
IRTG 1792 Discussion Paper 2021-004

Understanding Smart Contracts:
Hype or Hope?

Elizaveta Zinovyev *

Raphael C. G. Reule *

Wolfgang Karl Härdle * *2 *3 *4 *5

* Humboldt-Universität zu Berlin, Germany
*2 Xiamen University, China
*3 Singapore Management University, Singapore
*4 Charles University, Czech Republic
*5 National Chiao Tung University, Taiwan

This research was supported by the Deutsche
Forschungsgesellschaft through the

International Research Training Group 1792
”High Dimensional Nonstationary Time Series”.

http://irtg1792.hu-berlin.de
ISSN 2568-5619

In
te
rn
a
ti
o
n
a
l
R
es
ea

rc
h
T
ra
in
in
g
G
ro
u
p
1
7
9
2

http://irtg1792.hu-berlin.de

Understanding Smart Contracts:

Hype or Hope?

Elizaveta Zinovyeva Raphael C. G. Reule
Blockchain Research Center, Humboldt-Universität zu Berlin, Germany.

International Research Training Group 1792, Humboldt-Universität zu Berlin, Germany.

elizaveta.zinovyeva[at]wiwi.hu-berlin.de irtg1792.wiwi[at]wiwi.hu-berlin.de

Wolfgang Karl Härdle
Blockchain Research Center, Humboldt-Universität zu Berlin, Germany.

Wang Yanan Institute for Studies in Economics, Xiamen University, China.

Sim Kee Boon Institute for Financial Economics, Singapore Management University, Singapore.

Faculty of Mathematics and Physics, Charles University, Czech Republic.

National Chiao Tung University, Taiwan.

haerdle[at]wiwi.hu-berlin.de

March 15, 2021

Abstract

Smart Contracts are commonly considered to be an important component or even

a key to many business solutions in an immense variety of sectors and promises to

securely increase their individual efficiency in an ever more digitized environment.

Introduced in the early 1990’s, the technology has gained a lot of attention with its

application to blockchain technology to an extent, that can be considered a verita-

ble hype. Reflecting the growing institutional interest, this intertwined exploratory

study between statistics, information technology, and law contrasts these idealistic

stories with the data reality and provides a mandatory step of understanding the

matter, before any further relevant applications are discussed as being “factually”

able to replace traditional constructions. Besides fundamental flaws and applica-

tion difficulties of currently employed Smart Contracts, the technological drive and

enthusiasm backing it may however serve as a jump-off board for future develop-

ments thrusting well in the presently unshakeable traditional structures.

JEL Classification: G02, G11, G12, G14, G15, G23.

Keywords: Cryptocurrency, Smart Contract, Ethereum, CRIX.

1

1 Introduction

“All great truths begin as blasphemies.”

Shaw (1919)

Smart Contracts: a key buzzword of our modern, fully digitized, and increasingly

globalized media and scientific world amongst “crowdfunding”, “decentralization”, “re-

source management”, “prosumer”, “blockchain”, “cryptocurrency”, “internet-of-things”,

“digital asset regulation”, and many more. The Smart Contract (SC) hype has reached

the non-tech-mainstream, driven by an ever-increasing number of FinTech, RegTech,

SupTech, LegalTech, and OtherTech startups, as well as governmental initiatives – yet

most often disappear into the ether after some hype.

The basal common “understanding” is that blockchain (BC) applications of so-called

SCs are self -executing pieces of software/algorithms/codes/processes with a predeter-

mined set of rules to be followed in calculations and other problem-solving operations.

SCs are supposed to decentralize the authority over agreements and their enforcement by

being purposely self -enforcing, with people across the whole world starting binding re-

lationships without ever trusting – leave alone knowing – each other. This ideal in a new

appearance represents a fundamentally different approach on organically grown contrac-

tual systems. A technology from the 1970s, the so-called Electronic Data Interchange

(EDI), was driven by a similar ideal and equally hyped but eventually failed to de-

liver on replacing traditional contracting. While it was able to reduce some costs, it

effectively enshrined the human inefficiency in decision making in the process (Sklaroff,

2017). Translated to today’s even more information-driven times, announcing to work

on some BC application attracts a lot of attention and investments to companies – even

though the rate of delivery of BC-driven outcomes is negligible with such announcements

incorporating respective buzzwords are observable as an attempt to take advantage of

artificial premia (Akyildirim et al., 2021). Therefore research on a possible gap between

an actual status of SCs (given by data) and their target status is mandatory.

From crops insurance, over supply chain management, to development assistance,

manifold imaginary fields of SC application turn out to be either philosophical “How nice

the world could be”-papers or “This is what we used, use, and what we will use”-outlets

of very specialized fields to forcefully foster the idea of SCs. They all have one thing in

Financial support of the European Union’s Horizon 2020 research and innovation program “FIN-
TECH: A Financial supervision and Technology compliance training programme” under the grant agree-
ment No 825215 (Topic: ICT-35-2018, Type of action: CSA), the European Cooperation in Science
& Technology COST Action grant CA19130 - Fintech and Artificial Intelligence in Finance - Towards
a transparent financial industry, the Deutsche Forschungsgemeinschaft’s IRTG 1792 grant, the Yushan
Scholar Program of Taiwan, the Czech Science Foundation’s grant no. 19-28231X / CAS: XDA 23020303,
as well as support by Ansar Aynetdinov (ansar.aynetdinov[at]hu-berlin.de) are greatly acknowledged.

2

common: they do not access the broad view on (1) what the technology can really deliver

and/or (2) where it can be applied to real-world situations. Evolutionary, humans used

clay, wood, or paper to enshrine their agreements to trade grain, Schnapps, or other values

within a system supervised by some hierarchical structures. BC SCs promise to overcome

this homeostasis. Seeing that many forwarded SC-oaths are surreal to be accomplished

even through traditional means, we critically assess and identify these areas to find out,

if this is all just hype or if there is hope. Through the use of datasets depicting in depth

the activity and information flow of SCs on the Ethereum (ETH) network, we are able

to research the facts and what SCs are used for contrary to the common belief:

� Can SCs increase technological literacy, assure increased inclusion, and participation

rights?

� Does it make sense for every economic endeavour to adapt to such systems?

� Are they more than just a financial vehicle and really able to, for example, fight hunger

in underdeveloped countries?

� Do they really increase efficiency and security whilst reducing associated costs and

procedural risks?

� Are SCs, that follow strict structures in order for their coding to work properly, really

more flexible than traditional natural language agreements?

With many teething issues to be overcome by such applications beyond being simple

transaction monitoring software, the result to date is a realm of uncertainty which the

construction in itself tries to prevent ironically. Especially terms like smart, contract,

authority, and self-enforcing are highly ambiguous and not as safely defined as in tradi-

tional schemes. The most obvious issue, and one of the common misconceptions, is the

colported independent self-executability of SCs - which is wrong, as an external input is

always needed to order an SC to execute its code. The code is then indeed self-enforcing,

possibly acting as a vigilante, leading to a superfluity of problems. Our work is inspired

by the work of (Oliva, Hassan, and Jiang, 2020) with the aim to extend it with a legal

perspective and a proposal of approaches to gain opportunities for further exploration.

In this sense, we will crystallize, that as a fact, SCs are just another – yet ambitious –

“pathetic dot” regulated by the forces of the market, technical infrastructure, law, and

social conception (Lessig, 1999).

In this research, we first identify the sources of the hype on SCs; secondly, we present

algorithms of SCs to understand what SCs are actually doing. This responds to many in-

herent questions by creating a taxonomy and critical understanding of SCs. By outlining

their framework and providing an extensive mapping of SCs based on the ETH network.

Visually, we de-frame the Storytelling by outing their real fields of application and the

3

costs that come with this fractional delivery on the promised list of miracles. Based on

the research insight we got from the analysis of existing SCs, we propose an algorithm

to identify a proper answer and solution to the question, if it makes sense for a given

endeavor to invest into creating BC/SC frameworks.

The paper is structured by giving an introduction to the existing research literature

and subject in sections 2 and 3, followed by a dataset disclosure in section 4, a taxonomy

of SCs in sections 5 (Clustering) and 6 (Classification), eventually culminating in a critical

status analysis and improvement proposal in section 7, and ending with closing remarks

and an appendix in sections 8 and 9. All presented graphical and numerical examples

shown are reproducible and can be found via www.quantlet.com (Borke and Härdle,

2018) and are indicated as USC. Research data is obtainable through the Blockchain-

Research-Center.de .

2 Outlet Review

2.1 Recent Research Review

To outline the dissonance between the mass of whitepapers/prosaic outlets in contrast to

the actual data available for SCs, we conduct a data-driven literature overview gather-

ing a rather diffuse impression. Researchers, for example, focus on a variety of aspects,

among others, ranging from applications of SCs in healthcare and quality monitoring

(Celesti et al., 2020; Khatoon, 2020; Yu et al., 2020), technical implementations and vul-

nerabilities (Ajienka, Vangorp, and Capiluppi, 2020; Pierro, Tonelli, and Marchesi, 2020;

Li, Choi, and Long, 2020) to games (Scholten et al., 2019).

One of the first research works dedicated to the empirical analysis of SCs is the work

by Bartoletti and Pompianu (2017). The authors gathered a dataset of 834 SC source

codes, which were then manually classified into different categories using the proposed

taxonomy. The identified categories contained types like Notary, Financial, Game, Wal-

let, Library. Moreover, the authors were able to identify the design patterns found in

the source code. Wöhrer and Zdun (2018) also dedicate their work to design patterns

that are aimed to improve and facilitate the work of software developers and engineers

working on applications for the BC, as similar problems may require similar solutions.

One of the later empirical studies created by Oliva, Hassan, and Jiang (2020) propose

the approach of cross-linking the data from various sources in order to scrutinize better

their behavior: their activity level, category of what these contracts are, and source code

metrics, like complexity.

4

www.quantlet.com
https://github.com/QuantLet/USC
https://github.com/QuantLet/USC

An important research direction in this context is automatic source code classification.

Although the idea of using machine learning for code classification is not very new, it is not

that present in the ETH realm, as we will see later. Norvill et al. (2017) use unsupervised

techniques and run clustering on bytecodes to group contracts with a similar purpose.

Chen et al. (2018) use the machine learning method XGBoost on the opcodes and account

data to identify Ponzi schemes. Wang et al. (2020) use different machine learning methods

to identify security vulnerabilities in SCs. Many codes on the ETH BC are very similar

and are quite often copied. Kondo et al. (2020) investigate code cloning on ETH and

identify clusters of the code clones and inspect their behavior.

Figure 1: Wordcloud of existing research keywords

2.2 Preliminary Data Basis

In order to scan a wide-angle of exhaustive SC outlets, we utilized the Scopus citation and

abstract database that gathers peer-reviewed research from around 11.7K publishers from

different directions in science. The query retrieves the scholarly work from conferences

and journals in the English language containing ethereum or smart contracts in the title.

Furthermore, the query is limited to work conducted in the areas like Business, Computer

and Decision Science, and Mathematics. The exact query can be found in the respective

Quantlet on Github. In total, the data pool lists 839 research outlets. Research

publishing on ETH SCs began in 2016 and achieved a peak in 2019. At the date of

retrieving the query, the year 2020 was ongoing, hence, we could not fully measure whether

the amount of research in 2020 is higher or lower than in 2019. Nonetheless, we can see

that the SC area’s interest is not fading and is staying on a relatively high level. The topics

of the examined research outputs were distilled from their abstracts and keywords. We

present the most frequent keywords as a wordcloud in Figure 1. The keywords blockchain,

5

https://github.com/QuantLet/USC/tree/master/SC-literature-research
https://www.scopus.com/home.uri
https://www.scopus.com/home.uri
https://github.com/QuantLet/USC/tree/master/SC-literature-research

smart contract, and ethereum were filtered out since they were used to limit the query

and therefore do not deliver any additional semantic information to differentiate between

the outlets. Technical keywords such as security, data, iot, solidity, distributed ledger,

and decentralized are the most frequently used. Unfortunately, these do not provide us

with sufficient additional information to identify clear tendencies in the research. Each

of these keywords could belong to any given paper in the field of SC research. Hence,

bibliometric research on SC outlets needs to be conducted on a more granular level.

Figure 2: Identification of optimal number of groups using elbow-curve method with
Davies-Bouldin score

The gathered research papers were categorized into their dedicated topics using dimen-

sionality reduction, clustering, and natural language processing techniques (Bidirectional

Encoder Representations from Transformers, BERT) to subsequently inspect the most

important words used therewithin. This analysis was performed on the abstract to achieve

higher specification. This step’s technical implementation is described in greater detail in

section 5. The optimal amount of groups/clusters for this step was determined by the el-

bow (curve) method: a heuristic to identify the number of clusters in a dataset Thorndike

(1953). This method measures the identified performance metric for different numbers of

groups, plots them against each other, and identifies points that are knee or elbow of a

curve. The possible metrics for clustering could be an intra- or intercluster variance, the

Davies-Bouldin, and Silhouette scores. Since these metrics might produce contradictory

results, we decided to utilize only one of them – The Davies-Bouldin score. This score

(Davies and Bouldin, 1979) shows the average similarity measure of each cluster with its

most similar cluster. Figure 2 displays the Davies-Bouldin score, where similarity is the

ratio of within-cluster distances to between-cluster distances. It evaluates intra-cluster

similarity and inter-cluster differences. Applying the elbow criterion to these diagnostic

plots leads us to a value around 14 – one of the first elbows of the plot, as we prefer

rather lower values of the Davies-Bouldin score and the lower amounts of topics an-ease

the interpretability. Thus, the following Figure 3 presents the scatter plot depicting our

clustering into 14 various topics of the existing research.

6

https://github.com/QuantLet/USC/tree/master/SC-literature-research

The manual assessment of the top ten identified most important words pointed to

the following possible topics: Healthcare/medicine, Implementation/Storage, Vulnerabil-

ities/Ponzi/Scam/Bugs, Voting/Trust, Research/Categories of Research, Programming

language/Solidity/Software Development, Crowdsoursing/Sharing, Applications Devel-

opment/Protocols, IOT/Smart devices, Verification/Deployment/ Execution of SC, Food/A-

griculture, BTC/Finance/ICO, Energy/Electricity/Gas, and Payments/Audit. In Figure

4, you can find the example of three topics, where each bar represents the most important

word and its length – its importance in terms of c-TF-IDF, which will be described in

Section 5. All 14 topics are available in the Appendix 9.3. The colors of already men-

tioned categories correspond to the colors in the Appendix section 9.3. We observe in

Figure 3 that the topics are very diverse, yet inter-related, and express different distances

to each other. Whilst there are no dominating topics present, we observe that some of

the clusters are relatively similar in the size: e.g., Payments/Audit, Vulnerabilities/Ponz-

i/Scam/Bugs, BTC/Finance/ICO, and Programming language/Solidity/Software Devel-

opment. The Healthcare/Medicine cluster is very isolated, which points out that these

papers are rather unsimilar to all the others. As well as Energy/Electricity/Gas cluster

seems to have its very own distinct features, as there are space gaps, which are mean-

ingful in UMAP dimensionality reduction (see section 5 and 9.8), between this cluster

and the others. Interestingly, there are no clusters containing distinctly related machine

learning key-words. Moreover, there are no clusters that would obviously outnumber all

the others. This will be later of importance where we show that the existing applications

are mostly dominated by the Finance/ICO.

Hence, after this first step into understanding SCs and structuring outlets on SCs,

we see that there are no dominating topics and that they are diverse. This goes hand in

hand with the common understanding that SCs can be readily applied to many diverse

use cases. Further evidence to that can be readily collected to a basal Google search

query or by respective Google Search Query Trends. Therefore, one of the aims of our

work is to show whether the use-cases promised in the media or research can be realized

within the SC concept or otherwise that the SC environment has significant technical

and legal constraints and, in the end, is used primarily for one purpose – as a financial

instrument. This fact would make BCs using the SC concept not significantly different

enough from other CCs.

7

Figure 3: Grouping the existing research into 14 topics via UMAP

(a) Topic 1 (b) Topic 2 (c) Topic 3

Figure 4: Top 10 the most important words per topic identified in the existing SC research

3 Labore et Scientia

Governments, companies, clients, humans, in general, are making manifold kinds of trans-

actions and agreements each day. Most are dependent on government-backed third-party

entities to create trust in the given system. These highly centralized systems inject costs

and risks into otherwise simple processes by being dependent on a stable workforce and

intermediaries in order to keep this organically grown and comparably slow traditional

8

https://github.com/QuantLet/USC/tree/master/SC-literature-research
https://github.com/QuantLet/USC/tree/master/SC-literature-research

trust machine running. This machinery is confronted by a rapidly increasing load of

information and a plethora of interdependent data streams with increasing digitization.

Smart phones and smart watches, for example, provide us with instant access to the whole

of available knowledge of humankind, may it be location tracking or health data – yet,

whilst the entry to knowledge may be easy, the real great leap forward is to understand

and correctly employ this knowledge. Putting “smart” into the name of any given prod-

uct does not make it smart or even an intelligent idea to begin with. However, the idea

of SCs as a tool to increase efficacy and objective decentralized controlling mechanisms

is an essential approach on minimizing the possibilities of uncertainty and risks originat-

ing from human interference and “allow a quarrelsome species ill-suited to organizations

larger than small tribes to work together on vast projects like manufacturing jumbo jets

and running hospitals” (Szabo, 1997a).

“A smart contract is a computerized transaction protocol that executes the

terms of a contract. The general objectives of smart contract design are to

satisfy common contractual conditions (such as payment terms, liens, confi-

dentiality, and even enforcement), minimize exceptions both malicious and

accidental, and minimize the need for trusted intermediaries. Related eco-

nomic goals include lowering fraud loss, arbitration and enforcement costs,

and other transaction costs.”
Szabo (1994)

Nick Szabo (1994) envisioned the now-famous concept of SCs to increase contractual

efficiency and published it around fourteen years before the popularization of the BC

technology through Bitcoin (BTC). Unfortunately, technical constraints forced this idea

to become a more theoretical and abstract construction for even more complex use cases

like the transfer of real estate ownership, shares in a company, or intellectual property.

Szabo explained that a vending machine is the simplest form of an abstract SC: it is a

technical device accessible to anybody who is eligible, designed to transfer ownership of a

good when provided with a predefined input. Given the nature of a vending machine, it

therefore also controls and oversees the actual value for the involved parties: the seller,

by storing it, and the buyer, by granting access to it after corresponding valid input.

It can hence also enforce the terms of the given agreement by either granting access to

the requested value or asking for a fitting input – otherwise, the request gets rejected.

Envisioned input for SCs is anything from payments, votes, or any other condition that

can be expressed by code (Szabo, 1997b).

3.1 Basic Understanding

The previously abstract ideas on SCs were ready to be transformed into a basic proof-of-

concept status with BC technology’s emergence. BCs are technically speaking a sequential

9

and shared database managed and controlled by consensus algorithms for internal con-

sistency. They can be designed as permissionless/public or permissioned/private system

constructions, i.e., are defined by their read/write “rights” to access the network (see

further Härdle, Harvey, and Reule, 2020; Lin et al., 2021). ETH is a community-driven,

open-source software platform that was the first of such BC systems to support SCs. Its

Whitepaper was originally published in 2013 by Vitalik Buterin, before its public launch

in 2015 (Buterin, 2020). The main elements of interest for ETH BCs, i.e., a chronological

ledger of human-induced technological happenings, are peer-to-peer networks, consensus

mechanisms, hash values, Merkle trees, and asymmetric key encryption. These are also

some of the buzzwords employed by marketeers promoting endeavors based on ETH. They

are repeated over and over again without explanation to confuse and subsequently impress

possible investors – we will touch on these in sections 3.2 and 3.3, as well as appendix 9.5.

One of the key-points of ETH BC is to be not only just a cryptocurrency (CC) but also

to allow a variety of opportunities through SC decentralized applications. But is it similar

to other CCs? BTC is the de facto CC market driver (see also Figure 5), we observe in

Figures 6 and 7, that BTC can be seen as a speculative and very volatile financial vehicle,

while ETH seems to be historically more of a technological driver which not submitting to

this BTC regime as extremely – it is of course heavily influenced nevertheless (Petukhina

et al., 2021; Keilbar and Zhang, 2020; Petukhina, Reule, and Härdle, 2021).

