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Abstract

This paper surveys the capacity of simple macroeconomic models —

”three easy pieces” — to account for persistent and positive valuations

of privately issued assets based on the blockchain. Each of these three

models — transactions demand for a means of payment, consumption-

based capital asset pricing, and search and matching — highlights im-

portant aspects of digital payments. The mutual interference of these

jointly produced features may impede widespread use of cryptocurren-

cies until technological innovations have been developed to separate

them.
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1 Introduction

”Strange though I think it, I must ratify it.”1

The publication of the Nakamoto protocol describing a permissionless,

proof-of-work ledger currency based on the blockchain was hardly noticed

in 2009, but heralded one of the most profound revolutions in transactions

technology since the invention of negotiable checks, and possibly since the

appearance of paper money in 11th century Song dynasty China or in 17th

century Europe. A positive market valuation for private digital assets seems

beyond doubt — at yearend 2020 at $800b, by mid-April more than $2t —

yet is one that fluctuates significantly, falling to below 1.5t in June 2021.

Positive valuation of cryptocurrencies is hardly guaranteed; of more than

four and a half thousand tracked by coinmarketcap.com and more than

8000 issued in total, only about 2350 had positive market value.

What is this innovation really worth? What can macroeconomics and

macroeconomic models say about cryptocurrency (CC) valuation? As a

medium of exchange, they derive value in terms of goods over which they

command and the convenience in transactions they provide. As ”outside

assets,” they are a vehicle for wealth-holding, yet do not represent claims on

other economic agents, central banks or governments but rather tokens in

a collectively monitored record-keeping ledger system.2 They are not per-

fectly correlated with each other, nor with returns on other asset classes.

Like other financial assets, they can help insure against consumption risk.

Finally, cryptocurrencies solve the double coincidence of wants, both over

time and across states of the world, just as David Hume saw money as ”none

of the wheels of commerce” but rather as a facilitator of trade. Surges of

new coin issuance and positive, rapidly growing valuation reflect a discov-

ery process in which novel transactions technologies emerge that displace or

dominate others. The economics of CC entry and market valuation are un-

derresearched dimensions of digital finance that now involve complex forms

of future payment in the form of ”smart contracts” or conditional payments

(e.g. Weber and Staples, 2021). The issuance of new CC embodies matching

of transactions technologies with use cases in a rapidly evolving market with

both high fixed development costs and signficant rewards for success.

1The Emperor in Goethe’s Faust (Part II) commenting on the introduction of unbacked

paper money and its effect on economic activity in the empire (”So sehr michs wundert,

muss ichs gelten lassen.” Transl. Louis MacNeice).
2For more details on this useful distinction see Brunnermeier et al. (2019).
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This paper surveys the capacity of simple macroeconomic models —

”three easy pieces” — to account for persistent, positive valuations of pri-

vately issued currencies based on the blockchain: Transactions demand for a

means of payment, the consumption-based capital asset pricing model, and

search and matching. While each highlights an important aspect of digital

payments. none is sufficiently rich to capture all dimensions of cryptocur-

rency valuation adequately. I conclude that because these jointly produced

features interfere with each other, a lasting expansion of the use and utility

of cryptocurrencies is likely to require new technological innovations that

can separate these features.

2 A few facts

Since the opening of the Mount Gox exchange on July 18, 2010, the dollar

price of one Bitcoin (BTC) rose from $0.07 to $20,000 in mid-December

2017, after which it crashed to less than $3500 in the subsequent year. In the

following three years it recovered spectacularly, reaching $45,000 at yearend

2020 and rising above $60,000 in mid April 2021. In that same month, the

total market value of all crytocurrencies reached $2,3t (6% and 3% of the

world’s narrow money supply and GDP respectively); at 5% of the total

capitalization of the largest publicly traded US firms and more than half

of world’s financial sector, cryptocurrencies (CC) are now an asset class, a

vehicle for finance, and an alternative to the issue of traded equity.3 Figure

1 plots the price of BTC, its nearest competitor Ethereum (ETH), as well

as market capitalization (total market value) since 2013. Despite significant

fluctuations, the persistent, positive valuation of this digital asset as well as

several thousand others is prima facie evidence that the market can produce

and accept private money (Hayek 1976, 1990). Following Jevons (1875), it

serves to various degrees as a medium of exchange (MOE), unit of account

(UOA), store of value (SOV), and standard of deferred payment (SDP).

CC functionality as money is predicated on convertibility into goods and

services without loss. Because thick markets with high volume offer ready

trading opportunities, current prices reflect expectations of future illiquidity,

loss of acceptance, or value impairment; the resulting volatility is likely to

3US courts and regulators are currently deciding if cryptocurrency issue is equivalent

to an IPO. The vaunted hedge fund Blackrock has applied for SEC approval for Bitcoin

investments, considering cryptocurrencies a valid component of a well-diversified portfo-

lio, (https://www.cnbc.com/2021/02/17/blackrock-has-started-to-dabble-in-bitcoin-says-

rick-rieder.html).
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Figure 1: Bitcoin and Ethereum prices (USD) and total CC market 
capitalization (bn.USD), 2013-2021 (%)

Source: https://www.coingecko.com



Table 1: Average daily returns and key correlations, selected CC and 
major stock indexes 2015-2021

attenuate CC value as a MOE. Table 1 displays key statistics on mean daily

returns in US dollars as well as summary statistics of the same including

correlation coefficients with three indexes: Dow Jones 500, the S&P 1200,

and the CRIX index (thecrix.de) in the period 2015-2021. While CC yields

(capital gains in terms of fiat currencies) have been strikingly high, they

have been accompanied by outsize variability.

The bulk of CC market value is concentrated in a few issues; at the end

of April 2021, the top five coins accounted for about 74%, and the top 10

for 84% of total market capitalization. Bitcoin alone accounts for less than

50%, down from more than 2/3 in 2019. At the end of June 2021, there

were 4819 cryptocurrencies listed by coinmarketcap.com; of these, 2520 had

positive market value (coinmarketcap.com, accessed 28.06.2021). Figure

2 plots the log market capitalization by descending order from a scrapable

website (coingekko.com). Most theoretical models of valuation would predict
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Figure 2. Market capitalization of CC by rank, 2014-2021

that fungibility of CC will affect their valuation, as will be explored in

Section 4.

3 Easy piece #1: Transactions medium

Simple models can deliver the most important insights, so it makes sense

to start with a basic monetary model that can predict positive CC hold-

ings despite dominance by interest-bearing alternatives. The first ”easy

piece” follows Blanchard (1979), Flood and Garber (1980), Sargent (1979,

Ch.6), Blanchard and Fischer (1989, Ch.5) or Alogoskoufis (2019, Ch.22),

a discrete-time variant of Cagan’s (1956) classic workhorse of monetary

economics.4 In this partial equilibrium model, a single cryptocurrency is

part of a broader demand for liquidity, mostly satisfied by banknotes and

sight deposits at banks.

4Cagan (1956) studied the implications of the demand for money under conditions of

a rapidly changing price level. Samuelson (1958) showed that worthless fiat money has

positive value as transactions medium between saving and dissaving generations. Blan-

chard (1979) explored forward and backward solutions of difference equations implied by

an arbitrage condition. Biais et al. (2018) model CC use in the context of an overlapping

generations model with transactions benefits and costs.

