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Wolfgang Karl Härdle * *4 *5 *6 *7

* Humboldt-Universität zu Berlin, Germany
*2 Ivan Franko National University of Lviv, Ukraine
*3 University of L’Aquila, Italy
*4 Singapore Management University, Singapore
*5 Xiamen University, China
*6 National Chiao Tung University, Taiwan
*7 Charles University, Czech Republic

This research was supported by the Deutsche
Forschungsgesellschaft through the

International Research Training Group 1792
”High Dimensional Nonstationary Time Series”.

http://irtg1792.hu-berlin.de
ISSN 2568-5619

In
te
rn
a
ti
o
n
a
l
R
es
ea

rc
h
T
ra
in
in
g
G
ro
u
p
1
7
9
2



Surrogate Models for Optimization of
Dynamical Systems ∗

Kainat Khowaja, Mykhaylo Shcherbatyy, and Wolfgang Karl Härdle

Abstract Surrogate models using a suitable orthogonal decomposition and radial
basis functions have been proposed by many researchers to reduce the computa-
tional complexity of numerical solutions to optimization problems. However, these
reduced-order models result in low accuracy, sometimes due to inappropriate initial
sampling or the occurrence of optima at vertices. This paper provides an improved
intelligent data-driven mechanism for constructing low-dimensional surrogate mod-
els using alternative memory-based sampling strategies in an iterative algorithm.
Furthermore, the application of surrogate models to optimal control problems is
extended. It is shown that surrogate models with Latin hypercube sampling dom-
inate variable-order methods in optimization computation time while maintaining
accuracy. They are also shown to be robust to nonlinearities in the model. Therefore,
these computationally efficient predictive surrogate models are applicable in various
fields, especially for solving inverse problems and optimal control problems, some
examples of which are shown in this paper.
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1 Introduction

Over the years, mathematical modeling and optimization techniques have effec-
tively described complex real-life dynamical structures using system of differential
equations. More often, the dynamical behavior of such models, especially in opti-
mization and inverse problems (the problems where some of the ’effects’ (responses)
are known but not some of the ’causes’ (parameters) leading to them are unknown),
cause necessity of repetitive solution of these model equations with a slight change
in system parameters. This parameter exploration process can be computationally
intense, specially in complex non-linear systems. While numerical models replaced
experimental methods due to their robustness, accuracy, and rapidness, their increas-
ing complexity, high cost, and long simulation time have limited their application
in domains where multiple evaluations of the model differential equations are de-
manded.

To prevent this trade-off between computational cost and accuracy, one needs to
focus on reduced order models (ROMs) which provide compact, accurate and com-
putationally efficient representations of ODEs and PDEs to solve these multi-query
problems. These approximation models, also commonly recognized as a surrogate
models or meta-models [26], allow the determination of solution of model equa-
tions for any arbitrary combination of input parameters at a cost that is independent
of the dimension of the original problem. They reduce the computational time for
solution of the complex optimization problems by using training instances derived
from the evaluations of the true objective functions. Accordingly, they meet the
most essential criteria of every analysis problem: the criteria of highest fidelity at
lowest possible computational cost, where high fidelity is defined by the efficacy of
theoretical methods to replicate the physical phenomenons with least possible error
[19].

In this work, we use Proper Orthogonal Decomposition (POD), a model reduction
technique that originated in statistical analysis and is known for its optimality, captur-
ing the most dominant components of data in an efficient way [15]. POD serves the
purpose of dimension reduction by extracting hidden structures from high dimen-
sional data and projecting it on lower dimensional space consisting of basis elements
that contain characteristics of the expected solution [20]. We use POD to derive low
order models of dynamical system by reducing a large number of interdependent
variables to a much smaller number of uncorrelated variables, while preserving as
much as possible of the variation in the original variables, in an iterative fashion.
We hypothesize that the system responses of dynamical models can be obtained
with a very high accuracy, but lower computational cost using this model reduction
technique.

The novelty of this research is three-fold: 1) POD is combined with interpolation
methods in an iterative procedure, which is an improved methodology for construc-
tion of highly accurate surrogate models; 2) the methodology has been extended to
optimal control problems which has rarely been explored in the literature; 3) the
combination of POD and radial basis functions (RBF) for surrogate models is quite
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under utilized for the the economic models, some of which are discussed in this
paper.

The computational procedure used in this research is decomposed between of-
fline and online phases. The offline phase (training of the model) entails utilization of
sampling techniques to generate data, computation of snapshot matrix of model solu-
tions using variable order methods for solving ODEs (associated with the dynamical
systems), obtainment of proper orthogonal modes via Singular Value Decomposi-
tion (SVD) and estimation of POD expansion coefficients that approximate the POD
basis (via interpolation techniques radial basis functions).

Next, the model quality is evaluated by carrying out error analysis on various
experimental designs. These experimental designs are created by varying sampling
strategies, interpolation techniques and the size of training set. Using the optimal
experimental design, the online phase of algorithm starts. The online phase (testing
of the model) involves redefinition of model equations in terms of surrogate models
and computation of system responses corresponding to any arbitrary set of input
parameters in given domain [26].

Finally, using the optimal experimental design, we solve optimal control problems
using both models to evaluate accuracy of the surrogate model. If the error tolerance
is not met, an iterative algorithm is implemented to enhance the performance of
the surrogate model. All codes used for the analysis in this paper are available on
www.quantlet.de

The remainder of this paper is organized as follows. In the next section, we
summarize the research on the surrogate models, and identify the limitations of
existing literature. In section 3, we explain in detail theoretical concepts related to
POD, SVD and RBF, and how these are used to construct surrogate models. In
section 4, we discuss the newly proposed iterative algorithm. The perspective of
our methodology is demonstrated with practical examples of dynamical systems in
section 5. Finally, we conclude the main results and provide a summary of current
research, limitations, as well as the future prospects of this research in the last section.

2 Literature Review

Over a century ago, Pearson proposed the idea of representing the statistical data
in high dimensional space using a low dimensional straight line or plane, hence
discovering a finite dimensional equivalence of POD as a tool for graphical analysis
[24]. In the years following Pearson’s paper, the technique has been independently
rediscovered by several other scientists including Kosambi, Hotelling and Van Loan
under different names in the literature such as principle component analysis (PCA),
Hotelling Transformation and Loeve-Karhunen Expansion, depending on the domain
inwhich it is used.Despite their early discovery, the computational resources required
to compute POD modes were limited, and the technique remained virtually unused
until the 1950s. The technological advancements subsequently took off with the
massive increase in computing power, leading to the popularity of POD [20].

www.quantlet.de
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Since then, the development and applications of POD have been widely investi-
gated in various disciplines such as structural mechanics [20], Aerodynamics [19],
Signal and Image Processing [4], etc. Due to its strong theoretical foundations, the
technique has been used in many applications, such as for damage detection [21],
human face recognition [28], detection of signals in multi-channel time-series [30],
exploration of peak clustering [5] and many more.

In general, a non-equivalent variant of POD, known as factor analysis, has been
renowned and has been used for various applications [1, 2, 3, 23], etc. Unlike POD,
factor analysis assumes that the data have a strict factor structure and it looks for the
factors that amount for common variance in the data. On contrary, PCA the finite
counterpart of POD, allows the accountability of maximal amount of variance for
observed variables. The PCA analysis consists of identifying the set of variables,
also known as principle components, from the system that retain as much variation
from the original set of variables as possible. Similarly, principal expectile analysis
(PEC), which generalizes PCA for expectiles was recently developed as a dimension
reduction tool for extreme value theory [29]. These POD equivalent tools have also
been adopted in analysis on several instances such as [1, 11, 22, 29]. Yet, most of
these sources exploit only the real life data for dimension reduction.