Figure 5: CRyptocurrency IndeX CRIX , 20140731-20210211

10

https://thecrix.de
https://github.com/QuantLet/USC

Figure 6: BTC-USD, 20170101 - 20210211

Figure 7: ETH-USD, 20170101 - 20210211

11

https://github.com/QuantLet/USC
https://github.com/QuantLet/USC

Some media outlets and academic sources differentiate between two types of crypto

assets: coins and tokens. One of the possible definitions is the following: a coin is a

CC that runs on its own BC, whereas a token does not have their own BC and are run

on another BC. BTC and Ether – the native coin of SCs and ETH BC are considered

to be coins, as they run on their own BCs. Dai (MakerDao, 2021) and (Factory, 2021)

living on ETH are usually perceived as tokens. This difference may be important when

different crypto assets are traded. While one can directly exchange tokens via internal

applications, the coins, due to their non-standardized code protocols, can be exchanged

only through external cryptocurrency exchange platforms (Ledger, 2021). The difference

is less visible in all other cases, and quite often, these terms are used interchangeably,

or the tokens are called coins. In the following, we will differentiate between coins and

tokens.

One important type of crypto asset running on ETH BC is a stablecoin – a type of

token, which price is designed to stay fix or, as the name says – stable with respect to

another external asset, like gold or U.S. dollar. It is designed this way to be robust

against the volatility of the Ether’s price. One example of the stablecoin is the USDC

(Circle, 2021). The already mentioned Dai token (MakerDao, 2021) is also a stablecoin.

Within the ETH realm, the tokens must follow certain standards to comply with its

coding codex for their inception via an SC. These standards are proposed as Ethereum

Improvement Proposals (EIP’s) and Ethereum Request for Comments (ERC) that need to

be peer-reviewed and accepted by the community. ERCs are application-level standards

for token standards, name registries, library/package formats, et cetera. Respectively

for SCs, the ERC20 token standard is a set of functions that have to be followed as a

mandatory “styleguide”.

The majority of ETH tokens are ERC20 tokens and have become famous through

their Initial Coin Offering (ICO, remotely similar to Initial Public Offering IPOs in the

traditional field). Besides ICOs, ETH’s SCs also enable and define constructions like

Distributed Applications (DApps), yet they most often just plainly represent transaction

flows (see sections 6 and 5). As said, Tokens are commonly emitted via ICOs, which can

be seen as a crowd funding scheme – in other words: a lot of the created CCs are just

tokens based on the ETH network rather than having their own BC network construction.

Tokens can be Usage Tokens or Work Tokens. Usage tokens act like Ether – just within

their respective DApp. For example, if one wants to use services of a Quantlet App

, then one needs to pay with the corresponding Quantlet coin (“coin”, as it is indeed

just a token in the ETH system as outlined). Work tokens can be seen as shareholder

identificators or membership cards, which means that one can interact within the DApp

12

https://etherscan.io/token/0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48
https://eips.ethereum.org/
https://eips.ethereum.org/
https://github.com/ethereum/EIPs/issues
https://eips.ethereum.org/EIPS/eip-20
https://cryptoradar.org/ico-calendar/?platform=ethereum
https://ethereum.org/en/DApps/
http://quantlet.com
http://quantlet.com

through this token, for example, to vote on who becomes the speaker of a given group.

Figure 8: ETH Network Utilization (Mean), 20150630-20210211

For purposes of understanding the term “Smart Contract” – as Hanna Halaburda

(2018) with the Bank of Canada very critically outlines – we agree that the concept and

actual modus operandi for the absolute majority of BC-based SCs is not new. Auto-

mated recurring payments between entities are an example of how SCs effectively define

themselves nowadays. However, the elemental misunderstanding is with the idea of BCs.

BCs are indeed not needed to gain the benefits from SCs when leaving the crucial as-

pect of immutability/non-modifiability and the utilization of BC technology out, i.e., by

strictly following Szabo (1994)’s initial definition of unbiased controlling. In advance of

section 7.1, whereas Szabo (1994) defines SCs as a “computerized transaction protocol

that executes the terms of a contract” – hence every self-executing agreement like, for

example, related to a vending machine, an ATM, or an AppStore process – Buterin (2020)

eventually defines them as any sort of script running on the ETH BC that follow certain

defined standards for specified SC fields of employment (EIP, 2020). Of course, there

are now plenty of other system constructions also supporting their individual kind of

technological application for their individual purposes, yet we will only specifically look

at ETH SCs as it has proven to be a stable system that has gained great market accep-

tance and steady network utilization (see further section 4, as well as Figures 8, 13, and

23). ETH SCs are therefore realizing Szabo’s idea of control by constructing BC-based,

downtime-resistant, fraud-proof, and network audited systems. These operate without

interference from a third party, by storing, verifying, and enforcing agreements automat-

ically, therefore making human interaction redundant, hence aim to reduce process time

and costs, while also improving transparency and trust.

13

https://github.com/QuantLet/USC

3.2 Understanding ETH

ETH runs a so-called account-based BC, which means that these are the keypoints and

central issue we need to look at after understanding the basic functional framework. An

ETH BC block header contains, besides the hash of the previous block and other rele-

vant information, three so-called Modified Merkle Patricia tree’s (tree also subsidized as

trie) for its state system: state root (system state: account balances, contract storages,

contract codes, and account nonces), transactions (TXs), and receipts (the outcome of

individual TXs). These touch the overall state, i.e., information linked to blocks being

added sequentially to the BC, as well as the individual state of certain entities, like some

balance of value stored on an entity such as a given account.

Figure 9: ETH BC Visualization (adapted from Buterin, 2015)

In a Merkle tree parent/non-leaf nodes contain the hash of their children/leaf nodes,

and the child nodes contain the hash of a block of data. Therefore, any change to the

underlying data, i.e., the state, causes also the hash of the respective reference node to

change. Since each parent node hash depends on the data of its children, any change to

the data of a child node causes the parent hash to change. This would of course trigger

a reaction up to the root node hash, but only the changed hashes will be propagated to

a later block with respective parents of the later block - previous information contained

in a already created block is unchanged. This means, that one does not need to compare

all data across the network of leaf nodes for verification, as the root node hash provides

a quick answer to that when looking up individual addresses. In return, confirming that

some specific small amount of information belongs to the whole tree in question, is done

easily via a so-called Merkle Proof. Only the minimum amount of nodes are modified to

recalculate the root hash for a single operation as visualized in Figure 9.

14

https://ethereum-classic-guide.readthedocs.io/en/latest/docs/world_database/blocks.html
https://ethereum-classic-guide.readthedocs.io/en/latest/docs/world_database/blocks.html

This creates systemic benefits as it is possible to store only a hash of the root node to

represent the data at that point in time whilst keeping the data immutable on a previous

block - see further (Appendix D in Wood, 2021), the Ethereum Wiki, and Buterin (2015).

As this is mandatory understanding for the following sections: the state contains every

account information present in the BC, however, the state itself is not stored in each

block of the BC. It is, as outlined in Wood (2021), generated by processing each block

since the genesis block, that is the initial/inception block of the chain of blocks, whereas

each individual block will only modify parts of the state, but not the whole state. State

trie information therefore exists independently of a referenced state root.

Therefore Figure 9 presents that the state root in block 175223 (left) refers to two

child nodes, and that the state root block 175224 (right) refers to one of the same child

nodes as block 175223 with one new child node not referenced by the prior state root.

Given that 175224 is the last block, the previous state trie information of block 175223

becomes “irrelevant”, when referenced in the state root of block 175224. This means, that

only altered information is connected to the state root of a respective block containing

this information and linking it to previous blocks. As each hash is unique, this means,

that an imaginary block 175230 can also refer to information stored in the state root of

block 175223, given that this old information is updated with new input - i.e., the overall

size of data transferred can be kept low without loosing information.

Two aspects are important for understanding this system: Firstly, adding subsequen-

tial blocks to the ETH BC that do not contain previous information, but only new or

updated information, does not mean, that previous entries are forgotten/deleted/redun-

dant. In contrary, each unique information has a corresponding unique hash, that forms

a hashmap. The state root of block 175224 still references to previous entries present

ad infinitum within the BC, hence allowing to reference values existant in the state trie

of block 175223. Secondly, and this is important for the upcoming exegesis on accounts

and TX, this hashmap creates a reference point for interaction on the BC. However, this

referencing might be missing previous points contained in block 175223 or earlier, if one

only loads data starting at block 175224, which might be referencing to information of

block 175223. Hence that hashmap might miss information referenced in the state root

of block 175223, for example, if an account has sufficient funds. Remember, that the

whole state is not stored, but only the root hash. Conveniently, the ETH network pro-

tocol solves this by requesting missing information from peers - recall the structure and

modus operandi of a BC. Even with only recent information at hand, i.e., missing the

non-altered information of previous blocks, peers commit missing values needed.

15

https://eth.wiki/en/fundamentals/patricia-tree

With a basic understanding of the ETH BC at hand, we can now proceed to dissect

which actors with which corresponding acts can be observed in this system. A TX can

be described as simply sending some value, like say 1 Ether, from Alice to Bob, i.e., from

one address to another, usually by using a wallet. That said value, however, is not in

a “wallet”, but on the ETH BC linked to an account. TXs themselves do not need to

be financial operations, but can also initiate systemic changes like creating an account.

Therefore we first need to understand what accounts are, how they act and can be in-

teracted with, and how these are uniquely identifiable. There a two distinct classes of

accounts in ETH: Externally Owned Accounts (EOA) and Contract Accounts (CA, often

just called contracts, hence unanimously used in relation to SCs).

An EOA is an entity that can be accessed and can validate TX through the individual

secret private key (see further appendix 9.5). It can consequently be identified by the

extracted public key and the complementary public address. The public address can also

be derived from respective in-/outgoing TXs connected to, for example, a given EOA.

Moreover, it serves to store value like Ether and controls applications like wallets. One

private key can generate multiple public keys and multiple other “private keys” for cer-

tain applications (these are in fact not the real private key, but just private keys for an

individual application, hence public keys that are kept secret within that system which

then create further public keys in a mimikry fashion).

A wallet is a software client that allows to manage EOAs. One or multiple EOAs can

be accessed via different wallets and the majority of wallet offerings can generate EOAs

upon request. Wallets can be linked to further services like CC exchanges. Without

going into further details, there are different kinds of wallets, like desktop, web, physical,

and mobile app based ones, which allow features such as TX logging, multisignature,

withdrawal limits, and many other functions. Wallets are therefore user interfaces, which

are controlled via code and authenticated by an EOA’s private key.

CAs, on the contrary to EOAs, do not possess a corresponding private key and are

controlled by the inhibited information stored within: an SC with respectively coded

functionalities. Individual CAs are generated, when an SC is deployed with a TX – hence

these two terms, CA & SC, are often used synonymously – and which is linked to the

deploying EOA through means of public key cryptography/asymmetric cryptography and

its nonce – and hold respective code and/or data (see above and section 3.3). The state

refers to information about individual accounts and consists of the accounts’ balance (in

Wei, see further 9.4), the nonce (the sequential number of TX sent from an EOA, which

includes the number of deployed SCs/created CAs made by an EOA/CA, as they are

TX as well), the storageroot (the root node hash of the account storage trie), and the

16

https://ethdocs.org/en/latest/contracts-and-transactions/account-types-gas-and-transactions.html#eoa-vs-contract-accounts
https://ethdocs.org/en/latest/contracts-and-transactions/account-types-gas-and-transactions.html#eoa-vs-contract-accounts
https://cointelegraph.com/ethereum-for-beginners/ethereum-wallets
https://coinmarketcap.com/rankings/exchanges/

codeHash (hash of the compiled SC, the Ethereum Virtual Machine (EVM) bytecode).

Note: the nonce – differently to the Proof-of-Work nonce, which is a random number –

is simply the sending accounts’ sequential TX count and prevents double spending. CAs

have a balance, a nonce, bytecode, and the root hash of a storage trees (the beforehand

explained Merkle trees for TXs, receipts, and state). In contrast, EOAs do not host an

SC, hence the bytecode and storage hash are empty. For CAs, the bytecode is the SCs

code and the storage hash is the merkle root hash of all the key-value pairs in the CAs

state. Only the codeHash represents an immutable field, as it contains the bytecode of

the SC deployed to the BC – hence, an error in the code will exist persistently. The other

fields are mutable, like the nonce, which increments when a TX created by this account.

There are two different kinds of interactions in ETH: TXs and message calls (MGSs).

TXs are information packages, like debit or credit instructions of a given value, that are

authorized by the interactor/sender through the individual TX signature. The authoriz-

ing signature is mathematically generated through hashing the respective information,

like the above example of sending value from one address to another together with the

private key by using the Keccak-256 algorithm – the result is the signed and hence autho-

rized information. A MSG is equivalent to a TX, being only a local invocation of an SC

function that does not broadcast or publish anything on the BC. They contain the source

and target addresses, some data payload, some value like Ether, Gas and return data.

A simple TX between two EOAs or an EOA to a CA is therefore straightforward with

only three main parameters required: the interactor/sender account address, recipient

account address, and the TX value. Parameters like the nonce, the gasLimit, and the

gasPrice will be input automatically, for example, by using the Geth console (gasLimit

and gasPrice will be touched on later in section 3.3). Further parameters are related to

ECDSA and accordingly used to sign a TX. The parameters data and init refer to SCs.

Data is relevant for value transfer and sending a MSG to an SC, like altering a specified

value. The init parameter is relevant for, as implied, CA creation, i.e., the bytecode

utilized for initialising one.

MSGs are created, for example, when a CA executes certain SC opcodes, or when

interacting through an EOA with an SC to check on a certain variable saved in the CA’s

state. CAs can communicate with other CAs through this functionality given respective

coding (see further section 3.3). MSGs are also called internal transactions – a very

perplexing misnomer that may not be confused with TX, as they are not recorded on the

BC, but can be derived from other ETH system functionalities and are actually reflected

in the overall balance of the individual account over time, as they also consume Gas

(which is a fraction of Ether – more on that later and in section 9.4). MSGs are, for

example, the result of an SC initiating a value transfer to an EOA – like sending a Token

17

https://geth.ethereum.org/docs/interface/javascript-console
https://etherscan.io/gastracker

after a valid and accepted TX has been received from an EOA for an ICO – or of calling

another CA/SC to, for example, check their funds. Hence, CAs can only MSG an EOA

to validate/execute a then recorded TX (that means publicly displayed on the BC). A

MSG doesn’t need to be signed, whereas the called account automatically has access to

the identity of the calling account, which is most basically refered to initially in a vari-

able called msg.sender. This variable information is stored in the constructor, which is a

non-callable/MSGable function that is executed during the creation of a CA/deployment

of an SC and permanently stores the address of the entity creating the CA/SC in the

beginning. Note, that the actual ownership of a CA can be altered afterwards, given the

ownership transfer function is coded in the SC. In other words: In the ICO example, one

first needs to send some value, like Ether, to the CA that hosts the ICO SC in order to

receive a defined value like a respective token in return through a MSG from the CA,

or through the CA calling a EOA, which then transfers value to the initially interacting

account through a BC-recorded TX or non-BC-recorded MSG after release.

Therefore the term “self-execution” of SCs, as mentioned in the beginning, is wrong.

Every chain of motion is triggered originally by an non-CA input. Whilst CAs are only

able to send MSGs (which EOAs can as well) and transfer value through these MSG’s

respective to coded functions therewithin to other accounts. Importantly, TX can not be

created by SCs (only “internal TX”, that are MSG). TX cause state changes by either

a simple transfer of value between accounts (which changes their respective balance),

similarly by sending a MSG to a CA (for example to alter an SC value, which can be

thought of like altering the balance of an account), or by deploying an SC and herewith

creating a CA.

To summarize: EOAs are controllable via private keys, while CAs are controlled via

the individual SCs bytecode (see further section 3.3). EOAs have private keys and are

controlled by, for example, wetware through using software like wallets. Private keys

can be used to create, through the trapdoor function ECDSA, multiple public keys that

uniquely form derived addresses. Therefore, one EOA on the ETH BC can have multiple

CAs linked through deploying SCs. Only EOAs can sign and hence send TXs, which are

recorded on the BC, whereas a MSG are not recorded on the BC. TX/MSG’s can be sent

to a CA in which the respective SCs functions must run accordingly. Finally, only the

most crucial information is stored on the BC like changes in account balance but not, for

example, MSG’s to check on a certain accounts’ balance (these information can however

be obtained through different channels).

18

3.3 Understanding SCs

Occasionally, SCs are seen as so-called programmatically executed transactions (PETs),

i.e., technology for enforcing agreements. Simply put we can state that the execution of

an SC just replaces third party trust with mathematical proof, that some conditions were

fulfilled – nothing more, nothing less (given we are not dealing with nefarious external

input). SCs can accordingly be seen as an enhanced zero-knowledge protocol or proof

(see further appendix 9.6). It only returns, that the predetermined conditions are ful-

filled or non-fulfilled (completeness), that the conditions are clearly defined if conditions

are not-fulfilled (soundness), and that nothing else was disclosed but the fact that the

conditions are met by successfully terminating the process (zero-knowledge), and even-

tually it terminates the process with a given outcome like granting access to a motel room.

Creating agreements for a variety of codeable use cases as SCs, besides the above

mentioned financial vehicles, has therefore several benefits:

� Standardization: Code, following systemic standards, modeled after traditional con-

tractual counterparts, and proven by best practices, combined with a deterministic

execution dependent on clearly pre-defined parameters, reduces risks and costs, while

saving valuable time.

� Automation: Reduced procedural friction, by removing intermediaries, and increased

transaction flow based on a BC or associated consensus system.

� Certainty: Code executes automatically as pre-defined, hence reduces risk (e.g. coun-

terparty or settlement risk), and therefore creates trust in these deterministic digital

processes.

� Security: Transactions are encrypted and uniquely identifiable by their hash and

stored on a BC or associated construction.

� Innovation: Modular and adaptable code that automatises the flow of digital assets

and payments to incubate new business models. Coded regulatory compliance, for

example data reporting, and specialized interdisciplinary regulatory BC-based nodes

to comply with digital advancements.

To create a CA is therefore similar to how a self-extracting software installer works.

During its execution, it configures the system environment and handles the information

according to the given algorithm. In technical terms, SCs are account holding objects on

the ETH BC that contain code with functions to store information or to trigger others.

SC code is immutable once stored/deployed within the ETH BC and thus developing SCs

is closer to hardware programming than say web development. CAs consist each of an

individual SC code in a specific binary format called Ethereum Virtual Machine (EVM)

bytecode representing opcodes and further respective data related to its state (see further

19

section 3.2). To deploy an SC, a CA needs to be created by sending a TX from an EOA

to an empty address with the SC bytecode as data. CAs can also create other CAs,

if the contained SC is respectively coded and the oricess in initiated by an authorized

EOA – usually these CA/SCs are called factory contracts. This process can be done, for

example, through the Remix integrated development environment (IDE), which is the

ETH-native software for building applications combining common developer tools and

making it easily accessible through a comprehensive graphical user interface (GUI). The

same process can be repeated ad infinitum resulting in CA “clones”, which just happen

to have unique addresses as each EOA TX is created using a unique nonce (see section

3.2). Modifying data in any of these does not have an impact on the other clones that

have been created unless coded to do so).

Most SCs are typically written in Solidity before being compiled into bytecode, which

expresses similarities found in object-oriented languages that include variables, arithmetic

operations, functions, classes, string manipulations, and further programming elements.

Access to this is therefore easy with some knowledge in Python, Perl, JavaScript, or C++.

Other languages like Vyper or Bamboo can be used as well, but we will not touch further

on these. The human-readable code in Solidity can not be executed directly but needs

to be compiled to machine-readable opcodes/bytecode that is executable. These opcodes

are allocated a byte each and create an efficient way of process control with, for exam-

ple, “stop” being plainly called with 0x00. Accordingly, these define the management

of contextual procedures, like how to handle certain functions, variables, and parame-

ters. The SC runtime environment – that is embedded within ETH network nodes and

responsible for executing contract bytecode – is called the EVM (see section 3.2). The

term Virtual Machine (VM) has a strong overtone, and to clarify: the EVM is not a VM

– it is an interpreter for the assembly language defined through Solidity (the beforehand

mentioned bytecode), with every participating node running that interpreter. The actual

hash of a given TX is not relevant for this operation until being recorded into the BCs

block Merkle tree (see above section 3.2), but only the data, the amount of Gas available

and used and potentially also the SC code that is being called if it is such an operation.