6
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3.1 CC as transactions medium: Demand

For simplicity, consider a single, circulating CC (or a set of perfectly sub-

stitutable ones) in exogenous supply that serve as a perfect substitute for

fiat money in the form of cash and checking accounts at banks for a small

but fixed subset of transactions. This demand derives either directly from

utility maximization (money in the utility function) or indirectly via a cash-

in-advance constraint.5 The single CC offers liquidity services for normal

payments as well as a transactions medium for capital flight, illegal or covert

activity, or tax evasion. Start with demand for total liquidity in the absence

of CC, say for cash and checkable bank accounts denominated in Euros,

following Blanchard and Fischer (1989):


 −  =  − ( ++1 − ) (1)

where 
 ,  and  denote the logarithms of the stock of money, the price

level and real transactions demand in period , respectively. The constant 

is the semi-elasticity of money demand with respect to the opportunity cost

of holding it, the sum of real interest rate  and expected inflation +1−
;  is normalized to have a unit elastic effect on real money demand.

The left-hand side 
 −  is the logarithm of money demand expressed in

terms of goods and services. Monetary neutrality is imposed a priori, as a

proportional increase in nominal variables   and +1 leaves the real

demand for the transactions medium unchanged.

The demand for the alternative medium of exchange, say for Bitcoin

(BTC), derives from some convenience and ease in use relative to standard

fiat money. For simplicity, it yields all transactions benefits of conventional

money up to a deterministic or stochastic loss of convenience yield  ≥ 0.
Agents hold a small, constant fraction Φ of total real transactions balances

 in the form of BTC as 

 

 , where 

 and 

 are price of BTC in

terms of dominant monetary unit (Euros) and quantity of BTC demanded.6

5Sargent (1979) and Blanchard (1979) rationalized this as a loglinearization of Cagan’s

(1956) demand for money or an equilibrium condition in Samuelson’s (1958) model of fiat

money. See Brunnermeier and Niepelt (2019) for a more modern formulation.
6Consider a general model in which demand for liquidity  is a positive function of

economic activity, and a negative function of the nominal interest rate. Liquidity itself is

an Armington aggregator of conventional money  (checkable and savings deposits, zero

interest money market funds accounts) and BTC ():

 =

h


1
1− + (1− )

1
1−
i1−

where 1    0 and  ≥ 1 is meant to capture substitutability of the two forms of

7



Think of  as a periodic, recurrent, time-varying, and possibly stochastic

impediment to liquidity, bid-ask spread, tax, or a transactions fee that re-

duces the ”convenience yield” or services giving rise to BTC demand, rather

than a permanent loss of value per se, and assume that  is ”not too large”

so ln(1− ) ≈ − . In a world without other frictions, the demand for the

CC in natural logarithms satisfies:

 +  = + − 

if it provides the full set of liquidity services; for   0 it delivers (1−
) of these services, or in logarithms ln [(1− )] ≈ −  Under these

conditions, the derived demand for CC obeys

 +  = +  −  − 
h
 ++1 −  −

³



+1 − 

´i
(2)

and depends positively on net liquidity services − and negatively on the
expected real rate of return and the expected rate of fiat money inflation,

adjusted by expected rate of appreciation of CC in the numeraire currency.

3.2 CC supply: An algorithmic rule

The logarithm of CC supply follows a deterministic and exogenous autore-

gressive rule:

 = ()(− −1)

where () determines the expansion path of CC supply, as a function of

the distance of last period’s value from the upper bound (− −1) where 
is a continuous, nondecreasing, and weakly concave function of transactions

fundamentals : 1    0 0 ≥ 0 00 ≤ 0 with nonzero derivatives a result
of mining or information from an external oracle. This supply rule implies

an algorithmic commitment to a maximal money supply as in Fernández-

Villaverde and Sanches (2019). CC supply growth then follows

∆ = [()− (−1)] (− −1)− (−1)∆−1

meaning that as long as () is difference-stationary, the log of CC supply

is difference-stationary. I will assume the following simple deterministic

rule () =  with 0    1 :

+1 =  + (− )

= (1− )  + 

money in providing liquidity. The case in the text corresponds to  → ∞ and  close to

1, implying Φ = (1− )
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This rule resembles the one followed by Bitcoin (see e.g., Tschorsch and

Scheuermann 2021), with an upper limit of 21 million BTC and a decreasing

rate of supply growth that is more dependent on calendar time rather than

mining activity.

3.3 Equilibrium

Market equilibrium is defined as equality of demand and supply:  =  =

 ∀ so combined with an exogenous supply process and money demand,
 is a linear combination of today’s supply (exogenous), real demand, and

tomorrow’s expected price level, a first-order expectational difference equa-

tion in  :

 =
1

1 + 
[+  −  − ( ++1)− ] +



1 + 



+1 (3)

where +1 ≡ +1 −  is the exogenous inflation rate in Euros (purchasing

power in terms of goods and services). The price of Bitcoin depends only on

current and future expected values of CC demand and supply determinants,

as well as expected future price. As agents use the model to form expecta-

tions, (3) can be iterated forward recursively to period +  , applying the

law of iterated expectations:

 =
1

1 + 

X
=0

µ


1 + 

¶
 [+ + − + − (+ +++1)− +]

+
1

1 + 

µ


1 + 

¶+1



++1 (4)

The price of CC in terms of the fiat currency is a weighted average of ”funda-

mentals” that depends only on current and expected determinants of supply

and demand taken to period  +1, and the expectation of an undetermined

future price in period  +1.7 Imposing 
→∞

³

1+

´+1



++1 = 0 on (4)

7Technically, I impose


→∞

X
=0

¡


1+

¢
 [+ + − + − (+ +++1)− +]  ∞, which would

hold if the variables are covariance stationary or cointegrated of order 1 with cointegrating

vector implied by the model.
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yields the fundamental solution

 =
1

1 + 

∞X
=0

µ


1 + 

¶
 [+ + − + − (+ +++1)− +]

(5)

that satisfies (3). The sum of two solutions to a difference equation is also

a solution, so any deviation from the fundamental price path (5) that also

solves (3) can be added, yielding the complete set of solutions

 =
1

1 + 

∞X
=0

µ


1 + 

¶
 [+ + − + − (+ +++1)]

− 1

1 + 

∞X
=0

µ


1 + 

¶
+

+  (6)

where  grows at rate 
−1 per period in expectation, i.e. obeys

+1 =

µ
1 +

1



¶
 (7)

Equation (6) decomposes the CC price into three parts:

1) a demand fundamental driven by present and expected future con-

venience or other liquidity services net of opportunity cost in each period

 ≥ 0;

2) a supply fundamental given by the algorithmic, preprogrammed tra-

jectory of CC issuance ( [+]) for  ≥ 0);

3) a bubble component that obeys +1 =
³
1 + 1



´
, which is defined

as the deviation of the observed price from its fundamental, driven solely by

expectations of future appreciation and orthogonal to rationally expected

demand and supply fundamentals.