Even though the real life data can be very useful in analysis, complete data
on relevant dynamical systems is rarely available. This creates an urgent need for
the introduction of tools that utilize simulated data. The simulated data can be
easily generated by repetitive evaluations of the original set of differential equations
using so-called ’method of snapshots’. Bujlak [8] explains how a simulation based
matrix is obtained by evaluating the original set of equations with various parameter
combinations. The resulting snapshot matrix allows easy implementation of data
analytical and smoothing tools for reducing the dimensionality of the dynamical
systems.

Very recently, researchers have tried to couple various smoothing methods with
POD to improve the performance of surrogate models. In [19], the authors construct
a POD+cubic spline surrogate model for an aerodynamic design problem. Similarly,
the POD+neural network framework for solving finite element models is proposed
in [16]. Some of these sources also recognize problem with these surrogate models,
such as [9] in which the authors remedy the common problem of high training time
in smoothed POD models using Hadamard product.

Another well known issue with the surrogate models is that some times they
result in low accuracy due to occurrence of solution on the boundaries. One way
to deal with this issue is to examine the efficacy of POD+RBF surrogate models
using various pre-processing methods for the snapshot matrix [14]. One can then
examine the errors due to truncation through POD and due to interpolation of the
data. Another solution is presented in [31] where surrogate modelling techniques are
enhanced by incorporating derivatives of snapshots for the training.

An alternative method for dealing with issue is to change the way snapshots
are obtained. In this paper, we propose to deal with this problem by using various
sampling methods and an iterative training procedure that truncates the domain of
sampling at each step, which provides an improved method for construction of the
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surrogate models. We will discuss this technique in detail in section 4, but first,
we present the mathematical framework for the POD+RBF surrogate modelling
technique.

3 Mathematical Framework

Model reduction techniques have been known for their ability to reduce the compu-
tational complexity of mathematical models involving numerical simulations. The
main reason for increasing applications of ROMs in various disciplines is due to
its strong theoretical foundations. Also, computational complexities of high dimen-
sional physical system is ever-so-rising, which has created demand for the model
reduction techniques. ROMs address these issues effectively by providing low di-
mensional approximations of the high dimensional systems.

Although a variety of dimensionality-reduction techniques exist, for example
operational based reduction methods [25], reduced basis methods [7], the ROMs
are often based upon POD. Analogous to PCA, the POD theory find components
of the systems, known as Proper Orthogonal Modes (POMs), that are ordered in
a way that each subsequent mode holds less energy than previous one. As stated
earlier, POD is ubiquitous in the dimensionality reduction of physical systems. It
presents the optimal technique for capturing the system modes in least square sense.
That is, for constructing ROM for any system, incorporating k POMs will give the
best k component approximation of that system. This assures that any approximation
obtained using POD will be the best possible approximation: there is no other
method that can reduce the dimensionality of the given system in lower number of
components or modes.

In this section, we discuss the mathematical concepts associated with POD and
its correspondence with SVD and RBF for construction of surrogate models. The
computational procedure presented in the sections 4 and 5 is strictly based on the
theory formulated in this section.

3.1 Optimal Control Problem for Dynamical Systems

Many problems of optimal control are focused on the minimization and maximiza-
tion problems. In order to find an optimal set of parameters, optimization models
are usually defined in which the problems are summarized by the objective func-
tion. These optimization parameters are called control parameters and they affect
the choice of allocation. In optimal control problems, these parameters are time
paths which are chosen within certain constraints so as to minimize or maximize
the objective functional. The applications presented in section 5 are optimization
problems, the general structure of which has been discussed in the next paragraph.
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Let us consider optimization problem which consists of finding a vector of opti-
mization parameters D∗ ∈ *( and proper state function H∗ ⊂ .( that minimizes the
optimization criterion (objective function)

k0 = k̃0 (D∗, H∗) = min
(D,H) ∈*(×.(

k̃0 (D, H) (1)

subject to ODEs (state equation)

2(H, D) = 0 ∼
{
H′8 − 5 (C, D, H) = 0, C ∈ [C0, )],
H(C0) − H0 = 0,

(2)

box constrains on the control variable

* = {D ∈ *( : D− ≤ D ≤ D+, D− ∈ *( , D+ ∈ *(} (3)

and possibly additional equality and non-equality constraints on state and control

k̃ 9 (D, H) = 0, 9 = 1, . . . , <1,
k̃ 9 (D, H) ≤ 0, 9 = <1 + 1, . . . , <. (4)

where *( and .( are real Banach spaces, D = D(C) = [D1 (C), . . . , D=D (C)]> ∈
*( , H = H(C) = [H1 (C), . . . , H=H (C)]> ∈ .( , k̃ 9 : *( × .( → R, 9 = 0, 1, . . . , <

We assume that for each D ∈ *, there exists a unique solution H(D) of state
equation 2(H, D) = 0. For rest of the paper, we will use the compact notation of the
optimization problem (1- 4) in its reduced form: find a function D∗ such that

D∗ ∈ *mD , k0 (D∗) = min
D∈*mD

k0 (D)

*mD =
{
D : D ∈ *;k 9 (D) = 0, 9 = 1, . . . , <1;k 9 (D) ≤ 0, 9 = <1 + 1, . . . , <

}
2(H(D), D) = 0

k 9 (D) = k̃ 9 (D, H(D)), 9 = 0, 1, . . . , <

(5)

The optimal control problems in this research are solved using direct method. In the
direct method, each problem is transformed to nonlinear programming problem, i.e.,
it is first discretized and then the resulting nonlinear programming problem is op-
timized. The optimality conditions of undiscretized optimal control problems need
to be re-established for each new problem. They also often require partial a-priori
knowledge of the mathematical structure of the solution which in general is not avail-
able for many practical problems. Therefore, direct methods are preferred because
optimality conditions are generic for the discretized optimal control problems.

The first step of the direct method is to approximate each component of
the control vector by a function of finite parameters D8 (C) = D8 (C, 1 (8) ), 1 (8) =
[1 (8)1 , ..., 1

(8)
=8 ]>, 8 = 1, . . . , =D . As a result, we write control function D(C) as a

function of vector of optimization parameters 1: D(C) = D(C, 1). In this paper
we use a piecewise-linear or piecewise-constant approximation for each function
D8 (C), 8 = 1, . . . , =D .
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The optimization problem can be written as nonlinear programming problem as
following: find a vector 1∗ such that

1∗ ∈ *m, k0 (1∗) = min
1∈*m

k0 (1)
*m =

{
1 : 1 ∈ *1 , k 9 (1) = 0, 9 = 1, . . . , <1;k 9 (1) ≤ 0, 9 = <1 + 1, . . . , <

}
*1 = {1 : 1 ∈ '=, 1− ≤ 1 ≤ 1+, 1− ∈ R=, 1+ ∈ R=}

2(H(1), 1) = 0
k 9 (1) = k̃ 9 (D(1), H(1)), 9 = 0, 1, . . . , <

(6)

3.2 Surrogate Models for Optimization Problems

The optimization problem formulated in equation (6) used for estimation of param-
eter values is often computationally expensive. It requires repetitive solutions of the
state equation 2(H(1), 1) = 0 and the objective function k̃0, subject to the constraints
k̃ 9 , 9 = 1, . . . , < for different values of optimization parameters 1. In order to solve
multi-query problems with limited computational resources, often approximation
models (also known as surrogates models, meta-models or ROMs) are used. Sur-
rogate models replace the high-fidelity models and tend to have lower numerical
complexity, and hence less computational cost.