The EVM handles the state transition function which is composed of updates to accounts

(balances & nonces), Gas (non-/used), bytecode execution, and mining (block creation

rewards and block handling) – this is explained in extenso in the Yellow Paper (Wood,

2021). A buzzword often used to describe the EVM is Turing completeness, which simply

refers to a system capable of solving any computational problem given enough resources

– which in turn does practically not mean, that we can calculate the answer to everything

(which is of course “42”). To make this more tangible: different from just the hosting

of software – like the beforehand used example of an AppStore – ETH nodes not only

process and manage but also execute these codes through their individual instance of the

20

https://remix.ethereum.org/
https://github.com/Betterpath/Bamboo
https://github.com/vyperlang/vyper
https://solidity.readthedocs.io/en/v0.4.24/assembly.html
https://www.scientificamerican.com/article/for-math-fans-a-hitchhikers-guide-to-the-number-42/

EVM, before they or their respective outcome are being propagated. As network par-

ticipants predominantly care about gaining wealth, every node has to verify the results

of individual computation thus benefiting fractionally from the respective fees for indi-

vidual opcodes. Every function of SCs – in general every interaction, successful or not

successfully, like transferring Ether – consumes computational power, which is monitored

by the EVM and needs to be compensated through Gas to the participating nodes, i.e.,

the miners (see further Härdle, Harvey, and Reule, 2020).

Figure 10: Network Parameter time series, 20150630-20210211

Contrary to the BTC realm – where compensation is paid per financial transaction ex-

ecuted, hence per newly created/Proof-of-Work mined block – the EVM system calculates

the costs per function/opcode called (gasPrice), i.e., per computational power consumed

at that given time compared to the network utilization (average gas used capped by

the gas limit) under the expected time of blocks to be added (block time), and hence

interaction can be cheaper given the amount of participating nodes and the amount of

information sent to be validated at that time. This means, that the interactor can pay

more Gas to have information validated more quickly, as each block in the ETH system

21

https://github.com/QuantLet/USC
https://ethgasstation.info/
https://ethgasstation.info/

has a maximum amount of Gas that may be spent within a block – i.e., a maximum of

computational power and fee’s that may be spend per block. Even if a block is created

with no TX or no successful outcome at all, computational fees will be paid in Gas and

there will be a block reward in Ether, which modifies the state trie and the state root –

otherwise two consecutive blocks would have to have identicial state roots. We will not

touch at length on the so-called block gas limit (gasLimit), as it can change over time

and is a question heavily related to especially the scalability of ETH’s BC, see Figure 10.

The parameters relevant to mining and SC execution explained in a nutshell are: start-

Gas is the individual amount of Gas units assigned to individual opcodes and the max-

imum amount the creator assigns to be consumable. Partially synonymously, gasLimit

sets the maximum price paid to execute an interaction in total and also denominates the

total Gas that can be spent within a block. In the case of an interaction, gasLimit is paid

upfront by an EOA. When an interaction is committed to the system, the value for the

sum of individual startGas is reserved, leaving the value for remainingGas. Each further

individual computation uses up Gas, therefore lowers the value for remainingGas until

reaching an “Out of Gas” exception if the interaction is not finished successfully before-

hand, causing the CA’s state to be reverted back to its previous state – there is no such

thing like an SC running ad infinitum – hence, even if the interaction is not successful,

the participating nodes gets paid. The incentive for the participating nodes to validate

and execute information – i.e., to contribute computational power independent from its

intentioned success – is therefore, that Gas is paid in advance and miners receive a guar-

anteed compensation for participating in the system. Any interaction, i.e., anything that

requires computation, can not consume and run in excess of the escrowed amount of

Gas, which prevents indefinite looping of executing commands. Reasons failed processing

can be, for example, non-valid information and coding errors (i.e., non-compliance to

standards, see further section 3, or EVM exceptions with information processing), or just

plainly missing sufficient funds on the interactors/senders end. Finally, the information

processed by the miners is then stored in a new block on the BC and the miners receive

their compensation, while unused Gas is refunded to the interactor to a maximum of half

the Gas consumed. Therefore, if a code has a miniscule error that causes to EVM to run

into an exception can waste a lot of resources, which is why ICO’s (see further section 3)

may cost a lot of resources to begin with.

Figure 11 presents the most important factors of SCs, like the obvious dependence

of Network Utilization to used Gas. We explicitly underline the difference between mere

TX and ERC20-Token TX. Interestingly, we observe a higher correlation of ERC20-

Tokens to VSCs than to TX. This indicates the increased usage of transparent coding

for such endeavours, certainly fostered through the sum of ICO scams that have been

22

ongoing. However, VSCs do not have a high correlation to the Network Utilization,

indicating a subordinate role compared to e.g. mere TX. Therefore we observe that

whilst transparency issues have fostered the usage of VSCs, they are still not common

ground for every application. With most applications being of a financial nature, the

main point of interest is obviously Gas. Of course, the more complex an SC is, the more

Gas it uses for its computational steps, yet Gas is more relevant to other proceedings on

the ETH BC given the data analysis presented in Figure 11.

Figure 11: Network Parameter correlation to VSCs, 20150630-20210211

Importantly, the cost to run an SC can not be securely estimated upfront – contrary

to simple TX. This incentivises network participation, aside block rewards, and most im-

portantly proper thought out coding. Clients like Geth inform interactors if not enough

Gas is allocated for a given interaction to be executed. Entering a high Gas value can also

end in spending more than what was originally intended, which once again incentivises

proper coding. gasPrice denotes the value of each computational step, i.e., each indi-

vidual opcode. gasPrice is the amount in Ether to be paid for one unit of Gas utilized.

As hinted to beforehand, miners can set a gasPrice threshold to prioritize or only accept

respective interactions leading to others taking longer to be finished depending on the

network utilization – remember, that the outcome is not important, as the miners are

always paid out, hence time is Ether.

SCs are employed to create tradeable digital tokens e.g. through employing the ERC20

standard. These may represent a “coin”, an asset, a virtual share, a proof of membership,

amongst other codeable entities (see further 3), and define how these tokens are meant

23

https://github.com/QuantLet/USC
https://geth.ethereum.org/

to be distributed et cetera – in other words, they can act like a central bank (see further

section 7.2). As SCs themselves can not access data from outside their coded environ-

ment, so-called oracles are required – wording related to off-chain information streams

that can change SC values and trigger events if their input is respectively coded to be

accepted. There are different kinds of Inbound Oracles that provide off-chain data, like

Software Oracles (essentially API’s that relay, for example, price data), Hardware Oracles

(for example supply chain RFID sensors), or Consensus-based Oracles (like, for example,

Gnosis). As this is off-chain data, the idea of a decentralized environment is put ad absur-

dum with these – potentially also nefarious – centralised data sources. Being dependent

on only one source can be risky, unreliable, and potentially lead to market manipula-

tions. On the other hand, there are Outbound Oracles, which enable SCs to send data

off-chain (like unlocking a flats’ smart lock). Figure 12 represents the normalized value in

Ether being committed and locked to SCs – interestingly, this value has been on a high

plateau since the COVID-19 crisis has started to really cripple real world based industries.

Figure 12: SC Value, 20150630-20210201

We observe that SCs are embedded in a very elaborate system with many function-

alities. On the other hand, this means, that an entry into this realm and participation

in it is bound to a quite demanding preliminary level of understanding how CCs work,

or even how to access computer networks. The tale of “banking the Unbanked” and

creating financial inclusion, just to present the most obvious dissonance, is therefore de-

bunked with either the possibility and/or infrastructure and/or knowledge of accessing

this technology and its application are not given in most underdeveloped environment

and/or does not present any visible benefits compared to traditional systems employed.

Even with – already classic – Online-Banking, there still exist plenty of bank branches

with employees to talk to customers, hence why should these – on an scale that really

matters beyond a proof-of-concept – switch over to SC-banking? Furthermore, the strict

24

https://gnosis.io/
https://github.com/QuantLet/USC

structures imposed on SCs in order to function properly are in fact creating efficiencies,

when only using them for simple tasks such as sending some value from A to B, but they

therefore do not possess any kind of flexibility whatsoever – i.e., any application beyond

numeric transactions are therewith hardly implementable.

4 Dataset

We cross-linked different sources. One of such sources is the State of the DApps (2021)

(SDA) – a listing of decentralized Apps (DApps), where developers can list their DApps,

additionally adding a category of the DApp (inspired by Oliva, Hassan, and Jiang, 2020).

We only included DApps listed as open source types into our datapool. One DApp can

consist of multiple SCs, similar to a normal App where an SC can be seen as one coding

script. As one App consists of multiple coding scripts, one DApp consists of multiple in-

teracting SCs. Using SDA’s API in December, 2020 we obtained a list of all ETH DApps

and hash addresses of the SCs belonging to them. However, not all of them provide the

information on the individual SCs belonging to them.

Etherscan – a platform that allows to monitor transactions, blocks and SCs on the

ETH BC – enables the verification of SC source codes for informative purposes through

their API. SCs with available source codes are called verified SCs (VSC). However, not

all DApps provide us with VSCs or even list their hashes / addresses. Therefore, the

amount of possible codes is reduced. Yet, Etherscan provides a list of last 10.000 VSCs

having open source licences. We hence got a labelled dataset with categories from SDA

and a larger unlabelled dataset.

A list of all SC addresses on the ETH BC up to December 2020 was obtained using

BigQuery on Kaggle. For that, we created an SQL query analogue to Durieux et al.

(2019), see .

The first dataset that we are going to use for classification contains of 1428 observa-

tions belonging to 473 distinct DApps. 20% of observations were put aside as the test

set. As we have a very small dataset, and some categories have very few observation, it

was decided to summarize the categories except the first most-frequent 5 to the “other”

category. The second dataset, which is unlabelled, consists of 16250 SCs.

25

https://www.stateoftheDApps.com/
https://etherscan.io/
https://www.kaggle.com/
https://github.com/QuantLet/USC/tree/master/SC-over-time

Topic Amount of SCs Relative Amount of SCs

Exchanges 470 32.9%

Finance 317 22.2%

Games 272 19.0%

Gambling 71 5.0%

High-risk 60 4.2%

Marketplaces 44 3.1%

Social 41 2.9%

Media 31 2.2%

Property 29 2.0%

Development 28 2.0%

Governance 25 1.8%

Security 13 0.9%

Identity 12 0.8%

Wallet 7 0.5%

Storage 5 0.4%

Health 3 0.2%

All 1428

Table 1: Categories in the Dataset 1

5 Clustering

In order to further understand the SC environment, it is hence not only necessary to

understand the system they are deployed within, but moreover what kind of applications

they are de facto be used for. Many media outlets, academic publications, and industry

experts promise SCs that solve problems in digital notary, real-estate, managing trans-

plantation organs, and many others, besides creating these processes to be more efficient

and transparent. Can we actually find these categories in the existing applications on

the ETH BC, or are these only hypothetical use-cases? The amount of TX that create

individual SCs on the ETH BC count up to approximately 3.5B, see Figure 13. We can

observe the total amount of SDA-listed DApps and the amount of the SCs that these

DApps are consisting of. There are currently around 3.5K DApps on the ETH BC and

6.49K SCs. So what are all these 99% of the SCs saved on the BC used for?

To train a classifier that yields good performance for the data at hand can be very

costly: researchers and industry experts would need to manually go through each obser-

vation and manually label it into pre-defined categories. In the case of source code, it is

26

https://github.com/QuantLet/USC/tree/master/SC-DApp-scraping

even more difficult, since only people having knowledge about this programming language

may be able to properly categorize such data. Hence we first look into unsupervised ap-

proaches and other tools, like clustering. There exists academic work on the ETH data:

grouping by the means of the bytecode (Norvill et al., 2017), clustering the interfaces of

SCs (Di Angelo and Salzer, 2020), or the nodes on the ETH BC (Sun, Ruan, and Liu,

2019). To the best of our knowledge though, there is no research on clustering the whole

source codes of ETH SC, so far.

Every source code does usually contain comments of the developer who has written

it. Some researchers even assess the quality of comments in the source code (Steidl,

Hummel, and Juergens, 2013) or develop methods to automatically create the comments

(Liang and Zhu, 2018). Therefore, one of our hypotheses is, that comments should de-

scribe what the code does and subsequently we can get a hint on what the whole program

does. Comments are simply human-readable text, thus, based on the comments one may

employ the same methodology used for natural language processing (NLP). One of the

state-of-the-art techniques of NLP is the application of deep pre-trained transformers,

such as BERT (Devlin et al., 2018) or DistilBert(Sanh et al., 2019), and their sentence

embeddings (Reimers and Gurevych, 2019), which we are also going to use for our analysis.

Figure 13: SCs created, 20150630-20201209

As done in section 2, we apply this strategy to our bigger unlabelled dataset to identify

possible groups by using coder-comments present in SCs (inspired by the BERT-approach

in Grootendorst, 2020). As we are dealing with a very high-dimensional dataset given by

the comments in the source codes, our train dataset contains around 120K unique tokens

and one SC can contain up to 14.6K of tokens (see Figure 14) – the first step is therefore to

27

https://github.com/QuantLet/USC/tree/master/SC-over-time

reduce dimensionality. For this purpose we use the uniform manifold approximation and

projection for dimension reduction (UMAP) technique, recently proposed by McInnes,

Healy, and Melville (2018). This advanced method combines fast computational results

with the ability to preserve the global structures. First, we encoded our data via BERT

and only load the embeddings, i.e., the lower dimensional representation of words. Even

though these embeddings are of lower dimension than the original data, it still has too

many dimensions to perform clustering. Clustering methods are based on distances and

the more dimensions the given data has, the more options arise to separate such data.

We reduced our dataset to 5 dimensions through UMAP and used K-means clustering

methods to identify 14 topics in the case of the above mentioned literature research

example, see section 2. UMAP was employed once again to obtain a reduction to 2

dimensions to be able to plot our data points. Grootendorst (2020) proposes a variant

of TF-IDF – the class-based variant of TF-IDF (c-TF-IDF), which the author formulates

as the following:

Figure 14: Distribution of the amount of tokens per on SC source code

c− TF − IDFi =
ti
wi
× log

m∑n
j tj

,

where t is the frequency of each word, i (class), w (total number of words for i-th

class, m (number of documents), and
∑n

j tj (total frequency of word t across all classes

n). For each category, in our case topic, we identified the top ten of the msot important

words. Similar approach was used to group unlabelled SCs using their comments.

28

https://github.com/QuantLet/USC/tree/master/SC-classification-significance

5.1 Empirical results

As described in sections 4 and 5, our aim is not only to use labelled data but to try to

gain knowledge from a by far larger unlabelled dataset. Here, unsupervised techniques

become handy when no annotation is available.

We apply the same technique of unsupervised clustering methods as in the beforehand

section 2 on the unlabelled dataset, specifically on the comments of approximately 13k

open source SCs each having on average 1.2K words in the comment. We hence test, if

this delivers us similar results as in the beforehand classification, and also if it will picture

whether comments can help to better understand what individual SCs do and possibly

even understand in what domain the respective DApp belongs to. The first insight is,

that of 16 250 open source SCs around 17% do not contain any comments or their length

is shorter than 10 characters or 5 words. These 17% were excluded from the analysis

due to lack of semantic meaning necessary for the analysis. On the procedural side, we

first applied UMAP on the remaining source codes to reduce the dimensions to 5 and ran

clustering multiple times with different parameter of number of clusters to decide on this

parameter using the elbow curve method with Davies-Bouldin score. Figures 16 and 15

present the 12 topics chosen as the optimal amount of clusters. Subsequently, the data

was reduced further to 2 dimensions. Figure 17 presents the scatter plot of our unlabelled

dataset, where each color identifies a different cluster and axes correspond to the 1st and

2nd UMAP components. We can see that we have two main big clusters – the navy- and

gray-colored clusters, followed by the smaller orange cluster, and all the other are rather

spread everywhere and in 2 dimensions do not look like building proper interconnected

clusters.

(a) Topic 1 (b) Topic 2 (c) Topic 3

Figure 15: Top 10 the most important words per cluster identified in the unlabelled SC
dataset (Part 1)

29

https://github.com/QuantLet/USC/tree/master/SC-topics-unlabelled

(a) Topic 4 (b) Topic 5 (c) Topic 6

(d) Topic 7 (e) Topic 8 (f) Topic 9

(g) Topic 10 (h) Topic 11 (i) Topic 12

Figure 16: Top 10 the most important words per cluster identified in the unlabelled SC
dataset (Part 2)

Yet, how can we interpret these clusters in Figure 17 and understand whether they

are grouped by the category of their application (e.g., healthcare, notary, real-estate),

their functionality, or rather just some other similarity measure? A closer look on the

variables of the clusters reveals the 10 most important words per cluster in Figures 16

and 15. On the first glance, we conclude that the majority of the keywords are very

technical and reflect on the names of functions and/or variables commonly employed in

30

https://github.com/QuantLet/USC/tree/master/SC-topics-unlabelled

SC codes. Apparently, the majority of comments do not really reveal any information

apart technical implementations and describing what the respective function, interface or

a library do. The only cluster having pretty much semantically-meaningful and under-

standable keywords from business application perspective is the 3rd cluster, where some

keywords are obviously related to loan business. Therefore, here we were able to show

that the opportunities of directly trying to get the knowledge from the unstructured data

without supervision are very limited and the supervised methods are needed.

Figure 17: Grouping the unlabelled SC dataset into 12 categories

6 Classification

Unlike traditional contracts, SCs are not written in natural language, which makes it

hard to determine what each SC is about. We worked on a predictive model to classify

SCs based solely on their coding. Previous approaches use to annotate SCs manually,

as done by Bartoletti and Pompianu (2017). We randomly picked the source codes of

800 verified SCs provided by Etherscan (2019b), using the functions of random sampling

in Python, and tried to group the source codes into categories by looking at the code,

reading the comments, searching for titles of the SC. The 9 categories that we came up

31

https://github.com/QuantLet/USC/tree/master/SC-topics-unlabelled

with are:

� Token creation, Token sale or Token creation/Token sale: SCs sole purpose is

to define a token, or its crowdsale, or both.

� Finance or Token creation/Finance: whenever an SC has an implementation of

a financial product or a derivative, a bidding mechanism, a lottery, a multisignature

wallet, or in general any profit-creating mechanism. A token can be implemented in a

separate SC and be evoked, or defined in a Finance SC directly.

� Airdrop or Token creation/Airdrop: an implementation of a token airdrop, some-

times simultaneously with a token definition. An airdrop is a free distribution of a

token, unlike a crowdsale.

� DApp: an implementation of an Ethereum DApp.

� Scam: pyramid schemes, or financial SCs that offer e.g. 5 percent daily interest.

� Utility: diverse helper functions, pieces of code that are necessary for running actual

SCs, extensions, libraries, etc.

Obviously, these categories are slightly different then the ones described previously

in Table 1. Only the category Finance came up in the manual selection as well in

the dataset from SDA. Moreover, just by looking at the code ourselves we were not

always able to identify the category of the code or what DApp’s category it belongs

to. Interestingly, some of the categories were identified through meaningful comments or

naming the product. Sometimes however, it required additional search to specify what

the code is about. Thus, it is not always possible to accurately identify the category of the

SC without using additional check up by a human-being. It requires a lot of engineering

and Solidity domain expertise, which makes manual labeling more difficult or at least

its scaling and outsourcing. On the other side though, it might happen that automatic

classifiers would pick up the features that we do not see as a human. Therefore, we would

like to try to implement an automatic classifier that could improve this categorisation.

Nonetheless, this difficulty to manually label the data speaks also for the difficulty to

obtain a big dataset which is usually vital for automatic classification, therefore we need

to rely on the very small dataset.

6.1 Data Pre-processing and Feature Extraction

We created three columns for obtaining regular expressions to extract comments from

the codes: source code (full code), source code without comments (only code) and only

comments (comments). Moreover, as additional feature engineering step, we extracted

names of functions, SCs, events, interfaces and libraries and joined to one string. There

exist different approaches to extract features from the source codes. Possible approaches

are to extract features like names, design patterns or even abstract syntax trees. For our

32

work, we decided to treat our individuall codes like text and used NLP techniques. In

the case of traditional machine learning methods, since we do not need to preserve the

sequential structure, we just use the TF-IDF weighting scheme. First, we separate our

sequences into tokens – words in the code or specific punctuation marks that are specific

for the programming language like parentheses, then each token is encoded into a numeric

representation. For the encoding we use TF-IDF scheme. For the deep learning methods,

we just encode the tokens with the ID, which is then embedded into a matrix to obtain

dense vector representations of the words depending on the surrounding context in the

sentence.