The sum of the first two components comprises the fundamental solu-

tion, the expectation of a geometrically weighted sum of future determinants

of BTC demand and supply, where the discount factor is an increasing func-

tion of . If   0, the third component represents the nonfundamental

solution and depends solely on , and grows at expected rate  ≡ 1


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3.4 Analysis: Fundamental component

I focus first on the fundamental determinants of  and set  = 0 for

 = 0 1  Given an assumed supply algorithm (3), the fundamental solution

of the BTC price is8

 =
1

1 + 

∞X
=0

µ


1 + 

¶
 [+ + − + − (+ +++1)]

− + 1

1 + 
(− )  (8)

The model’s central prediction is a dominant role for expected future,

rather than current, fundamentals. Past fundamentals matter only to the

extent they help predict future fundamentals. The greater the interest elas-

ticity of BTC demand, the greater the relative role of future fundamentals

in determining today’s price. As supply is exogenous, the model attributes

a stubbornly high BTC price today to persistent expectations of future net

demand fundamentals. It depends positively on present and expected future

transactions services + negatively on transactions impediments + and

negatively on the path of future inflation + and real interest rates +

From the supply perspective, CC valuation depends negatively on the upper

bound of coin volume () but positively on the remaining supply gap − .

Since the former is fixed and the latter is always positive, the cryptocur-

rency price should be declining over time, ceteris paribus, in anticipation of

rising future supply implied by the supply gap  − . While the former is

hard-wired into the price, the latter will depend on transpired calendar time

since the launching of the protocol.

Second, the algorithmic nature of CC sharply limits the role of expected

future supply fluctuations on current value (one exception would be a fork,

a rare event). To date, the most prevalent protocols increase expected hash

time in periods of high demand and automatically limit the supply response

to high mining activity. This a priori knowledge represents an exclusion

restriction of interest for econometric investigation, because  and  are

sufficient statistics for CC supply. More generally forms of () with po-

tential dependence on state variables and in particular, the state of the

economy would weaken this conclusion.

8See Appendix for details.
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3.5 Analysis: Bubble component

The trajectories in Figure 1 are suggestive of asset bubbles seen elsewhere in

the past half-millennium. Santos and Woodford (1997) and Brunnermeier

(2008) define bubbles as a deviation of asset price from a level implied by

a forward-looking arbitrage condition based only on well-defined expected

payoffs of the asset. One familiar example of a bubble that fulfills (6) is

 = 
¡
1 + −1

¢
with   0 an arbitrary positive constant. Deterministic

bubbles of this type imply implausibly high asset prices relative to the size

of the economy.9

One way out, first proposed by Blanchard (1979), Blanchard and Wat-

son (1982), Weil (1987) and later by Evans (1991), allows for probabilistic

termination.10 Suppose  is a function of a two-state Markov chain { 0}
with standard properties and 0 is the density of the initial state ( = 0).

Let the state 1 be ”no-bubble” and state 2 be the ”bubble” state, with

transitions given by  =

"
1−  

 1− 

#
where  is the probability of the

bubble starting, and  is the probability of an existing bubble bursting. The

value of the bubble in different states is:

— +1 = 0 with probability 1 −  if in state 1 (the ”no-bubble state”) and

stays in state 1;

— +1 =   0 with probability  if a bubble initiates (the state changes from

1 to 2), where  is a either a constant or an iid draw from a time-invariant

distribution;

— +1 = (1 + ) with probability 1 −  if in state 2 (the ”bubble state”)

and remains in state 2;

— +1 = 0 with probability  if the bubble terminates (bursts) and the state

switches from 2 to 1.

For simplicity I assume the initial bubble value conditional on inception is

9Negative bubbles with commonly, rationally expected and deterministically falling

prices can be ruled out a priori.
10Blanchard and Watson (1983) augment the bubble component  with a periodic

white noise shock that displaces the bubble each period. For convenience I omit this

term.
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a constant  but more generally could be an iid random variable. Condi-

tional on existence, the bubble grows at rate −1− 1 in expected value. If 
is the expected growth rate of the bubble conditional on continuation, then
1

= (1− )  or  = 1

(1−) .
11 For  = 5  = 01  = 1055(95) ≈ 20% If

one leads the last equation and takes conditional expectations of the change

in  conditional on the bubble’s existence, the expected rates of CC capital

gain, approximated as first-differences in log prices, are:

In state 1 (no-bubble state):

∆

+1 =

1

1 + 

∞X
=1

µ


1 + 

¶
 [∆+ −∆+ −  (∆+ +∆+)]

− 1

1 + 
∆ + 

In state 2 (bubble state):

∆

+1 =

1

1 + 

∞X
=1

µ


1 + 

¶
 [∆+ −∆+ −  (∆+ +∆+)]

− 1

1 + 
∆ +

1

 (1− )

The bubble-termination probability  and the realized path of  conditional

on the bubble state are assumed to be time invariant, but need not be

(Blanchard 1979). When they are not, there is an infinity of possible price

paths and time-dependent growth rates of the bubble component associated

with different assumptions on . Evans (1991) uses this argument to question

the validity of econometric tests for bubbles based on stationarity. Jovanovic

(2007, 2013) notes that some bubbles for durable goods with consumption

value may exist forever.

3.6 Discussion

Stochastic bubbles have stronger theoretical foundations than its determin-

istic counterpart, yet macroeconomists are generally unwilling to give bub-

bles a free pass without further restrictions on the economic environment.

In a general equilibrium of frictionless asset markets with infinitely-lived,

11This is an approximation. Equating 1 +  and 1+

(1−) yields  = 1+

(1−) − 1 =
1+−(1−)

(1−) = 1+

(1−)  For small values of  the approximation is acceptable.
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risk-neutral agents with unlimited access to funding at the riskless inter-

est rate, bubbles should not arise. Abreu and Brunnermeier (2003) stress

heterogeneity of expectations among agents for the continuation of stochas-

tic bubbles despite profitable arbitrage strategies, building on the insight

of DeLong et al. (1988) of limited trading capacity against mispricing. In

the former, bubbles can result from a lack of coordination among rational,

risk-neutral, wealth-constrained traders.12 Scheinkman (2013) has pointed

out that bubbles involve implicit options to sell the asset to more optimistic

traders in the future. He also notes that frictions relevant for long positions

are lower than those for short sales, and that asset price collapses are often

preceded by increases in supply - which are ruled out by standard CC sup-

ply algorithms. In the latter, waves of irrational traders (”stupid money”)

can move prices persistently away from fundamentals, and risk-averse arbi-

trageurs are reluctant or insufficiently funded to bet against departures from

rational pricing.13 The model abstracts from risk aversion that might imply

higher and more volatile effective discount rates applied to future payoffs.

As Brunnermeier and Niepelt (2019) have shown, these effective stochastic

discount factors may involve occasionally binding liquidity constraints, a

factor that may contribute to increasing volatility and bubble formation.

A more subtle point relates to the difficult distinction between bubbles

and apparently nonstationary movements of fundamentals. Rapidly rising

valuations can reflect ”speculation” or beauty contest motives, but might

also reflect optimistic expectations regarding future fundamentals that are

difficult to orthogonalize from rumors and sentiment, and, in particular,

may themselves be nonstationary. The fundamental usefulness of a cryp-

tocurrency could be related to the yet-unrealized evolution of networks and

switching costs as well as scale economies and winner-take-all phenomena.