The first step for construction of the surrogate models is to select an appropriate
sampling strategy. Once =B sampling points are generated, the state equation (6)
(ODEs) is solved for each sample point 1 (8) . The resulting =B vectors of solutions
(snapshots) .8 =

[
H
(
C1, 1

(8) )> , . . . , H (
C=C , 1

(8) )>]> ∈ R<, < = =H × =C at different
time instances, C0 < C1 < C2 < . . . < C=C = ) are called snapshots vectors .8 .
The snapshot vectors collectively create the snapshot matrix . = [.1, .2, . . . , .=] ∈
R<×=B .

3.2.1 Initial sampling and method of snapshots

The method of snapshots for POD was first introduced by Sirovich [27] in 1987.
Generally, it comprises of evaluating themodel equations for the number of sampling
points at various time instances. Each model response is called snapshot and is
recorded in a matrix which is collectively called snapshot matrix.

The initial dimension of the problem is equal to the number of snapshots =B
recorded at each time instance C8 , 8 = 1, ..., =C . These points are selected from the
parameter space using some sampling technique. In general, the sampled points
should represent the dynamic behaviour of the system. Many researchers simply use
the random or uniform sampling, however there is no standard method for generating
the sampling points. Nevertheless, the choice of sampling method has direct effects
on the accuracy of the model and therefore, it is regarded as an autonomous problem.
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This research briefly explores the initial sampling problem by comparing various
classical a-priori methods of sampling.

We propose to use Latin Hypercube Sampling (LHS) and its variant Symmetric
Latin Hypercube Sampling (SLHS) for sampling. LHS is a memory-based, near-
random sampling technique that aims at spreading the sample points evenly across
the surface. In statistics, a square grid containing sample positions is a latin square
if and only if there is only one sampling point in each row and each column. A latin
hypercube is the generalization of this concept to an arbitrary number of dimensions,
whereby each sample is the only one in each axis-aligned hyperplane containing it.
Unlike random sampling (RS), which is frequently referred as Monte-Carlo method
in finance, LHS uses a stratified sampling techniques that remembers the position of
previous sampling point and shuffles the inputs before determining the next sampling
points. It has been considered to be more efficient in a large range of conditions and
proven to have faster speed and lower sampling error than RS [12].

SLHS is an extension of LHS that achieves the purpose of optimal design in
a relatively more efficient way. SLHS also has higher minimum distance between
randomly generated points than LHS. In a nutshell, both LHS and SLHS are hypoth-
esized to perform better than RS. Nevertheless, sampling is performed using all three
techniques in this work to determine which techniques provides optimal sampling
of the underlying space and maximizes the system accuracy. A simple sampling
distribution of each of the three techniques is illustrated in figure 1.

Fig. 1 Comparison of various sampling techniques. SurrogateModel

We discuss the utility of these sampling techniques, and how they are used for
surrogate modelling in the next sections. The deeper questions of sampling that relate
to the choice of surrogate model, nature of the objective function and analysis are
left for the reader to explore from recommended sources such as [19].

3.2.2 Model order reduction

The overarching goal of POD method is to provide a fit of the desired data by
extracting interpolation functions from the information available in the data set.
Geometrically, it derives proper orthogonal modes by projecting the original model

https://github.com/QuantLet/SurrogateModel
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onto the reduced space spanned by the POD modes [19]. A simple mathematical
formulation of POD technique is laid out in this subsection which closely follow the
references [8, 10, 26].

Suppose that we wish to approximate the response of the system given by output
parameters H ∈ R<, where < = =H × =C , using the set of input parameters 1 ⊂ R=D
over a certain domain Ω. The ROMs approximate the state function y(t) in domain
Ω using linear combination of some basis function q8 (G) such that

H (C) ≈
"∑
8=1

08 .q
8 (C) (7)

where, 08 are unknown amplitudes of the expansions and t is the temporal coordinate.
The first step in this process would be to find the basis. Once the basis function is
chosen, the amplitudes can be easily determined by a minimization process. It is
ideal to take orthonormal set as the basis with the property∫

Ω

q:1 (C) . q:2 (C) 3G =
{
1 :1 = :2
0 :1 ≠ :2

(8)

This way, the determination of the amplitudes 0: only depends on function q8
:
(C)

and not on any other q. Along with being orthonormal, the basis should approximate
the function in best possible way in terms of the least square error. These ordered
orthogonal functions are called the POMS for the function H(C) and the equation (7)
is called the POD of H(C).

In order to determine the number of POMs that should be used in approximation
of lower dimensional space, we use the idea that POD inherently orders the basis
elements by their relative importance. This idea is used very often in statistics
with singular value decomposition of the matrices. Since the theory of SVD is so
widespread, we only highlight the most general and relevant details of SVD that are
helpful in derivation of POMs and POD basis.

There prevails a misconception amongst researchers about distinction between
SVD and POD. As opposed to the common understanding, POD and SVD are not
strictly the same: the former is a model reduction technique where as the latter is
merely a method of calculating the orthogonal basis.

In general, SVD is a technique that is used to decompose any real rectangular
matrix Y into three matrices, U, Σ and V, where U and V are orthogonal matrices, Σ
is a diagonal matrix that contains the singular values f8 of Y, sorted in a decreasing
order such that f1 ≥ f2 ≥ ... ≥ f3 ≥ 0, and d is the number of non-zero singular
values of Y.

The singular values can then be used as a guide to determine the POD basis. If
a k-dimensional approximation of original surface is required, where the rank k<d.
The first k columns of the matrix U serve as the basis q8 , 8 = 1, ..., : . These set
of columns, gathered in matrix Φ, form an orthonormal set of basis for our new
low-dimensional surface.
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The relative magnitude of each singular value with respect to all the others give a
measure of importance of the corresponding eigenfunction in representing elements
of the input collection. Based on the same idea, a common approach for selection
of number of POMs (k) is to set a desired error margin nPOD for the problem under
consideration and choose k as a minimum integer such that the cumulative energy
E(k) captured by first k singular values (now POMs) is less than 1-nPOD, i.e.

� (:) =

:∑
8=1

f2
8

3∑
8=1

f2
8

≤ 1 − n2
POD (9)

After collection of basis using SVD, it is easy to calculate thematrix of amplitudes
�: . Let Σ: = [f1, f2, ..., f: ] be the set of k largest singular values of our initial
matrix Y, then, the matrix of amplitudes is given by .: = Σ:�: , �: = Σ>:.: .

With the basis vectors and amplitude matrix, using POD discrete theory, low
dimensional approximation of our problem has been constructed. However, the
formulation is not very useful since our newmodel can only give the responses of the
system for a discrete number of parameter combinations (those that were previously
used to generate the snapshot matrix). Since, in many practical applications (for
optimization and inverse analysis), even though the values of input parameters may
sometime fall in a particular range, the parameter values are not known a-priori
and can assume any arbitrary value between those ranges. Therefore, we take a step
further to approximate the newly constructed model. We combine POD with RBF
interpolation to create low-order parameterization of high-order systems for accurate
prediction of system responses.