6.2 Machine Learning methods

A classificator is trained on a variety of methods. Here, we employ a logistic regression,

a Ridge regression (Ridge), and also an instance of Lasso regression (Lasso). As we just

mentioned in the section 6.1, through encoding our source codes into TF-IDF vector rep-

resentations, we obtain very sparse high-dimensional vectors. Since we have a such very

high-dimensional data, we expect the Lasso regression to perform better due to inherent

feature selection technique through L1 regularization. Moreover, we are going to use

random forest (RF) and support vector machines (SVM).

Deep learning methods are seen to be standard for natural language processing, yet,

they usually require huge datasets. However, we apply three classical deep learning archi-

tectures for testing on the above mentioned data columns: gated recurrent unit (GRU),

bidirectional GRU, and convolutional neural network (CNN).

Pre-training became a standard for many natural language processing tasks. Bidi-

rectional Encoder Representations from Transformers (BERT) architecture invented by

Devlin et al. (2018) allows the user to apply this deep learning architecture trained on a

huge amount of data on a different task, e.g., text classification. These models achieve

a state-of-the-art performance for many tasks. Moreover, they are able to work on rela-

tively small datasets. Such architecture are usually pre-trained on huge text datasets. In

our case, we have mostly the source codes, that differs from written and spoken human

language, therefore it will not help us much. However, one of our tasks formulations

includes machine learning on the comments. Therefore, we will be able to apply BERT

on comments.

To summarize it, we are going to use traditional machine learning methods Ridge,

Lasso, RF, and SVM and classical deep learning methods GRU, BGRU, and CNN on full

code, only code, and comments. Moreover, we apply BERT to the comments. Therefore,

33

we will try to answer the question, whether it is possible at all to train a classifier on the

solidity SC source code, whether traditional machine learning methods can better work

on such small and high-dimensional dataset or they will loose to deep learning. Moreover,

we will see whether it is better to train a classifier on the code, code with comments,

or just comments, or even that, as opposed to spoken and written text, the sequential

structure of the source code is not relevant at all to identify the category of the SC.

6.3 Training and Evaluation

For training we used cross-validation with 3 folds. Moreover, we performed a hybrid of

manual and automatic grid hyper-parameter tuning. As we are dealing with a multiclass

classification task with one class containing examples from the rest of categories, we

draw upon the well established one-vs-all classification approach for the first 5 classes.

For the evaluation we used two metrics: Area under the ROC curve is equivalent to “the

probability that the classifier will rank a randomly chosen positive instance higher than

a randomly chosen negative instance” (Fawcett, 2006) and the average precision – the

metric which is seen as standard for unbalanced data sets.

6.4 Empirical results

Due to spatial reasons we present only the test performance, nonetheless, cross-validation

performance can also be found in the linked GitHub repository. In Table 3, we see the

results of classificator trained on the full code – without removal of comments. On the

left part we see the performance in terms of AUC ROC, which is relatively high for all

categories. Methods of traditional machine learning methods outperform on average the

methods of deep learning. One of the possible and very probable reasons is the small

amount of data points, whereas the big size of a dataset is essential for application of

deep learning methods. On the other side, as opposed to our expectation Lasso regression

showed the worst performance across all traditional machine learning methods. Random

Forest (RF) shows the best performance in terms of AUC ROC in almost all categories,

except high risk, where it is outperformed by the Ridge regression. Ridge shows the sec-

ond best performance in all other categories. On the right part, we see the performance

in terms of Av. Prec. Whereas the performance for classes with a higher amount of

examples is still high, the classes that are outnumbered show much lower performance.

Gambling and High-risk classes show the worst ability to be accurately classified.

Moreover, deep learning methods show a very poor performance for such unbalanced

categories. In Table 4, we see the performance of the classificators trained on the code

cleaned from the comments. It shows very similar tendency: a good performance of

rather simple traditional machine learning methods like RF and Ridge and very poor

34

performance of neural networks. Interestingly, there is no obvious tendency of outper-

forming between results on the source code with and without comments. In Table 5, we

present results of predictors trained only on textual data – the comments extracted from

the code. Again, traditional methods outperform deep neural networks. Some categories,

such as Exchanges, show even better performance than classificators trained on code. A

possible explanation could be the quality of the comments in the codes of this category.

However, other groups show worse performance, except Gambling in terms of Av. Prec.

Apparently, the comments allow the ridge regression to correctly pick the Gambling cases

with higher precision and judging by lower AUC ROC, the False Positives rate increased.

Interestingly, even BERT that is seen as a deep learning model that is able to deal with

small datasets shows a very poor performance.

As we were able to show that deep learning networks, especially those based on re-

currence and reflecting the sequential structure, show poor performance, it would be

interesting to inspect, whether we are able to extract the most important features from

the code. As explained in section 6.1, we decided to extract the names of functions,

events, libraries in the hope that they can be not only similar from the source code to

source code, since as already mentioned many codes are cloned and copied, but also

usually developers would name the variables and functions according to their behavior.

In table 6, we show the results of classification training of traditional machine learn-

ing methods, which have shown the best performance in the previous tasks. The aim

was to show that not only can we extract meaningful information and the sequential

structure is not important for our task but also that we are able to achieve sufficiently

high performance using lower amount of features. And as we see in this table, we still

have high performance, even though the amount of features was reduced by more than 3k.

Even though the differences between each mode: Full Code (FC), Only Code (OC),

Only Comments (OCom), and Extracted Features (EF) might not always seem signifi-

cantly different from each other, or on the opposite seem obviously different for some

classes, we decided to test whether their performance results are significantly different

from each other. For that purpose, using 14 different seeds to split the data, we ran our

Ridge regression classifier multiple times for each cross-validation fold. Thus, for each

mode we obtained 42 predictions for each class. Since we want to have the same classifier

for each class, we averaged predictions between classes. The non-parametric Wilcoxon

test (Wilcoxon, 1992) was chosen to see whether the differences in AUC ROC and Av.

Prec. of different modes are significant. Double-sided, left-sided and right-sided tests

were conducted. Table 2 presents the pairs of modes and the null hypothesis H0 which

could not be rejected and the respective p-value. Using the test, we were able to show that

even though when the classes are treated separately we do not see an obvious winning

35

mode. If we want to use only one classifier, the best performance can be achieved while

training it on the comments extracted from the source code (assuming the developers

wrote accompanying comments).

Modes AUC ROC Av.Prec

FC OC OCom EF FC OC OCom EF

FC - FC < OC FC < OCom FC < EF - FC < OC FC < OCom FC < EF

p = 0.99 p = 0.99 p = 0.99 p = 0.99 p = 0.99 p = 0.99

OC - - OC < OCom OC < EF - - OC < OCom OC < EF

p = 0.99 p = 0.99 p = 0.99 p = 0.99

OCom - - - OCom > EF - - - OCom > EF

p = 0.99 p = 0.99

EF - - - - - - - -

Table 2: Results of the Wilcoxon Test

Summarizing the results of these four tables: first, we can conclude that using super-

vised machine learning methods we are able to classify the source codes of SCs. Secondly,

we highlighted the fact that no heavy computational architectures and algorithms such

as neural networks are needed to classify the categories, and very simple Ridge logistic re-

gression ran for each class independently will do the job sufficiently good not only for the

over-represented classes like Exchanges and Finance, but will also show relatively good

performance for rather smaller class of High-risk contracts. We were able to show that

the common-sense telling us that the comments in the source code could give additional

hint on the category of the SC is indeed correct. However, the presence of the comments

in the code is required.

Therefore, we were able to show that it is possible to classify SCs by using their

source codes quite accurately for the dominant categories: Exchanges, Finance, Games,

High-risk. Such information can be useful not only for researcher who want to explore

the remaining 99% of SC on the ETH BC, but also for the developers and investors.

Especially the high-risk category is interesting in identification of possible risks.

Method AUC ROC Av.Prec

Exchanges Finance Gambling Games High-risk Exchanges Finance Gambling Games High-risk

Ridge 0.988 0.967 0.914 0.972 0.983 0.985 0.925 0.482 0.914 0.720

Lasso 0.961 0.927 0.714 0.917 0.847 0.962 0.844 0.238 0.804 0.554

RF 0.988 0.973 0.944 0.971 0.974 0.984 0.942 0.572 0.912 0.700

SVM 0.987 0.972 0.892 0.977 0.976 0.983 0.944 0.482 0.934 0.668

BGRU 0.970 0.848 0.767 0.795 0.860 0.963 0.699 0.149 0.422 0.256

GRU 0.966 0.712 0.749 0.818 0.897 0.956 0.443 0.102 0.442 0.486

CNN 0.972 0.950 0.804 0.908 0.840 0.972 0.880 0.155 0.672 0.482

Table 3: Classification Results – Full Code

36

https://github.com/QuantLet/USC/tree/master/SC-classification-significance
https://github.com/QuantLet/USC/tree/master/SC-classification

Method AUC ROC Av.Prec

Exchanges Finance Gambling Games High-risk Exchanges Finance Gambling Games High-risk

Ridge 0.983 0.965 0.916 0.957 0.988 0.981 0.914 0.483 0.868 0.795

Lasso 0.960 0.915 0.832 0.922 0.934 0.959 0.813 0.363 0.769 0.656

RF 0.986 0.974 0.938 0.966 0.986 0.983 0.940 0.491 0.907 0.771

SVM 0.980 0.973 0.905 0.970 0.976 0.979 0.943 0.574 0.919 0.717

BGRU 0.946 0.282 0.461 0.744 0.763 0.952 0.157 0.049 0.448 0.508

GRU 0.949 0.802 0.779 0.692 0.888 0.952 0.615 0.121 0.299 0.350

CNN 0.952 0.895 0.707 0.868 0.781 0.953 0.794 0.100 0.663 0.168

Table 4: Classification Results – Only Code

Method AUC ROC Av.Prec

Exchanges Finance Gambling Games High-risk Exchanges Finance Gambling Games High-risk

Ridge 0.991 0.959 0.880 0.972 0.976 0.986 0.910 0.508 0.912 0.701

Lasso 0.982 0.930 0.734 0.942 0.880 0.977 0.852 0.217 0.844 0.409

RF 0.984 0.972 0.890 0.974 0.977 0.981 0.937 0.452 0.924 0.675

SVM 0.988 0.963 0.879 0.978 0.976 0.983 0.921 0.511 0.933 0.626

BGRU 0.971 0.639 0.656 0.853 0.839 0.968 0.276 0.086 0.520 0.361

GRU 0.960 0.804 0.638 0.840 0.855 0.963 0.648 0.107 0.511 0.313

CNN 0.937 0.907 0.829 0.865 0.703 0.937 0.799 0.155 0.600 0.070

BERT 0.968 0.777 0.353 0.789 0.602 0.965 0.637 0.038 0.628 0.056

Table 5: Classification Results – Only Comments

Method AUC ROC Av.Prec

Exchanges Finance Gambling Games High-risk Exchanges Finance Gambling Games High-risk

Ridge 0.988 0.963 0.883 0.957 0.971 0.984 0.906 0.462 0.870 0.735

Lasso 0.981 0.919 0.803 0.913 0.874 0.973 0.791 0.395 0.730 0.573

RF 0.989 0.971 0.864 0.961 0.973 0.985 0.928 0.474 0.899 0.719

SVM 0.980 0.963 0.877 0.971 0.970 0.978 0.932 0.489 0.915 0.754

Table 6: Classification Results – Extracted Features

After the algorithms were trained with satisfactory results regarding the achieved

performance, we apply them onto new data. Here, we can apply our classifier on the

unlabelled dataset to see what potential categories of open source SCs can be found on

the ETH BC. We present the identifiable categories discovered by the trained algorithms,

without the implication that these datapoints were correctly identified. Since the most

important category to categorise is high-risk, and moreover we cannot assume that all

source codes contain comments, we decided to take the algorithm that predicts this cat-

egory best to out final prediction on the unlabelled dataset, which is the Ridge logistic

regression running on the source code cleaned from the comments. However, one could

argue that we want to identify all classes correctly, then the mode of the interest would

be to train the classifier solely on the comments.

Therefore, we identify the following observations in our unlabelled dataset:

37

https://github.com/QuantLet/USC/tree/master/SC-classification
https://github.com/QuantLet/USC/tree/master/SC-classification
https://github.com/QuantLet/USC/tree/master/SC-classification

Category Amount of SCs Relative Amount of SCs

Finance 10009 62%

Other 4757 29%

Exchanges 756 5%

Games 506 3%

High-risk 162 1%

Gambling 60 >1%

Sum 16250

Table 7: Frequency of categories in the predictions on unlabelled data

Figure 18: Classification of the unlabelled dataset – UMAP reduction to 2 dimensions:
Finance, High-risk, Gambling, Games, Exchanges, Other

We note, that the Finance class outnumbers everything else, followed by the Other –

class having all observations that have too low probability to fit one of the specified classes.

The other classes, such as Exchanges, Games, High-risk, and Gambling represent only a

very small fraction of the unlabelled dataset. This reveals, assuming our classification was

similarly accurate as within cross validation and with test data, that the majority of VSC

of this opportunity sample of SCs is dominated by the codes dedicated to financial services

– 68% (Finance + Exchanges + High-risk) and around 10% to other “entertainment”

purposes. And only around 30% of them are dedicated to Other DApps – potentially

including the use-cases promised by media like smart rental services, voting through SCs,

38

https://github.com/QuantLet/USC/tree/master/SC-classification
https://github.com/QuantLet/USC/tree/master/SC-classification

or even transplants management – all the use-cases which made the SC technology such

a hyped phenomenon.

7 Possibilities and Realities

New ideas are generally only accepted, if they seem to improve on a given state. This, of

course, with respect to the technological and legal frameworks, as well as administrative

possibilities. The abstract question to be kept in mind is: Does it make sense for a given

enterprise to invest into creating BC/SC frameworks?

7.1 Defining Smart Contracts

Whereas Traditional Contracts (TCs) are defined as a promise or a set of promises for

the breach of which the law gives a remedy, or the performance of which the law in

some way recognizes as a duty (Bellia, 2002), SCs consequently are software that, for

example, facilitates the generation and transfer of BC-based crypto-assets (see further

e.g. Mik, 2019), and runs without human intervention once commanded to execute (see

above PETs, section 3.3). Again, we must stress here: SCs do not execute without input,

which can of course be a timed-coded threshold. SCs are not self-executing and respective

information might not be stored on the BC directly, but has to be accessed via different

sources. SCs do not possess a will to execute themselves, they just do what is being

input. Legal laymen commonly define these as contracts, however, these terms are cre-

ating confusion: the terms of account and transaction can have very different meanings

and so does obviously the term contract. Both fathers of this invention, Szabo (1997b)

(”a computerized transaction protocol that executes the terms of a contract”) and Bu-

terin (2020) (”systems which automatically move digital assets according to arbitrary

pre-specified rules”) define and underline, that SCs are not contracts in the traditional

terminus but means of contract execution – a definition, which is conform with Halaburda

(2018).

The isolated full legal status of SCs, as pursued partially in the United States, does

not change this and has no influence on completely different legal systems. However, for

example, legislation in the state of Tennessee is of interest: “Smart contracts may exist in

commerce. No contract relating to a transaction shall be denied legal effect, validity, or

enforceability solely because that contract is executed through a smart contract” (Justia,

2019). Yet, any further inclined discussion on this issue will open Pandora’s box, as it

misunderstands the technology way beyond its existence of being PETs, especially when

mere supply chain reporting SCs are accepted as legal means of being “contracts” in-

stead of “tools”. Of concern would be the SC application when being used to spawn then

39

forcibly legally accepted loophole-“currencies” – just think about ISO 4217 with its three

different US dollars 840/USD (cash), 998/USS (sameday), and 997/USN (nextday) being

simple compared to the chaos created by the number of existing and already abandoned

CCs (see further e.g. deadcoins.com). The resulting issues of classification and handling

these entities legally will result in an increase in insecurities. Hence, the discussion is a

priori not even remotely leading to a result, as SCs were not even intended to replace

the traditional instruments.

We propose the following proposed definition to create the necessary – yet missing –

connection between the factually more and more intertwined fields of information tech-

nology, statistics, and law:

Smart Contract:

Software algorithm that is a blockchain application, digitally signed, com-

putable and potentially dynamic in state, given the input potentially im-

mutable, non-physical agreement between two or more parties, that relies on

a consensus system and conditional constructions which can dependent on

potentially off-chain third party information input, that is creating or based

on mutual relations and/or obligations which it seeks to technically execute

in the event of undisturbed predetermined code procedures.

With the creation and emission of tokens being included in the above definition and

whilst the legality of crypto-currencies is not undisputed in many legal systems, SCs can

be independent from these and are therefore not necessarily prima facie a negotium non

grata for any given legal framework (see further Ni, Härdle, and Xie, 2020). A discussion,

if one does or does not accept cryptocurrency as a currency and consequently a statutory

means of payment per se, and thus of which type the agreement at hand is in a legal

sense (exchange or purchase contract in that meaning) is redundant as it is at least an

intangible asset.

Yet, as with any given advancement, CCs and SCs first need to stand proof to the

legal system before they may be accepted as valid modus of exchange. Improving effi-

ciencies and facilitate dependable results, the promised key advantages of using SCs, are

conclusive repetitions of the industrial automation. Technological advances have fostered

the human thrive of rather trusting a machine, than human information, to a level that

non-physical processes can now reliably be mirrored by machines. Nonetheless, even with

deep reinforced machine learning and other consorts of technical marketing language,

the basic question of smartness is fundamental. Are SCs smart enough for taking the

responsibility for decision making, thus can we speak of contracts that can even replace

40

https://deadcoins.com/

legal entities? An argument against that would be of course, that the smart human

input is needed to kick-off SC processes – but where is then the smart machine? A code

or document can only be as smart as the human initially writing it implying a plethora

of possible sources for errors (see further section 3.3 and appendix 9.9). We will not

touch on the controversial ideas of code is law (Note: a replacement of law by code was

literally not what was envisioned by Lessig, 1999) as complex natural language can not

be completely replaced by code at this given level of technological advance. There exists

a wide variety of fields where SCs could nevertheless already be applied in a trade-off

consideration. With many advances already accomplished towards the direction of mir-

roring traditional ways of interaction to digitized counterparts (recall IPO and ICO), a

general comparison between SCs and TCs lead to a framework for understanding their

potential:

� TC’s are created by legal professionals using their lingua franca, handed out to each

party as physical copies, and enforced by institutions such as courts using an agreed

upon legal codex. These agreements are considered to be effective, if they stand the

test of the law and according ruling. Their main problems can hence be broken down to

their creation and enforcement being time consuming and costly due to the controlling

intermediaries involved, as well as their outcome being potentially ambiguous given

changing rulings or unclear wording.

� SC’s, in contrast, promise to cut on these shortcomings by being quickly createable

through the help of easy coding and seamlessly understandable user interfaces. They

purportedly define iura et obligationes the same way as TCs, hence are completely

deterministic, while being entirely digital and therefore easy to mathematically proof

and enforce, through algorithms and a given consensus codex, adding to efficiency

and verifiability. These agreements are considered to be effective, if the agreed upon

action, for example a TX, was performed without technological error.

If an SC can really be seen as a universal replacement to traditional agreements in a

legal sense may be clearly answered at this given state: No. It’s a technical possibility to

automatize given relationships according to pre-defined rules that depend on pre-defined

coded events, not necessarily replicating legal standards or legal relationships. In other

words: they facilitate traditional agreements technically without being classifiable as such

themselves. However, their functions and proven fields of application can already repli-

cate certain traditional functions of agreements/contracts.