Besides being driven purely by expectations of continuation, another inter-

pretation is that unobservable expectations - sentiment - are increasing at

a rapid rate. This is only the appearance of a bubble, because the ”sen-

timent” itself relates to fundamentals. While equation (6) makes a clean

12Recent events, however (e.g. GameStop, Reddit threads) may cast doubt on the claim

that coordination is sufficient to preclude the emergence of bubbles.
13Keynes is apocryphally credited with saying ”markets are irrational longer than I can

stay liquid”; yet he did write that ”[i]nvestment based on genuine long-term expectation

is so difficult today as to be scarcely practicable. He who attempts it must surely lead

much more laborious days and run greater risks than he who tries to guess better than

the crowd how the crowd will behave; and given equal intelligence, he may make more

disasterous mistakes” (Keynes 1936, p.157).
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distinction, it is difficult to identify bubbles in practice (Evans 1991). Price

movements reflect nonstationary behavior of the underlying probability dis-

tribution governing fundamentals as well as ”sentiment” regarding others’

willingness to buy, rational or not. Timmermann (1994) and Jovanovic

(2013) cite feedback effects running from price to fundamentals that could

confound standard tests, inducing multiple equilibria and path dependence.

Barbarino and Jovanovic (2007) argue that sudden, bubble-like price move-

ments may reflect changing rational assessments of capacity and demand

limits. Blanchard and Watson (1988) cite the example of an impending war.

Miao (2014) shows that financial frictions allow bubbles to relax collateral

constraints, with positive effects on capital formation. A CC bubble could

thus divert resources to the digital finance sector, leading to more innova-

tive and productive payment technologies, as discussed below in Section 5.

Distinguishing between bubbles and fundamentals may not be meaningful

or even possible.

As shown by Santos and Woodford (1997), the conditions for bubbles in

general equilibrium are fragile; a key limitation of transactions-based mone-

tary models is their partial equilibrium nature. The model sketched above,

for example, implies that digital assets have an unconditional expected value

that deviates from rationally expected fundamentals even prior to issuance.

For the asset considered above with algorithmic supply given by (3), given

that 0 =
h
01 02

i0
, the unconditional expectation or ”ICO value” of the

asset must exceed its fundamental value, as it includes a rational assessment

of entering the bubble state:


h
0

i
=

1

1 + 

∞X
=0

µ


1 + 

¶
 [+ + − + − (+ +++1)]

− + 1

1 + 
(− ) + 02 (9)

This pricing outcome could explain why ICOs appear chronically overval-

ued in practice.14 This chronic mispricing requires a justification from the

perspective of general equilibrium.

14This must be the case, since if the probability of entering a bubbly state were zero,

the process would be nonergodic! The model presented in Blanchard and Fischer (1987)

and elsewhere ignores this feature, which in fact predicts that the unconditional value of

this bubbly asset is always greater than the fundamental — the mere possibility of a bubble

is enough to raise the expected value of the rate of growth in the asset’s value.
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4 Easy Piece #2: Consumption-CAPM

The analysis of the last section arose from a pure transactions demand for

CC as an alternative medium of exchange. Combined with an arbitrage

condition under rational expectations, this partial equilibrium analysis can-

not rule out the existence of bubbles, or their stochastic emergence. This

theory also assumed risk neutrality, which is unnecessary. Because money

is also a store of value, any reasonable theory of CC holding must include

a wealth-holding motive, a means of moving consumption across time in a

world in which risk matters to agents. Standard macro models imply mo-

tives to hold CC when alternative risky assets already exist in the form of

the market portfolio. Following Lucas (1978), agents hold assets to hedge

against fluctuating consumption in an uncertain world. For more detailed

treatment on consumption-CAPM, see Campbell (1999) or Cochrane (2005).

4.1 The basic C-CAPM portfolio decision problem

Consider a representative household that has no labor income, but owns

wealth at the beginning of period 0 equal to 0 measured in terms of the

consumption good. At the beginning of each period  = 0 1 , it expends

accumulated wealth  on current consumption  and  assets  = 1,

with portfolio weights  and
P

=1  = 1. This represents an intratem-

poral constraint in all periods  = 0 1 , even if some  are chosen to

be negative.15 Each asset held in  yields an exogenous random net rate of

return +1 paid at the beginning of period + 1 that is not in the infor-

mation set in period  These securities do not span the space of states of

the world. There are no transactions costs, although each asset  may face

exogenous, random periodic yield loss +1, exogenous regulatory and other

technical impediments to conversion into consumption. Initially, I set +1
to zero in all periods for all assets. The period-by-period budget constraint

in each period  = 0 1  is

+1 =

"
X
=1

(1 ++1)

#
( − )

15In general equilibrium, all assets are in non-negative net supply.
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or since
P

=1  = 1

+1 =

"
1+1 +

X
=2

(+1 −1+1)

#
( − )  (10)

Think of 1+1 as a reference rate of return that may or may not be risk-

free. For any  = 1  some outside authority or agency rules out ”Ponzi

schemes” in any period  ≥ 0 a priori that

lim
→∞



"Ã
Y
=0

(1 ++)
−1
!
+

#
= 0 (11)

The household has standard time-separable preferences and maximizes ex-

pected utility, solving

max
{}∞=0
{+1}∞=0

{}∞=0 ∀=1

0

" ∞X
=0

()

#
(12)

where the periodic utility function  satisfies  0  0  00  0; the constant
 implies a pure discrete-time discount rate of  = −1 − 1. Given 0, the

maximization is constrained by (10) for all  ≥ 0
In the Appendix the solution to the household’s problem is presented in

detail. The first order conditions mandate selection of  and {}=2 in
each period so that for the reference asset ( = 1):

́() =  [(1 +1+1)́(+1)] (13)

for  = 2 :

 [(+1 −1+1)́(+1)] = 0 (14)

and wealth obeys (10) for  = 0 1  These three equations constitute a

valuation or pricing model for financial assets and CC in particular. The

first two can be rewritten as

1 = 

"Ã
1 +1+1 +

X
=2

(+1 −1+1)

!
+1

#
(15)

where +1 ≡ ́(+1)
́()

is the stochastic discount factor or pricing kernel

(e.g. Campbell 1999, Cochrane 2005), the marginal rate of substitution of
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future for present consumption. If the rate of return 1+1 is known and

equals  (1 unit invested in  pays 1 +  with probability 1 in + 1), (14)

implies

1 +  =
1

+1
(16)

and the riskless asset pays the ex-post marginal rate of substitution. Because

the ordering of securities is arbitrary in the third equation, for any two assets

  ⊂ {1 2 }

 [+1+1] =  [+1+1]  (17)

and for each  = 2 

+1 −  = −(+1 +1)

implying that the excess expected return paid by asset  is negatively related

to its covariance with the intertemporal rate of substitution. Assets that pay

high returns when consumption is scarce (the marginal rate of substitution

is high) will bear a low yield (i.e. their value/price will be high).16

4.2 CC Asset Pricing

Combine the fundamental pricing relation (17) for the riskless rate with the

market price of the th asset , 1 = 1 and  ≡ (1−+1)+1


 where

+1 and +1 denote the gross payoff (ask price) and asset-specific stochas-

tic trading friction/tax/loss respectively, the relevant valuation equation for

the household is

 =  [+1+1(1− +1)]  (18)

16Equations (10), (16), and (17) are applicable even if agents have different asset hold-

ings, different information sets, or different levels of rationality (Cochrane 2005). They

could describe a general equilibrium in which all assets are held by a representative agent

and apply the logic to the ”market portfolio”, delivering a market price of risk and a

Sharpe ratio. Such a complete description of the equilibrium is unnecessary for what

follows. The maximization problem posed in (12) is rationale for a more general model

of the pricing kernel for the decisive (marginal) investor. Lacking a complete theoretical

characterization of the marginal rate of intertemporal substitution for that investor, em-

pirical investigation directs us to agnostic macroeconomic conditioning variables for asset

pricing, e.g. the log consumption to wealth ratio studied by Lettau and Ludvigson (2001).