RBF is a unique interpolation technique that determines one continuous function
defined over the whole domain. It is a widely used for smoothing and multidimen-
sional approximation. Let .: be the reduced dimensional matrix. For better approx-
imation of the surrogate model, we want to find a continuous function 5 (1) = H,
where 1 is the vectors of some parameters and H is the system response. It can
be achieved easily by applying RBF to reduced dimensional space where system
responses are expressed as amplitudes in the matrix �: . Hence,

5 (1) = H = Σ:�: = Σ: 50 (1) = q 50 (1) (10)

When RBF is applied for the approximation of 50, 50 is written as linear combi-
nation of some basis functions 68 such that

50 (1) =



081
082
.

.

.

08
 


=



311
321
.

.

.

3 1


.61 (1) +



312
322
.

.

.

3 2


.62 (1) + ... +



31#
32#
.

.

.

3 #


.6# (1) = �.6(1) (11)
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In this work, we use linear and cubic spline RBF for analysis, given by:

linear spline : 6 9 (1) = | |1 − 1 9 | |; cubic spline : 6 9 (1) = | |1 − 1 9 | |3; (12)

Once the basis functions 68 are known, the aim is to solve for the interpolation
coefficients that are collectively stored in matrix �. Since we already have the value
of amplitudes � from last step, matrix � can be easily obtained by using the equation
� = �−1�. Finally, using equation (10), our initial space H can be approximated by:

H ≈ Φ.�.6(1) = Ĥ (13)

Since matrix Φ and � are calculated once for all, one only needs to compute the
vector 6(1) for any arbitrary combination of parameters to obtain system responses.

We have constructed surrogate model using POD and RBF to calculate the value
of functionals k̂ 9 (1) = k̃ 9 (1, Ĥ), 9 = 0, 1, . . . , <. The formulation of optimal control
problem for surrogate models is to find a vector 1̂∗ such that:

1̂∗ ∈ *m, k̂0

(
1̂∗

)
= min
1∈*m

k̂0 (1)
*m =

{
1 : 1 ∈ *1 , k̂ 9 (1) = 0, 9 = 1, . . . , <1; k̂ 9 (1) ≤ 0, 9 = <1 + 1, . . . , <

}
*1 = {1 : 1 ∈ R=, 1− ≤ 1 ≤ 1+, 1− ∈ R=, 1+ ∈ R=}

Ĥ = ((1)
k̂ 9 (1) = k̃ 9 (D(1), Ĥ), 9 = 0, 1, . . . , <

(14)

Replacing the state equation (2) with surrogate model given in equation (13) can
decrease the computational time by a significant amount. It is free of the complexity
of initial problem and involves matrix multiplication that can be accomplished in
a much smaller time than solving ordinary differential equations with high fidelity
methods. We test this hypothesis by comparing the accuracy of system responses
and time of calculation for both equation (2) and equation (13) for real life examples
in section 5.

We evaluate the accuracy of responses by generating =6 test points for the set
of parameters P, using the same sampling technique that had been used for gen-
eration of training test. For these new points, we calculate the system responses
.6 = [H1, H2, ..., H=6 ] ∈ R<×=6 using initial numerical method (that solves entire
system), and newly constructed surrogate model .̂6 = [ Ĥ1, Ĥ2, ..., Ĥ=6 ] ∈ R<×=6 .
We use relative maximum absolute error (RMAE) to determine the accuracy of the
optimization results given by:

RMAE = max
1≤8≤<

max
1≤ 9≤=6

|H 98 − Ĥ 98 |
H 98

(15)
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4 Enhanced Surrogate Models

While POD-RBF surrogate models presented in 3 are usually accurate, sometimes
the desired accuracy of the model is not achieved. This usually occurs because either
the initial sampling does not truly represent the true behaviour of the dynamical
system, or system’s optimal values occur at the corner points and the predictive
models in general tend to perform poorly on extreme ends. One common approach
to overcome this issue is to use adaptive sampling, a method that has been used
by many researchers such as [19] to find optimal design space points. In [13], the
authors compare the adaptive sampling techniquewith uniform and random sampling
and show the effectiveness of this approach in generating enough data points in the
most plausible regions. However, this technique involves solving a series of point
placement non-linear programming problems for optimization and the repetitive
nature of this procedure can still have a high computational cost.

In this paper, we deal with the sampling issue in two ways— we first propose
to use non-random, memory based sampling techniques that assist in diversifying
the training sample, as discussed in the previous section. Secondly, we develop
an iterative algorithm which recursively shifts the domain of training to direct the
surrogate model towards finding the true optimal solutions. The combination of these
approaches result in highly accurate solutions as demonstrated in the next section.

The choice of sampling techniques obviously affects the accuracy of the surrogate
model. Therefore, we would like to compare the various sampling methodologies
discussed in section 3. We combine each sampling technique with varying number
of training points and various interpolation techniques, and treat it as a separate
experimental designs in our research. We compare these experimental designs to
determine which setup results in the highest accuracy while satisfying the time
constraints for generation of the snapshots.

The algorithm for constructing surrogate models can be divided into three parts:
experimental design, offline phase and online phase. The offline phase (training of
the model) entails utilization of sampling techniques to generate data, computation
of snapshot matrix of model solutions, obtainment of proper orthogonal modes via
singular value decomposition and estimation of POD expansion coefficients that
approximate the POD basis via RBFs. Then comes a pseudo-testing phase (testing
to find the best experimental design) where the surrogate models from the offline
phase are used to solve the dynamical system and the overall error of approximation
is used to select the best experimental design.

Note that until this point, only the system of ODEs is solved, and the accuracy
of the original and surrogate system responses is compared to decide the best ex-
perimental design. Once the best sampling strategy and corresponding number of
training points, and interpolation technique are decided, the algorithm enters in its
online phase (testing phase) in which the surrogate model responses are used to
solve the optimal control problem and the error between true and surrogate optimal
values is calculated. If the error exceeds the given threshold, the iterative algorithm
is activated.
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The iterations caters to the aforementioned low-accuracy issue in twoways. Firstly,
it trains the initial model with the sampling points from a slightly wider domain than
the domain in which the optimization is performed. This way, the corner points are
incorporated into the sampling space and surrogate model tends to provide better
approximation for the optimal points. Secondly, in order to minimize the error of
approximation, the algorithm allows to decrease the width of domain of control
parameters at each iteration. By decreasing the size of sampling space, the sampling
points move closer to each other. Even if the corner points are not accounted for in
the sampling design, the smallest distance between the corner and the neighboring
points is lower in smaller domain, hence resulting in better approximation and
higher accuracy. The iterative algorithm becomes active every time the error of
approximation is higher than the tolerance level.

4.1 Iterative Algorithm

The iterative process can be summarized in four steps:

1. Initialization: In this step, the parameters of algorithm are initialized. This in-
cludes width (the length of domains of control parameters), desired tolerance
level and 1 (0) = initial guess for b (the optimization parameters)

2. Setting up the bounds: In this step, upper and lower bounds of domain are defined
for each control parameter. It is done by taking 1 (0) , interpolating it and substi-
tuting it as the value of control variables in our problem. Next, the new bounds
are created centered at 1 (0) . The width of domain for each subsequent iteration
is lower than the previous iteration. The value of 1 (0) is replaced with optimal
value of b obtained using surrogate model (1̂∗) in the previous iteration. Finally,
it is checked if the new bounds are within the bounds that were defined at the
beginning of the problem. If not, the algorithm restricts them from exceeding the
initial bounds. This step of the iterative process is depicted for two optimization
parameters in figure 2.