We may mark the most basic understanding of what a traditional agreements should

fulfill as we are pointing to the question of replaceability and the likely replacable parts

of our contractual system:

� Legality of the agreement itself

41

� Definition of the parties

� Definition of the subject et cetra

� Offer and Acceptance

� Ability and/or intention of the parties to be legally bound

� Capacity to satisfy contractual elements

� Signatures

Taking this into account, the question of the replaceability of TCs with SCs is more

tangible. We can see that certain contracts can, for a fact, be reproduced as coded

Doppelgänger’s. From the standpoint of automation, SCs present an analogous form of

agreement/contract, where only details such as the contractual parties, date, subject, et

cetera have to be added – the easiest to understand example would be an ICO. Poten-

tial can also be seen regarding adhesion contracts, shrinkwrap contracts, or boilerplate

contracts, which refer to predefined standard form contract clauses and are commonly

used for matters involving leases, purchases, insurance, mortgages, amongst many other

use cases (with special regards to certain national limits these need to be differentiated

from general terms and conditions). Such application fields could increase efficiency in

contract law decrease processing time and hence also costs. Adhesion contracts are usually

engaged as digitally signed clickwrap agreements that offer individuals the opportunity to

accept or decline digitally-mediated contents. These electronic agreements are requested

to appear as identical to physical contracts as possible. Although not accepted in all legal

frameworks, documents which are signed electronically possess equivalent legal validity

to physically signed agreements/contracts.

The United Nations have worked on respective measures to replicate traditional frame-

works for digital societies since at last 1996, resulting in a Model Law on Electronic

Signatures that is of importance due to the beforehand mentioned algorithmic unique-

ness of private keys/signatures (UNICITRAL, 2001). The United States of America’s

Uniform Electronic Transactions Act (UETA) from 1999, and subsequently the United

States Electronic Signatures in Global and National Commerce (ESIGN) Act from the

year 2000, present a national legal solution to the issues raised by a digital society. They

grant legal recognition to electronic signatures and records, given that the contractual

parties choose to use electronic means for their agreements. Besides special requirements,

such as having the intent to sign such an agreement and common consent to do business

electronically, the requirements of associating the signature with continuously updated

records that can be fully accessed, plays into the hand of BC-based constructions such as

SCs. Under this legislation, in order to be accepted as a prima facie effective agreement,

it is mandatory to have an associated record reflecting how the signature was generated

or an attached proof that this agreement was reached by using electronic signatures.

42

Moreover, the electronic signature records need to be capable of retention and accurate

reproduction – once again, basic functions provided by BC-based systems as outlined in

section 3.2. We can conclude that certain legal frameworks have been established that

can be used directly or in an analogue way for SCs. BC users can:

� be uniquely identified and linked to a signature

� have sole control over the genesis of their signatures

� identify accompanying signed data stored on the BC

� easily prove the event that the accompanying data has been changed and revoke their

consent

This leads to the possibility to also accept digital signatures of uniquely identifiable

BC participants as legally valid signatures for contracts – in that sense SCs. Therefore,

while certain steps towards the digitization of TCs have been accomplized, SCs can only

be defined as technological means to facilitate TCs and not as contracts sui generis, or

authenticated agreements.

7.2 Implementation

An ever increasing number of potential use cases are envisioned that try to mimic TCs

in their function: insurance, mortgage, financial derivatives, human resources, supply

chain management, to name a few. Typically each individual field is bounded by specific

procedural legal standards and SCs are best applied where maximizing efficiency and

optimizing cost-minimization, or the removal of traditional processes that require vast

amounts of manpower to keep the checks-and-balances-system running, is a possibility.

SCs presumably fit in these automation-gaps naturally, as many of the intermediaries

become redundant with monitoring and information propagation being established via

trustworthy standardized coding. Especially financial applications have regulatory re-

quirements, like Know-Y our-Customer (KYC) to check if a participant is eligible for

a given service according to regulatory watch-lists such as the Office of Foreign Assets

Control (OFAC) Specially Designated Nationals (SDN) list. Keep in mind that, while one

does not need a BC construction for these tasks of course, one does need it for fostering

the idea of transparency and immutability (see further sections 3.1 and 7.1). SC applica-

tions are predestined for systems where currency is not a necessary medium of exchange

and centralized allocations are not feasible or preferred. SCs do not necessarily depend

on CCs to work (in ETH they do, see section 3.3), which imposes their adaptation also

within governmental systems where CCs are deemed to be illegal. For example, organ

donation and procurement could be improved through coded most favorable matching

structures, where the inherent BC-based recording of input would be beneficiary espe-

cially regarding the legal patient’s provisions that could be respectively stored data for

43

and in an SC. We therefore note, that a crucial point to introduce an SC-based system is

risk control. Risk pooling can be achieved in both SCs and TCs as a risk-sharing struc-

ture, yet modern technologies are obviously superior in these fields than paper-based

auditing systems could ever be. Another critical point is thus monitoring, as a measure

to continuously audit the contractual terms and to detect potential problems or breaches.

To make the legal handling of particular SCs replacing particular TCs more tangible,

consider a motel doing a series of standardized and proven rental SCs with digital access

codes to the apartments. Instead of relying on an intermediary, for example a reception-

ist, to administratively keep watch on the payments, the landlord creates an SC factory

to spawn individual SCs (see further 3.3) with all respective compulsory parameters. Ad-

ditional actions like for example accommodation reporting to governmental institutions,

may also be encoded through an beforehand outlined oracle to provide legit and trust-

worthy information on the individuals identity. If the conditions of this SC are met by

the parties, i.e., that the exact rent was transferred to a given account and client infor-

mation was forwarded successfully et cetera, then access to the rental object is granted.

Yet, if the conditions required to be fulfilled are not met, then access is denied. This

is arguably not a legal contract itself, but just a mean to process the corresponding TC

itself. However, one could argue that this example could serve as proof for the replace-

ability of at least basic and often repeated TC cases. Adding to this is, that more than

three quarters of the SCs we analyzed are serving the purpose of defining a value token.

A selected few of them implement interesting distribution schemes like a Dutch auction

or a collectible cards game mechanism, but most of them are made of repeating code

patterns for a distinct variety of use cases. As a consequence, since not that many SCs

consist of more than 600 lines of code, these SCs are much easier to read and understand

once one is familiar with a small subset of code examples. Although this shows that the

developers want to employ best practices in their code this does not necessarily mean

that the reused code is secure and bug-free (see further Pinna et al., 2019; Cohney and

Hoffman, 2020). Furthermore, nefarious SCs are harder to discern from regular SCs since

their codes and the codes of legitimate SCs are so similar. This is underlining the fact,

that previously isolated fields of IT and LAW are required to, and will be, increasingly

intertwined.

An endless field of further imaginary applications in Sharing Economy, LegalTech, In-

surTech, Dispute Resolvement, Royalty Management, voting, insurance contracts, elec-

tricity prosumer management, trade finance, escrow services, monitoring of regulatory

compliance, copyright services and rights of use, traceability of products through supply

chains and markets, or the famous field of Internet-Of-Things (IoT) applications, and

many more buzzword-flooded fields can be envisioned.

44

https://github.com/maurelian/dutch-auction
https://godsunchained.com/

7.3 Decentralized App vs. “traditional” App

One of the key reasons for many startups to fail is the limited understanding of the hyped

technology and most importantly its differences to already existing technologies. Some

companies are even trying to follow the hype and force to implement such buzz-concepts

as BC- and SC-based without properly understanding whether it is feasible and profitable

on the stack they are using – bigger ones silently abandon such endeavors eventually.

SC – is one of such technologies, where the word “smart” promises futuristic digital

tools, whereas what SC really are – just a coding script running on the BC, a part of

a decentralized App, similar to how interconnected multiple coding scripts written in

Python, Java or other languages make up an App. Basically, DApps can do almost

the same things (or even less, as it will be described further) as a respectively oriented

normal Apps, while having the computational processing ran on the BC. Therefore, in this

subsection, we are describing the key differences between Apps and DApps. Moreover,

inspired by the flowchart proposed by Wüst and Gervais (2018) “Where does blockchain

make sense”, we are going to propose a flowchart for deciding whether one should choose

DApp over a traditional App or vice versa. As one DApp consists of one or multiple SCs,

our flowchart also aims to answer the question whether one should use SCs or not or in

other words whether you should execute your code on the BC or not.

(a) Centralized (b) Decentralized (c) Distributed

Figure 19: Types of software applications Apps

According to Laplante (2017) an application or app, is a program or a bundle of

programs that are designed to solve a specific problem. Usually, one refers to apps or

to application software – to programs that run outside of the operating system. Usually

apps are ran on the desktop, on mobile devices or in the webbrowser. Subsequently, we

can identify webapps, mobile Apps or desktop apps. However, in this work, we will refer

45

https://github.com/QuantLet/CrixToDate

to all of these three types as to Apps. The majority of Apps, at least of webapps, follow

a centralized server-client model. Moreover, some are distributed and the new type uses

the decentralization (Raval, 2016). In Figure 19, these three types of architecture are

depicted. As we can see, in the centralized system, the most frequently found type of

Apps, a central node controls the operation, flow of the information and interconnection

between child nodes. All client-nodes are dependent of the central node. Distributed

systems allocate computation to different nodes, many big companies make use of dis-

tributed computations. Therefore, a system can be centralized and distributed at the

same time: e.g., a company provides computation services, the computations are dis-

tributed among many servers (Raval, 2016), however the company is itself the central

node holding the responsibility of the services. So if one server fails, nothing will happen

to your data because of the distributed nature, however, if the whole company fails –

all your data could get lost. Decentralized systems, on the other hand, implies that no

node in the hierarchy is higher than the other and can give instructions as to what to

do. And all nodes hold similar amount of responsibility for the functionality of the system.

Therefore, looking at the definitions of the DApps and “traditional” Apps, we cannot

say that these are dichotomous concepts, but rather DApp is a subset of the Apps.

Subsequently, we will still speak of DApps vs. Apps where Apps here can be web, desktop,

and mobile apps relying on a centralized or centralized distributed systems (having one

main responsible authority if something will fail). According to Firica (2019), for an App

to be classified as DApp, it must comply to the following criteria:

1. the app should not have a controlling entity
2. be completely open-source
3. operate autonomously
4. work on BC
5. use cryptography (for tokens that act as proof of the value of the node and are

distributed through a rewarding system)

Even though we mostly agree with this list, the criteria that everything should be

open-source might be correct, however, while going through multiple DApps and SCs on

State of the DApps (2021) and Etherscan (2019b), we found many SCs and DApps that

do not have an open-source license. In the following Table 8, we present the advantages

and disadvantages of using DApps compared to traditional Apps:

46

DApps Apps

+ decentralisation + user-friedly,

if one node fails, the data won’t be lost no technical knowledge required

+ p2p validation + nothing needs to be installed

+ mostly open-source (in case of webapps)

+ BC, proof-of-work + can be designed to user’s needs

make the systems trustworthy + can be adjusted if designed wrong

so it almost impossible to hack + new functionalities can be added

+ support CC

+ transparrency

- TXs are very slow - can be hacked

- the amount of TXs is bounded - if data is stored centrally, one electricity

due to technical limitations of the system outage can lead to the data loss

- TX costs: - TX costs:

creation of a contract or sending a information exchange in a presence

TX requires a fee to pay of a third party is costly

- cannot be taken down from the network - data is not always encrypted

- cannot be adjusted or changed

- redundant storage of the data

and redundant computations

thus very high energy costs (Digiconomist, 2021)

- therefore - not sustainable

- complexity limitations of the code

Table 8: Advantages and disadvantages of using DApps

While the majority of the criteria are quite clear without additional explanations or

have been already mentioned in the previous sections, we would like to go in the details

of complexity limitations. In this work, we address the complexity from two perspectives:

first, the straightforward limitations of the code complexity, which is also related to the

TX costs: to compile the code on the BC, payment of a fee is required. Code of different

complexity requires a different fee. And this fee is bounded to a certain value in order

not to exceed it and not to consume all the balance for the code, which could mistakenly

run too long. The second perspective of the complexity, which we are working with is

the ability to make complex math computations. And even though, the DApp consists

of “Smart” contracts, their ability to do mathematical computation is very limited: only

basic operations like Addition, Subtraction, Multiplication, Division, Modulus and Ex-

ponential (GeeksforGeeks, 2020) can be done on the ETH BC.

47

Figure 20: A flowchart to identify whether a DApp or an App is a proper solution.

We propose a decision flow in Figure 20, which can help to decide whether it is useful

to develop a DApp or if one should stick to a traditional Apps. Further, we refer to trust

48

from three perspectives: first, as to resilience of the system in case of failure or outage –

whether the data will not get lost, the system saves the last state and the usage of the

App can be immediately continued, secondly – that the node provides sufficient security

that no third-party can alternate the data or retrieve personal data they do not have

access to, and thirdly – probably the most important perspective – whether we trust the

central authority that they will not manipulate data or the state of the system themselves.

Therefore, we see that if we are not aiming to implement a CC or a cryptoasset and trust

our central node, there are almost no incentives to use BC for developing Apps – DApps.

Thus, speaking of DApps, we have one main question which needs to be answered – do

we trust our central node?

7.4 Shortcomings and Legal Handling

Immutability is an obvious benefit with BC system constructions being coined as trust

machines, yet, absolute immutability can also be insurmountable hurdle. To provide a

brief framework one may keep the following points on BCs & SCs in mind:

� Interactability: software and operational errors hardly removable or reversible, if at

all.

� Scalability: data storage and availability with permanent fixation of information to

BCs and adjacent structures like the EVM, require increasingly sophisticated cloud-

and physical-based management structures.

� Sensitive content: illegal, nefarious, or confidential information hardly removable

� Regulatory issues: conflicting national frameworks on consumer rights and data

privacy, or personal legal register information like the EU General Data Protection

Regulation or Rome I Regulation, the US Gramm-Leach-Bliley Act and Fair Credit

Reporting Act, or the SEC Regulation S-P.

Despite SCs offering interesting new opportunities in various use cases (see further

section 7.2), not many new solutions for existing problems are actually employing them,

particularly in the legal industry, although they were intended as a replacement for TCs.

Of course, there exist decent examples of companies putting the technology to use, such

as the likes of Tracr (2019) and Inmusik (2019), yet the scale of the technology adoption

is to this day rather small. While novelty and unfamiliarity surely are factors, another

reason for that may be the beforehand mentioned scalability issues. An outstanding ex-

ample is the very well-known CryptoKitties game SC (labs, 2021). At its peak accounted

for roughly 12% of all TX on the ETH BC (Quartz, 2017) leading to the amount of

pending TX increasing by a sixfold (BBC, 2017) with execution time and costs of TX

considerably high as the system got clogged with “cats” (see further section 3.3). Vita-

lik Buterin expressed more than once that scalability remains a bottleneck and hinders

49

https://www.cryptokitties.co/

widespread adoption of BC platforms (Star, 2019). The ETH network utilization remains

quite consistently over the 80% mark moving towards a constantly higher than the 90%

region, as visualized in Figure 21. While some big players like UBS (2016) experimented

with SCs, not much was heard about it afterward with disintermediation and decentral-

ization through SCs, and BCs are rarely able to replace common structures effectively

(Greenspan, 2016).

Figure 21: Network Usage Comparison, 2018 2019 2020

As outlined in section 3.3 and appendix 9.9, it is important to note that first and

foremost, the code of SCs must be absolutely bug-free and secure from nefarious inputs

as much as possible. Otherwise, exploitation of bugs or security flaws can be an insurance

business and puts the saying of “BC-based systems mean security” ad absurdum. An

important factor affecting the quality of SC source codes and their legal handling is that

only 1% of all SCs have a publicly available source code (amongst other sources, so-called

verified SCs on Etherscan. See further Nikolic et al., 2018). The remaining 99% can

only be read via the compiled source code. This does not necessarily mean that those

other 99% of SCs have qualitatively better or worse code, but it would reinforce good

practices and enrich the knowledge base of SC developers to have access to all source

codes, preventing possible further DAO-esque incidents.

The DAO (Coindesk, 2016) – a construction typus, which can be seen legally as a

cooperative, partnership, or unincorporated association with participants having usufruc-

tuary or usage rights – lead to a split/forking of the initial ETH BC into an altered

BC, now known as ETH, and a BC that kept the exploited status quo, now known as

Ethereum Classic (ETC). In fact, the ETH community regulated itself in the absence

50

https://github.com/QuantLet/USC

of jurisdiction, as the value lost during this happening due to bugged coding and ne-

farious exploitation of that error could legally not be seen as value back then – hence

“nothing” was stolen. This has since changed and respective assets are commonly seen

as non-tangible assets, which can also be subject to taxation. Similarly, the software

hosting project Edgeware – which accumulated investments of 300 000 000 USD in July

2019, a month after going live – held an exploitable coding, which would make it unable

to unlock and emit funds from their SC construction (Cohney and Hoffman, 2020) – an

issue , which is also present nowadays, if the ETH SC coder simply forgot to include the

function or to set the contract correctly as payable (see further appendix 9.9). Finding

bugs and imperfections inside the code just by looking at it is not easy, therefore it is

hard to assess how good or bad the code of more complex contracts is and throughout

testing is essential. This induces costs as repeated auditing and testing is required to

be performed by specialists. Additionally, as it could be expected from Solidity being

an object-oriented programming language (see section 3.3), the open-closed principle of

the object-oriented software design (i.e., open for extension, but closed for modification.

See further Meyer, 1988) is especially important in the case of SCs, since it cannot be

altered once an SC is deployed with a CA on the ETH BC unless the BC is forked at a

point prior to the deployment. We did not encounter extension properties and outstand-

ing modular development in the subset of the SCs we analyzed, yet, one could imagine

that with time more and more examples of such missing elements could become available.

If SCs are really cheaper than their traditional counterparts is also often up to the

field of employment. First off is the question, if it makes sense for a small or medium

enterprise to actually invest in such an endeavor. This consumes a lot of development time

and human resources, as well as a considerable amount of funds to make sure the codes

are (possibly) free of bugs and exploits. On a second look the question is, if such an SC-

based system makes sense in the long run for a plethora of cases. Here it is interesting to

look at the price of Gas related to certain opcodes (introduced in section 3.3 and denoted

in Appendix 9.4). The following table 9 presents the Gas cost for certain opcodes (see

further: Appendix G: Fee Schedule; Wood, 2021) and how much that would cost if done

a million times with an arbitrary stable Ether exchange price of 250 USD. Executing

the ADD opcode once will therefore cost 3 ∗ 109 Gwei which gives a cost of 0.00000009

Ether and 0.0000225 USD – respectively done a million times, this gives 22.5 USD (see

further Ryan, 2017). When comparing this data storage and propagation technique –

without taking the energy intensive mining process into consideration – to the pricing of

Amazon S3 AWS Services, the benevolent reader may turn pale looking at the SSTORE

opcode and ideas like: “Just store a natural language version with the SC code” given

volatile price structures like the previous maximum of 1 427.05 USD for 1 Ether on

the 13. January 2018 (see further Figure 23 – not mentioning the costs to set up and

51

https://aws.amazon.com/s3/pricing/

understand such a system). Data received through the Ethereum Energy Consumption

Index (Digiconomist, 2021) is providing a self explanatory overview regarding the cost in

energy compared to traditional proceedings in the Figure 22. Digiconomist (2021) and

De Vries (2018) propose the Bitcoin Energy Consumption Index, where they estimate

energy costs of TXs lying on the BC, the same approach they propose using to estimate

the energy costs of ETH. Digiconomist (2021) show that the footprints of a single ETH

transaction is equivalent to the power consumption of an average U.S. household over

2.05 days and the annual footprint could be compared to the power consumption even of

a whole country (e.g., compared to Lybia as of 15 March 2021Digiconomist (2021)). For

a deeper look into the statistics of the EVM we recommend, for example, Swende (2019).

opcode description Gas Ether USD*1M

ADD Addition operation. 3 0.00000009 22.5

MUL Multiplication operation. 5 0.00000015 37.5

SLOAD Load word from storage. 200 0.000006 1.5

BALANCE Get balance of the given account. 400 0.000012 3

SSTORE Save word to storage. 20000 0.0006 150

Table 9: opcode costs examples in Ether and in USD when done one million times
(1 Ether = 250 USD, mining fees and energy costs not taken into consideration) Network

Energy Consumption Comparison with ETH, 20170527 - 20201210

Figure 22: Energy Consumption of BTC and ETH compared to VISA, 20170527 -
20201210 based on Digiconomist (2021)

As we have already touched on the issue of mining in section 3.3, we just briefly want

to add on the issues related to the costs of mounting and running SCs contrasted to the

grand scale of things happening in ETH. We saw, that the price of Gas, the fuel needed

for every action of SCs, is directly bound to the price of Ether. Therefore, not only the

setup of some SC may be very expensive to ensure bug-free runtime, but on the other

52

https://digiconomist.net/ethereum-energy-consumption
https://digiconomist.net/ethereum-energy-consumption
https://github.com/QuantLet/USC

hand bug-free yet laboriously written SCs may consume more Gas than actually needed

for the individual application at hand. One can compare this to the energy consumption

of badly coded simple action applications on a handheld device: having, for example, a

badly written step counter on your mobile phone is a nuisance and needlessly consumes

energy through requiring more computing power. Figure 23 visualizes, that hence the

price of running the same SC can be very expensive to begin with, but depending on the

market price of Ether, it can be even more expensive.