For an application to CC see Chen and Vinogradov (2020).
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Using fundamental relations for covariances17, it follows that

 = +1+1(1− +1)

−+1(+1 +1)

+(+1 +1(1− +1)) (19)

where  denotes covariance conditional on information in time . Equa-

tion (19) is a pricing or valuation equation for CC that can be summarized

as follows. Ceteris paribus, the price of asset  is higher:

- the higher the expected value of the expected future price +1;

- the higher the expected value of net payoff (including conversion impair-

ment or liquidity loss) (1− +1);

- the higher the expected value of the pricing kernel +1;

- the higher the covariance between the pricing kernel +1 (the marginal

rate of substitution) and the net future return (1− +1)+1;

- the lower the covariance between future price and stochastic conversion

impairment.

The pricing equation (19) offers insight into the shape of curves displayed

in Figure 2, because it gives rise to a well-defined function of CC valuation as

a function of the joint asset distribution of net payoffs and the pricing kernel,

and thus a theoretic account of descriptive ”capital distribution curves” used

to describe equity valuations (e.g., Karatzas and Fernholz 2009). Height and

slope are a function of the covariance of net payoff with the pricing kernel

across existing coins. For two coins of equal correlation with the marginal

rate of substitution, the one with lower expected transaction costs and higher

liquidity will command a higher market value.

Consider an application of the pricing formula under the instructive (but

unrealistic) case of conditionally and jointly log-normal, homoskedastic co-

variates. Log normality applied to the pricing formula (18) implies:

ln = ln [+1+1(1− +1)] (20)

=  [ln(+1+1(1− +1))]

+05  [ln(+1+1(1− +1))] 

Using notation +1 = ln(+1) +1 = ln(+1) the approximation

17For random variables  and , [ ] = [][ ] + ( ) =

[] [[ ][] + ( )] + ( ) = [][ ][] + []() +

( )
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ln(1− +1) ≈ +1 and that



⎡⎢⎣ +1
+1

+1

⎤⎥⎦ =

⎡⎢⎣ +1
+1

+1

⎤⎥⎦ (21)

 

⎡⎢⎣ +1
+1

+1

⎤⎥⎦ =

⎡⎢⎣ 2  
 2 
  2

⎤⎥⎦ 
it follows that

 = +1 ++1 −+1 (22)

+05  [+1 + +1 − +1]

= +1 ++1 −+1

+05
h
2 + 2 + 2 + 2 − 2 − 2

i


Holding conditional variances constant, (22) implies that the current CC

price  is higher, the greater the expected value of the asset pricing kernel

(the lower the rate of intertemporal substitution), the higher the expected

future market price of the asset, and the lower the expectation of value

impairment in the next period.18 The payoff covariances also play a decisive

role. In particular,  is higher:

- the higher its covariance with the stochastic discount factor +1;

- the lower its covariance with the stochastic value impairment +1; and

the

- the lower the covariance of the stochastic value impairment +1 with the

stochastic discount factor +1.

Figure 3 displays time-varying estimates of correlations of daily real-

ized returns on Bitcoin, Ethereum, and the CRIX index 2014-2021 with two

major stock indexes, computed from a rolling data window of 180 previ-

ous days.19 It reveals not only a longer-term trend of increasingly negative

18These variances exert a positive influence on the current price as a result of Jensen’s

inequality (see e.g. Campbell 1999, p.1247).
19Dow Jones is a price-weighted measure of 30 U.S. blue-chip companies, covering all

industries except transportation and utilities. S&P1200 covers 30 countries and 7 re-

gions.and includes over 70% of the world market capitalization representing all major

sectors. CRIX (https://thecrix.de/) is a Laspeyres Index of CC prices with weights that

are updated monthly according to market value share.
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correlation of CC returns with the ”market”, but also a strong persistence

in swings of those correlations over that period. This belies a low overall

correlation reported in Table 1, suggesting that conditional homoskedas-

ticity not an inappropriate. As with stock returns, temporal variation of

locally measured volatility of CC returns reveal significant unconditional

heteroskedasticity.

5 Easy piece #3: Search and matching

The third ”easy piece” considers privately issued currencies as a solution

to a matching problem between suppliers of transactions technologies and

demanders for applications, that is, productive uses of those technologies.

Figure 4 plots the number of coins listed on coingecko.com with positive

market valuation since April 2013.20 It reveals a slowly increasing trend

punctuated by two surges of new CC issuance: One in late 2017 and a

second in mid-2020. The second, which has not yet abated at the time of

writing, is probably associated with new prospects of smart contracts on

the Ethereum platform. In the form of digital finance and smart contracts

in general, CC implement Jevon’s fourth function of money — a standard

of deferred payment, or conditional payment, if one is willing to interpret

the notion more broadly. Because new needs arise and evolve over time and

states of the world, their demand and supply are endogenous. A model of

this extensive margin is needed.21

From this perspective, questions related to market entry and extensive

margin of CC can be explored with a modified labor market model of search

and matching pioneered by Mortensen and Pissarides (1994, henceforth ”MP

model”) and summarized in Chapter 2 of Pissarides (2000). Coins arise from

a match of posted technological applications (of mass ) with an unsatisfied

potential user (of mass ). The former corresponds to job vacancies in the

MP model, while the latter finds its analogue in the unemployed worker —

20Positive market valuation of the outstanding coin issue at the midnight bid price of

the respective day; data were obtained from scraping coingecko.com.
21Almosova (2017, 2018) and Fernández-Villaverde and Sanches (2019) study price sta-

bility in a general equilibrium with a fixed number of competitive privately issued curren-

cies under different assumptions regarding the production costs of money. They focus on

money as a means of payment, taking the extensive margin as given and do not address

innovation in payment systems; in the much simpler model here, I ignore monetary effects

(e.g. on the average price level) and stress instead the idiosyncratic features of CC that

can give rise to coin issuance.

21



S
ou
rc
e:

 h
ttp

s:
//w

w
w

.c
oi

ng
ec

ko
.c

om



a transaction demand to be performed or satisfied. Examples of the latter

are capital flight from a particular country or region, automatic execution of

particular trades, tax avoidance or evasion, laundering of gains from illicit

activities, paying extortionists, as well as conventional demand for a stable

currency under unstable macroeconomic conditions, or one that offers par-

ticular features such as automated interest payments, execution of smart

contracts, administration of loan collateral, tied transactions, or a Tobin

tax. A particular match between technology application and the user em-

ploying it gives rise to joint flow productivity  ∈ [0 1], assuming the value
1 initially and changing according to a Poisson process, i.e. time between

productivity changes following an exponential distribution with a constant

exogenous arrival rate . A new productivity ”arrival”  is a random vari-

able with time-invariant cdf (), possibly reflecting the number of users or

external effects deriving from other coins.