3. Optimization: This is the main step of the algorithm which includes training and
testing phases. In summary, we create sampling set and snapshots, construct the
surrogate model, solve optimization problem and calculate the error.

4. Updating parameters: This step prepares the parameters for the next iteration
in the case when the tolerance level falls below the error of approximation. In
general, the algorithm replaces 1 (0) with the optimized value of 1̂∗ from the
surrogate response of current iteration, shortens the length by using a predefined
multiplier. If the tolerance criteria is met, the iterative process stops. Else the
algorithm resumes from step 2.

The iterative algorithm discussed throughout this section is summarized in
flowchart presented in the figure 3.
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Fig. 2 Example of iterative algorithm of two optimization parameters 11 and 12 with iterations
8 = 1, . . . , 5 and recursively decreasing lengths ;8 , 8 = 1, . . . , 5

Fig. 3 POD-RBF algorithm flowchart

5 Application of POD-RBF Procedure on Dynamical Systems

In this section, the POD-RBF procedure is used to construct the surrogate models
for real-life dynamical systems and associated optimal control problems are solved.
Three dynamical systems with various complexity are presented, with model 1 being
the simple non-linear ODE problem, andmodel 2 and 3 featuring a non-linear system
of equations with complex optimization criteria. For each model, a description of
the problem is presented and the values of initial parameters used in numerical
experiments are defined. Next, the numerical experiments are performed to first
decide the combination of sampling technique, interpolation method and sampling
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points optimal for that model and then the optimization problem is solved to evaluate
the accuracy of surrogate responses and the difference in computational time of
optimization with original and POD-RBF methods.

As a convention for this section, the variables with the hat operator .̂ represent
the results obtained using surrogate model and without hat stand for the results from
original model. The description of common variable names are summarized in table
1.

Table 1 Details of notations used in preceding analysis

Notation Description
1 (0) Initial value of optimization parameter
1̂∗ Optimal value of optimization parameter, surrogate model
1∗ Optimal value of optimization parameter, original model
k0 (1 (0) ) Value of optimization criteria for 1 (0) , original model
k0 (1̂∗) Value of optimization criteria for 1̂∗, original model
k̂0 (1̂∗) Value of optimization criteria for 1̂∗, surrogate model
k0 (1∗) Value of optimization criteria for 1∗, original model
k8 (1 (0) ) Value of 8Cℎ optimization constraint for 1 (0) , original model
k8 (1̂∗) Value of 8Cℎ optimization constraint for 1̂∗, original model
k̂8 (1̂∗) Value of 8Cℎ optimization constraint for 1̂∗, surrogate model
k8 (1∗) Value of 8Cℎ optimization constraint for 1∗, original model

5.1 Model 1: Science Policy

5.1.1 Description of the Model

This subsection features a very interesting application of optimal control theory in
economics. The problem is one of the oldest optimal control problem in economics
known as science policy and was originally introduced in 1966 by M.D. Intriligator
and B.L.R. Smith in their paper "Some Aspects of the Allocation of Scientific
Effort between Teaching and Research" [18]. Science policy addresses the important
issue of allocation of new scientists between teaching and research staff, in order to
maintain the strength of educational processes or alternatively, avoiding any other
dangers caused by inappropriate allocation between scientific careers [17]. In order to
find the optimal allocation, the optimal control problemwas formulated as following:

max
(D,H) ∈*×.

k̃0 =

∫ >

C0

[0.5H1 (C) + 0.5H2 (C)]3C, (16)
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subject to

2(H, D) = 0 ∼


H′1 (C) − D(C)6H1 (C) + XH1 (C) = 0, C ∈ [C0, )]
H′2 (C) − (1 − D(C))6H1 (C) + XH2 (C) = 0
H1 (C0) − H10 = 0, H2 (C0) − H20 = 0[

k̃1
k̃2

]
=

[
0
0

]
∼

{
H1 ()) − H1) = 0
H2 ()) − H2) = 0

D− ≤ D(C) ≤ D+

In this formulation, the state variable H1 and H2 represent the teaching scientists
and research scientists respectively at any given time C. The detailed description of
all the parameters and their values are summarized in table 2. The control variable D
represents the number of new scientists becoming teachers, correspondingly (1− D)
represents the number of new researchers.Hence, the differential equations determine
the rate of change of number of teachers and researchers by subtracting the new
proportion from the allocated proportion. The upper and lower limit of control
function indicate the limits of the science policy in affecting the initial career choices,
by government contracts, grants, incentive schemes, etc.

Table 2 Description of parameters for Model 1

Parameters Definitions Values
D(C0) Proportion of new scientists becoming teachers at initial time 0.5
6 Number of scientists annually produced by one scientist 0.14
X Rate of exit of scientists due to death, retirement or transfer 0.02
H10 Number of initial scientists working as teachers 100
H20 Number of initial scientists working as researchers 80
) Final time for the analysis in this policy 15
H1) Number of final scientists working as teachers 200
H2) Number of final scientists working as researchers 240
D− Lower limit of control function 0.1
D+ Upper limit of control function 0.6

The problem is the one of choosing a trajectory for the allocation of D(C) such
that the welfare is maximized, given by the objective function in equation (16). The
terminal part 61 (., .) of welfare is not accounted for in the objective function, but the
state constraints are added to compensate for it in the form of H1 ()) − H1) = 0 and
H2 ())−H2) = 0. The optimization process is focused at maximizing the intermediate
value 62 (., ., .) of welfare. The welfare function is thought to be additive of individual
utilities along the lines of utilitarian approach. The utilities are set as a linear function,
with an assumption that the teachers and researchers are perfect substitutes, and the
allocation of any scientist to one career will lead him to abandon the other career
completely. This assumption, even though unrealistic, is granted for simplicity and
can be complicated at the later stages.
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5.1.2 Simulation

This system of equations is solved for =B = 40, 60, 80 training points, generated with
LHS, SLHS and RS to create the snapshot matrix. The desired tolerance level is
nPOD = 0.01. The singular value plot for one specific experimental design, SLHS
and =B = 40 is presented figure 4 and shows that the first 4 singular values explain
almost 100% variance. The plots of singular values for other experimental designs
depicted similar pattern. Given the criterion in equation (9), we choose the rank of
: = 4. It can be clearly noticed that the magnitude of all the singular values is very
small compared to first singular value; the relative commutative energy � (8) of first
singular value is more than 99%. This shows that that the responses of the system are
fully correlated. Hence, rank 4 approximation is enough and adding more vectors in
approximation (by increasing the rank) will not improve the precision a lot.