Figure 23: Network Parameter time series, 20150630-20210211

A discussion of the term smart is hence needed for a basic understanding of the po-

tential decoupling between technological advances (code) and legal frameworks (natural

language) which require insight into the source codes analogue to raw natural language.

At the moment, SCs can not adapt to situations dynamically, but instead only return

based on the fulfillment or non-fulfillment of the predefined conditions. Indefinite legal

terms commonly used, like “to strive for” or similar, are not yet codeable and hence the

technological aspects lack considerably behind flexibility offered by TCs. Is this state,

however, a consequentially bad outcome? By recalling the quote by Nick Szabo from

the introduction, this is not necessarily a bad result given the human nature (Szabo,

1997a). Without the intention to create an Osborne effect, extended usage of SCs is

momentarily quite limited due to the lack of smartness. For example: any given SC, on

a more advanced level than just financial TXs, cannot identify any violation as these can

come in infinite forms and SCs are only coded to react according to respectively written

triggers. As most issues for SCs are of a time-varying, stochastic, and humanoid nature

– especially identifying problems ante factum – they require an agile technological and

53

https://github.com/QuantLet/USC

legal framework that is hard to implement at the given technological state.

A failsafe “bugout” solution in the hands of a trustful third party would be a solution,

which however would make it a circle argument for some governmental backing of such

systems to induce trust into the intermediary-less BC trust machine. Plenty of legal lit-

erature and decisions are available on non-/wrong-fulfillment of any kind of agreements,

ranging from, for example, an automobile being delivered in the (partially) wrong color,

to not having the expected quality of lacquer et cetera perge perge. These fine nuances

are not representable by SCs unless the contractual parties agree post id factum to alter

the SC – which is unfortunately only safely possible by deactivating the initial SC and

by redeploying an altered one as a different instance. The fundamental problem of legal

effectiveness of a particular contract also has to be taken into consideration, like for ex-

ample, the legal age or a mental illness of a party, or if digital signatures can be accepted

au lieu de physical signatures in a given case. However, these discussions revolve more

about the regulation of oracles and, therefore, data service providers – a field that is

not linked to SCs, but to classic service contract law for which a plethora of literature

exists. It is not necessary to create yet another legal framework, as SCs are trying to

be technological portrayals of their legal counterparts – a rental contract will still be a

rental contract, just in a different presentation.

This serves to underline the redundancy of an elaborated exegesis of fulfillment prob-

lems in the context of SCs, as there are more legal problems that may hinder SCs to be

classified as actual and effective contracts in their legal meaning. While an aficionado may

certainly be able to write a technically effective smart “contract”, it does not mean that

this “contract” is legally effective, leave alone legally enforceable. Depending on respec-

tive legal constructions, a contract may also only be partially effective, i.e., the obligation

to fulfill the contract may be ineffective, yet the transfer of ownership/property part of

the contract may be effective. Also, the contract needs to follow a certain phenotype, like

being in a certain language – where it can be up to discussion, if a programming language

can be chosen given the envisioned type of agreement. In the end, this is defined by the

already existing respective national limits of contractual freedom. Once again we recurse

on the fact that a third party – possibly governmentally backed system is needed to solve

problems if an agreement should ex tunc be deemed as ineffective as BC-based actions

are considered to be eternal. This is a question primarily referring to technical solutions

to make such constructions post factum editable (hence against the initial idea of BC),

as having, for example, illegal content on a BC could potentially invalidate it completely

for further usage.

The solution to fork the BC before this event and to abandon the “illegal BC” is

54

highly problematic given governmental power and activity structures on such a system.

The idea of ETH’s SCs to grant different states (stages of contractual fulfillment so to

say, see section 3.2) proposes a solution if a fallback function to a given previous state

or reverse TX can be coded. Courts often use the “doctrine of reasonable expectations”

as a fallback function and justification for invalidating parts or all of a given agreement:

the weaker party will not be held to adhere to contract terms that are beyond what

the weaker party would have reasonably expected from the contract, even if what the

party reasonably expected was outside the strict letter of agreement. The necessary

ambiguity in the TC and SC situation alike arises when there are plausible and com-

peting interpretations of a certain term. Given that the contractual parties can choose

the language of the agreement in certain legal frameworks – may it be French, Chinese,

or Solidity – it is important to note that this exemplary doctrine is not a rule granting

substantive rights to any party if there is no doubt about the meaning of the used terms.

Respectively, clickwrap/-through agreements can pose considerable sources for problems,

especially when thinking of adhesion clickwrap. In a traditional context, these can be

invalidated, which is not as easy to do in SC/BC software code cases. As the parties

agreed to use a particular language, both parties are seen as being able to understand

what is written in the agreement. The limit of freedom of contract, however, is obviously

reached when the counterparty does not understand the given agreement at all and is

respectively exploited. Unlike natural language on physical paper, it is harder to hide

nefarious proceedings in standardized code forms (see further section 3.1), as both parties

can de facto read the source code in any font they want and can check for all functions

present to not be of disadvantage for them. Unless the disadvantageous party can prove

to have been in a state of mental distress or similar while agreeing to this code, the only

way out would be through bona fides rulings – which in itself are not helping the idea of

legal security and may infringe on the freedom of contract.

As long as this level of smartness is not present with SCs, the solution to most of these

problems is not to employ an armada of legal scholars and practitioners to forcibly cre-

ate completely new legal frameworks but to employ the already existing legal knowledge

analogously rewritten as these have proven their efficiency to eventually serve as ius con-

suetudinis with specialized international courts. Given the scope of applicability and the

inherent nature of these agreements, we can obviously observe that unfair and surprising

outcomes, lack of notice or understanding of clauses can cause problems especially, when

considering SCs as replacements for TCs. There exists a potential for unconscionability

if the TC and SC do not represent equal information. However, such an event of dis-

crepancy and ambiguity will be resolved contra proferentem against the party drafting

the contract and its mean of execution – again, there is no need to specialised codices.

The European Union most notably works around these classic issues, for example, in the

55

Rome I and Rome II regulations (see further discussion e.g., Rühl, 2021).

The question of natural or legal persons is also interesting to be looked at with ad-

vancing digitization. Can Artificial Intelligence (AI) can be considered as contractual

partner in the sense of a legal person? Basically, if a given SC is coded to send or receive

specific MSGs, it can be considered to be a smart post box or receptionist for inbound

interaction and a messenger for outbound messages. Yet, if AI can hypothetically be con-

sidered a persona itself, or if the derelictio of software is possible and forces such entities

to exist, can also be up to discussion. Any action of an AI should not pose a problem

as long as the expressed will of the AI can be attributed to a natural or legal person.

Considering the AI to be a legal person itself would only overly complicate the matter

at hand (unless one would want to introduce an intelligent person, besides a natural and

legal one), as there will always be a wetware point-of-origin. The person who initially

wanted to express a will via a code, may it be an SC or an AI, needs to reassure that

unwanted results are prevented, otherwise has to accept the unwanted consequences by

implication or estoppel (attributable to a natural or human person in the sense of falsus

procurator or similar to a blanquette signature). Eventually this becomes relevant, when

looking at BC-based IoT applications of say autonomous vehicles, which are designed to

transmit sensor data for insurance reasons in case of an accident, or also might address

repair/supply stations to keep it operational.

Another grave aspect of SCs versus the legal reality is their incompatibility of eventual

execution according to the coding and potential legal expectations or pleads of, say, a

consumer as the counterparty. Whereas it has been often discussed how to employ SCs,

these applications can be plainly nonsense with serious consequences for the applicator in

certain legal frameworks. Whereas the example of locking a rentee out of a flat has been

often used to outline this issue, it is important to also think of possible scenarios of the

landlord selling a lien. This could be an autonomous driving car with an SC-coupled elec-

tronic lock which the rentee needs to go to earn a living. The SC would act like a vigilante

given that this scenario can be coded and executed after being triggered. “Fiat iustitia,

et pereat mundus” does not work in the state that SC-applying civilizations have reached.

Whereas the idea of using digital signatures is already widely accepted in legal frame-

works, advances such as the EIP712 (Ethereum typed structured data hashing and sign-

ing) should be observed critically. A major point for friction between legal systems and

BC-based systems is present in the European Union (EU), most notably regarding the

GDPR. Given this regulation, SCs as a replacement for TCs de facto not possible in the

EU (at least in B2C realms). Notably, the SC standard ERC1812 (Ethereum Verifiable

Claims) records Identity Claims containing Personal Identifying Information (PII) on the

56

https://eips.ethereum.org/EIPS/eip-712
https://eips.ethereum.org/EIPS/eip-712
https://gdpr-info.eu/
https://eips.ethereum.org/EIPS/eip-1812
https://eips.ethereum.org/EIPS/eip-1812

ETH BC(remember: immutable public database) is conflicting with the GDPR. How-

ever, the legal legibility of SCs should be seen as a time decaying problem. Knowledge

and incorporation of codes as part of traditional constructions, just like the eventual ac-

knowledgement of electronically saved parts of legal documents, will happen as the level

of safety and standardization of SCs takes place. If SCs will become smart, in that if a

piece of code is able to become a real competition to paper, is yet to be seen. Therefore,

we are still waiting for the realm envisioned by Susskind (2013). While it is certainly true

that members of the tech or law guild enjoy to create dense and impenetrable œuvres,

one always has to take the elementary self-defining aspect of many BC enthusiasts of

being anti-establishment into account – or as Sklaroff (2017) put it: “How to Lease a

Car from an Anarchist”. Most of what we commonly encounter as “Smart Contract”

is running against the self-definition of what the SC inventors themselves envisioned for

their creation. Therefore many overused terms such as self-enforcing and unbreakable

need to be understood with a pinch of realism – from both a legal, as well as a technical

point of view. As it stands today: Any smart contract will not protect from a smart

lawyer in court or an enthusiastic hacker – not even a smart SC will.

7.5 Legal Example

As a hands-on-example, let us look at a SC as a mean to execute a long term flat rental

TC under German law: Landlord (L) and Tenant (T) sign a TC on renting an unreno-

vated ground floor road-view flat at BC-wonderland Berlin “X-Berg”’s Tourist and Club

area, i.e., EUR 2.000,– gross warm rent for 45 square meters, on the 01. August 2021.

The flat sports a well maintained and shiny smart-lock belonging and connected to a

dedicated and extremely hyped Berlin-Startup (S) BC system that runs exclusively for

such businesses – obviously L and T agree in the TC to have an SC to manage respective

value flows, as this is portrayed as saving them money and time, instead of making a

musty repeating standing order via online banking.

After they have forwarded all their contractual, professional, and private information,

besides creditworthiness et cetera, to the service provider to set up the SC, the complete

heating system collapses on the 01. November 2021 and is not fixed for the whole month.

This is the first time that T realizes that the SC has no function coded for any kind of

such rent reduction due to heating shortages – the smart meters on the heating devices

are not linked to the SC via an Oracle to cut on respective costs, as it is expected that

lodgers in this area will always be hot. T declares to L a rental reduction of 100% for the

month of November, as he was not able to use the flat accordingly – a shortcoming in the

sense of § 536 Par. 1 S. 1 Bürgerliches Gesetzbuch (BGB; German Civil Code). As the L

does not react and the service provider S is not reachable, T addresses his credit institute

57

– from where the SC automatically deducted the full rent as advised repeatedly – to can-

cel the permission to have any funds going off towards this address. Meanwhile, T tries

to reach L and S, the SC is unable to automatically deduct the rent from the banking

account of T on the 01. December and locks T out of the flat via a coded command to

the smart-lock. After T – who suspected a typical Berlin-esque “Digital Advancement”

technical error – had the door broken open by a locksmith and having the smart-lock

replaced by a conventional lock, the S tries to call T why the data-stream from the device

has broken off – just seconds before the L also tries to call T after having received an

automatic alert message, that T has not paid the rent.

The days pass – S has gone bankrupt in the meantime due to an overflow of unpaid

marketing bills – and L prompts T – who has now access to the flat via the installed

traditional lock-key-system and transfers the rent via a classic standing order – to pay

the missing rent for October 2021 on the firsts of December 2021, January and February

2022. Eventually, L files a lawsuit against T in March 2022 to pay the rent for October

2021 stating that the SC is an exhaustive and final provision regarding the rights and

obligations of this rental contract. T eventually terminates the TC properly and moves

back to his Uckermark home village in April 2022 after not becoming a successful Avant-

garde fashion designer.

In the following, we provide a rough sketch on how this case of interaction between

SC and TC would be handled legally in Germany and programmatically respectively in

adjacent legal system constructions:

I. Admissibility of the lawsuit of L against T to pay the rent for November 2021

1. Juristiction

Given the TC and missing any contradicting information − the SC is completely irrelevant −

the Amtsgericht Tempelhof−Kreuzberg is factually and locally responsible for this case,

§ 23 Nr. 2a Gerichtsverfassungsgesetz (GVG; Courts Constitution Act) in conjunction with

§ 29a Par. 1 Zivilprozessordnung (ZPO; German Code of Civil Procedure).

2. Defensible Interest

In case one should see an SC as a fully viable replacement for a TC, then one could argue,

that there could be an easier way of justice than going to the courts and have a lengthy

process. As we do not see SCs as equal to TC, but merely as a mean of execution, we do not

need to discuss ”self executing and enforcing justice”.

II. Reasonableness of the lawsuit of L against T to pay the rent for November 2021

58

Conditioned that L’s claim to pay the rent for October 2021 based on the rental TC holds.

1. Contractual Base

Again, we do not consider an SC to be a contract in the legal sense, hence only the TC is

important here with no contradicting information regarding issues with the TC. The SC is

just a mean of execution of the TC. Therefore the plead of L, that the SC is an exhaustive

and final provision is meaningless.

Thinking of an SC of being just a mere mean on execution, problems regarding a potentially

required written form of an agreement are of redundant nature. Importantly, it is commonly

agreed, that eMails, Telefaxes, or Computerfaxes do not hold up to fulfill the required

written form.

On the other hand, if one would think of an SC being a replacement of a TC, one would pay

attention to respective regulations on the way the agreement is presented, i.e., the written

form requirement of § 126 Par. 1 BGB for a contract in the sense of § 550 S. 1 BGB can

be replaced according to § 126 Par. 3 BGB given that respective signatures in the sense of

§ 126a BGB are given (recall our multiple hints towards the importance of signatures in a

technical (digital signature) and legal (electronic signature) sense − nevertheless a missing

written form according to § 550 S. 1 BGB does not provoke a nullity according to § 125 S. 1

BGB, but just an indefinite rental length in this particular case).

The full legal reference of §§ 126a, 126 Par. 3, 127 Par. 1 and 3 BGB however hints towards

the border of the freedom of contract in the sense of §§ 13, 125 BGB, as a given law may

define this otherwise. Examples would be the §§ 484 Par. 1 S. 2, 492 Par. 1 S. 2,

623 Half−S. 2, 766 S. 2 BGB, or the § 780 S. 2, 781 S. 2 BGB.

2. Rights based on Irregularity In Contractual Performance

Rights resulting from an irregularity in contractual performance can be called given that a

contractual performance is not or not as owed given.

In this case, the T ows the L to rent for November 2021. We could consider that T exercised

his right to set−off this obligation according to § 389 BGB with the rent of October 2021

given that he has a right to reduction.

The SC itself does not have any other function besides checking for cash flows and

smart−lock data stream − it is obvisouly not that smart as it will never be able to represent

the status of the rental flat, unless that flat if full of sensors and these are connected

flawlessly to a respectively coded SC. This, however, does not change anything in the rights a

tenant has by law. Here, as T was unable to live in the flat for the month of November 2021,

59

he has the right to reduce the rent of November 2021 by 100% according to

§ 536 Par. 1 BGB and to set−off this position according to § 389 BGB. L can not demand

the rent for November 2021.

L’s statement, that the SC is an exhaustive and final provision is on one hand irrelevant, as

they also signed a TC for which the SC is only the mean of execution, and the rights given by

law to T are not of a dispositive nature. In general, any contractual agreement needs to stand

up to the questions of, for example, if they stand up against control towards their legality.

3. Cancellation of Contract

The right to exercise the termination of a contract is a right to influence a legal relationship

just like a contestation, a revocation, or others besides § 134 BGB. As outlined beforehand, if

an SC should be seen as a complete surrogate for TCs, there can be issies if a respective

cancellation is not coded or not coded properly.

Given that an SC is not coded properly, the respective legal rights are not superseded by them

missing in an ‘‘exhaustive and final provision” as outlined above regarding the reduction of

the rent or the extraordinary termination of the agreement. In our example case, the T could

have terminated the TC immediately in December when the smart−lock did not let T in the

flat which represents an important issue according to § 543 Par. 1 & Par. 2 S. 1 BGB, as the

respective requirements for locking a tenant out of a flat via a forced eviction or clearance

order according to § 940a ZPO were missing.

III. Conclusion

The abovehand outlined case would be admissible to the courts, but it can not be seen as

being reasonable.

Should one see an SC as a replacement for a TC, without a given legal foundation that

identifies this equally, then one could argue, that in the case of problems arising the people

utilising this framework willingly let go of their otherwise existing frameworks of rights −

caveat emptor. One can compare that to illicit employment or moonlighting to save on taxes

and issues resulting from a normally given warranty for defects or in the case of the customers

insolvency. Using surrogate systems to circumvent the existing regulated system does not

deserve to be protected.

At least the German legal system is not in need of a specialised BC−law or similar lex

cryptographia creatures, as it is an effective tool given its abstractness to adapt to a given

case, as well as given its neutrality towards any kind of technological advances, may they have

been electronic signatures in the past or BC−systems at the given time of this writing.

60

With this rudimentary example – we are not going deeper into any claims of T against

L (e.g. § 231 BGB due to being locked out – beyond §§ 858 ff. BGB), or of L against

S (e.g. consequential damage in the sense of § 280 Par. 1 BGB due to a primitively

coded SC), or of S against L and/or T (e.g. due to the willingly damaged smart-lock in

the sense of the civil and penal law), et cetera – we can quite easily present the frictions

between the “vision” and the reality of SC in other realms than being a financial vehicle

like peer-to-peer lending or data transmitter in areas such as say renewable energy Pro-

sumer situations.

We want to underline, that law enforcement and legal security do not work in the

SC-framework we have at hand at the time of writing this – especially when thinking

about, for example, §§ 273, 320, 229, 230, 539 Par. 2, 997 BGB, or §§ 765a, 811 ZPO.

Hence (nearly) every thinkable contractual construction will run into problems when

being pushed in an SC application. Gravely, the exclusive right of courts to rule on what

is eventually right or wrong is circumvented and can lead to unjust overenforcement, like

locking the tenant out of the flat in the above shown example. Legal systems all over the

world, and to our knowledge especially such coming from a Franco-Germanic genesis, are

clear enough on what individual rights are and on what these individual rights borders

are – to this point, a embedded legal knowledge can not be represented by SCs.

8 Closing remarks

“There is no reason anyone would want a computer in their home.”

Olsen (1977)

Wetware, Hardware, and Software have an inherent need for evolvability in response

to changing requirements, and SCs are no different. Though interest in SCs has taken off

in the past few years, they have created – at the time of writing this – a bulk of “hyped

hopes” with only a fraction of the said miracles having been delivered. Yet, is there really

no reason anyone would want to buy their home via an SC?

We have shown how the first system that enabled SCs works, and what SCs can and

can not accomplish in contrast to the common narratives. Moreover, we proposed a

methodological solution for the decision support on the appropriateness of using DApp

and SCs for solving specific problems. While we critically assessed the narrative of SCs,

we see the chance and hope that SCs provide the incentive to move onwards to more

efficient and stable proceedings. Work towards this on the intersection with Ricardian

Contrachts is already underway (Grigg, 2015, 2020). However, the fields involved in the

matter at hand – explicitly Statistics, Information Technology, and Law – must cooperate

61

and not claim the sole right to exist coupled with papal-esque infallabilitas.