A particular CC has value as long as the net joint surplus generated

by a matched idea or technology (supply) with an application (demand) is

positive, otherwise the CC it is abandoned. Let  be the exogenous interest

rate; the steady-state capitalized value of the joint surplus (), or the value

of the technology-user match given the current productivity of a coin  —

that is, the value of transactions thus enabled — follows the following value

continuation equation, derived in the Appendix:

( + )() = + 

Z 1


()()−  −  (23)

As long as current productivity  exceeds the reservation value  the

match’s surplus value is positive and the match continues. An incidence

of a new value of  with density  is associated with a new surplus. The

fallback reservation values to the respective parties in the Nash bargain are

 and  ; hence the flow surplus is calculated net of the respective oppor-

tunity costs. The determination of () is an essential element of the search

and matching perspective of cryptocurrency valuation.

5.1 Surplus sharing

Surplus is due to frictions that arise when finding trading partners and

is positive when searchers for applications (”appliers”) and entrepreneurs

(”suppliers”) of transaction technology applications meet. Because initial

productivity is maximal ( = 1), initial matches are never rejected in this

model. Matching occurs via random search according to a constant returns
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Figure 4: Coin issues with positive market value 2013-2020

matching technology. Define  = 

as a measure of market tightness, the

ratio of suppliers to appliers; under constant returns,  is a sufficient con-

dition for the effectiveness of search for both sides of the market. Potential

suppliers of technological applications meet potential appliers of technology

at rate () per unit time with ́  0, while appliers meet suppliers at rate

() with
(())


 0Match surplus is split according to a simple modified

Nash bargaining rule with respective shares  and 1−, so periodic returns
are () to appliers and (1 − )() to suppliers. The value of search to

an ”applier” searching for a transactions technology  follows the arbitrage

equation

 =  + () [(1)−  ] 

(1)− is the capital gain implied by the match above and beyond the value
of the alternative of continued search.  stands for the periodic flow utility

of an ”applier” with an unsatisfied demand.22 Similarly, a ”supplier” is an

entrepreneur with an idea in play or technology on the drawing board in

search of an application has continuation value  governed by the arbitrage

22In the labor search literature, this corresponds to the value of leisure, home production,

or the value of unemployment benefits.
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condition

 = −+ ()(1− ) [(1)−  −  ]

where  represents periodic search costs paid by suppliers and  stands for

fixed costs associated with implementing the technology when the match is

found.

5.2 Quantities and margins

This model focuses on the extensive margin of CC use as the number of

existing matched (satisfied) demands/applications with technologies at any

point in time. As such, it is a stand-in for cumulated coins or tokens in use

with positive surplus value ()  0. The gross flow of new matches at any

point in time corresponds to successful new currency launches (ICOs) and

is given by () = (). The intensive margin is not modeled explicitly,

but could be proxy for the productivity of the transactions technology 

(e.g. the fraction of the market that profitably uses it). Idiosyncratic pro-

ductivity  described in the previous section determines the joint surplus

of the match between technological application and users. The mass of em-

ployed (matched) technologies (”active coins”) is 1− and  represents the

mass of unmatched searchers/appliers. The latter evolves as the net differ-

ence per unit time between inflows and outflows of unmatched applications:


= ()(1−)−(). In the steady state, the stock of searching appli-

ers is  =
()

()+()
and the mass of active coins is  = 1− = ()

()+()


By inspection, a higher productivity threshold  raises the number of un-

matched appliers and reduces the number of active, positively valued coins.

Ceteris paribus, an increase in , the relative abundance of technological

ideas in search of appliers - increases the number of coins in use and reduces

the mass of appliers.

5.3 Free entry and the coin creation condition

The hallmark of this class of search and matching models is a free entry

condition on at least one side of the market. Free entry of new payment

technologies with positive capital value at the extensive margin implies dis-

sipation of rents. Applied to the entry of new technologies (suppliers) looking

for unsatisfied demanders of applications (appliers), this condition  = 0
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completes the description of the equilibrium. It implies:



()
= (1− )

∙
1−

 + 
− 

¸
 (24)

a downward-sloping relationship in ( ) space.23 This coin creation condi-

tion (CCC) describes values of  and  consistent with free entry of suppliers

of new technologies when the capitalized value of an unmatched new idea

has been driven to zero ( = 0). For fixed values of the model parameters,

it is characterized as the downward sloping curve in ( ) space in Figure

5. Ceteris paribus, a higher level of market tightness (a relatively greater

abundance of ideas in search of applications) is consistent with zero valua-

tion of a new application only if the match is sufficiently robust, i.e. if the

threshold productivity  is sufficiently low.

The equilibrium value of search  by unsatisfied demanders is

 =  + ()

∙
1−

 + 
− 

¸


and is a positive function of flow utility in search , the probability of match

() and thus market tightness , and the demander’s share of surplus ;

it is a negative function of the threshold productivity  the interest rate 

the incidence rate of productivity shocks , and the fixed cost of creating

the coin  . It can be combined with the surplus sharing condition, yielding

 =  +


1− 
 (25)

fixing the reservation level of utility obtained by an unmatched applier in

search for a supplier as a linear function of market tightness.

5.4 Coin abandonment condition

In this highly stylized model, heterogeneity of coins is captured by pro-

ductivity  and their valuation by capitalized valuation conditional on ,

(). Technology user-use matches have zero value at () = 0; because

surplus  is strictly increasing, matches are mutually abandoned if   

or ()  0 and the associated use case would revert to search for another

23Because  and  are positive, the right hand side must be positive, and thus meaningful

equilibria can only exist for  ( + )  1
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technology that yields at least  , the reservation flow defined by (25):

 +


1− 
= +



 + 

Z 1


(−)() (26)

This coin abandonment condition (CAC) describes a second relation be-

tween threshold productivity () and the relative abundance of suppliers

of payment technologies to uses/demanders (). It is represented by the

upward-sloping curve in Figure 5. The higher  is, the more fragile is the

match (the greater the likelihood that it will become obsolete); a higher

value of the abandonment threshold is only consistent with a higher scarcity

of potential appliers of technology (or a surfeit of suppliers of potential ap-

plications).

5.5 Equilibrium

The solution to the CC valuation problem is a reservation productivity value

 and a level of market tightness  = 

summarizing relative scarcity of

applications to users. An equilibrium is defined as intersection of CAC and

CCC conditions (26) and (24) in Figure 5, yielding an equilibrium level

of tightness ∗ and the flow productivity threshold ∗. The former is a
relative quantity indicator, while the latter is the threshold value of periodic

productivity of the marginally useful coin.24 Equilibrium values ∗ and ∗

in turn deliver  = 1−  the mass of coins in active use, the surplus value

() active coins at any point of time (with   ∗), as well as other
interesting quantities. The search and matching angle on cryptocurrencies

yields several insights summarized below.

Extensive margin. The mass or number of coins with positive value is

endogenous and equal to

 ≡ 1−  =
()

() + ()

24The determination of the relative abundance of technologies on offer (suppliers) rela-

tive to searcher for applications (appliers) can be represented in a two-dimensional diagram

that plots the two endogenous variables  and  as the intersection of the downward-

sloping CCC curve given by (24) and the upward-sloping CAC curve given by (26). This

diagram yields the usual comparative static insights of the effects of changes in exogenous

parameters of the model.
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Figure 5: Equilibrium in the cryptocurrency market as a matching processs
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The extensive margin is a positive function of  (the ratio of suppliers to

appliers) and a negative function of the ”fragility” of the marginal match 

Straightforward comparative statics analysis shows in turn that  and  are

functions of model parameters,  ,  ,  , and , as well as the functions

() and ().