Fig. 4 Cumulative energy plot to determine singular values for Model 1. Surrogate-
Model_SciencePolicy

Next, the surrogate model is constructed for each of the variant with this rank
and the RMAE are reported in table 3. The table shows that the lowest RMAE was
obtained for LHS, followed by SLHS and the RS. As the theory suggests, RMAE is
observed to decrease with increasing number of sampling points with an exception of
cubic spline in random sampling. The anomalous behavior of RS can be associated
with its randomness, which sometimes generates the sampling points which belong
to only one region of the surface, leading to higher variance in the model and higher
error of approximation, even with increasing number of training points. Another
trend that can be consistently observed is that the linear spline RBF tend to perform
better than the cubic spline in this model. Overall, the best experimental design for
this model is to use a combination of LHS with linear spline RBF and =B = 80. The
surrogate model approximation for the initial control value D = 0.5 and the original
system response are plotted in figure 5 and show that the approximated responses
are very close to the actual responses.

https://github.com/QuantLet/SurrogateModel/tree/main/SurrogateModel_SciencePolicy
https://github.com/QuantLet/SurrogateModel/tree/main/SurrogateModel_SciencePolicy
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Table 3 RMAE for various experimental designs of Model 1

Sampling Interpolation =B = 40 =B = 60 =B = 80

LHS Linear 0.02034 0.00293 0.00150
Cubic 0.05316 0.00647 0.00641

SLHS Linear 0.03825 0.00679 0.00437
Cubic 0.05175 0.00897 0.00861

RS Linear 0.01525 0.02410 0.02792
Cubic 0.16457 0.26597 12.91601

Fig. 5 Actual surface vs approximated surface for Model 1. SurrogateModel_SciencePolicy

5.1.3 Optimization

For the final step of analysis, the surrogate model was constructed with 40 training
points, LHS, and linear spline RBF. Here, we use =B = 40 because given the sim-
plicity of the problem, the accuracy required for optimization can be achieved by
small number of training points. The optimization problem is solved with two op-
timization parameters for control function using both original and surrogate model.
The results of optimization are given in table 4. The problem started with equal
number of scientists allocated in both careers, with the initial value of state con-
straint k1 (1 (0) ) = [11.8001; 43.0163] representing that the number of teachers and
researchers allocated at initial time were 11 and 43 units short of H1) and H2) re-
spectively. The solution to the problem allocates around 52% of new scientists to
teaching at the beginning of the time. This proportion decreases as the time passes
with around 47% scientists allocated as teaching staff at the end of time (see figure
6(b)). The optimal surface in 6(a)) shows that the number of teaching staff is allocated
to be higher than the number of researchers until the end time. The surrogate model
gave consistent results, with error of approximation (the relative error of k0 (1̂∗) and
k̂0 (1̂∗)) as low as 0.005 in the first iteration.

https://github.com/QuantLet/SurrogateModel/tree/main/SurrogateModel_SciencePolicy
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Even though the optimization using surrogate model is slightly quicker than the
original model, the time taken for construction of surrogate model is higher. Hence,
despite of highly accurate system responses through surrogate model, substituting
original model with POD-RBF model might not be useful, as the time taken for
optimization by surrogate model (training + optimization) takes much longer than
the original model. This example give us insight into why surrogate modelling was
avoided into applications earlier: the simple nature of optimization models for some
applications do not require high computational resources, while the construction of
surrogate models is much more computationally expensive and may not be desirable.

Table 4 Optimization results of Model 1

Field Value Field Value
1 (0) [0.5000 0.5000] Bounds [0.1000,0.6000]
1∗ [0.6000,0.3461] 1̂∗ [0.5187,0.4730]
k0 (1 (0) ) 210.6500 k0 (1̂∗) 209.7600
k0 (1∗) 212.8400 k̂0 (1̂∗) 210.9900
k1 (1 (0) ) [11.8001, 43.0163]> k1 (1̂∗) [0.0003, 0.0014]>
k1 (1∗) [0.000, 0.000]> k̂1 (1̂∗) [0.0000, 0.0023]>
Time>A86 2.8109 sec TimeBDAA 2.3694 sec
Time2=BCA 37.8406 sec n 0.0058

Fig. 6 Optimal surface and control functions for Model 1. SurrogateModel_SciencePolicy

https://github.com/QuantLet/SurrogateModel/tree/main/SurrogateModel_SciencePolicy
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5.2 Model 2: Population Dynamics

5.2.1 Description of the Model

In this subsection, a more complex application of optimal control theory is presented
with a general model of non-linear system of ODEs defined by:

2(H, D) = 0 ∼



{
H′1 − ?1H1 − ?2H

2
2 − D1H1� (H1, C) H2 = 0,

H′2 − ?3H2 − ?4H
2
2 − D1D2H1� (H1, C) H2 = 0, C ∈ ΩC = (C0, )]

H1 (C0) − H10 = 0
H1 (C0) − H20 = 0
� (H1, C) = 1 − 4−?5H1

(17)
These type of dynamical problems are usually observed in population dynamics

in biology, ecology and environmental economics. These problems are variation of
prey-predator model presented by Lotka-Volterra. This subsection aims at generaliz-
ing the approach of POD-RBF on these non-linear models without providing specific
details of the model parameters of the optimization problem.

The optimization problem considered here consists of finding a value of control
function D∗ =

[
D∗1, D

∗
2
]
that minimizes the distance between H1 and its desirable value

H13 Value on control function is restricted by dual pointwise constraints and value
H2 do not exceed maximum value H23 . The optimization problem can be formulated
in the following manner: find D∗ that minimize optimization criterion

k0 (D∗) = min
D

∫ )

C0

(H1 (C, D) − H13)2 3C (18)

subject to state equation (17), box constraints on the control

* =
{
D : D− (C) ≤ D(C) ≤ D+ (C)

}
(19)

and pointwise constraint on state

H2 (C) ≤ H+2 (20)

The pointwise state constraint (20) is transformed into an equivalent equality
constraint of the integral type

k1 (D) = k̃1 (D, H(D)) =
∫ )

C0

( |H2 (C, D) − H23 | + H2 (C, D) − H23)2 3C (21)

Taking into account equations(18-21) the optimization problem can be written in a
reduced form as follows:
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k0 (D∗) = min
D∈*m

∫ )

C0

(H1 (C, D) − H13)2 3C

*mD = {D : D ∈ *;k1 (D) = k̃ 9 (D, H(D)) = 0
}

2(H(D), D) = 0

(22)

5.2.2 Simulation

For numerical experiments we select the following values for the input parameters:
[?1, ?2, ?3, ?4, ?5] = [0.734, 0.175,−0.500,−0.246, 0.635], [C0, )] = [0, 10], =D =
2, D− =

[
D−1 , D

−
2
]
= [−0.5500,−1.0370], D+ =

[
D+1 , D

+
2
]
= [−0.300,−0.7870], H13 =

5, H+2 = 6. The control functions D1 (C), D2 (C) on the interval [C0, )] are approximated
by linear functions. Thus, the vector of optimization parameters 1 consist of four

components: 1 =
[
1
(1)
1 , 1

(1)
2 , 1

(2)
1 , 1

(2)
2

])
= [11, 12, 13, 14]) .

For numerical simulations, LHS, SLHS and RS are used to define the sampling
matrix with =B = 40, 60 and 80. Also, RBF interpolation-linear spline and cubic
spline is used for comparison of results. The solution H = [H1, H2] where =H = 2 is
then computed for time instances, C8 with C0 < C8 < C=C , =C = 100 equally spaced
instances of t, and =B sampling points, and then system responses were collected to
generate the snapshot matrix. The error of approximation is fixed nPOD = 0.01.

Next, the POD-RBF approach is applied to this model to first determine the
dimension of POD basis through SVD using cumulative energy method (it is done
for all experimental designs) and it is concluded that 3 singular values should be
considered.