We have proven, that the application of SCs is very restricted to this point, but

every technology requires some patching before being able to cater the promised deeds

to the target group. Hence, SCs have the potential to be Door Kickers to evolve the

idea dramatically with most legal frameworks being abstract or adaptive enough to get

it accustomed to it. Otherwise, at the given state, the question what SCs can and can

not deliver will stay to be a question of Realism and Idealism.

References

Ajienka, N., P. Vangorp, and A. Capiluppi. 2020. “An empirical analysis of source code met-

rics and smart contract resource consumption.” Journal of Software: Evolution and Process

32 (10). URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084603880&doi=10.

1002%2fsmr.2267&partnerID=40&md5=d649e2f8fef7d596e4574207db44548d. Online; accessed 10

January 2021.

Akyildirim, E., S. Corbet, D. Cumming, B. Lucey, and A. Sensoy. 2021. “Riding the Wave of Crypto-

Exuberance: The Potential Misusage of Corporate Blockchain Announcements.” . SSRN. Retrieved on

the 02.02.2021 from https://ssrn.com/abstract=3758490.

Bartoletti, M. and L. Pompianu. 2017. “An empirical analysis of smart contracts: platforms, applica-

tions, and design patterns.” In International conference on financial cryptography and data security.

Springer, 494–509.

BBC. 2017. “CryptoKitties craze slows down transactions on Ethereum.” URL https://www.bbc.

com/news/technology-42237162. Online; accessed 10 January 2021.

Bellia, A. 2002. “Promises, Trust, and Contract Law.” American Journal of Jurisprudence 47:25.

Boaz, B. and A. Sanjeev. 2009. Computational Complexity: A Modern Approach. Princeton University:

Cambridge University Press, 1st edition ed.

Borke, L. and W. Härdle. 2018. “Q3-D3-LSA.” In Handbook of Big Data Analytics, edited by Lu H.

Shen X. Härdle, W. Springer-Verlag Berlin Heidelberg, ISBN 978-3-319-18284-1, DOI: 10.1007/978-3-

319-18284-1.

Buchanan, W. 2020. “Ethereum Address Generation, Asecuritysite.” URL https://asecuritysite.

com/encryption/ethadd. Online; accessed 10 January 2021.

Buterin, V. 2015. “Merkling in Ethereum.” URL https://blog.ethereum.org/2015/11/15/

merkling-in-ethereum/. Online; accessed 10 January 2021.

———. 2020. “Ethereum White Paper - A next generation smart contract & decentralized application

platform.” URL https://ethereum.org/en/whitepaper/. Online; accessed 10 January 2021.

Celesti, A., A. Ruggeri, M. Fazio, A. Galletta, M. Villari, and A. Romano. 2020. “Blockchain-based

healthcare workflow for tele-medical laboratory in federated hospital IoT clouds.” Sensors (Switzer-

land) 20 (9). URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084379712&doi=

10.3390%2fs20092590&partnerID=40&md5=35fa6cf8563f76811c2bd419d34075c0. Online; accessed

10 January 2021.

62

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084603880&doi=10.1002%2fsmr.2267&partnerID=40&md5=d649e2f8fef7d596e4574207db44548d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084603880&doi=10.1002%2fsmr.2267&partnerID=40&md5=d649e2f8fef7d596e4574207db44548d
https://ssrn.com/abstract=3758490
https://www.bbc.com/news/technology-42237162
https://www.bbc.com/news/technology-42237162
https://asecuritysite.com/encryption/ethadd
https://asecuritysite.com/encryption/ethadd
https://blog.ethereum.org/2015/11/15/merkling-in-ethereum/
https://blog.ethereum.org/2015/11/15/merkling-in-ethereum/
https://ethereum.org/en/whitepaper/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084379712&doi=10.3390%2fs20092590&partnerID=40&md5=35fa6cf8563f76811c2bd419d34075c0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084379712&doi=10.3390%2fs20092590&partnerID=40&md5=35fa6cf8563f76811c2bd419d34075c0

Chen, W., Z. Zheng, J. Cui, E. Ngai, P. Zheng, and Y. Zhou. 2018. “Detecting ponzi schemes on

ethereum: Towards healthier blockchain technology.” In Proceedings of the 2018 World Wide Web

Conference. 1409–1418.

Circle. 2021. “USDC: the world’s leading digital dollar stablecoin.” URL https://www.circle.com/

en/usdc. Online; accessed 3 March 2021.

Cohney, S. and D.A. Hoffman. 2020. “Transactional Scripts in Contract Stacks.” Minnesota Law Review

105:319–386.

Coindesk. 2016. “Understanding The DAO Attack.” URL https://www.coindesk.com/

understanding-dao-hack-journalists. Online; accessed 10 January 2021.

Davies, D. and D. Bouldin. 1979. “A cluster separation measure.” IEEE transactions on pattern

analysis and machine intelligence (2):224–227.

De Vries, A. 2018. “Bitcoin’s growing energy problem.” Joule 2 (5):801–805.

Devlin, J., M. Chang, K. Lee, and K. Toutanova. 2018. “Bert: Pre-training of deep bidirectional

transformers for language understanding.” arXiv preprint arXiv:1810.04805 .

Di Angelo, Monika and Gernot Salzer. 2020. “Assessing the Similarity of Smart Contracts by Clustering

their Interfaces.” Blockchain Systeme and Applications (BlockchainSys 2020) :1–10.

Digiconomist. 2021. “Ethereum Energy Consumption Index.” URL https://digiconomist.net/

ethereum-energy-consumption. Online; accessed 26 January 2021.

Durieux, T., J. Ferreira, R. Abreu, and P. Cruz. 2019. “Empirical Review of Automated Analysis Tools

on 47,587 Ethereum Smart Contracts.” arXiv preprint arXiv:1910.10601 .

EIP. 2020. “EthereumImprovementProposals - Ethereum Request for Comments.” URL https://

eips.ethereum.org/erc. Online; accessed 10 January 2021.

Etherscan. 2019a. “Ethereum Network Utilization.” URL https://etherscan.io/chart/

networkutilization.

———. 2019b. “Etherscan verified contracts.” URL https://etherscan.io/contractsVerified.

Factory, Golem. 2021. “Golem.” URL https://www.golem.network/. Online; accessed 3 March 2021.

Fawcett, T. 2006. “An introduction to ROC analysis.” Pattern recognition letters 27 (8):861–874.

Firica, A. 2019. “Decentralized Apps vs Web Apps.” URL https://wiredelta.com/decentralized-

apps-vs-web-apps/. Online; accessed 26 January 2021.

GeeksforGeeks. 2020. “Mathematical Operations in Solidity.” URL https://www.geeksforgeeks.

org/mathematical-operations-in-solidity/. Online; accessed 26 January 2021.

Goldreich, O. and Y. Oden. 1994. “Definitions and properties of zero-knowledge proof systems.” Journal

of Cryptology 7:1–32.

Goldwasser, S., S. Micali, and C. Rackoff. 1989. “The Knowledge Complexity of Interactive Proof

Systems.” SIAM Journal on Computing 18:168–298.

Greenspan, G. 2016. “Blockchains vs centralized databases.” URL https://www.multichain.com/

blog/2016/03/blockchains-vs-centralized-databases/. Online; accessed 10 January 2021.

Grigg, I. 2015. “On the intersection of Ricardian and Smart Contracts.” URL https://iang.org/

papers/intersection_ricardian_smart.html. Online; accessed 10 January 2021.

63

https://www.circle.com/en/usdc
https://www.circle.com/en/usdc
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists
https://digiconomist.net/ethereum-energy-consumption
https://digiconomist.net/ethereum-energy-consumption
https://eips.ethereum.org/erc
https://eips.ethereum.org/erc
https://etherscan.io/chart/networkutilization
https://etherscan.io/chart/networkutilization
https://etherscan.io/contractsVerified
https://www.golem.network/
https://wiredelta.com/decentralized-apps-vs-web-apps/
https://wiredelta.com/decentralized-apps-vs-web-apps/
https://www.geeksforgeeks.org/mathematical-operations-in-solidity/
https://www.geeksforgeeks.org/mathematical-operations-in-solidity/
https://www.multichain.com/blog/2016/03/blockchains-vs-centralized-databases/
https://www.multichain.com/blog/2016/03/blockchains-vs-centralized-databases/
https://iang.org/papers/intersection_ricardian_smart.html
https://iang.org/papers/intersection_ricardian_smart.html

———. 2020. “Ricardian contracts.” URL http://www.webfunds.org/guide/ricardian.html. On-

line; accessed 10 January 2021.

Grootendorst, Maarten. 2020. “Topic Modeling with BERT.” https://towardsdatascience.com/

topic-modeling-with-bert-779f7db187e6. Online; accessed 10 January 2021.

Halaburda, H. 2018. “Staff Analytical Note/Note analytique du personnel 2018-5. Blockchain Revo-

lution Without the Blockchain.” URL https://www.bankofcanada.ca/wp-content/uploads/2018/

03/san2018-5.pdf. Online; accessed 10 January 2021.

Härdle, W., C. Harvey, and R. Reule. 2020. “Understanding Cryptocurrencies.” Journal of Financial

Econometrics URL https://doi.org/10.1093/jjfinec/nbz033.

Inmusik. 2019. “The music industry.” URL https://inmusik.co/. Online; accessed 10 January 2021.

Justia, US Law. 2019. “2019 Tennessee Code Title 47 - Commercial Instruments and Transactions Chap-

ter 10 - Uniform Electronic Transactions Part 2 - Distributed Ledger Technology § 47-10-202. Cryp-

tographic signature – Electronic records and forms.” https://law.justia.com/codes/tennessee/

2019/title-47/chapter-10/part-2/section-47-10-202/. Online; accessed 10 January 2021.

Kaggle. 2020. “Ethereum Blockchain. Complete live historical Ethereum blockchain data (BigQuery).”

URL https://www.kaggle.com/bigquery/ethereum-blockchain. Accessed on March 10, 2020.

Keilbar, G. and Y. Zhang. 2020. “On Cointegration and Cryptocurrency Dynamics.” . IRTG 1792 Dis-

cussion Paper. ISSN: 2568-5619. https://www.wiwi.hu-berlin.de/de/forschung/irtg/results/

discussion-papers/discussion-papers-2017-1/irtg1792dp2020-012.pdf.

Khatoon, A. 2020. “A blockchain-based smart contract system for healthcare management.” Electronics

(Switzerland) 9 (1). URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078249289&

doi=10.3390%2felectronics9010094&partnerID=40&md5=5aba0226f186db9263b68302e874b71f.

Online; accessed 10 January 2021.

Kondo, M., G. Oliva, Z. Jiang, A. Hassan, and O. Mizuno. 2020. “Code cloning in smart contracts: a case

study on verified contracts from the Ethereum blockchain platform.” Empirical Software Engineering

25 (6):4617–4675.

labs, Dapper. 2021. “CryptoKitties. Collect and breed furrever friends!” URL https://www.

cryptokitties.co/. Online; accessed 3 March 2021.

Laplante, P. 2017. Dictionary of computer science, engineering and technology. CRC Press.

Ledger. 2021. “What is the difference between Coins and Tokens?” URL https://www.ledger.com/

academy/crypto/what-is-the-difference-between-coins-and-tokens. Online; accessed 3 March

2021.

Lessig, L. 1999. Code and Other Laws of Cyberspace. New York: Basic Books, 1st u.s. edition, 3rd

printing edition (november 30, 1999) ed.

Li, A., J. Choi, and F. Long. 2020. “Securing smart contract with runtime validation.” 438–

453. URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086822484&doi=10.1145%

2f3385412.3385982&partnerID=40&md5=1fb913e50572a8e1764f0dcb4f7a3b44. Online; accessed 10

January 2021.

Liang, Y. and K. Zhu. 2018. “Automatic generation of text descriptive comments for code blocks.” In

Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32.

64

http://www.webfunds.org/guide/ricardian.html
https://towardsdatascience.com/topic-modeling-with-bert-779f7db187e6
https://towardsdatascience.com/topic-modeling-with-bert-779f7db187e6
https://www.bankofcanada.ca/wp-content/uploads/2018/03/san2018-5.pdf
https://www.bankofcanada.ca/wp-content/uploads/2018/03/san2018-5.pdf
https://doi.org/10.1093/jjfinec/nbz033
https://inmusik.co/
https://law.justia.com/codes/tennessee/2019/title-47/chapter-10/part-2/section-47-10-202/
https://law.justia.com/codes/tennessee/2019/title-47/chapter-10/part-2/section-47-10-202/
https://www.kaggle.com/bigquery/ethereum-blockchain
https://www.wiwi.hu-berlin.de/de/forschung/irtg/results/discussion-papers/discussion-papers-2017-1/irtg1792dp2020-012.pdf
https://www.wiwi.hu-berlin.de/de/forschung/irtg/results/discussion-papers/discussion-papers-2017-1/irtg1792dp2020-012.pdf
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078249289&doi=10.3390%2felectronics9010094&partnerID=40&md5=5aba0226f186db9263b68302e874b71f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078249289&doi=10.3390%2felectronics9010094&partnerID=40&md5=5aba0226f186db9263b68302e874b71f
https://www.cryptokitties.co/
https://www.cryptokitties.co/
https://www.ledger.com/academy/crypto/what-is-the-difference-between-coins-and-tokens
https://www.ledger.com/academy/crypto/what-is-the-difference-between-coins-and-tokens
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086822484&doi=10.1145%2f3385412.3385982&partnerID=40&md5=1fb913e50572a8e1764f0dcb4f7a3b44
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086822484&doi=10.1145%2f3385412.3385982&partnerID=40&md5=1fb913e50572a8e1764f0dcb4f7a3b44

Lin, M., K. Khowaja, C. Chen, and W. Härdle. 2021. “Blockchain mechanism and distributional

characteristics of cryptos.” In Book Series: Advances in Quantitative Analysis of Finance Accounting

(AQAFA)., vol. 18. Forthcoming.

MakerDao. 2021. “A better smarter currency.” URL https://makerdao.com/en/. Online; accessed 3

March 2021.

McInnes, L., J. Healy, and J. Melville. 2018. “Umap: Uniform manifold approximation and projection

for dimension reduction.” arXiv preprint arXiv:1802.03426 .

Meyer, B. 1988. Object-Oriented Software Construction. Prentice Hall.

Mik, E. 2019. “Smart Contracts: A Requiem.” http://dx.doi.org/10.2139/ssrn.3499998. Journal

of Contract Law , Forthcoming. Online; accessed 10 January 2021.

Ni, X., W. Härdle, and T. Xie. 2020. “A Machine Learning Based Regulatory Risk Index for Cryptocur-

rencies.” . SSRN. Retrieved on the 15.01.2021 from http://dx.doi.org/10.2139/ssrn.3699345.

Nikolic, I., A. Kolluri, I. Sergey, P. Saxena, and A. Hobor. 2018. “Finding The Greedy, Prodigal, and

Suicidal Contracts at Scale.” arXiv URL https://arxiv.org/abs/1802.06038. Online; accessed 10

January 2021.

Norvill, R., B. Pontiveros, R. State, I. Awan, and A. Cullen. 2017. “Automated labeling of unknown

contracts in ethereum.” In 2017 26th International Conference on Computer Communication and

Networks (ICCCN). IEEE, 1–6.

Oliva, G., A. Hassan, and Z. Jiang. 2020. “An exploratory study of smart contracts in the Ethereum

blockchain platform.” Empirical Software Engineering :1–41.

Olsen, K. 1977. “hello world.” URL http://www.computinghistory.org.uk/pages/3971/There-is-

no-reason-anyone-would-want-a-computer-in-their-home. Online; accessed 10 January 2021.

Petukhina, A., R. Reule, and W. Härdle. 2021. “Rise of the machines? Intraday high-frequency

trading patterns of cryptocurrencies.” In The European Journal of Finance, vol. 27. DOI

10.1080/1351847X.2020.1789684.

Petukhina, A., S. Trimborn, W. Härdle, and H. Elendner. 2021. “Investing With Cryptocurrencies –

Evaluating the Potential of Portfolio Allocation Strategies.” In Forthcoming in Quantitative finance,

vol. SSRN. Retrieved on the 15.01.2021 from https://doi.org/10.1080/14697688.2021.1880023.

Pierro, G., R. Tonelli, and M. Marchesi. 2020. “An organized repository of ethereum

smart contracts’ source codes and metrics.” Future Internet 12 (11):1–15. URL https:

//www.scopus.com/inward/record.uri?eid=2-s2.0-85096036922&doi=10.3390%2ffi12110197&

partnerID=40&md5=7de8b1e1c8bdbdab8f767f02f5c62283. Online; accessed 10 January 2021.

Pinna, A., S. Ibba, G. Baralla, R. Tonelli, and M. Marchesi. 2019. “A Mas-

sive Analysis of Ethereum Smart Contracts. Empirical study and code metrics.” IEEE

Access URL https://www.researchgate.net/publication/333682492_A_Massive_Analysis_of_

Ethereum_Smart_Contracts_Empirical_study_and_code_metrics. Online; accessed 10 January

2021.

Quartz. 2017. “The ethereum network is getting jammed up because people are rushing to buy cartoon

cats on its blockchain.” URL https://qz.com/1145833/cryptokitties-is-causing-ethereum-

network-congestion. Online; accessed 10 January 2021.

Raval, S. 2016. Decentralized applications: harnessing Bitcoin’s blockchain technology. ” O’Reilly Media,

Inc.”.

65

https://makerdao.com/en/
http://dx.doi.org/10.2139/ssrn.3499998
http://dx.doi.org/10.2139/ssrn.3699345
https://arxiv.org/abs/1802.06038
http://www.computinghistory.org.uk/pages/3971/There-is-no-reason-anyone-would-want-a-computer-in-their-home
http://www.computinghistory.org.uk/pages/3971/There-is-no-reason-anyone-would-want-a-computer-in-their-home
https://doi.org/10.1080/14697688.2021.1880023
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096036922&doi=10.3390%2ffi12110197&partnerID=40&md5=7de8b1e1c8bdbdab8f767f02f5c62283
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096036922&doi=10.3390%2ffi12110197&partnerID=40&md5=7de8b1e1c8bdbdab8f767f02f5c62283
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096036922&doi=10.3390%2ffi12110197&partnerID=40&md5=7de8b1e1c8bdbdab8f767f02f5c62283
https://www.researchgate.net/publication/333682492_A_Massive_Analysis_of_Ethereum_Smart_Contracts_Empirical_study_and_code_metrics
https://www.researchgate.net/publication/333682492_A_Massive_Analysis_of_Ethereum_Smart_Contracts_Empirical_study_and_code_metrics
https://qz.com/1145833/cryptokitties-is-causing-ethereum-network-congestion
https://qz.com/1145833/cryptokitties-is-causing-ethereum-network-congestion

Reimers, Nils and Iryna Gurevych. 2019. “Sentence-BERT: Sentence Embeddings using Siamese BERT-

Networks.” In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Process-

ing. Association for Computational Linguistics. URL https://arxiv.org/abs/1908.10084.

Rühl, G. 2021. “Smart (Legal) Contracts, or: Which (Contract) Law for Smart Contracts?” In

Blockchain, Law and Governance., edited by B. Cappiello and G. Carullo. Springer International Pub-

lishing, 159–180. ISBN 978–3–030–52722–8.

Ryan, D. 2017. “Calculating Costs in Ethereum Contracts.” URL https://hackernoon.com/ether-

purchase-power-df40a38c5a2f. Online; accessed 10 January 2021.

Sanh, V., L. Debut, J. Chaumond, and T. Wolf. 2019. “DistilBERT, a distilled version of BERT:

smaller, faster, cheaper and lighter.” arXiv preprint arXiv:1910.01108 .

Scholten, O., N. Hughes, S. Deterding, A. Drachen, J. Walker, and D. Zendle. 2019. “Ethereum Crypto-

Games: Mechanics, Prevalence, and Gambling Similarities.” In Proceedings of the Annual Symposium

on Computer-Human Interaction in Play. 379–389.

Shaw, G. 1919. “Annajanska, the Bolshevik Empress: A Revolutionary Romancelet.”

Sklaroff, J. 2017. “Smart Contracts and the Cost of Inflexibility.” University of Pennsylvania Law

Review 166:263–303.