Valuation. The search and matching model implies a value of total coin

issuance outstanding, under the assumption that () characterizes the

steady-state cross-section of coin productivities. The aggregate ”capitaliza-

tion” — value of all the positively valued coins — is an integral of the valuation

() over the range of viable match productivities  ∈ [ 1], weighted by
the probability of their occurrences:Z 1


()() =

Z 1



µ
−

 + 

¶
()

The shape of this value distribution will be affected by () but also by

possible transformations of it (see extensions below). The function ()

describes the surplus value of each matched and surviving technology. In a

competitive asset market, this corresponds to the market valuation of that

technology.

Option value. A third implication of the model is an option value con-

ferred on ”dormant” coins with low productivity. As noted above, only a

fraction of CC issued have positive ”market capitalization”, with a more

than 2/3 of all coins issue falling into disuse. The theory predicts a range

of current productivities will be observed that are strictly less than the flow

opportunity costs of search for appliers  reflecting the potential incidence

of a favorable future realization to the application/user pair. To see this,

rewrite the CAC (26) as

 =  +


1− 
− 

 + 

Z 1


(−)()

showing that the abandonment threshold  equals the best alternative avail-

able to appliers (the value of further search) less an integral term represent-

ing expected capital gain of a new realization of productivity that falls in

the acceptance range [ 1]. Intuitively, this option value is lower, the higher

equilibrium value  (the more fragile matches are). Holding  + 
1− con-
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stant, the option will also be lower relative to a counterfactual coin with a

productivity distribution e() that is stochastically dominated by ().25
5.6 Extensions

The search and matching model approach to coin valuation can be extended

in a number of directions. The ”participation margin” of potential appli-

ers could be endogenized like invidual workers in the MP model (Pissarides

2000, Chapter 7). Similarly, the distribution of match productivity could

incorporate endogenous search effort on the side of technology suppliers in

equilibrium. Conditional on entry, the intensive margin, how much of each

coin is issued, was suppressed, but could be modeled to depend on cost and

benefits of services provided algorithmically by coin contracts. Explicit mod-

eling this intensive margin is likely to render match productivity a function

of scale economies of the application. Alternatively, spillover effects across

coin issue could transform individual into effective productivity via some in-

creasing function and ultimately affect () Finally, the role of institutions

such as intellectual property law could affect  with effects on equilibrium

 and  while fixed and periodic costs ( and ) of technology suppliers

might admit external effects and potential roles for policy.

6 Concluding remarks

The correction of the CC market following its peak valuation in April 2021

of about a third represented $1t or about 1.2% of world GDP, making cryp-

tocurrencies a macroeconomic phenomenon. This paper offers three ”easy

pieces” for understanding digital assets as a medium of exchange, a store of

value, and an open system for matching payment tasks with technologies to

implement them. The three études are meant to help understand the dimen-

sions of CC valuation and are necessarily oversimplifications of a complex

reality. The first piece stresses the MOE functionality and the first-order

role of expectations as a central source of fluctuations in CC valuation. The

robust negative role of fiat currency inflation as well as real rates of return

alert us to the close proximity of CC to money and its inherent unattrac-

tiveness when nominal interest rates are high; a rise in rates will have an

25() stochastically dominates e() if () ≤ e() ∀ and ()  e() for some
 ∈ [0 1]  If e() = ()() and ()  1, it is straightforward to show that, all other

things equal,   e, i.e. the option value associated with e() is higher.
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outsize negative impact on the valuation of digital assets, ceteris paribus.

Similarly, a rise in the expected future utility of CC in executing payments

will have immediate positive impact on current valuations. Formally, the

space for bubbles is large, but also for expectations of nonstationary evolu-

tion of transaction technologies. Because resulting fluctuations are imper-

fectly correlated with other asset returns, they naturally give rise to SOV

functionality, which rationalizes the second piece. Empirically, CC returns

are increasingly negatively correlated with broad asset indexes, suggesting

a premium (risk discount), at least in the brief period we can evaluate. The

third piece demonstrates the role of currency competition in CC valuation.

If scale diseconomies set in or ease of transactions declines, entry of new

technologies will become profitable and displace old ones.

Seen through these different lenses, cryptocurrency valuation remains a

conundrum, however, and the reader who has made it this far may be dis-

appointed by my tentative conclusions. Each model succeeds and fails in

its own way. Jevon’s functions of money are jointly produced and interfere

with each other, and the strength of these competing uses varies over time.

CC are money and as such will be valued for their acceptance by others

and for the liquidity convenience they provide. They are Hume’s lubricant

of the wheels of commerce, not only for goods and services, but also for fi-

nancial transactions, including the overcoming of trading frictions, securing

and transfer of collateral, market discovery, and facilitation of competitive

entry and experimentation. Shifting present and expected future demand

for these uses are causal for additional fluctuations that can be influenced

both by fundamentals, based on the inherent utility they offer, and ”senti-

ments” or market mood about others’ expectations of CC prices rising at

a rate that makes them competitive with more conventional yield-bearing

assets. If price dynamics are grounded in sentiments of regarding prob-

abilities of nonstationary behavior of productivity, they are fundamental;

they are rather based on castles-in-the-sky rumors, ”pump-and-dump” and

selling into a rising market, they are likely to be a bubble. Curiously, the

very volatility generated by these expectations provide a potential hedge

against consumption risk and render CC a candidate component of a well-

diversified portfolio. While CC and digital assets may resemble elaborate

Ponzi schemes, they do offer new and unbundled financial services that are

likely to make them a permanent fixture of the financial landscape, and not

necessarily, as Warren Buffett asserted, ”rat-poison squared.”26

26https://www.cnbc.com/2018/05/05/warren-buffett-says-bitcoin-is-probably-rat-
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Paradoxically, value stability is essential for sustainable MOE functional-

ity, yet volatile expectations surrounding future adoption and use of CC will

attenuate that value, while enhancing the hedge against consumption fluc-

tuations across time and states of nature. The fundamental value of any CC

can only be sustained by future utility in transactions, and the maintenance

of transactions ledgers cannot become so costly that competing versions of

money emerge and degrade or debase existing ones. Ultimately, tensions

between these features are driven by common but conflicting roles of sen-

timent or general market mood, and by fundamental and non-fundamental

factors. Keynes noted in Chapter 12 of the General Theory: ”If I may be

allowed to appropriate the term speculation for the activity of forecasting

the psychology of the market, and the term enterprise for the activity of

forecasting the prospective yield of assets over their whole life, it is by no

means always the case that speculation predominates over enterprise.” The

lasting impact of CC and digital finance may ultimately lie in the use of

technology to separate those competing functions of money.

7 References

Abreu, D. and Brunnermeier, M. (2013) Bubbles and Crashes. Economet-

rica 71:173-204.

Almosova, A. (2017) A Note on Cryptocurrencies and Currency Competi-

tion, IRTG 1792 Discussion Paper 2018-006, December.

Almosova, A. (2018) A Monetary Model of Blockchain IRTG 1792 Discus-

sion Paper 2018-008 January

Alogoskoufis, G. (2019) Dynamic Macroeconomics. Cambridge USA: MIT

Press.

Bank of England (2020) Central Bank Digital Currency: Opportunities,

Challenges and Design. Bank of England Discussion Paper 2020, Ch. 6.