Having chosen : = 3, the numerical simulations are performed for model 2 given
in equation (17). For testing of the model, =6 = 10 points were used to calculate
the RMAE for each combination. Table 5 exhibits that among all the surrogate
models that were trained using different number of sample points, different sampling
techniques and RBF interpolations, the cubic spline RBF showed the lowest error for
both LHS and SLHS in general, with a few exceptions. Also, as expected, the error of
approximation shows a decreasing pattern as the number of sample points increase
from 60 to 80, except in RS when the RMAE follows no particular trend. The least
RMAE is obtained for the model trained on 80 data points from SLHS for cubic
spline RBF. For one of such sample point 1 = [−0.425,−0.425,−0.912,−0.912], the
POD-RBF responses were obtained for =B = 40 and the original and approximated
H1 and H2 were plotted as shown in figure 7. For this point, all POD-RBF gave relative
maximum absolute error less than 1% as desired.

5.2.3 Optimization

In previous subsubsection, the best results were obtained for =B = 80 with SLHS
and cubic spline RBF. That experimental design is used to solve the optimization
problem (22) and the results are summarized in table 6. For simplicity, the number
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Table 5 RMAE for various experimental designs of Model 2

Sampling Interpolation =B = 40 =B = 60 =B = 80

LHS Linear 0.45112 0.32948 0.18871
Cubic 0.28229 0.24010 0.15794

SLHS Linear 0.26162 0.19198 0.19204
Cubic 0.23986 0.18685 0.15376

RS Linear 0.59500 0.55080 0.86405
Cubic 0.92109 0.15595 0.19902

of optimization parameters for each control variable are taken to be 2. We could,
however, allows specification of different number of optimization parameters for
each control variable. The optimization results of this model apparently highlight
the efficiency of surrogate modeling. As the table 6 reports, the tolerance level is met
in the first iteration, with error between approximated and actual responses being
less than 0.01 in first iteration. Hence, the desired accuracy is achieved and no further
iterations were required.

The optimization criteria obtained using surrogate model k̂0 (1̂∗) = 43.5647 is
very close to k0 (1∗) = 43.3287. Moreover, since results of optimization problem
were obtained within one iteration, the construction time of surrogate model can
be considered once for all. Therefore, the total computational time for optimization
through surrogate model of 6.6 seconds + 15.35 seconds is less than 23.40 seconds
taken by original problem. Relatively, the surrogate method is four times faster
than the original method in solving optimization problem. In a nutshell, for this
highly non-linear model, surrogate model gave highly accurate and computationally
efficient result of the optimization problem.
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Fig. 7 Actual vs approximated surface of Model 2. SurrogateModel_PopulationDynamics

Table 6 Optimization results of Model 2

Field Value Field Value
1 (0) [-0.4250,-0.4250, Bounds [-0.5500, -0.300];

-0.9120,-0.9120] [-1.0370,-0.7870]
1∗ [-0.5006,-0.3250, 1̂∗ [-0.4922,-0.3334,

-1.0120,-1.0120] -1.0120,-1.0120]
k0 (1 (0) ) 55.2817 k0 (1̂∗) 43.9127
k0 (1∗) 43.3287 k̂0 (1̂∗) 43.5647
k1 (1 (0) ) 22.9396 k1 (1̂∗) 0.0162
k1 (1∗) 0.0000 k̂1 (1̂∗) 0.0000
Time>A86 23.3983 sec TimeBDAA 6.6241 sec
Time2=BCA 15.3470 sec n 0.0081

5.3 Model 3: Quality Control in Production and Process Management

5.3.1 Description of the Model

The third model in this series is that of optimal control strategy in production and
process management. This non-linear dynamical system is taken from work of M.D.

https://github.com/QuantLet/SurrogateModel/tree/main/SurrogateModel_PopulationDynamics
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Haider Ali Biswas [6]. The model addresses the issue of declining quality of goods
in production processes over time by the help of state constraints in optimization
problem. Even though themodel is introduced in the context of industrial engineering
in the original paper, the model in equally valid in industrial economics since the
quality of products is one of the main factors in determining the aggregate demand
and supply of each firm and it comes to economists to keep check of the market
demand by controlling the quality of products. The mathematical model of the
problem taken directly from [6] is as following:

">34; 3 :=



max
(D1 ,D2) ∈*

� = ; (H())) +
∫ )

0
! (C, H(C), D(C))

subject to
H′1 (C) = H2 (C)D1 (C) − 3 (C),
H′2 (C) = −(U + D2 (C))H2 (C) + D2 (C),
6(C, G(C)) ≤ 0,∀C ∈ [0, )],
(D1 (C), D2 (C)) ∈ * a.e. C ∈ [0, )],
H1 (C) ≥ 0, a.e. C ∈ [0, )],
H(0) = H0,

where
6(C, H(C)) = −H2 (C) + 0.5,
; (H())) = 1H2 ())4−d) ,
! (C, H(C), D(C)) = (F3 − ℎH1 (C) − AD2

1 (C) − 2D2 (C))4−dC

* = {(D1, D2), 0 ≤ D1 (C) ≤ *1, 0 ≤ D2 (C) ≤ *2, a.e. C ∈ [0, )]}
(23)

In this model, the state variables H1 (C) and H2 (C) represent the inventory level,
and proportion of ’good’(appropriate quality) from the end items at any time C
respectively. At initial time, H10 = 3 and H20 = 1. The control function D1 (C)
represented the scheduled production rate with upper limit *1 = 3 and control
function D2 (C) represents the preventive maintenance rate to reduce the proportion
of defective units produced with an upper limit of *2 = 4. The demand rate (3)
and the obsolescence rate of process performance in absence of maintenance (U) are
fixed at 3 = 4 and U = 2. The negative sign associated with the second differential
equation in the dynamical system corresponds to the declining proportion of ’good’
items in absence of maintenance. The maintenance is introduced in the optimization
problem by declaration of lower bound on proportion of good items in form of state
constraint. The final objective of the problem is to minimize the salvage cost (the
estimated resale value of a good at the end of its useful life).
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5.3.2 Simulation

The positive constants in equation (23) are: [d, F, ℎ, 2, 1, A] = [0.1, 8, 1, 2.5, 10, 2].
We carry out similar analysis for this model. The rank determined using the energy
method is : = 4 for all variants. The RMAE results as recorded in table 7 show that
once again cubic spline RBF dominated linear spline in higher number of training
points. Also, the least error of approximation was obtained when the combination of
SLHS, cubic spline RBF, and =B = 80. The approximation of system responses for
an arbitrary point and its comparison with original system responses is displayed in
figure 8.

Table 7 RMAE for various experimental designs of Model 3

Sampling
Strategy

Interpolation
Type =B = 40 =B = 60 =B = 80

LHS Linear 0.08475 0.00886 0.00813
Cubic 0.03809 0.00567 0.00697

SLHS Linear 0.01432 0.02622 0.00212
Cubic 0.02214 0.00586 0.00157

RS Linear 0.03245 0.06733 0.06917
Cubic 0.06310 0.00377 0.06124

Fig. 8 Actual surface vs approximated surface for Model 3. SurrogateModel_Production

https://github.com/QuantLet/SurrogateModel/tree/main/SurrogateModel_Production
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5.3.3 Optimization

The experimental design concluded in previous subsection was used to solve the
optimization problem of Model 3 with 4 optimization parameters for each control
function. Piecewise-linear interpolation was used to interpolate the optimization
parameters. Here, unlike Model 2, the error of approximation was above the set
threshold of n%$� = 0.01 when the optimization results were obtained for the first
time. This entails the use of iterative process discussed in Section 4. After applying
the aforementioned algorithm, the error of approximationwas achieved in 3 iterations
and the summary of results for each iteration is presented in table 8 and figure 6. The
optimization results here match the results reported in the original paper, i.e. in the
presence of state constrains, the declining trend of number of good items represented
by state variable H2 was halted by imposing a minimum proportion.