Star. 2019. “Multimillionaire 25-year-old crypto king Vitalik Buterin speaks to the Star about the

future of Ethereum.” URL https://www.thestar.com/business/2019/08/19/ethereums-vitalik-

buterin-on-reducing-cryptocurrencys-risks.html. Online; accessed 10 January 2021.

State of the DApps. 2021. “Explore Decentralized Applications.” URL https://www.

stateofthedapps.com/. Online; accessed 19 January 2021.

Steidl, D., B. Hummel, and E. Juergens. 2013. “Quality analysis of source code comments.” In 2013

21st international conference on program comprehension (icpc). Ieee, 83–92.

Sun, Hanyi, Na Ruan, and Hanqing Liu. 2019. “Ethereum analysis via node clustering.” In International

Conference on Network and System Security. Springer, 114–129.

Susskind, R. 2013. Tomorrow’s Lawyers: An Introduction to Your Future. Oxford: Oxford University

Press.

Swende, M. 2019. “vmstats.” URL https://github.com/holiman/vmstats. Online; accessed 10

January 2021.

Szabo, N. 1994. “Smart Contracts.” URL http://www.fon.hum.uva.nl/rob/Courses/

InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.

contracts.html. Online; accessed 10 January 2021.

———. 1997a. “Accounting Controls.” URL http://www.fon.hum.uva.nl/rob/Courses/

InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/

accounting.html. Online; accessed 10 January 2021.

———. 1997b. “The Idea of Smart Contracts.” URL https://nakamotoinstitute.org/the-idea-

of-smart-contracts/. Online; accessed 10 January 2021.

Thorndike, R. 1953. “Who belongs in the family?” Psychometrika 18 (4):267–276.

Tracr. 2019. “The diamond industry supply chain.” URL https://www.tracr.com/. Online; accessed

10 January 2021.

66

https://arxiv.org/abs/1908.10084
https://hackernoon.com/ether-purchase-power-df40a38c5a2f
https://hackernoon.com/ether-purchase-power-df40a38c5a2f
https://www.thestar.com/business/2019/08/19/ethereums-vitalik-buterin-on-reducing-cryptocurrencys-risks.html
https://www.thestar.com/business/2019/08/19/ethereums-vitalik-buterin-on-reducing-cryptocurrencys-risks.html
https://www.stateofthedapps.com/
https://www.stateofthedapps.com/
https://github.com/holiman/vmstats
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/accounting.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/accounting.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/accounting.html
https://nakamotoinstitute.org/the-idea-of-smart-contracts/
https://nakamotoinstitute.org/the-idea-of-smart-contracts/
https://www.tracr.com/

UBS. 2016. “Cutting through the blockchain hype.” URL https://www.ubs.com/microsites/

innovation/en/our-approach/2016/path-finding.html. Online; accessed 10 January 2021.

UNICITRAL. 2001. “UNCITRAL Model Law on Electronic Signatures with Guide to Enactment

2001.” URL http://www.uncitral.org/pdf/english/texts/electcom/ml-elecsig-e.pdf. Online;

accessed 10 January 2021.

v. d. Maaten, L. and G. Hinton. 2008. “Visualizing data using t-SNE.” Journal of machine learning

research 9 (Nov):2579–2605.

Wang, W., J. Song, G. Xu, Y. Li, H. Wang, and C. Su. 2020. “Contractward: Automated vulnera-

bility detection models for ethereum smart contracts.” IEEE Transactions on Network Science and

Engineering .

Wilcoxon, Frank. 1992. “Individual comparisons by ranking methods.” In Breakthroughs in statistics.

Springer, 196–202.

Wöhrer, M. and U. Zdun. 2018. “Design patterns for smart contracts in the ethereum ecosystem.” In

2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and

Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE

Smart Data (SmartData). IEEE, 1513–1520.

Wood, G. 2021. “Ethereum: A secure decentralised generalised transaction ledger. Petersburg Ver-

sion 3e2c089 – 2020-09-05.” URL https://ethereum.github.io/yellowpaper/paper.pdf. Online;

accessed 10 January 2021.

Wüst, K. and A. Gervais. 2018. “Do you need a blockchain?” In 2018 Crypto Valley Conference on

Blockchain Technology (CVCBT). IEEE, 45–54.

Yu, B., P. Zhan, M. Lei, F. Zhou, and P. Wang. 2020. “Food Quality Monitor-

ing System Based on Smart Contracts and Evaluation Models.” IEEE Access 8:12479–

12490. URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078701211&doi=10.

1109%2fACCESS.2020.2966020&partnerID=40&md5=5c12afb03c13bdfc39b4da4aef254ecf. Online;

accessed 10 January 2021.

67

https://www.ubs.com/microsites/innovation/en/our-approach/2016/path-finding.html
https://www.ubs.com/microsites/innovation/en/our-approach/2016/path-finding.html
http://www.uncitral.org/pdf/english/texts/electcom/ml-elecsig-e.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078701211&doi=10.1109%2fACCESS.2020.2966020&partnerID=40&md5=5c12afb03c13bdfc39b4da4aef254ecf
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078701211&doi=10.1109%2fACCESS.2020.2966020&partnerID=40&md5=5c12afb03c13bdfc39b4da4aef254ecf

9 Appendix

9.1 List of cryptocurrencies in this research

Abbrev. CC Website

BTC (XBT) Bitcoin bitcoin.com, bitcoin.org

ETC Ethereum Classic ethereumclassic.github.io

ETH Ethereum ethereum.org

LEO UNUS SED LEO bitfinex.com (iFinex ecosystem)

USDC USD Coin centre.io/usdc

9.2 List of abbreviations

Terminus Abbrev.

Blockchain BC

Cryptocurrency CC

Smart Contract (general terminus) SC

Verfified Smart Contract (Source Code public) VSC

decentralized Apps DApps

State of the DApps SDA

Externally Owned Account EOA

Contract Account CA

Transaction (BC recorded) TX

Call/Message (“internal TX”) MSG

68

bitcoin.com
bitcoin.org
ethereumclassic.github.io
ethereum.org
bitfinex.com
centre.io/usdc

9.3 Topics in the literature research

(a) Topic 1 (b) Topic 2 (c) Topic 3

(d) Topic 4 (e) Topic 5 (f) Topic 6

(g) Topic 7 (h) Topic 8 (i) Topic 9

(j) Topic 10 (k) Topic 11 (l) Topic 12

Figure 24: Top 10 the most important words per topic identified in the existing SC
research (Part 1)

69

https://github.com/QuantLet/USC/tree/master/SC-literature-research

(a) Topic 13 (b) Topic 14

Figure 25: Top 10 the most important words per topic identified in the existing SC
research (Part 2)

9.4 ETH value denominations

Further Units and Globally Available Variables used in Solidity can be accessed through

Ethereum - Read the Docs.

Unit Wei Value Wei

Wei 1 wei 1

Kwei (babbage) 1e3 wei 1,000

Mwei (lovelace) 1e6 wei 1,000,000

Gwei (shannon) 1e9 wei 1,000,000,000

Microether (szabo) 1e12 wei 1,000,000,000,000

Milliether (finney) 1e15 wei 1,000,000,000,000,000

Ether 1e18 wei 1,000,000,000,000,000,000

9.5 Elliptic Curve Digital Signature Algorithm

Asymmetric cryptography is used to create accounts in ETH in three steps: Firstly, the

private key associated with an EOA is randomly generated as SHA256 output and could

look like this: b032ac4de581a6f65c41889f2c90b3a629dc80667bf7167611f8b5575744f818 -

a random 256 bit/32 bytes big and 64 hex character long output. Secondly, the pub-

lic key is derived from the private key via the Elliptic Curve Digital Signature Algo-

rithm (secp256k1 ECDSA) and could then look like this: fc2921c35715210aeb0f2fffeaad94

d906aaf2feda8a71e52c5d0a0da8ada4a44099e8ea65e3ec214b6686189255bba2373bd2ee6b05

520dfd4dc571b682ccc3 - a 512 bits/64 bytes big and 128 hex character long output.

The public key is therefore subsequently calculated from the private key, but as we

are dealing with a trapdoor function, this is not possible vice versa being an irre-

versible calculation. A private key is therefore kept non-public, whereas the public key

70

https://github.com/QuantLet/USC/tree/master/SC-literature-research
https://solidity.readthedocs.io/en/v0.4.21/units-and-global-variables.html

is used to derive, in a third step - via Keccak-256 hashing of that public key, which

results in a bytestring of length 32, from which the first 12 bytes are removed and re-

sult in a bytestring of length 20 - the individual ETH address, that could look like

0x9255bba2373BD2Ee6B05520DfD4dC571B682b349 - a 160 bits/20 bytes big and 40 hex

character long output (leaving out the 0x prefix). A public key can hence be used to

determine, that the given signature of the information at hand is genuine, that means

created with the respective public key and address of the interactor, without requiring

the private key to be divulged (see further appendix 9.6 and Buchanan, 2020).

9.6 Zero-Knowledge Proofs

The standard notion of a mathematical proof can be related to the definition of an non-

deterministic polynomial (NP) time complexity class of decision problems. That is, to

prove that a statement is true one provides a sequence of symbols on a piece of paper,

and a verifier checks that they represent a valid proof. Usually, though, some additional

knowledge, other than the sole fact that a statement is true, is gained as a byproduct of

the proof. Zero-knowledge proofs were introduced as a way to circumvent that, i.e., to

convey no additional knowledge beyond proving the validity of an assertion. Goldwasser,

Micali, and Rackoff (1989) first described zero-knowledge proofs as interactive proof sys-

tems.

As the term itself suggests, interactive zero-knowledge proofs require some interaction

between a prover and a verifier. Intuitively, a proof system is considered zero-knowledge

if whatever the verifier can compute, while interacting with the prover, it can compute

by itself without going through the protocol (Goldreich and Oden, 1994). Formally they

can be defined as follows, as per Boaz and Sanjeev (2009).

Given an interactive proof system, or an interactive protocol (P, V), where P and V

can be seen as interactive probabilistic polynomial-time (PPT) Turing machines symbol-

izing a Prover and a Verifier, for a formal NP-language L ⊂ {0, 1}∗ and an input x, the

output of V on x at the end of interaction between P and V can be written as

outV [P (x), V (x)].

(P, V) is called a zero-knowledge protocol for L if the following three conditions hold:

Completeness:

∀x ∈ L, u ∈ {0, 1}∗, P r[outV [P (x, u), V (x)]] ≥ 2/3,

where u is a certificate for the fact that x ∈ L. In other words the prover can convince

71

https://rinkeby.etherscan.io/address/0x9255bba2373bd2ee6b05520dfd4dc571b682b349

the verifier of x ∈ L if both follow the protocol properly.

Soundness: If x /∈ L, then

∀P ∗, u ∈ {0, 1}∗, P r[outV [P ∗(x, u), V (x)]] ≤ 1/3.

I.e., the prover cannot fool the verifier, except with small probability.

Perfect Zero-Knowledge: For every strategy V ∗ there exists an expected PPT

simulator S∗ such that

∀x ∈ L, u ∈ {0, 1}∗, outV ∗ [P (x, u), V ∗ (x)] ≡ S∗(x).

The last condition prevents the verifier from learning anything new from the interaction,

even if she does not follow the protocol but rather uses some other strategy V ∗. Otherwise

she could have learned the same thing by just running the simulator S∗ on the publicly

known input x. S∗ is called the simulator for V ∗, as it simulates the outcome of V ∗’s

interaction with the prover without any access to such an interaction.

9.7 t-SNE (t-Distributed Stochastic Neighbor Embedding)

t-SNE is a non-linear technique for dimension reduction and data visualisation. it allows

to preserve the local structure and is proposed by v. d. Maaten and Hinton (2008). It

aims to design an embedding of high-dimensional input to low-dimensional map while

preserving much of a significant structure. On the algorithm 1 below, the reader can find

the pseudocode of the t-SNE computation.

X = {x1, x2, . . . , xn} −→ Y = {y1, y2, . . . , yn}

xi is the ith object in high-dimensional space.

yi is the ith object in high-dimensional space.

72

Algorithm 1 t-SNE Pseudocode

Data: data set χ = {x1, x2, . . . , xn}
cost function parameters: perplexity Perp,

optimization parameters: number of iterations T , learning rate η, momentum α(t)

Result: low-dimensional data representation Y (T) = {y1, y2, · · · yn}
begin

compute pairwise affinities pj|i with perplexity Perp (using Equation 1) set pij =
pj|i+pi|j

2n
sample initial solution Y (0) = {y1, y2, . . . , yn} from N(0, 10−4I)

for t = 1 to T do
computer low-dimensional affinities qij (using Equation 2))

compute gradient δC
δY

(using Equation 3))

set Y (t) = Y (t−1) + η δC
δY

+ α(t)(Y (t−1) − Y (t−2))

end

end

pj|i =
exp(−‖xi − xj‖2/2σ2

i)∑
k 6=i exp(−‖xi − xk‖2/2σ2

i)
(1)

qij =
(1 + ‖yi − yj‖2)−1∑
k 6=l(1 + ‖yi − yl‖2)−1

(2)

δC

δyi
= 4

∑
j

(pij − qij)(yi − yj)(1 + ‖yi − yj‖2)−1 (3)

9.8 UMAP vs. t-SNE

The dimensionality reduction algorithm that we are using here is the Uniform Mani-

fold Approximation and Projection for Dimension Reduction (UMAP) (McInnes, Healy,

and Melville, 2018) and is like t-SNE – a neighbor graph algorithm. The mathematical

foundations of the UMAP rely on Laplacian Eigenmaps and are very extensive. The im-

portant differences between t-SNE and the UMAP are the following.The UMAP aims to

better preserve more of the global structure while requiring less computational time. As

compared to the t-SNE, the UMAP relies not only on the the Kullback-Leibler divergence

measure, but on the cross-entropy.

CUMAP =
∑
i 6=j

{
vij log

(
vij
wij

)
+ (1− vij) log

(
1− vij
1− wij

)}
(4)

where vij are the pair-wise similarities in the high dimensional space and wij - in the

low-dimensional. The optimization problem used in the UMAP is the stochastic gradient

descent instead of gradient descent used in the t-SNE, which speeds up the computations

and decreases the required memory resources. Moreover, UMAP does not require the

73

distance Euclidean.

9.9 Example Code

Adding to the source code review and possible use cases, we are presenting a simple

Hello World-esque SC as provided by the Ethereum Github with explanatory adaptions

to outline some of the technical complexity that has a grave impact on every adjacent

structure. We have observed many non-technical outlets – especially Blogs and the such

– discussing a theme, that they have apparently never seen as code itself – consequently,

we will also keep this to a very brief overview to introduce the structures in a very simple

example. Each comment starts with /** and ends with /*.

/∗∗ Version control for the compiler, see above section 6, as each Solidity version may have

↪→ different commands that can be coded − higher versions will obviously improve

↪→ efficiency of the coding and lead to better code controlling. /∗

pragma solidity >=0.4.22 <0.6.0;

/∗∗ ”Mortal” is the name of this SC. /∗

contract Mortal {
/∗∗ Defines the variable ”owner” of the type ”address”. /∗

address owner;

/∗∗ The ”constructor” is executed at initialization and sets the owner of the SC, i.e., it is

↪→ executed once when the CA/SC is first deployed. Similar to other class−based

↪→ programming languages, it initializes state variables to specified values. ”msg.

↪→ sender” refers to the address where the CA is being created from, i.e., here in the

↪→ constructor setting the ”owner” to the address of the SC creator. SCs depend on

↪→ external TX/MSG to trigger its functions, whereas ”msg” is a global variable

↪→ that includes relevant data on the given interaction, such as the address of the

↪→ sender and the value included in the interaction. This is assured by the ”public”

↪→ function, which can be called from within the CA/SC or externally via MSG’s,

↪→ like here getting the address of the interactor. ”private” functions are not callable

↪→ and can only reached by the SC itself − a particular source for grave errors, as

↪→ you can not change the SC once deployed. /∗

constructor() public { owner = msg.sender; }

/∗∗ Another important function, and source for grave errors if missing, follows and

↪→ represents a mean to recover funds stored on the CA. Alternatively, calling ”

↪→ selfdestruct(address)” sends all of the SCs current balance to address specified.

↪→ Remember, that once deployed the SC can not be changed unlike non−BC−

↪→ based software. The only way to modify an SC is to deploy a corrected one −

74

https://github.com/ethereum/ethereum-org/blob/master/views/content/greeter.md

↪→ best after deactivating and recovering all funds in the problematic one.

↪→ Interestingly, ”selfdestruct” consumed ”negative Gas”, as it frees up BC/EVM

↪→ space by clearing all of the CA/SCs’s data./∗

function kill() public { if (msg.sender == owner) selfdestruct(msg.sender); }
}

/∗∗ After ”Mortal”, ”Greeter” is another SC presented to visualize, that CA/SCs can ”inherit

↪→ ” characteristics of CA/SCs enabling SCs to be written shorter and clearer. By

↪→ declaring that ”Greeter is Mortal”, ”Greeter” inherits all characteristics of ”Mortal”

↪→ and keeps the ”Greeter” code herewith crisp and clear to to point, where is has

↪→ individual functions to be executed. In this example, the inherited characteristic of ”

↪→ Mortal” gives, as defined beforehand in ”Mortal”, that ”Greeter” can be deactivated

↪→ with all locked funds being recovered. /∗

contract Greeter is Mortal {

/∗∗ Defines the variable ”greeting” of the type ”string”, i.e., a sequence of characters. /∗

string greeting;

/∗∗ This is defined as beforehand in ”Mortal”, whereas in this case the underscore in ”\
↪→ greeting” is a style used to differentiate between function arguments and global

↪→ variables. There is no semantic difference between ”greeting” and ” greeting”,

↪→ whereas the latter one is defined as such not to shadow the first one. Here, the

↪→ underscore differentiates between the global variable ”greeting” and the

↪→ corresponding function parameter. Strings can be stored in both ”storage” and ”

↪→ memory” depending on the type of variable and usage. ”memory” lifetime is

↪→ limited to a function MSG and is meant to be used to temporarily store variables

↪→ and respective values. Values stored in ”memory” do not persist on the network (

↪→ EVM & BC) after the interaction has been completed. /∗

constructor(string memory greeting) public {
greeting = greeting;

}

/∗∗ Main function of the SC that returns the greeting once ”greet” function is MSG’ed

↪→ /∗

function greet() public view returns (string memory) {
return greeting;

}
}

75

IRTG 1792 Discussion Paper Series 2021

For a complete list of Discussion Papers published, please visit
http://irtg1792.hu-berlin.de.
001 ”Surrogate Models for Optimization of Dynamical Systems” by Kainat Khowaja,

Mykhaylo Shcherbatyy, Wolfgang Karl Härdle, January 2021.
002 ”FRM Financial Risk Meter for Emerging Markets” by Souhir Ben Amor, Michael

Althof, Wolfgang Karl Härdle, February 2021.
003 ”K-expectiles clustering” by Bingling Wang, Yingxing Li, Wolfgang Karl Härdle,

March 2021.
004 ”Understanding Smart Contracts: Hype or Hope?” by Elizaveta Zinovyev, Raphael

C. G. Reule, Wolfgang Karl Härdle, March 2021.

IRTG 1792, Spandauer Strasse 1, D-10178 Berlin
http://irtg1792.hu-berlin.de

This research was supported by the Deutsche
Forschungsgemeinschaft through the IRTG 1792.

http://irtg1792.hu-berlin.de
http://irtg1792.hu-berlin.de

	Introduction
	Outlet Review
	Recent Research Review
	Preliminary Data Basis

	Labore et Scientia
	Basic Understanding
	Understanding ETH
	Understanding SCs

	Dataset
	Clustering
	Empirical results

	Classification
	Data Pre-processing and Feature Extraction
	Machine Learning methods
	Training and Evaluation
	Empirical results

	Possibilities and Realities
	Defining Smart Contracts
	Implementation
	Decentralized App vs. ``traditional" App
	Shortcomings and Legal Handling
	Legal Example

	Closing remarks
	Appendix
	List of cryptocurrencies in this research
	List of abbreviations
	Topics in the literature research
	ETH value denominations
	Elliptic Curve Digital Signature Algorithm
	Zero-Knowledge Proofs
	t-SNE (t-Distributed Stochastic Neighbor Embedding)
	UMAP vs. t-SNE
	Example Code