Biais, B, Bisière, C., Bouvard, M., Casamatta, C., and Mekveld, A (2018)

poison-squared.html

32



Equilibrium Bitcoin Pricing, mimeo, December.

Blanchard, O.J. (1979) Speculative Bubbles, Crashes and Rational Expec-

tations, Economics Letters 3: 387-389.

Blanchard, O.J.and Watson, M. (1982) Bubbles, Rational Expectations and

Financial Markets, in P. Wachtel, ed., Crises in the Economic and Financial

Structure, Lexington, MA: Lexington Books, pp. 295-315.

Blanchard, O.J. and Fischer, S. (1989) Lectures on Macroeconomics MIT

Press.

Brunnermeier M. (2009) Bubbles. New Palgrave Dictionary of Economics,

2nd edition.

Brunnermeier M., and Niepelt D. (2019) On the Equivalence of Private and

Public Money. Journal of Monetary Economics 106: 27-41.

Brunnermeier M.K., James H., and Landau J-P (2019) The Digitization of

Money. NBER Working Paper 26300, September.

Campbell, J. (1999) Asset Prices, Consumption and the Business Cycle,

Chapter 19 of J Taylor and M Woodford, eds., Handbook of Macroeco-

nomics. Amsterdam: Elsevier Science, 1231-1303.

Chen C.Y., and Vinogradov, D. (2020) Coins with benefits: On existence,

pricing kernel and risk premium of cryptocurrencies, mimeo, November 15.
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8 Appendix

8.1 Appendix #1: Demand, supply and equilibrium in a

market for a MOE

Log demand for CC in period ,   can be written as

 = +  −  −  − ( ++1 −  −
³



+1 − 

´
)

=
1

1 + 

h
+  −  −  − ( ++1 − )

i
+



1 + 



+1(27)

Log supply of CC takes the form  = ()( − −1) with implied first
difference

∆ = ()(− −1)− (−1)(− −2)
= () (− −1)− (−1)+ (−1)−2
= () (− −1)− (−1)+ (−1) (− −1)
−(−1) (− −1) + (−1)−2

= [()− (−1)] (− −1)− (−1) [−1 − −2]
= [()− (−1)] (− −1)− (−1)∆−1

meaning that as long as () is difference stationary, the log of CC supply is

difference-stationary, here, an AR(1) process. Under the form of  assumed

in the main text, (3), it follows that

+ = (1− )  +

"
−1X
=0

(1− )
#


= (1− )  + [1− (1− ) ] 

= − (1− ) (− )
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Demand equals supply in equilibrium, + = + for  = 0 1  so

 =
1

1 + 

∞X
=0

µ


1 + 

¶
 [+ + − + − (+ +++1)]

− 1

1 + 

∞X
=0

µ


1 + 

¶ h
− (1− ) (− )

i
(28)

or

 =
1

1 + 

∞X
=0

µ


1 + 

¶
 [+ + − + − (+ +++1)](29)

− 1

1 + 

∞X
=0

µ


1 + 

¶
+

1

1 + 

∞X
=0

µ


1 + 

¶
(1− ) (− )(30)

=
1

1 + 

∞X
=0

µ


1 + 

¶
 [+ + − + − (+ +++1)](31)

− + − 

1 + 

∞X
=0

µ
 (1− )

1 + 

¶
(32)

=
1

1 + 

∞X
=0

µ


1 + 

¶
 [+ + − + − (+ +++1)](33)

− +
µ

1

1 + 

¶
(− ) (34)

which is equation (8) in the main text.

8.2 Appendix #2: C-CAPM

Assuming covariance-stationarity of returns and concavity of  is sufficient

to write (12) in Bellman form, a time-invariant and unique value function

 () is the solution to the functional equation

 () = max
 +1

{}=2

() +  (+1) (35)

subject to (10) and imposing 1 = 1−
P

=2  ∀. First-order conditions
are:

For  :

́() = 

"Ã
1 +1+1 +

X
=2

(+1 −1+1)

!
 (́+1)

#
(36)
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For +1 :

 [(1 +1+1) (́+1)] = 0 (37)

For ,  = 2  :

 [(+1 −1+1) (́+1)] = 0 (38)

for all  ≥ 0 The Benveniste-Scheinkman condition for optimality

 (́) = 

"Ã
1 +1+1 +

X
=2

(+1 −1+1)

!
 (́+1)

#
(39)

implies ́() =  (́) ́(+1) =  (́+1) and for the total portfolio

́() = 

"Ã
1 +1+1 +

X
=2

(+1 −1+1)

!
́(+1)

#
(40)

as well as for the reference asset ( = 1):

́() =  [(1 +1+1)́(+1)] (41)

so for  = 2  :

 [(+1 −1+1)́(+1)] = 0 (42)

8.3 Appendix #3: Search and matching

The value of a ”technology match” between an applier and a supplier at

productivity , () is characterized by the following Bellman equation:

() = + 

Z 1

0
max [()−  −  0] ()− ( +  )

The time-invariance of () implies that offers are never hoarded, so 0() 
0 and the reservation property holds:

() = + 

Z 1


[()− ()] ()− ()()− ( +  )

= + 

Z 1


()()− ()− ( +  )

( + )() = + 

Z 1


()()− ( +  )
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This expression can be derived in an alternative way. Let () and  ()

the capital value of a matched technology and satisfied demand in a match

and let  and  be the respective capital values of unmatched technology

and unsatisfied demand. Then the continuation values of  and  must

obey

 () =  + 

Z 1


 ()()−  () + ()

() = −  + 

Z 1


()()− () + ()

Subtract the fallback flow surplus (+ ) from the sum of these equations:

 () + ()−  −  = + 

Z 1


[() + ()] ()−  [() + ()]

+() ( +  )−  ( +  )

() = + 

Z 1


[() + ()] ()−  [() + ()]

+() ( +  )−  ( +  )

−(1−()) ( +  ) + (1−()) ( +  )

() = + 

Z 1


()()− ()− ( +  )

( + )() = + 

Z 1


()()− ( +  )

For new matches,  = 1 so the value of search for an ”applier” searching

for a transactions technology obeys

 =  + () [(1)−  −  ] (43)

and the value of a technology in search of an application to a ”supplier” is

given by

 = −+ ()(1− ) [(1)−  −  ] 

Free entry implies  = 0 and thus

 = ()(1− ) ((1)−  )  (44)

The value of the surplus is derived from (23) imposing  = 0 :

( + )() = + 

Z 1


()()−  (45)
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and this also holds for the threshold  =  () = 0 so we have

0 = + 

Z 1


()()− 

Subtracting the last from the previous equation results in:

() =
−

 + 

so (1) = 1−
+

 Combining this with (44) jointly imply the coin creation

condition (24):



()
= (1− )

∙
1−

 + 
− 

¸
 (46)

In an equilibrium with  = 0, the value of productivity  for which

both participants in the match derive no surplus and agree to dissolve the

match is given by () = 0

0 = + 

Z 1


()()−  (47)

The steady state equilibrium value of search  follows from (43) with

 =  + ()

∙
1−

 + 
− 

¸


which combined with the vacancy valuation condition

 = −+ ()(1− )

∙
1−

 + 
−  − 

¸
and the free entry condition  = 0 yields the reservation level of search for

appliers:

 =  +


1− 


which for  =  results in the coin abandonment condition (26) in the text:

 +


1− 
= + 

Z 1


()() (48)
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