

year and three years moving averages in a pseudo-out-of-sample approach. We

acknowledge that this is a fairly simple approach. A more sophisticated evalu-

ation approach would be to generate multi-period density forecasts that could

be evaluated using a tailored loss-function as in Diebold et al. (1998); Diebold

(2015), and Gonzalez-Rivera and Sun (2014). However, as this is beyond the

scope of this paper (or altogether another paper), we leave it open for future

work.

3.1 Simulation study

This section evaluates the performance of the proposed technique using simu-

lated datasets as shown in �gure 3. We create scenarios that mimic common

patterns in �nancial datasets. The simulations focus both on short-term shocks

and regime shifts. Starting with the simplest piece-wise constant model, we

gradually increase the complexity of the simulations by generating Poisson dis-

tributed data and �nally test the robustness of the methodology by changing

the underlying model to follow an exponential distribution. For each scenario,

we consider a time series (Yt )300
t =1 with the following speci�cations:

(a) Regime shifts with piece-wise constant model: (Yt )100
t =1 = 1, ( Yt )200

t =101 = 10

and (Yt )300
t =201 = 20

(b) Regime shifts with Poisson model: (Y1t )100
t =1 with � 1 = 1, ( Y2t )200

t =101 with

� 2 = 10 and (Y3t )300
t =201 with � 3 = 20

(c) Short term shock with piece-wise constant model: (Yt )199
t =1 = 1, ( Yt )200

t =200 =

10 and (Yt )300
t =201 = 1
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(d) Structural break with piece-wise constant model: (Yt )180
t =1 = 10, (Yt )200

t =181 =

7 and (Yt )300
t =201 = 10

(e) Structural break with Poisson model: (Y1t )180
t =1 with � 1 = 5, ( Y2t )200

t =181 with

� 2 = 1 and (Y3t )300
t =201 with � 3 = 5

(f) Regime shifts with exponential model: (Y1t )100
t =1 with � 1 = 0 :1, (Y2t )200

t =101

with � 2 = 1 and (Y3t )300
t =201 with � 3 = 10
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3: Simulated series (left), homogeneous windows (middle) and MLE

(right). LPA Simulations
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