Table 8 Optimization results for Model 3

Parameter Iteration 1 Iteration 2 Iteration 3

1 (0)
[2.7,2.7,2.7,2.7,
0.0,0.0,0.0,0.0]

[0.7022,0.0000,
1.8041,1.4614,
1.8999,1.3773,
1.9082,4.0000]

[0.8376,0.7384,
2.1002,0.5137,
2.2801,1.3892,
1.6146,4.0000]

�>D=3B
[0,3]
[0,4]

[0,3]
[1,4]

[0.0000,2.0137]
[2.0000,4.0000]

1∗
[0,0,0,0,
4,4,4,4] - -

1̂∗

[0.7022,0.0000,
1.8041,1.4614,
1.8999,1.3773,
1.9082,4.0000]

[0.8376,0.7384,
2.1002,0.5137,
2.2801,1.3892,
1.6146,4.0000]

[0.3097,0.3571,
0.1290,0.3428,
3.1945, 3.0046,
2.706, 4.0000]

k0 (1 (0) ) 16.0926 - -
k0 (1∗) 21.4360 - -�
k0 (1̂∗) 22.2183 26.1910 25.1481
k0 (1̂∗) 20.9054 25.0440 25.0711
)8<4>A86 20.4522 sec - -
)8<42=BCA 15.1739 sec 16.3270 sec 20.1867 sec
)8<4BDAA 2.2351 sec 2.8383 sec 7.9384 sec
k1 (1 (0) ) 0.1568 - -
k1 (1̂∗) 0 0 0�
k1 (1̂∗) 0 0 0
n 0.0628 0.0458 0.0031

However, the main goal of this analysis is not to evaluate the accuracy of actual
responses, but rather analyze how accurately and efficiently surrogate model could
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Fig. 9 Optimal surface and optimal control plots for Model 3. SurrogateModel_Production

predict the system responses. The results from this model have given an ideal ex-
ample of the iterative procedure described before. As illustrated in figure 10 for first
optimization parameter of each control function, the domain of the control function
decreases with each iteration and a new surrogate model is constructed to determine
1̂∗, which moves closer to 1∗ as the algorithm moves forward. This domain is cen-
tered at the interpolated value of optimization parameters for each control function
(note: this is not evident in figure under consideration as only one optimization pa-
rameter is plotted for simplicity whereas 4 optimization parameters are used). The
distance between 1̂∗ of final iteration and 1∗ is visibly higher in this case. This can
be interpreted using the results reported in table 8.

For this model, the surrogate model has better results of optimization than the
original model: the maximum value of the optimization criteria for the original
model k0 (1∗) was 21.4360, whereas, at the end, the optimal value obtained by
surrogate model is 25.0711. This implies that surrogate model performed better
than the original model in this case. Surrogate model also outperformed the original
model in terms of time for solution of optimization problem: the problems that took
the over 20 seconds to be solved by original model could be solved in less than 3
seconds with the surrogate model. On the other hand, The construction time for the
surrogate model exceeds the time taken by the optimization through the original
model. This could be a concern if the optimization problem is being solved only
once.

As previously discussed, for many applications, specially those involving inverse
problems, the optimization problems are required to be solved repetitively. Since the

https://github.com/QuantLet/SurrogateModel/tree/main/SurrogateModel_Production
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Fig. 10 Illustration of iterative algorithm for Model 3

surrogate model is constructed once for all, the computational time gained by using
surrogate models for the optimization can easily overtake the time of construction.
Furthermore, with more complicated dynamical systems, the computational cost de-
manded by original models increase rapidly, while the computational time needed to
solve the same using surrogate models remain low. Hence, these reduced order mod-
els dynamically adapt to the system behavior and provide highly accurate solutions
to the optimal control problems, while decreasing the computational complexity and
are therefore recommended to be adapted in many other applications.

6 Conclusion

This research employs Proper Orthogonal Decomposition (POD), a surrogate mod-
eling technique integrated in optimization framework for dimension reduction of as-
sociated dynamical systems. POD extracts hidden structures from high dimensional
data and projects them on lower dimensional space using the statistical method of
singular value decomposition. In the first instance, POD is coupled with various
Radial Basis Functions (RBF)— a smoothing technique— and the computational
procedure is hypothesized to provide compact, accurate and computationally effi-
cient solution of optimal control problems. The main contribution of this research is
to enhance these surrogate models by introducing various sampling methods to the
algorithm, and using an iterative algorithm, to achieve more accurate results.

The algorithm and computational procedure is implemented on three real-life
optimal control problems that are taken directly from literature sources. It is demon-
strated that the dimensionality of high order models in the form of ODEs of dynam-
ical systems could be reduced substantially to as low as 3 with relative maximum
absolute error less than 0.01 between original and approximated system responses.
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Hence approximated surrogate model gave a good alternative method of solution
of ODEs with low CPU intensity. The simulation part of PDF-RBF procedure is
carried out by varying the number of sample points, sampling strategy, and RBF
interpolation types in the training phase. The results showed that the approximation
is more precise if the model is trained on higher number of sample points. Also,
the interpolated surrogate model constructed using cubic-spline RBF led to better
results in the complex model than its liner counterpart. Furthermore, LHS and SLHS
both led to better approximations than RS, which highlights the significance of our
proposal to use memory-based sampling techniques.

In solution of optimization problems, the system responses obtained by surrogate
model invariably gave accurate results with improved computational time. As a
whole, all three models agreed with the hypothesis of this work that surrogate
models can increase the computational efficiency in solution of dynamical systems
while maintaining the accuracy of system responses. However, the construction time
of the surrogate models is subject to the available computational resources and
the numerical simulation might be much faster in a high-performance computer,
compensating for the time used in iterative process of POD-RBF algorithm.

The presented surrogate model algorithm significantly enhance the existing sur-
rogate modelling technique. The algorithm also establishes a new paradigm for cou-
pling optimization and modern statistics using data analytics methods. The proposed
framework opens up a whole new avenue of research for utilizing surrogate models,
specially in the machine learning research that estimate hyper-parameter through
optimization problems, and require methods to ease the computational burden.

6.1 Limitations and Future Work

ROMs are usually thought of as computationally inexpensive mathematical repre-
sentations that offer the potential for near real-time analysis. The hypothesis of this
research is based on the same notion. However, while analyzing the performance
POD-RBF procedure on non-linear dynamical systems in the last section of this
work, it is brought into consideration that the even though the optimization process
itself is faster with surrogate responses, their construction is sometimes computa-
tionally expensive as it involved accumulating a large number of system responses to
input parameters. It is also noteworthy that sometimes ROMs lack robustness with
respect to parameter changes. These limitations are considered, however the detailed
discussion of these issues and their solutions are left for the future work.

In future, the performance of surrogate models can be evaluated on more com-
plicated models consisting of highly non-linear ordinary and partial differential
equations. Also, other sampling techniques which allow inclusion of corner and op-
timization points in the training set, methods of obtaining POMs, and interpolation
methods can be explored as an extension of this work. Furthermore, the computa-
tional time of each of the model can be calculated with more efficient machines in
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homogeneous computer environment to get near-exact insight into the performance
of surrogate models.
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